N

N

Triangular sets for solving polynomial systems: a
comparison of four methods
Philippe Aubry, Marc Moreno Maza

» To cite this version:

Philippe Aubry, Marc Moreno Maza. Triangular sets for solving polynomial systems: a comparison
of four methods. [Research Report| lip6.1997.009, LIP6. 1997. hal-02546252

HAL Id: hal-02546252
https://hal.science/hal-02546252
Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02546252
https://hal.archives-ouvertes.fr

Des ensembles triangulaires pour résoudre les
systemes polynomiaux : une comparaison de quatre
méthodes

Philippe Aubry
Marc Moreno Maza
LIP6, Université Paris 6
4, Place Jussieu 75252 Paris Cedex 05
Tel : (33) 01 44 27 33 41
e-mail : aubry@posso.ibp.fr m3@posso.ibp.fr

résumé

Quatre méthodes de résolution de systéemes d’équations polynomiales sont présentées et implantées
dans un cadre commun. Ces méthodes sont celles de Wu ([Wu87]), Lazard ([Laz91]), Kalkbrener
([Kal91]) et Wang ([Wan93b]). FElles sont comparées sur divers exemples avec une attention par-
ticuliere portée a Uefficacité, la concision et la lisibilité des sorties.

Triangular Sets for Solving Polynomial Systems : a
Comparison of Four Methods

Philippe Aubry
Marc Moreno Maza
LIP6, Université Paris 6
4, Place Jussieu 75252 Paris Cedex 05
Tel : (33) 01 44 27 33 41
e-mail : aubry@posso.ibp.fr m3@posso.ibp.fr

January 22, 1996

Abstract

Four methods for solving polynomial systems by means of triangular sets are pre-
sented and implemented in a unified way. These methods are those of Wu ([Wu87]),
Lazard ([Laz91]), Kalkbrener ([Kal91]) and Wang ([Wan93b]). They are compared
on various examples with emphasizing on efficiency, conciseness and legibility of the
outputs.

Introduction

In this paper, we are concerned with the following problem : given a finite family F of
multivariate polynomials over a field k and with ordered variables X1 < Xy < --- < X,
to describe the affine variety V (F) (i.e. the common zeros of I’ over an algebraic closure
of k). Such a description is usually given by a finite family {71, ...,7,} of polynomial
sets with particular properties, a link between the T; and F, and an algorithm to
compute the T; from F. A well developed strategy since Buchberger’s work ([Buc65])
is the following : given an ordering on the monomials, to choose for T; the Grobner
basis of the ideal generated by I and compute it by the Buchberger’s algorithm.

Wu Wen-Tsiin in [Wu87] introduced another way of solving algebraic systems which
is the one we are concerned with in this paper. In that case each T} is a polynomial set
such that two distinct polynomials in T; have distinct greatest variables. Such a T; is
called a triangular set. The points of V(7}) where no leading coefficient of a polynomial
in T;, viewed as univariate in its greatest variable, vanishes are called the regular zeros
of T;. Then, in Wu’s method, the variety V(F') is the union of the regular zeros of
the T; and this decomposition can be computed by the original Wu’s CHRST-REM
algorithm ([Wu87]). This method has been investigated in many papers. Among them :
[Cho88, CG90, CGI92, GMI0, Wan92a, Wan92b]. Wu’s method is efficient for geometric

problems where the degenerate solutions are not interesting. For general problems it
seems to be difficult to obtain an efficient implementation and this method may produce
superfluous triangular sets. Wu’s algorithm, like Buchberger’s one, depends on many
choices; moreover, its result is not uniquely defined.

A Wu’s like decomposition of affine varieties can be obtained by Daniel Lazard’s
algorithm ([Laz91]). But in that case the definition of triangular sets has been strength-
ened (definition9) in order to guarantee irredundant and more canonical decomposi-
tions. Our paper reports a first implementation of this method and shows that it can be
efficient. In [MR95], M. Moreno Maza and R. Rioboo report a very efficient implemen-
tation of another algorithm due to Daniel Lazard ([Laz92a]) and called Leztriangular.
This last algorithm also computes decompositions similar to those of ([Laz91]) but the
input must be a lexicographical Grobner basis of a zero-dimensional ideal. Lazard’s
decompositions have at least two interesting properties. On one hand numeric solutions
may be easily obtained from them because Lazard’s triangular sets are normalized (def-
inition 2). See also section 8 in [Laz92a] for more details. On the other hand Lazard’s
triangular sets are well suited for describing prime ideals (see section 3 in [Laz91])
whereas there is no bound on the minimal number of generators for a lexicographical
Grobner basis of a prime ideal.

In [Kal91] Michael Kalkbrener introduced another type of triangular sets called
regular chains (definition 4) together with another link between F' and the 7T;. In that
case V(F) is the union of the closures (w.r.t. Zarisky topology) of the regular zeros
of the T;. Let us mention an example to see the difference between Wu and Lazard’s
way of solving and Kalkbrener’s one. We consider the system given by the following
polynomials where the ordered variables are ¢3 > s3 > ¢y > s; > b > a and where the
coeflicients lie in the field of rational numbers :

2 2 2 2
{cl cg—51 83+¢c1—a, sy ca+cp sg+s1—0b, i +s57—1, 62—|—82—1}

Our implementation of Lazard’s algorithm ([Laz91]) produces the decomposition
{1y, T3, T3} where :

T = {(4b2—|—4a2) s%—l—(—4b3—4azb)sl—l—l)4—|—2c12I)Q—I—a4—4az7
2ac14+20bs —b*—ad?
2(182—|—(2b2—|—2a2)51—b3—a2b,
202—b2—a2—|—2}

Ty = {a,2s1—b,4c34+b*—4,85—bey, 2c0—b*+2}

Ty = {a,b,ci+s3—1, sy, c0+1}

How this solution has to be understood 7 In T3, one may arbitrarily choose a and b once
a(b? + a?) # 0, and obtain successively the values of the indeterminates sy, c1, s2, ca.
The triangular sets Ty and T5 describe the case @ = 0. Note that in T3, one may choose
arbitrarily b whereas b = 0 in 73. So, where is the case b? +a? = 0 7 It is described by
T5. In fact, if we add this equation to the initial system the computed decomposition
is only {75}. Now, our implementation of Kalkbrener’s algorithm ([Kal91]) produces
the decomposition {C'} where :

C = {(4b2—|—4a2) s%—l—(—4b3—4a2 b) s+ b+ 2 a? I)Q—I—a4—4az7
2ac1+2bs—b>—a?, sy —bci+a s,
sy cz—l—bc%—asl cl—l—sl—b}

In that case a point is a solution of the initial system if it lies in the closure of the
regular zeros of the only triangular set above, denoted by C'. Although C and 7; are
different, their regular zero sets have the same closure, which contains the regular zeros
of the previous T and T5. Note that Kalkbrener’s output is simpler but needs futher
computations for the zeros satisfying a(b? + a*) = 0.

Triangular sets can also be used to solve quasi-algebraic systems (definition 3). In
[Wan93b] Dongming Wang proposed such a method by means of Wu'’s triangular sets.
But Wang’s process is different from Wu’s one and seems to be more efficient.

In the conclusion of [Kal93] Michael Kalkbrener wrote : a comparison with the algo-
rithms of Ritt, Wu and Lazard seems to be interesting. In the conclusion of [Wan93b]
Dongming Wang wrote : a systematic analysis and comparison among them (the elim-
ination methods of Lazard and Kalkbrener) both theoretically and practically remain
interesting for future work. The purpose of this paper is to compare the methods of Wu
([Wu87]), Lazard ([Laz91]), Kalkbrener ([Kal91]) and Wang ([Wan93b]). In the first
section, following [Laz92b], we introduce a coherent terminology to present their spec-
ifications. Then we study some properties of regular chains and their connection with
towers of simple extensions (definition 5). We also look into the special case of Lazard
sets. In the second section, we review the specifications of each method. Futhermore,
we give a recursive adaptation of Wang’s method which seems to us easier to read than
the original iterative description. Our implementation of Lazard’s method is based
on an algorithm for ged computations of univariate polynomials with coefficients in a
separable tower of simple extensions. The idea is a generalisation of the one of [MR95].
This algorithm could not take place here and will be presented in a future paper. In
the third section we discuss experimentations on those four methods. We think that a
reasonable comparative implementation should satisfy the following requirements :

e the corresponding algorithms must be implemented and run with the same hu-
man, material and software conditions (using the same data structures and sub-
routines)

e to make sure that each computed solution is correct

e not to only focus on timings but also on the legibility of the ouputs and their
suitability for further uses

A strongly typed and object-oriented language is convenient to satisfy the first require-
ment above. We used the AXIOM computer algebra system ([JS92]). We defined
categories corresponding to the different properties of triangular sets, packages and
domains for the common sub-routines. Futhermore, AXIOM is connected with GB,
the very powerful Grébner engine developed by J.C. Faugere ([Fau94]). This allowed
us the non-trivial Grébner basis computations which are needed in order to satisfy the
second requirement above.

Our implementation of each method uses the same polynomial domain constructor.
Thus, a method involving particular data-structures like the dynamic sets and dynamic
polynomials ([Dia92]) could not enter within our experimentations. However we tested
each of our examples with the dynamic evaluation. This method is only usable for
easy examples and cannot compare with the methods of Wu, Wang, Kalkbrener and
Lazard. But note that the goal of dynamic evaluation is not restricted to polynomial
system solving. As we wanted to implement easily and completely each of the method

we considered, we also discarded methods which depend on sophisticated techniques
like Grobner basis computations or factorizations.

In the last section, we report some experimental data on a set of test exam-
ples. Most of them can be found in the data base of the european research project
PoSSo ([Com92]). They are also available by £tp on posso.ibp.fr in the directory
pub/papers/TriangularSets. Finally, we investigate the computed decompositions
for some relevant examples and point out some remarks suggested by our experimen-
tations.

1 Triangular Sets and Towers of Simple Exten-
sions

In this section we first recall the most general definition for triangular sets (defi-
nition 1). This is the one used in Wu’s method ([Wu87]) and in Wang’s method
([Wan93a, Wan93b]). Then we recall the definition of regular chains (definition 4)
which are particular triangular sets used in Kalkbrener’s method ([Kal91, Kal93]). In
the third subsection, we give a definition for towers of simple extensions (definition 5)
and we show that regular chains are suitable for encoding every tower of simple ex-
tensions. Finally, we study Lazard sets (definition 9), which are special regular chains.
Their presentation is inspired by our adaptation of Lazard’s method ([L.az91]) by means
of polynomial ged computations over tower of separable extensions (full details will ap-
pear in [Maz97]). Before dealing with triangular sets, we need some general notations.
about rings, ideals and varieties.

Notations 1 We denote by IN the set of the non-negative integer numbers. Let A be
a ring (all rings considered here are commutative noetherian rings with unit element)
and I be a subset of A. We denote by () the ideal of A generated by F, and
by A/E the quotient ring of A by (E)A. For an element a € A, we denote by a
the residue class of @ in A/E. If IV = {ay,...,q;} we simply write (aq,...,a;)p (or
(ai,...,a)) instead of (E) o . If E'is empty we state (E/) o = (0). We denote by nz(A)
the multiplicatively closed subset of non-zero-divisors of A (this contains the group of
invertible elements of A) and by q(A) the ring of fractions with numerators in A and
denominators in nz(A). Let I be an ideal of A. We denote by ap(I) the associated
prime ideals of I (i.e. the components of a minimal primary decomposition of \/7)
For an element h € A, the saturated ideal of I w.r.t. h (i.e. the set of the b € A such
that there exists a positive integer m with h™b € I) is denoted by I : h*°. The ideal
generated in A[X] by I is denoted by I[X]. For a polynomial p € A[X] we denote by
P’ the image of p in q(A/I)[X] obtained by mapping the coefficients of p into q(A/I).
For a module M over A and a multiplicatively closed subset S of nz(A), we denote by
S~!M the A-module of fractions with numerator in M and denominator in S. Now
assume that A is a polynomial ring with n variables and coefficients over a field k. Let
K be an algebraic closure of k. For an ideal I of A, we denote by Vg (I) (or simply
V(1)) the affine variety of K" associated to I and if I = {(aq,...,a;) we simply write
V(ay,...,a;) instead of V({ay,...,a;)). Finally, for W C K" we denote by W the
closure of W w.r.t. the Zarisky topology over k (whose closed sets are the V(I) for
every ideal [of A).

1.1 Triangular Sets

Notations 2 Let R be an integral domain. We denote by k the field of fractions of
R. Let K be an algebraic closure of k. Let n be a positive integer and V' a set of n
ordered variables X; < X3 < -+- < X,,. For 1 <i < n,let R; = R[Xy,...,X;] and
P; = k[Xy, ..., X;] be the rings of polynomials in i variables with coefficients in R and
k respectively. We also define Rg = R and Py = k. Let ¥ C R, and p,¢ € R,,, with
p#0and g ¢ R. For v € V| we write deg(p, v) for the degree of p with respect to the
variable v. We denote by var(E) the set of the variables v € V for which there exists
r € E with r # 0 such that deg(r,v) > 0. If ¥ = {r} we simply write var(r) intsead of
var(F). We call the main variable of q, denoted by mvar(q), the greatest variable of ¢.
When £ Z R we denote by mvar(L) the greatest variable of var(£). We call initial of
q (denoted by init(q)) the leading coefficient of ¢ viewed as an univariate polynomial
in mvar(q). We call main degree of ¢ (denoted by mdeg(q)) the degree deg(q, mvar(g))

and tail of ¢ (denoted by tail(¢)) the polynomial ¢ — init(g) mvar(q)mdeg(q). We denote
by algVar(E) the set of the variables v € V for which there exists r € ' with r ¢ R
such that mvar(r) = v. Let v be in V. We denote by E;, F, and EF the set of the
non-constant polynomials r € F such that mvar(r) < v, mvar(r) = v and mvar(r) > v
respectively. If F, = {r} we simply write FE, =r.

Definition 1 A subset T' of R, is called a triangular set if every polynomial of T is
non-constant and if for all p,q € T with p # q we have mvar(p) # mvar(q).

Example 1 Let p € R,,. Let iter(p) be the subset of R,, recursively defined as follows :
if p € R then iter(p) =0 else iter(p) = {p} Uiter(init(p)). Then iter(p) is a triangular
set of R,, whose elements are called the iterated initials of p.

Notations 3 Let F be a subset of R,, and p, ¢ € R,,, with p # 0 and ¢ € R. We write
red?(p, ¢) if deg(p, mvar(q)) < mdeg(g) holds. Then we write red?(p, £) if red?(p,r)
holds for every r € E. We write iRed?(p, q) if either iter(p), = 0 or red?(iter(p),,q)
holds where v is mvar(g). We write normalized?(p, ¢) if iter(p), = 0 holds where v is
mvar(q). Then we write iRed?(p, F) if iRed?(p,r) holds for every r € E. The same
way we define normalized?(p, £'). We denote by prem(p, ¢) and pquo(p, ¢) the pseudo-
remainder and the pseudo-quotient of p by ¢ when interpreting them as univariate in
mvar(q). Let T C R,, be a triangular set. If T = () we define prem(p,T) = p else we
define prem(p,T') = prem(prem(p, 1,), T,) where v is mvar(T). Then we denote by
prem(F,T) the subset of R, whose elements are the polynomials prem(r,7T') for r in
E. If T = {q} we simply write prem(F, ¢) instead of prem(E,T).

Definition 2 A triangular set T of R, is called reduced (resp. initially reduced)
(resp. normalized) if for every t € T, denoting mvar(t) by v, we have red?(t, T,)
(resp. iRed?(t, T,7)) (resp. normalized?(t, T)).

Example 2 In the introduction, the triangular sets Ty, T3 and T3 are reduced and
normalized, whereas (' is initially reduced but neither reduced nor normalized.

Notations 4 Let p,q € R, with ¢ € R. Let .S be the multiplicatively closed subset of
R, generated by h = init(p). Let e be the minimal power of & by which p is multiplied in

order to compute a polynomial r (by the peudo-division algorithm) such that red?(r, ¢)
and hp —r € (¢)R - In many cases, we have e = deg(p, mvar(q)) — mdeg(q) + 1 and
r = prem(p, q). If red?(p, q) we have e = 0 and r = p. Then we denote by mod(p, ¢) the
element of ST!R,, defined by 7e- Let T be triangular set of R,,. We denote by S the
multiplicatively closed subset of R,, generated by 1 and the initials of the elements of
T. If p ¢ R then we write v = mvar(p), ¢, = init(p), d, = mdeg(p) and ¢, = tail(p).
Now, we define the element mod(p, T) of ST'R,, by iterating the following rules :

(1) T=0orpe R = mod(p,T) =%
(2) red?(p, T,) = mod(p,T) = mod(i,, TU_)# + mod(t,, T)
, !
3) mod(v®,T,) = £ and mod(i,, T L = mod(p, T :Mr,r—’Tl—l—modt,T
5 Py *uw s) p

Thus for every p € R,, there exist r € R;, and s € S such that mod(p,T) = £ with
red?(r,T) and sp — r € <T>Rn‘ Finally, we define the element iRed(p,T") of R, by
iterating the following rules :

(a) iRed?(p,T) = iRed(p,T)=1p
(b) mod(p, T,) =% = iRed(p,T) = iRed(r, T)
(¢) iRed(i,, T;) = r and mod(si, — r, T;) =0 = iRed(p,T) = iRed(rv? + st,,, T)

Thus for every p € R,, there exist r € R,, and s € S such that iRed(p,7") = r with
iRed?(r,T) and sp —r € (T)R_ -

Remark 1 Note that to apply rule (¢) in the definition of iRed(p,T) it is necessary
to store the intermediate denominators s which appear when applying rule (b). This
notion of iterated initials reduction is the weakest notion of reduction which ensures
the termination of Wu’s algorithm ([Laz92b]). Futhermore, as it limits the number of
reduction steps, it leads generally to an increase of efficiency in comparison with the
complete reduction (i.e. the one based on the operation (p,7") — mod(p,T)).

Definition 3 FEvery couple ¥ = (P,Q), where P and Q) are two finite subsets of R,
is called a quasi-algebraic system in R, (q.a.s. for short). Let ¥ = (P,Q) be a q.a.s.
in R,. The q.a.s. ¥ is called triangular if P is a triangular set of R,,. If Q # () then
we denote by h(X) the product of the elements of @), otherwise we define h(X) = 1. We
call a zero of ¥ every element of the subset of K" denoted by Z(X) and defined by :

Z(%) = V(P)\ V(h(2))

The q.a.s. 3 is called inconsistent if Z(X) = () else it is called consistent. The saturated
ideal of the q.a.s. ¥ is the saturated ideal of the ideal generated by P in P, w.r.t. h(¥).
Let T C R, be a triangular set. We denote by ¥(T) the triangular q.a.s defined by

S(T) = (T, {init(t) | t € T})

Then, we denote by sat, (1) the saturated ideal of (1) and by h(T) the product of
the initials of the elements of T. Moreover, every zero of (1) is called a regular
zero of T and Z(X(T)) is also written W(T') and called the quasi-component of T'.
Finally, following [Wan93a, Wan93b], a triangular g.a.s. ¥ = (T,Q) is called fine if
V(R(T))NZ(X) =0 and 0 € prem(Q, T).

Remark 2 Let T'C R,, be a triangular set. If T" is a regular chain (definition 4) then
W(T) # 0. This will result from theorems 1, and 2 and proposition 4. The converse
is false as shown by the following example : T = {X?, X1 X% + X, + 1}. Thus, if
T is a normalized triangular set, then W(T') # (. This will result from theorem 3
and proposition 5. If W(T') # () then X(7T') is fine but the converse is false, consider
T={X? 1, X, X2~ X, +1,X(X; +1)X3 + 1}.

Let 3 be a q.a.s. in R,,. To decide whether ¥ is consistent one can compute sat,, (X)
by means of Grobner bases techniques ([GTZ88, CLO91, Laz92b]). The answer is true
iff sat,, (X) # P, (i.e. h(T) does not lie in the radical of the ideal generated by 7" in
P.). The following result shows more precisely the links between sat,, (3) and Z(X).

Theorem 1 Let X be a g.a.s. in R,,. Then we have :

Z(Y) = V(sat, (X))

Proof. > Let ¥ = (P,Q) be a q.a.s. in R,,. We denote by H the principal ideal
generated by h(X) in P, and by I the ideal generated by P in P,. It is clear that

Z(X) = V(VI)\'V(H). Thus, by theorem 7 in [CLO91] p.193, we have Z(X) =
V (VI : H). Finally, one can check that v/T: H =T :h(X)™ = /T:h(Z)™. <

1.2 Regular Chains

The concept of regular chains in P, is introduced by Kalkbrenner in [Kal91]. The
definition below deals only with ideals and corresponds to a particular case of system
of representations presented in [Kal95]. Let ¢ be a positive integer and I an ideal in

P;_q, recall that for f € P;, we denote by TI the canonical image of fin q(P;—1/1)[X;].

Definition 4 Let ¢ € N and T be a triangular set of R;. We say that T is a regular
chain in P; and that the ideal Rep;(T) of P; is its representation if either i = 0, T = (),
and Repo(T') = {0}, or i > 0 and one of the following assertions holds :

(1) X; ¢ algVar(T'), the set T is a regular chain in P;_; and

Rep;(T) = {f€P; | (VP € ap(Rep;_1(T))) 773 =0}

(2) X; € algVar(T), the set Ty, is a regular chain in P;_y, for any associated prime
ideal P of Rep;—1(T.) we have init(Tx,) ¢ P, and

Repi(T) = {f € P | (VP € ap(Repis (T5)) T € \[(Tx. dgqmry/m)ixig)

Remark 3 With the notations of the above definition, if X; € algVar(7') then it follows
from the condition init(Tx;) ¢ P that deg(TXl.P,Xi) = mdeg(Tx,). Thusif r € P;
with deg(r, X;) < mdeg(T'x,), we have deg(FP7 X;) < deg(TXl.P7 X,).

Remark 4 The following results can be verified with general commutative algebra :

let I an ideal in A and h € A, then VI[X] = /I[X] and (I : h=)[X] = I[X] : h*°.
Thus, if T"is a triangular set in P;_;, we have sat;(1") = (sat;— (T'))p,-

Proposition 1 Let ¢ be a positive integer and T be a reqular chain in P;.

(7) if X; ¢ algVar(T') then Rep;(T) = <\/Repi_1(T)>PZ,
(12) if X; € algVar(T') then

Rep,(T) = {feP; | (ImeN) prem(f™", Tx,) € Rep;(T,)}

Proof. > Let f € P; and P € ap(Rep;—1(Ty,)). We first assume that X; ¢ algVar(T).

We have 77D = 0 iff every coefficient of f, viewed as univariate in X, lies in P. Thus,

[€ Rep;(T') iff every coefficient of f lies in \/Rep;_1 (T), i.e. f € (\/Repi_1(T))p;-
Now we assume that X; € algVar(T') with ¢t = T, and h = init(¢). For m € N, we
denote prem(f™,t) by r,,. There exists ¢ € P; and § € IN such that

W™ =gt + (1)

First let us assume that f € Rep;(7"). By point (2) of definition 4 there exists m € IN
such that f_mp € <f7)>. By choosing m big enough, we can take the same integer m for

every prime ideal P in ap(Rep;_1(T,)). With the relation (1) we deduce that i di-
vides mP‘ By remark 3 it follows that mP = 0. Therefore r,, € (1/Rep;_1(T)Ei)>P»7
and with (i) we obtain r,, € Rep;(Ty,). Conversely, assume that there exists m € IN

such that r,, € Rep;(T,). We get Tl = 0 and thus h5fmp € <f7)>
h ¢ P, therefore 77 is invertible. Tt follows that f_mp € <f7)>

. By definition
,i.e. f€Rep(T). «
Proposition 2 Let ¢ € IN and T be a non-empty triangular set of P; such that X; €

algVar(T'). Let us assume that for every P € ap(y/sat;—1(T,)) we have init(Tx,) & P.
Let r € P; such that r € sat;(T). Then we have

deg(r, X;) < mdeg(Tx,) = r € y/sat;(Tx,).

Proof. > Define i = init(T,). First we assume that 7y = 0. Then there exists 6 € IN

such that T, divides R%r. The hypothesis on the degree implies r = 0, which proves
the assertion. Now let us assume that T # () and denote (Hte 7= init(t)) by A’
B X,

Since r € sat;(T) there exists 6 € IN and ¢ € P; such that (hh/)or + ¢ Tx, € (T)})Pi.
Let P be a prime ideal associated to y/sat;—1(T). It is a classical result that A’ ¢ P.
Since h € P by hypothesis, we have WP invertible. Therefore T—Xip divides 7. As
we have deg(FP7 X;) < deg(T—Xl.P7 X;), we get 77 = 0, and the statement follows. <

Proposition 3 Let ¢ € IN and T be a non-empty triangular set of P; such that X; €
algVar(T). Let us assume that for every P € ap(y/sat;—1(Tx,)) we have init(Tx,) ¢ P.
Let f € P;. Then we have

feysati(T) <= (ImcN) | prem(f™", Tx,) € y/sat;(T)

Proof. > We first consider f € y/sat;(1'). Let m € IN such that f™ € sat;(7"). Then
we clearly have prem(f™, Tx,) € sat;(T), and the result immediately follows from

proposition 2. Conversely, let m be an integer such that prem(f™, Tx,) € {/sat;(T)}l)
We assume T’y # (), else the result is obvious. Let A’ = Hte 7= init(¢t). There exists
B X,

§ € N and ¢ € P; such that h®f™ = ¢ Tx, 4+ prem(f™, Tx,). We easily obtain from
this equality that hdf™ ¢ V(p, + . Thus we have f™ €\ (T)p. : (hh')™, ie.
f™ e /sat; (T). Tt follows that f € y/sat;(T). <

Theorem 2 Let i € IN and T be a regular chain in P;. Then we have
Rep; (1) = y/sat;(T)

Proof. > For ¢ = 0 the result is obvious. Let ¢ > 0 and let us assume that the equality
holds for 7 — 1. If X; ¢ algVar(T'), the equality easily follows from proposition 1 and
remark 4. Now we assume that X; € algVar(T"). From proposition 1 again, we have

Rep;(T) = {fe€P; | (3m e N) prem(f™, Tx,) € Rep:(Tx.)}

Since X; ¢ algVar(T.) we know that Rep;(Ty,) = (/sat;(T,) from the previous

B

transcendental case. Finally we obtain the result with the proposition 3. <
Proposition 4 Leti € IN and T be a regular chain in P;. Then we have Rep;(T) # P;.

Proof. > It follows from both relations of proposition 1 that 1 € Rep;(7) iff 1 €
Rep;—1(1%). Thus, since the statement is clear for ¢ = 0, it also holds for any 7. <

B

1.3 Towers of Simple Extensions

From now on, 7 € {0,...,n} is a integer, k = Ag C Ay C--- C A, are rings, T C R;
is a triangular set, and Fj is an algebra homomorphism of P;1 into A;[X;41].

Definition 5 The set T is a regular set of R; whose associated map is F; and whose
associated tower of simple extensions is (Ag, ..., A;) if one of the both assertions holds :
(1) i =0, the set T is empty and F; is the identity-map of Py

(2) i > 0, the set Ty, is a regular set of R;_y whose associaled tower of simple
extensions is (Ao, ..., A;_1) and whose associated map is denoted by F;_y such
that one of the both assertions holds :

(1) X; & algVar(T) and we have

Fi_1(p)

Ai = q(Ain[X]) and (Vp e Py) Fi(p) = —

(12) X; € algVar(T), the element F;_q(init(Tx,)) is a unit in A;_y and we have

(Fiea(Tx,))
1

Fi_1(p)

Ai = q(A [X]/(Fia(Tx,))) and (Vp € Py) Fi(p) =

More, in cases (1) and (i1), we state : Fi(X;41) = Xiy1.

Definition 6 The sequence (Ag,...,A;) is called a tower of simple extensions of k
(t.o.s.e. for short) if there exists a regular set of R; whose associated tower of simple
extensions is (Ag,...,A;). If T is a reqular set of R; whose associated t.o.s.e. is
(Ao, ..., A;) the ring A; is called the top-extension of T'.

Remark 5 Let T'C R; be a regular set whose associated t.o.s.e. is (Ao, ..., A;). For
0 <j<iand z € Aj, note that z is either a unit in A; or a zero-divisor in A;. More,
if j < 4 and if 2 is a unit in A; then it is also a unit in Aj;;;. Proposition 5 gives
an important example of regular sets and proposition 6 characterizes the zero-divisors
and units in the T’s associated t.o.s.e.

Proposition 5 Let T' C R; be a normalized triangular set. Then T is a reqular set.

Proof. > If ¢ = 0, the statement is clear. Thus, we can assume that « > 0 and that
T is avegular set. If X; ¢ algVar(T), the statement is clear again. If X; € algVar(T),
we have normalized?(init(Tx,), T.). In order to show that init(Tx,) cannot be a
zero-divisor in T’y ’s associated t.0.s.e., it suffices to use remark 5 together with the

following classical remark : for a ring A, a polynomial p € A[X] is a zero-divisor in
A[X] iff there exists an element a € A such that ap=0. <

Proposition 6 Assume that T is a reqular set of R; whose associated map is F; and
whose associated t.o.s.e. is (Ao, ..., A;). Then, for every p € P; we have :

(1) F;(p) =0 <= mod(p,T)=0 <= prem(p,T)=0 <= pe€sat,(T)

(2) Fi(p) is a unit in A; iff for every prime ideal P € ap(sat, (1)) we have p ¢ P.
Proof. > The proof is based on the following classical remark. For an ideal I in a

noetherian ring A, for z € A, the element Z' is a zero-divisor in A /I iff there exists a
prime ideal P associated to I such that = belongs to P ([SZ67], volume 1, p.214). <

Theorem 3 The triangular set T is a reqular chain iff T is a reqular set.

Proof. > The statement results easily from proposition 6 and theorem 2. <«

1.4 Lazard Sets

Remark 6 In [Laz91], Lazard introduced what we call Lazard sets (definition 9). A
Lazard set is a particular regular set whose top-extension is a product of fields. The use
of field products is motivated by definition 7 and proposition 7. Lazard sets are built
by means of gcd computations (in the sense of definition 7) together with definition 8
and theorem 8. Full details will appear in [Maz97] and in a future paper.

Definition 7 Let A be a ring and py, pa, g be polynomials in A[X]. We say that g is
a ged of p1 and py if the following holds :

(P P2)g(A)[X] = Dg(A)[X]

Remark 7 If q(A)[X]is not a principal ideal domain, the polynomials p; and p, do
not necessarily have ged in the sense of the previous definition. They may also have
several geds. But if their leading coeflicients are not zero-divisors in A then there exist
e,€ € nz(A) such that eg = ¢’ ¢g’. We chose this definition to generalize usual ged
algorithms which give a Bezout relation together with a pseudo-divisor (see [MR95]).

10

Proposition 7 ([MR95]) Let Ay, ..., A; be integral domains and let A be their
direct product (thus, sums and products in A are computed componentwise). Then for
every py and py in A[X] there exists g € A[X] which is a ged of py and ps.

Definition 8 Let A be a ring of characteristic 0 and p € A[X] with positive degree.
We say that p is :

(¢) primitive if the ideal of A generated by the coefficients of p is the unit-ideal.
(71) square-free if p and its derivative generate the unit-ideal of q(A)[X].

Proposition 8 Let A be a noetherian ring of characteristic 0 and p € A[X] with
positive degree. Assume that A is a field or a product of fields and that p is monic and
square-free (in the sense of the previous definition). Then, we have :

(1) the ideal generated by p in A[X] is a radical ideal.
(71) each one of the rings q(A[X]) and A[X]/(p) is a field or a product of fields.

proof > Property (¢) is clear if A is a field. Assume now that A is a product of fields
ky x -+ x k,. We denote by m;p the i-th component of p in ky[X] x -+ x k,[X] and
by R; the ideal of A[X] generated by (11,...,1,_1,7p, Llit1,. .., 1,). Note that the R;
are relatively prime ideals and that their product is <p>A[X]' Thus we have :

P A[x]= N1 R

and property () follows from the fact that the R; are radical ideals. Property (%)
results from the following remark of D. Lazard : if A is a noetherian ring where every
element is either a unit or non-nilpotent zero-divisor then A is product of fields. This
can be derived from the theory of Lazard rings (see [Maz97]).
Definition 9 Let T C R, be a regular set. The set T is called :

() square-free if for 1 <i < n we have : X; € algVar(T) = F;_1(Tx,) square-free,

(¢¢) primitive if for 1 < i < n we have : if X; € algVar(T) then for 1 < j < i
the coefficients of the polynomial Tx, viewed as a multivariate polynomial in
Aj[X 11, -+, Xi]. generate the unit-ideal of A;.

A triangular set of R, is called a Lazard set if it is normalized, square-free and prim-

itive. A t.o.s.e. is called separable if it is associated to a square-free regular set.

Theorem 4 Let T C R, be a Lazard set and let A be its top-extension. Then the
following assertions hold :

(1) A is a product of fields
(11) sat, (1) is a radical ideal

(v31) for every p,q € A[X] there exists g € A[X] such that g is a ged of p and g

proof > Property (¢), (i¢), (¢i7) follow respectively from propositions 8, 6, and 7. <

11

Remark 8 Let ' C R, be a Lazard set, F its associated map and A its top-extension.
Assume that A is a product of m fields ky x - -+ X k,,. Let p,q € A[X]. To compute a
ged of p and ¢ one may apply a standard algorithm in each k;[X]. But in practise the
k; are not known. So we perform in A[X] the variation of subresultant ged algorithm
proposed in [MR95] as if A was an integral domain. Then we use a D5-like process
([DDD85]) to split the computations when a zero-divisor is discovered. Let r € R,
with red?(r, 7). To decide whether the element F(r) is a unit in A we proceed from
the following way. If r = 0 the answer is false. Else, if » € k the answer is true. Else,
if mvar(r) ¢ algVar(7") the answer is given by checking the invertibility of F(init(r)).
Else the answer is given by checking the invertibility of the resultant of » and T,
w.r.t. v = mvar(r) where the coefficients of those polynomials are interpreted in the
top-extension of 7. This process is analogous to the one described in [MR95].

2 A review of the four Methods

In this section we first recall the specifications of each method together with the main
properties of the decompositions that they compute. A complete review of the algo-
rithms could not take place here. For Wu’s method one can refer to [Wu87] or [Wan91].
However we summarize the main features of the methods of Lazard and Kalkbrener
which both involve ged computations over towers of simple extensions. Moreover, we
give a recursive presentation of the first method proposed by D. Wang in [Wan93b]
This adaptation appeared to us more concise than the original presentation.

2.1 Specifications

Let F C R, be a finite set of polynomials. The algorithms of Wu and Lazard compute
a finite family {7%,...,T,} of initially reduced triangular sets such that

In the case of Wu’s method, one of the T}, say C', satisfies the following :
(i) W(C) S V(F) S V(C)
(i) V(F) = W(C) UUyee V(FU {init(p)})
Such a triangular set is called a characteristic set for F' ([Wu87]). In the case of

Lazard’s method, each 7T} is a Lazard set. Lazard’s decompositions (but not Wu’s
ones) are irredundant in the following sense :

Uwi(my) #Uw(r)
J# J

Kalkbrenner’s method computes a finite family {7,...,T,} of regular chains but
deals rather with variety than regular zeros. The decomposition is such that

r

V(F) = V(Rep,.(T}))

=1

12

Thus by theorems 1 and 2 we also have

viF) = WD)

The proposition 4 guarantees that for every T; we have W(T;) # 0 but we may have
U,z W(T;) = U; W(T;) for some i.

Wang’s method computes a finite family {(71,@1), ..., (T, Q,)} of fine triangular
q.a.s. such that

.
V() =] Z(T, Q).
=1
Such a decomposition is produced by trianguler(F,(),0) (theorem 5). There is a no
reason for a fine triangular system produced by the method of Wang described below
(called elimination without projection in [Wan93b]) to be necessarily consistent. But,
may be due to our optimizations, we never encountered inconsistent fine triangular sys-
tem during our experiences. Note that Wang proposes also a method called elimination
with projection in [Wan93b]) to produce necessarily consistent outputs.

2.2 Lazard’s Method

The main procedure of Lazard’s method is called intersect. Given T C R, and p € R,
the operation intersect(p, T') returns a finite family of Lazard sets {51, ..., 5} such that

V(p)nW(T) C UiW(S;) € V(p)nW(T)

Given {T1,...,Ts}, a finite family of Lazard sets, we define intersect(p, {T1,...,Ts})
as the union of the intersect(p,7;). Then, given a finite subset I' = {fi,..., fin}
of R, we define intersect(F,T)) = intersect(f,intersect(...,intersect(f,,,7))). Thus
intersect(F,) produces a finite family of Lazard sets {Sy,...,S;} such that

wngw@)

We will not describe here how to produce irredundant decompositions. The operation
intersect(p, ') proceeds in the following way.

({1) If normalized?(p,T) holds then go to step (lz) with r = p else go to next step.

(") 1f normalized?(p, T) does not hold, compute two polynomials ¢, € R, such that
normalized?(r, 1) and mod(pg — r,T) = 0 and mod(p,T) =0 <= mod(r,T) = 0.
Polynomials ¢ and r are computed by means of an extended (i.e. with Bezout
coefficients) version of the ged algorithm sketched in remark 8. Here the com-
putations may be split if mod(p,T') is a zero-divisor. The polynomial r is also
denoted by normalize(p,T’). Now, go to next step.

ly

ls

l4
ls

If » = 0 then returns {T'}. Else, if r € k then returns { }. Else go to next step.
Return intersect(tail(r), intersect(init(r), 7)) and go to to next step.

Remove the content of r viewed as univariate in mvar(r) and go to next step.

(
(
(
(

e’ e’ e’

If Tr:war(r) U {r} is a square-free regular set then go to step (I7)

13

(lg) Let v = mvar(r). Compute a (normalized w.r.t. 7T,7) ged of r and its derivative
w.r.t. v while interpreting their coefficients in the top-extension of T, (here
computations may be split). Let g be this ged, replace r by pquo(r,g). Thus
T U{r} is now a square-free regular set. Go to step (/3).

(I7) Let v = mvar(r). Define T;F = {tx,...,t;} with mvar(ty) < --- < mvar(f)).
Compute D = intersect(;, intersect(. .., intersect(ty, 1,7 U{r}))). Then remove
from D any triangular set U such that normalize(init(¢;), Ur:war(t')) = 0 for some

K3
i €{k,...,l}. Now, go to next and last step.
(Is) return intersect(p, D) where p is the input polynomial.

2.3 Kalkbrener’s Method

Kalkbrener’s Method is not so incremental as Lazard’s one. We think that a good way
to sketch this method is to give the algorithm of decomposition with the specifications
of Kalkbrener’s algorithm for computing ged over towers of extensions ([Kal95]).

e algorithm ged,, (C, F)
Input: C a regular chain in P,,_; and F' a finite subset of R,,.

Output: {(C1,¢1),-..,(Cs, gs)} where every C is a regular chain in P,,_; and every
gr 18 a polynomial in R,, such that

e U2 ap(Repo_i (Ci)) = ap(Rep,1 (C))
e for all P € ap(Rep,,—1(C%)),
1. F=0 = s=1and ¢g; =0,
F#£0 = g_kp is the ged of FP in q(P,—1/P)[X,] for each k
2. if gr & k and mvar(gx) = X, then init(gz) ¢ P
if gr ¢ k and mvar(gx) < X,, then gx ¢ P
3. gk € (Repn (CH)U F)p_ .
e algorithm decompose,, (F)

Input: F a finite subset of R,
Output: regular chains Ty, ..., T, of P, such that <F>Pn = N;+/sat, (T;)

decompose,, (') ==
F := F\{0}
empty? FF => {0}
FNR #0=>{}
©:=0
' =FnR,_;
A := decompose,,_ (F’)
for C' € A repeat
[':=ged, (C, F\ F)
for (C}, ¢;) € I' repeat
g=0=>0:= @U{CZ'}
mvar(g;) < X,, => 0 := 0 Udecompose, (F'U{g;})
© :=0U{C;U{g;}} Udecompose, (F' U init(g;))
return ©

14

2.4 Wang’s Method

Let ¥ = (P,Q) a q.a.s. in R, such that mvar(P) = X;. The algorithm eliminer
presented below (proposition 9) splits the q.a.s. ¥ into several q.a.s. which contain
at most one equation with X; as main variable (see definition 10). Its proof is based
on the following lemma 1 ([Wan93a]) and lemma 2 (which is a practical remark whose
proof is left to the reader).

Definition 10 Let 1 < i < n and ¥ = (P,Q) a g.a.s. in R, such that P C R; and
Q C R,,. We call elimination of the variable X; in ¥ a set A of triplets (Py, Qk, Tk)
such that for any k, Pr,Qr and 7 are finite subsets of R, and verify the following
conditions :

(i) P, # 0= mvar(P) < X;
(i) . 20 = (e R \Ri_y) | 7 ={t}
(141) Z(P,Q) = Up, .0,7)er L(F; U{T;},Q)).
Lemma 1 Let f a non constant polynomial in R,, and (P,Q) a q.a.s. in R,,. Then
Z(PU{f},Q) = Z{prem(P, /U {[f}, QU {init(f)}) U Z(P U {init(f),tail(f)}, Q).
Lemma 2 Let (P,Q) be a q.a.s. in R, and f € R, \R . Then

init(f) € Q = Z(PU{f},Q) = Z(PU{f},prem(Q, f))

Proposition 9 Let v be a variable in V and (P, Q) a g.a.s. in R, such that mvar(P) <
v. Then the algorithm eliminer(v, P,Q) below computes an elimination of the variable
v in the g.a.s. (P,Q). In particular, if the output of the algoritm is the empty set, then

Z(P,Q) = 0.

e eliminer(v, P, Q) ==
P := P\ {0}
(0e@)or (PNR #0) => return({ })
P, =0 => return ({(P,Q.0)})
f := a polynomial in P, with minimal degree in v
P = (PO U finit(f),ail(H)} U Py
Q2 = QU {init(/))
empty? (P,\{f}) => return ({(P, ,prem(Q2, f),{f})} U eliminer(v, P,Q))
Py :=prem(P,\{f},) U {f} U Pr
return (eliminer(v, P, Q2) U eliminer(v, P, Q))

Proof. > We will prove termination and correctness by induction on s(P) =
Y per\{0) deg(p, v).

If a constant occurs in P or 0 € @, the result is obvious. Else, if s(P) = 0, then P,
= () and the algorithm terminates. The correctness is obvious. Now we assume that
s(P) > 0,i.e. P,is not empty. First we remark that s(Py) < s(P) since deg(init(f),v)
= 0 and deg(tail(f), v) < deg(f,v). Then two cases can be distinguished :

e P, ={f}. By induction, eliminer(v, P, @) terminates and is correct. Therefore
eliminer(v, P, @) terminates. The correction follows from application of lemma 1
and lemma 2.

15

o P, \{f} # 0. Let us denote P, \ {f} by P'. For any p € P’, we have
deg(prem(p, f),v) < deg(f,v) < deg(p,v). Since P’ is not empty, we thus ob-
tain s(prem(P’, f)) < s(P’), and consequently s(P2) < s(P). Then termination
and correctness follow by application of lemma 1 and induction hypothesis. <

By decreasing use of the algorithm eliminer, we easily obtain a triangulation of any
g.a.s. as we can see now with the following algorithm.

Theorem 5 Let1l <i<nand(P,Q) a q.a.s. inR,, such that P C R;. LetT a trian-
gular set of R,, such that TNR; = 0. Then the following algorithm trianguler(P,Q,T)
computes a finite family {(11,Q1), ..., (T, Q) } of triangular q.a.s. such that

2(PUT.Q) = | Z(T0.Qu).

k=1

e trianguler(P, Q,T) ==
P := P\ {0}
(0e@)or (PNR #0) => return ({})
empty? P => return ({(7,Q)})
v := mvar(P)
A := eliminer(v, P, Q)
return (Up, g,)en trianguler(P;, Q;, 7, UT))

Proof. > The proof of the algorithm is obtained by induction on the smallest integer
such that P C R;, which we will denote by i(P). For i(P) = 0,i.e. P C R, the result is
obvious. Now assume that i(P) > 0. We can eliminate the cases 0 €), PNR # (), and
A = 0, which terminate immediately and are clearly correct. Then by specifications of
the algorithm eliminer, we obtain

ZPUT,Q)=Z(P,Q)nVr(T)= |J ZPU({r}uTl),Q;).
(P;,Qj,75)€A

Now we state 17; = {r;} UT. The triplets (P;,Q;,T;) satisfy the input conditions of
trianguler. And since i(P;) < i(P), the result follows from induction. <

3 Implementation

3.1 General Requirements

In the introduction we gave three requirements in order to make a fair comparison
of the methods for polynomial system solving. The most important is to implement
and run the corresponding algorithms with the same human, material and software
conditions. More generally, given a system of equations to be solved, we want that
the difference between the corresponding computations only depend on the difference
between the corresponding algorithms. In particular, we want our implementations of
those methods to use the same data structures and sub-routines. We will describe this
last point below.

Another important requirement is to make sure that each computed solution (by
one of the implementations of the four methods) is correct. We concentrated on this

16

last point instead of the search of very optimized implementations. We think that only
checking by hand some computations (necessarily simple) produced by an implemen-
tation is not sufficient to make sure that this implementation is correct, especially for
mixed dimensional problems. We had a wrong implementation of Wu’s method during
three years (solving Liu’s example in 147 sec) due to a programming mistake in the
management of the elimination of the redundant branches. Thanks to our checking
process (to be described below) we discovered this bug. However our current imple-
mentation of Wu’s method does not solve Liu’s example any more.
This checking process

e has been intensively tested for more than one year,
e is based on simple and well known algorithms and

e is implemented in a direct way in AXIOM as an over-level of the GB software

([Fau94])

Thus it will be considered as certainly reliable.

In our analysis of the computed solutions we also look for other informations than
timings or correctness. Given a solution, we want to know if some of the computed
triangular sets are inconsistent or if some quasi-components are contained in another
quasi-component (or in the closure of another quasi-component). This could also be
done as we will see.

3.2 Description of the implementation

Each implementation of the four methods uses the same AXIOM domain for polynomi-
als (with a sparse and recursive representation). We first defined an AXIOM category
for finite subsets of R,,. This category exports and implements operations on sets, ide-
als and varieties like (I, J) — INJ and (I, p) — I : p> where I, J C R,, denote ideals
and p € R, is a polynomial. We implement these operations by means of Grébner bases
techniques ([CLO91]) in an AXIOM package using the connection between AXIOM
and GB, the very powerful Grébner engine developed by J.C. Faugere ([Fau94]). Then
we wrote an AXIOM category for (general) triangular sets of R,,. This category ex-
ports and implements basic operations like (7,v) — T, and (p,T") — prem(p,T)
and (p,T) — iRed(p,T') (notation 3 and notation 4) where v is a variable and 7' C R,,
is a triangular set. It also exports and implements more sophisticated operations like :

e T+ sat,(7) in order to check consistency of a triangular set,

e (' C R, {Th,....,T. C R,}) — V(F) 2 U; W(T;) in order to check the
correctness of a computed decomposition.

Moreover this category exports (but does not implement) an operation ' C R,, —
zeroSetSplit(F) which represents any method for solving polynomial system by means
of triangular sets. From the category of general triangular sets we derived a category
for towers of simple extensions. It exports the associated map of a t.o.s.e. implemented
with the operation (p,T) — mod(p,T') (notation 4). It also exports operations like
(p, T) — is-mod(p, T')-a-unit 7. Finally, from the category of t.o.s.e. we derived three
categories corresponding to particular properties of regular sets :

17

e a category for the regular sets T' C R, such that algVar(7') = { Xy, Xo,..., X, }.
called algebraic t.o.s.e.,

e a category for the normalized regular sets called normalized t.o.s.e. and
e a category for the square-free regular sets called separable t.o.s.e.

Now, each method is an implementation of the operation F©¥ C R, +—
zeroSetSplit(#) in an AXIOM domain of the suitable category. For instance, Kalk-
brener’s method is implemented in an domain which belongs to the t.o.s.e category
and which is called RegularChains (see the picture below). Note that we implemented
the lexTriangular algorithm ([MR95]) in an AXIOM domain called LezTriangular and
which belongs to both categories of normalized t.o.s.e. and algebraic t.o.s.e.

- ---=(_ WangTriSet

| TriangularSetCategory f‘i -

| Polynomial SetCategory |

TowerOfSimpleExtensions (TOSE) [------------3 RegularChain

4/\\

AlgebraicTOSE NormalizedTOSE SeparableTOSE

LexTriangular)< -- - - NormalizedAlgebraicTOSE NormalizedSeparableTOSE [~~~ > (_LazardTriSet

4 Examples

We now present two tables of results of our experiments. They are respectively ded-
icated to dimension zero and positive dimension. We give below the sources of our
examples. For every example F' and every method which decomposes V (F) into tri-
angular systems o4,...,0, we give two informations. The first one is the computing
time (evaluation and garbage collector). The second one :

e isn(o1),...,n(o,) where n(o;) denotes the number of solutions of o;, if V(F) has
dimension 0

e else d(oy),...,d(o,) where d(o;) denote the dimension of sat, (o;)

In order to make more concise these sequences of numbers we use some notations.
Let us take the example 11 with Wang’s method in the first table. The sequence
22 4,16? means that the decomposition contains two triangular sets with 16 solutions,
one triangular set with 4 solutions and two triangular sets with 2 solutions. The same
kind of notation applies for sequences of dimensions. Futhermore in that case, we
precise the inclusions between the saturated ideals of the components (when these
inclusions could be computed).

18

| 0-dim Exp. | Wang | Wu | Kalkbrener | Lazard ||
1 0.48 0.33 0.27 0.20
4 4 272 272
2 0.48 0.30 0.93 0.98
8 8 8 8
3 0.65 2.97 3.45 0.45
2 2 2 2
4 0.92 103 1.68 429
10 10 10 10
5 1.27 7.10 3.02 88
10 10 1,7 1,7
6 0.12 0.13 0.22 0.25
2,3 2,4 13,2 13,2
7 36.3 ? 99.6 124.5
1,2,6,8,18,322 1%,2%,8,12,16,32 | 1°,2%,8,12,16,32
8 0.33 ? 1.08 0.47
1,120 1,120 1,120
9 0.57 ? 24.13 0.73
1,720 1,720 1,720
10 0.73 ? 11000 0.95
1,5040 1,5040 1,5040
11 43.50 ? 6.02 17.55
22,4,162 2,4,6,8,12 428,16
12 1.50 ? 2.23 0.62
4,6 1,3,4 1%,2,4
13 ? ? 781 22
107,20 107,20
|| pos.dim exp. | Wang Wu | Kalkbrener | Lazard ||
14 1.30 4.88 4.6 0.87
26 C 34,26 C 3 | 2a C3a,25C 3 2C3a,3 3’
15 0.28 0.35 017 0.23
12C2 12C2 1 1
16 0.45 0.47 1.33 0.70
3¥C4 3¥C4 4,4,4 3¥C4
17 0.37 0.90 0.67 0.60
07 C1 07 C1 1 07 C1
18 0.77 0.40 0.25 0.40
22C3 22C3 3 22C3
19 0.70 4.98 1.18 0.94
0C2,1°C2 0fcz2,1°Cc2 2 17C2
20 1.30 1.25 2.18 0.77
253 —1,2%,3 1°C22C 3,2 253
21 2.15 9.05 4.40 8.25
1 12 1 17
22 0.20 0.13 0.50 7
0C1 0C1 1 0°C1
23 5.77 140 24.80 10.83
1,2%,3* C 4 0%, 112,27 35 C 4 4 27 C 4,35 C 4,
24 9.6 ? 38 5.75
0,22,3% 0,12,2%,3 0,22,3
25 4.97 27.47 76.37 68
27,3%,45 5 212313 455 5 2,37,4%,5
26 8.68 ? 13.90 142
1%,2 1,2 0,1%,2
27 ? ? 50 ?
12
[28 A2 2000 ? ? ? [

19

|| Ex. | Source or description ||

Solotare [Com92]

Moeller 4 [Com92]

Trinks 2 [BGKS&6]

Trinks 1 [BGKS&6]

Katsura 3 [BGK36]

system Lo :{l’?+l’2+l’3 — 1,2 +l’§+l’3 -1, +l’2+l’§ -1}

with 71 < 22 < 3.

7 system Lj :{wi’+x2—|—x3+x4 -1,z —I—x%—l—xg—l—am — 1,21 —I—acg—l—xg’)—l—am -1,
r1 +l’2+l’3+l’2 — 1} withz; < -+ < 4.

8 system Rs = {z1 (21 + 1), (23 4+ @2 + 1)z1 + 2,p3,pa, ps)

where p; = x,wz:} + (xz +zi—1+x; andzy > - > w5

9 system Rg = {z1(z1 + 1), (22 + 2 4+ 1)1 + %2,p3, P4, P5, D6}

with z1 > -+ > zg.

10 | system Ry = {z1(z1 + 1), (3 + z2 + 1)z1 + =2, p3, P4, P5, P6, P7}

with 1 > -+ > z7.

11 | Caprasse [Com92]

12 Singular Points : F' = {f, %, g—;} where f = (y — 2)(v? + 22 — 1)(y% — 2).
13 | Cyclic 5 [Laz92a]

14 | Discriminant degree 4 (ex. 49 in [Wan91])

15 | Cyclic-4 [Laz92a]

16 | Buchberger [Com92]

17 | Donati-Traverso [Wan93b]

18 | Alonso [Com92]

19 | Robot Plano fécil (see introduction)

20 | Euler theorem [Dia92]

21 | Wang [Wan92a|

22 | Wu [Wan92a]

23 Robot Plano dificil F = {s? + c? — l,sg + cg —1,(lsco + l2)s1 + lzsac1 — b,
—1 —lIss2s1 + (laco+12)cr —a} withb <a <ls<ly <cp <s2<cp < 5.
24 | Butcher [BGKS6]

25 Robot Romin F' = {—ds; — a,dc; — b,laco + lzcs — d,2s2 + l353 — ¢, s% + c? -1,
sg—l—cg—l,sg—l—cg—l}Withd<c<b<a<13<12<C3<53<c2<52<c1 < 51
26 | 1633 [FASMR96]

27 | Neural Network [Kal91]

28 | Liu [Liu8&9]

S U W

Let us examinate the outputs of two examples from the tables. Alonso example(18)
corresponds to a prime ideal of dimension 3 whose Kalkbrener’s method describes with
only one regular chain C'. The other algorithms extract points which are in the closure
of the regular zeros of C' and provide similar results. We effectively verified in these
cases that both the outputs of dimension 2 where contained in W(C).

e Wang’s method :
{({r, Pu+ 1,0, 24+, (202 + Vo + 2u+ 25 — 2} 202 +1,1]), ({v — tr tuz — 1,
ry —tPu—1,(u—r—2)z —u—2t + 1}, [u,r, t,u—r —2]), ({r+2t* + 1,
w2 — Lo +20 41,200 =)z + 1, (2t +)y — 205+ 2+ 1}, 201+ 1,2t - 1,4])}

e Wu’s method :
{r+2t*+ Lu—r—2,0—tr, 200 =)z + 1, (2t + Dy + t2u + 1},
{rt2u+1,0—tritz+ 12, (202 + Da + 2u + 2t° — 12},
{v—trituz — L,ry—t2u— 1, (u—r —2)z —u—2t*+1}}
e Kalkbrener’s method :
H{v—trituz— Lry—t?u—1,(u—r —2)x —u—2t* + 1}}

e Lazard’s method :
{{r+2t* + a2t = Lo+ 204+, (20 =)z + 1, (2t + 1)y — 205+ 12 + 1},
{v—trjtuz—L,ry—t2u—1,(u—r—2)z —u—2t* + 1},
{r,tPu+ 1,024+t (202 + Vo + 265 -2 - 1}}

20

The following example (Singular points on a curve, example 12) of dimension zero
is slightly different. This example seems not too difficult but Wu’s method failed.
Here the methods give different results and we can note that Lazard’s decomposition
is efficient for timing and legibility.

e Wang’s method :
{<{$2+$ - 17$92+$_ 1}7®)7<{2$4_2$3_$2+$7
(462> + 48z* — 642> — 242% + 18z + 2) y — 482° — 51zt 4 7023 4 2822 — 25z} ,0)}

e Kalkbrener’s method :
{{22° — 22% — 2 + 1, (34482 — 172 — 1711) y — 343122 — 132 + 1724}
{22 + 2 — 1, (4262 — 265) y* + 691z — 426}, {z,y}}

e [Lazard’s method :
{{$2 +z— 1792 - $}7{2$2 - 17y_ $},{$ - 17y_ 1}7{$7y}}

Conclusions

For easy examples, we remark that all methods generally have good computing times
and that the legibility of the outputs they produce is satisfactory. Nevertheless Wu’s
method failed in some rather easy zero-dimensionnal examples, namely Caprasse, R5.
Futhermore, for both cases of dimension 0 and positive dimension Wu’s method solves
clearly less problems than the other methods. And for the most difficult examples Wu’s
method can solve, the outputs are hard to read (see Robot Romin). In our opinion,
the reason is the following. Wu’s method cannot split the computations (in order to
obtain several triangular sets) before computing a characteristic set of I (which is
sometimes hard to compute, especially for zero-dimensionnal problems) whereas the
other methods may split their computations earlier. More generally, it seems that
methods based on ged computations over tower of simple extensions, namely those of
Lazard and Kalkbrener, may discover factorizations that other methods cannot find
(Cyclic-5).

Let us now concentrate on Wang’s method. This method may be very efficient for
difficult examples. But, the produced outputs are generally less legible than the ones
of Kalkbrener and Lazard. Futhermore, as Wu’s method, the method of Wang is disap-
pointing in not too difficult zero-dimensional examples, namely Caprasse and Cyclic-5.
Note that whereas our implementation of Wu’s method produced some inconsistent
triangular sets, this never happened with our implementation of Wang’s method.

Kalkbrener’s method is the only method which solves every example except Liu and
often produces the most concise outputs (except for Cyclic-5). Futhermore, this method
has the best timings for difficult problems lile 633, Robot Romin, Neural Network. But
one has to keep in mind that this method solves polynomial systems in a more lazy
way than the other three. This method is also inefficient for some zero-dimensional
examples (Cyclic-5, R7) whereas Lazard’s method succeeds with these examples. The
reason seems to be the use of normalization (in Lazard’s method) which can replace
big algebraic expressions by a single integer number in zero-dimensional examples .

However, normalization and square-free factorization over tower of separable ex-
tensions are time consuming. This is the reason why Lazard’s method may also be
inefficient in some not difficult examples (Katsura 3, Trinks difficult). For describing

21

affine varieties by means of regular zeros of triangular sets, Lazard’s method gives
the best outputs. Moreover, this is the only method which produces irredundant de-
compositions. We think that the methods based on computation of ged over tower of
extensions are promising. The experiments show that they must be further investigated

for more efficiency. A future challenge consists in using our practice of the algorithms
of Kalkbrener and Lazard to take advantage of both methods and resolve more difficult

problems.

References

[BGK86] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systems
of algebraic equations by calculating groebner bases. J. Symb. Comp.,
2:83-98, 1986.

[Buc65] B. Buchberger. FEin Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD the-
sis, Innsbruck, 1965.

[CGI0] S.C. Chou and X.S. Gao. Ritt-Wu’s decomposition algorithm and geom-
etry theorem proving. In Proc. CADE-10, pages 202-220, Kaiserslautern,
Germany, 1990.

[CGI92] S.C. Chou and X.S. Gao. Solving parametric algebraic systems. In Proc.
ISAAC’92, pages 335-341, Berkeley, California, 1992.

[Cho88] S.C. Chou. Mechanical Geometry Theorem Proving. D. Reidel Publ.
Comp., Dordrecht, 1988.

[CLO91] D. Cox, J. Little, and D. O’Shea. [Ideals, Varieties, and Algorithms.
Spinger-Verlag, 1991.

[Com92] European Commission. PoSSo - Polynomial System Solving Research
Project. FEsprit Scheme Project No. 6846, 1992. Has been extended to
the FRISCO project.

[DDD85] J. Della Dora, C. Discrescenzo, and D. Duval. About a new method
method for computing in algebraic number fields. In Proc. FUROCAL 85
Vol. 2, volume 204 of Lect. Notes in Comp. Sci., pages 289-290. Springer-
Verlag, 1985.

[Dia92] Teresa Gomez Diaz. Quelques applications de Uévaluation dynamique. Uni-
versité de Limoges, 1992. These de Doctorat.

[Fau94] J.C. Faugere. Résolution des systemes d’équations algébriques. Université
Paris 6, 1994. These de Doctorat.

[FdSMR96] J.C. Faugere, F'. Moreau de Saint Martin, and F. Rouiller. Design of
nonseparable bidimensional wavelets and filter banks using Grébner bases
techniques. IFEFE Trans. in Signal Processing, 1996. preprint.

[GM90] G. Gallo and B. Mishra. Efficient algorithms and bounds for Wu-Ritt
characteristic sets. In Proc. MEGA’90, pages 119-142, 1990.

[GTZ88] P. Gianni, B. Trager, and G. Zacharias. Grobner Bases and Primary

Decomposition Of Polynomial Ideals. J. Symb. Comp., 6:149-167, 1988.

22

[1592]

[Kal91]

[Kal93]

[Kal95]
[Laz91]
[Laz92al
[Laz92b]
[Liug9]

[Maz97]

[MR95]

[SZ67]

[Wan91]

[Wan92a]

[Wan92b]

[Wan93a]

[Wan93b]

[Wu87]

Richard D. Jenks and Robert S. Stutor. AXIOM, The Scientific Compu-
tation System. Springer-Verlag, 1992. AXIOM is a trade mark of NAG
Ltd, Oxford UK.

M. Kalkbrener. Three contributions to elimination theory. PhD thesis,
Johannes Kepler University, Linz, 1991.

M. Kalkbrener. A generalized euclidean algorithm for computing trian-
gular representations of algebraic varieties. J. Symb. Comp., 15:143-167,
1993.

M. Kalkbrener. Algorithmic properties of polynomial rings. Master’s
thesis, Dep. of math., Swiss Federal Institute of Technology,Zurich, 1995.

D. Lazard. A new method for solving algebraic systems of positive dimen-
sion. Discr. App. Math, 33:147-160, 1991.

D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp.,
15:117-132, 1992.

D. Lazard. Terminology for triangular and characteristic sets. Technical
report, Université Paris 6, 1992. PoSSo report.

7.J. Liu. An algorithm on finding all isolated zeros of polynomial equa-
tions. MM Research Preprints, 4(63-76), 1989.

M. Moreno Maza. Calculs de Pged au-dessus des Tours d’Extensions Sim-
ples et Résolution des Systémes d’Fquations Algébriques. PhD thesis, Uni-
versité Paris 6, 1997. Preprint.

M. Moreno Maza and R. Rioboo. Polynomial ged computations over tow-
ers of algebraic extensions. In Proc. AAECC-11, pages 365-382. Springer,
1995.

P. Samuel and O. Zariski. Commutative algebra. D. Van Nostrand Com-
pany, INC., 1967.

D. M. Wang. On Wu’s method for solving systems of algebraic equa-
tions. Technical Report RISC-LINZ Series no 91-52.0, Johannes Kepler
University, Austria, 1991.

D. M. Wang. An implementation of the characteristic set method in Maple.
In Proc. DISCO’92, Bath, England, 1992.

D. M. Wang. Some improvements on Wu’s method for solving systems of
algebraic equations. In Wu Wen-Tsiin and Cheng Min-De, editors, Proc. of
the Int. Workshop on Math. Mechanisation, Beijing, China, 1992. Institute
of Systems Science, Academia Sinica.

D. M. Wang. An elimination method based on Siedenberg’s theory and
its applications. In F. Eysette and A. Galligo, editors, Comptutational
Algebraic Geometry, pages 301-328. Birkhduser Boston, Inc., 1993.

D. M. Wang. An elimination method for polynomial systems. J. Symb.
Comp., 16:83-114, 1993.

W. T. Wu. A zero structure theorem for polynomial equations solving.
MM Research Preprints, 1:2-12, 1987.

23

