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Des ensembles triangulaires pour r esoudre les syst emes polynomiaux : une comparaison de quatre m ethodes

Quatre m ethodes de r esolution de syst emes d' equations polynomiales sont pr esent ees et implant ees dans un cadre commun. Ces m ethodes sont celles de Wu ( Wu87]), Lazard ( Laz91]), Kalkbrener ( Kal91]) et Wang ( Wan93b]). Elles sont compar ees sur divers exemples avec une attention particuli ere port ee a l'e cacit e, la concision et la lisibilit e des sorties.

Introduction

In this paper, we are concerned with the following problem : given a nite family F of multivariate polynomials over a eld k and with ordered variables X 1 < X 2 < < X n to describe the a ne variety V(F) (i.e. the common zeros of F over an algebraic closure of k). Such a description is usually given by a nite family fT 1 ; : : :; T r g of polynomial sets with particular properties, a link between the T i and F, and an algorithm to compute the T i from F. A well developed strategy since Buchberger's work ( Buc65]) is the following : given an ordering on the monomials, to choose for T 1 the Gr obner basis of the ideal generated by F and compute it by the Buchberger's algorithm.

Wu Wen-Ts un in Wu87] introduced another way of solving algebraic systems which is the one we are concerned with in this paper. In that case each T i is a polynomial set such that two distinct polynomials in T i have distinct greatest variables. Such a T i is called a triangular set. The points of V(T i ) where no leading coe cient of a polynomial in T i , viewed as univariate in its greatest variable, vanishes are called the regular zeros of T i . Then, in Wu's method, the variety V(F) is the union of the regular zeros of the T i and this decomposition can be computed by the original Wu's CHRST-REM algorithm [START_REF] Wang | An elimination method for polynomial systems[END_REF]). This method has been investigated in many papers. Among them : Cho88, CG90, CG92, GM90, Wan92a, Wan92b]. Wu's method is e cient for geometric problems where the degenerate solutions are not interesting. For general problems it seems to be di cult to obtain an e cient implementation and this method may produce super uous triangular sets. Wu's algorithm, like Buchberger's one, depends on many choices; moreover, its result is not uniquely de ned. A Wu's like decomposition of a ne varieties can be obtained by Daniel Lazard's algorithm [START_REF] Kalkbrener | Algorithmic properties of polynomial rings[END_REF]). But in that case the de nition of triangular sets has been strengthened (de nition9) in order to guarantee irredundant and more canonical decompositions. Our paper reports a rst implementation of this method and shows that it can be e cient. In MR95], M. Moreno Maza and R. Rioboo report a very e cient implementation of another algorithm due to Daniel Lazard [START_REF] Lazard | A new method for solving algebraic systems of positive dimension[END_REF]) and called Lextriangular. This last algorithm also computes decompositions similar to those of [START_REF] Kalkbrener | Algorithmic properties of polynomial rings[END_REF]) but the input must be a lexicographical Gr obner basis of a zero-dimensional ideal. Lazard's decompositions have at least two interesting properties. On one hand numeric solutions may be easily obtained from them because Lazard's triangular sets are normalized (definition 2). See also section 8 in Laz92a] for more details. On the other hand Lazard's triangular sets are well suited for describing prime ideals (see section 3 in Laz91]) whereas there is no bound on the minimal number of generators for a lexicographical Gr obner basis of a prime ideal.

In Kal91] Michael Kalkbrener introduced another type of triangular sets called regular chains (de nition 4) together with another link between F and the T i . In that case V(F) is the union of the closures (w.r.t. Zarisky topology) of the regular zeros of the T i . Let us mention an example to see the di erence between Wu and Lazard's way of solving and Kalkbrener's one. We consider the system given by the following polynomials where the ordered variables are c 2 > s 2 > c 1 > s 1 > b > a and where the coe cients lie in the eld of rational numbers : n c 1 c 2 s 1 s 2 + c 1 a; s 1 c 2 + c 1 s 2 + s 1 b; c 2 1 + s 2 1 1; c 2 2 + s 2 2 1 o Our implementation of Lazard's algorithm [START_REF] Kalkbrener | Algorithmic properties of polynomial rings[END_REF]) produces the decomposition fT 1 ; T 2 ; T 3 g where : T 1 = 4 b 2 + 4 a 2 s 2 1 + 4 b 3 4 a 2 b s 1 + b 4 + 2 a 2 b 2 + a 4 4 a 2 ; 2 a c 1 + 2 b s 1 b 2 a 2 2 a s 2 + 2 b 2 + 2 a 2 s 1 b 3 a 2 b; 2 c 2 b 2 a 2 + 2 T 2 = a; 2 s 1 b; 4 c 2 1 + b 2 4; s 2 b c 1 ; 2 c 2 b 2 + 2 T 3 = a; b; c 2 1 + s 2 1 1; s 2 ; c 2 + 1 How this solution has to be understood ? In T 1 , one may arbitrarily choose a and b once a(b 2 + a 2 ) 6 = 0, and obtain successively the values of the indeterminates s 1 ; c 1 ; s 2 ; c 2 . The triangular sets T 2 and T 3 describe the case a = 0. Note that in T 2 , one may choose arbitrarily b whereas b = 0 in T 3 . So, where is the case b 2 + a 2 = 0 ? It is described by T 3 . In fact, if we add this equation to the initial system the computed decomposition is only fT 3 g. Now, our implementation of Kalkbrener's algorithm [START_REF] Jenks | The Scienti c Computation System[END_REF]) produces the decomposition fCg where : C = 4 b 2 + 4 a 2 s 2 1 + 4 b 3 4 a 2 b s 1 + b 4 + 2 a 2 b 2 + a 4 4 a 2 ; 2 a c 1 + 2 b s 1 b 2 a 2 ; s 2 b c 1 + a s 1 ; s 1 c 2 + b c 2 1 a s 1 c 1 + s 1 b

In that case a point is a solution of the initial system if it lies in the closure of the regular zeros of the only triangular set above, denoted by C. Although C and T 1 are di erent, their regular zero sets have the same closure, which contains the regular zeros of the previous T 2 and T 3 . Note that Kalkbrener's output is simpler but needs futher computations for the zeros satisfying a(b 2 + a 2 ) = 0.

Triangular sets can also be used to solve quasi-algebraic systems (de nition 3). In Wan93b] Dongming Wang proposed such a method by means of Wu's triangular sets. But Wang's process is di erent from Wu's one and seems to be more e cient.

In the conclusion of Kal93] Michael Kalkbrener wrote : a comparison with the algorithms of Ritt, Wu and Lazard seems to be interesting. In the conclusion of Wan93b] Dongming Wang wrote : a systematic analysis and comparison among them (the elimination methods of Lazard and Kalkbrener) both theoretically and practically remain interesting for future work. The purpose of this paper is to compare the methods of Wu ( Wu87]), Lazard [START_REF] Kalkbrener | Algorithmic properties of polynomial rings[END_REF]), Kalkbrener [START_REF] Jenks | The Scienti c Computation System[END_REF]) and Wang [START_REF] Wang | An elimination method based on Siedenberg's theory and its applications[END_REF]). In the rst section, following Laz92b], we introduce a coherent terminology to present their speci cations. Then we study some properties of regular chains and their connection with towers of simple extensions (de nition 5). We also look into the special case of Lazard sets. In the second section, we review the speci cations of each method. Futhermore, we give a recursive adaptation of Wang's method which seems to us easier to read than the original iterative description. Our implementation of Lazard's method is based on an algorithm for gcd computations of univariate polynomials with coe cients in a separable tower of simple extensions. The idea is a generalisation of the one of MR95]. This algorithm could not take place here and will be presented in a future paper. In the third section we discuss experimentations on those four methods. We think that a reasonable comparative implementation should satisfy the following requirements :

the corresponding algorithms must be implemented and run with the same human, material and software conditions (using the same data structures and subroutines) to make sure that each computed solution is correct not to only focus on timings but also on the legibility of the ouputs and their suitability for further uses A strongly typed and object-oriented language is convenient to satisfy the rst requirement above. We used the AXIOM computer algebra system ( JS92]). We de ned categories corresponding to the di erent properties of triangular sets, packages and domains for the common sub-routines. Futhermore, AXIOM is connected with GB, the very powerful Gr obner engine developed by J.C. Faug ere [START_REF] Gomez | Quelques applications de l' evaluation dynamique[END_REF]). This allowed us the non-trivial Gr obner basis computations which are needed in order to satisfy the second requirement above.

Our implementation of each method uses the same polynomial domain constructor. Thus, a method involving particular data-structures like the dynamic sets and dynamic polynomials [START_REF] Della Dora | About a new method method for computing in algebraic number elds[END_REF]) could not enter within our experimentations. However we tested each of our examples with the dynamic evaluation. This method is only usable for easy examples and cannot compare with the methods of Wu, Wang, Kalkbrener and Lazard. But note that the goal of dynamic evaluation is not restricted to polynomial system solving. As we wanted to implement easily and completely each of the method we considered, we also discarded methods which depend on sophisticated techniques like Gr obner basis computations or factorizations.

In the last section, we report some experimental data on a set of test examples. Most of them can be found in the data base of the european research project PoSSo [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]). They are also available by ftp on posso.ibp.fr in the directory pub/papers/TriangularSets. Finally, we investigate the computed decompositions for some relevant examples and point out some remarks suggested by our experimentations.

1 Triangular Sets and Towers of Simple Extensions

In this section we rst recall the most general de nition for triangular sets (denition 1). This is the one used in Wu's method [START_REF] Wang | An elimination method for polynomial systems[END_REF]) and in Wang's method [START_REF] Wang | Some improvements on Wu's method for solving systems of algebraic equations[END_REF][START_REF] Wang | An elimination method based on Siedenberg's theory and its applications[END_REF]). Then we recall the de nition of regular chains (de nition 4) which are particular triangular sets used in Kalkbrener's method [START_REF] Jenks | The Scienti c Computation System[END_REF][START_REF] Kalkbrener | Three contributions to elimination theory[END_REF]). In the third subsection, we give a de nition for towers of simple extensions (de nition 5) and we show that regular chains are suitable for encoding every tower of simple extensions. Finally, we study Lazard sets (de nition 9), which are special regular chains. Their presentation is inspired by our adaptation of Lazard's method [START_REF] Kalkbrener | Algorithmic properties of polynomial rings[END_REF]) by means of polynomial gcd computations over tower of separable extensions (full details will appear in Maz97]). Before dealing with triangular sets, we need some general notations. about rings, ideals and varieties.

Notations 1 We denote by I N the set of the non-negative integer numbers. Let A be a ring (all rings considered here are commutative noetherian rings with unit element) and E be a subset of A. We denote by hEi A the ideal of A generated by E, and by A=E the quotient ring of A by hEi A . For an element a 2 A, we denote by a E the residue class of a in A=E. If E = fa 1 ; : : :; a l g we simply write ha 1 ; : : :; a l i A (or ha 1 ; : : :; a l i) instead of hEi A . If E is empty we state hEi A = h0i. We denote by nz(A) the multiplicatively closed subset of non-zero-divisors of A (this contains the group of invertible elements of A) and by q(A) the ring of fractions with numerators in A and denominators in nz(A). Let I be an ideal of A. We denote by ap(I) the associated prime ideals of I (i.e. the components of a minimal primary decomposition of p I). For an element h 2 A, the saturated ideal of I w.r.t. h (i.e. the set of the b 2 A such that there exists a positive integer m with h m b 2 I) is denoted by I : h 1 . The ideal generated in A X] by I is denoted by I X]. For a polynomial p 2 A X] we denote by p I the image of p in q(A=I) X] obtained by mapping the coe cients of p into q(A=I). For a module M over A and a multiplicatively closed subset S of nz(A), we denote by S 1 M the A-module of fractions with numerator in M and denominator in S. Now assume that A is a polynomial ring with n variables and coe cients over a eld k. Let K be an algebraic closure of k. For an ideal I of A, we denote by V K (I) (or simply V(I)) the a ne variety of K n associated to I and if I = ha 1 ; : : :; a l i we simply write V(a 1 ; : : :; a l ) instead of V(ha 1 ; : : :; a l i). Finally, for W K n , we denote by W the closure of W w.r.t. the Zarisky topology over k (whose closed sets are the V(I) for every ideal I of A).

Triangular Sets

Notations 2 Let R be an integral domain. We denote by k the eld of fractions of R. Let K be an algebraic closure of k. Let n be a positive integer and V a set of n ordered variables X 1 < X 2 < < X n . For 1 i n, let R i = R X 1 ; : : :; X i ] and P i = k X 1 ; : : :; X i ] be the rings of polynomials in i variables with coe cients in R and k respectively. We also de ne R 0 = R and P 0 = k. Let E R n and p; q 2 R n , with p 6 = 0 and q 6 2 R. For v 2 V , we write deg(p; v) for the degree of p with respect to the variable v. We denote by var(E) the set of the variables v 2 V for which there exists r 2 E with r 6 = 0 such that deg(r; v) > 0. If E = frg we simply write var(r) intsead of var(E). We call the main variable of q, denoted by mvar(q), the greatest variable of q.

When E 6 R we denote by mvar(E) the greatest variable of var(E). We call initial of q (denoted by init(q)) the leading coe cient of q viewed as an univariate polynomial in mvar(q). We call main degree of q (denoted by mdeg(q)) the degree deg(q; mvar(q)) and tail of q (denoted by tail(q)) the polynomial q init(q) mvar(q) mdeg(q) . We denote by algVar(E) the set of the variables v 2 V for which there exists r 2 E with r 6 2 R such that mvar(r) = v. Let v be in V . We denote by E v , E v and E + v the set of the non-constant polynomials r 2 E such that mvar(r) < v, mvar(r) = v and mvar(r) > v respectively. If E v = frg we simply write E v = r. De nition 1 A subset T of R n is called a triangular set if every polynomial of T is non-constant and if for all p; q 2 T with p 6 = q we have mvar(p) 6 = mvar(q). Example 1 Let p 2 R n . Let iter(p) be the subset of R n recursively de ned as follows : if p 2 R then iter(p) = ; else iter(p) = fpg iter(init(p)). Then iter(p) is a triangular set of R n whose elements are called the iterated initials of p. Notations 3 Let E be a subset of R n and p; q 2 R n , with p 6 = 0 and q 6 2 R. We write red?(p; q) if deg(p; mvar(q)) < mdeg(q) holds. Then we write red?(p; E) if red?(p; r) holds for every r 2 E. We write iRed?(p; q) if either iter(p) v = ; or red?( iter(p) v ; q) holds where v is mvar(q). We write normalized?(p; q) if iter(p) v = ; holds where v is mvar(q). Then we write iRed?(p; E) if iRed?(p; r) holds for every r 2 E. The same way we de ne normalized?(p; E). We denote by prem(p; q) and pquo(p; q) the pseudoremainder and the pseudo-quotient of p by q when interpreting them as univariate in mvar(q). Let T R n be a triangular set. If T = ; we de ne prem(p; T) = p else we de ne prem(p; T) = prem(prem(p; T v ); T v ) where v is mvar(T). Then we denote by prem(E; T) the subset of R n whose elements are the polynomials prem(r; T) for r in E. If T = fqg we simply write prem(E; q) instead of prem(E; T). De nition 2 A triangular set T of R n is called reduced (resp. initially reduced ) (resp. normalized) if for every t 2 T, denoting mvar(t) by v, we have red?(t; T v ) (resp. iRed?(t; T v )) (resp. normalized?(t; T v )).

Example 2 In the introduction, the triangular sets T 1 , T 2 and T 3 are reduced and normalized, whereas C is initially reduced but neither reduced nor normalized. Notations 4 Let p; q 2 R n , with q 6 2 R. Let S be the multiplicatively closed subset of R n generated by h = init(p). Let e be the minimal power of h by which p is multiplied in order to compute a polynomial r (by the peudo-division algorithm) such that red?(r; q) and h e p r 2 hqi R n . In many cases, we have e = deg(p; mvar(q)) mdeg(q) + 1 and r = prem(p; q). If red?(p; q) we have e = 0 and r = p. Then we denote by mod(p; q) the element of S 1 R n de ned by r h e . Let T be triangular set of R n . We denote by S the multiplicatively closed subset of R n generated by 1 and the initials of the elements of T. If p 6 2 R then we write v = mvar(p), i p = init(p), d p = mdeg(p) and t p = tail(p). Now, we de ne the element mod(p; T) of S 1 R n by iterating the following rules :

(1) T = ; or p 2 R =) mod(p; T) = p 1

(2) red?(p; T v ) =) mod(p; T) = mod(i p ; T v ) v dp 1 + mod(t p ; T) (3) mod(v dp ; T v ) = r s and mod(i p ; T v ) = r 0 s 0 =) mod(p; T) = mod(rr 0 ; T) ss 0 + mod(t p ; T)

Thus for every p 2 R n there exist r 2 R n and s 2 S such that mod(p; T) = r s with red?(r; T) and sp r 2 hTi R n . Finally, we de ne the element iRed(p; T) of R n by iterating the following rules :

(a) iRed?(p; T) =) iRed(p; T) = p (b) mod(p; T v ) = r s =) iRed(p; T) = iRed(r; T) (c) iRed(i p ; T v ) = r and mod(s i p r; T v ) = 0 =) iRed(p; T) = iRed(rv dp + st p ; T)
Thus for every p 2 R n there exist r 2 R n and s 2 S such that iRed(p; T) = r with iRed?(r; T) and sp r 2 hTi R n . Remark 1 Note that to apply rule (c) in the de nition of iRed(p; T) it is necessary to store the intermediate denominators s which appear when applying rule (b). This notion of iterated initials reduction is the weakest notion of reduction which ensures the termination of Wu's algorithm [START_REF] Lazard | Solving zero-dimensional algebraic systems[END_REF]). Futhermore, as it limits the number of reduction steps, it leads generally to an increase of e ciency in comparison with the complete reduction (i.e. the one based on the operation (p; T) 7 ! mod(p; T)). De nition 3 Every couple = (P; Q), where P and Q are two nite subsets of R n , is called a quasi-algebraic system in R n (q.a.s. for short). Let = (P; Q) be a q.a.s. in R n . The q.a.s. is called triangular if P is a triangular set of R n . If Q 6 = ; then we denote by h( ) the product of the elements of Q, otherwise we de ne h( ) = 1. We call a zero of every element of the subset of K n denoted by Z( ) and de ned by : Z( ) = V(P) n V(h( )) The q.a.s. is called inconsistent if Z( ) = ; else it is called consistent. The saturated ideal of the q.a.s. is the saturated ideal of the ideal generated by P in P n w.r.t. h( ).

Let T R n be a triangular set. We denote by (T) the triangular q.a.s de ned by (T) = (T; finit(t) j t 2 Tg) Then, we denote by sat n (T) the saturated ideal of (T) and by h(T) the product of the initials of the elements of T. Moreover, every zero of (T) is called a regular zero of T and Z( (T)) is also written W(T) and called the quasi-component of T.

Finally, following Wan93a, Wan93b], a triangular q.a.s. = (T; Q) is called ne if V(h(T)) \ Z( ) = ; and 0 6 2 prem(Q; T).

Remark 2 Let T R n be a triangular set. If T is a regular chain (de nition 4) then W(T) 6 = ;. This will result from theorems 1, and 2 and proposition 4. The converse is false as shown by the following example : T = fX 2 1 ; X 1 X 2 2 + X 2 + 1g. Thus, if

T is a normalized triangular set, then W(T) 6 = ;. This will result from theorem 3 and proposition 5. If W(T) 6 = ; then (T) is ne but the converse is false, consider T = fX 2 1 1; X 1 X 2 2 X 1 + 1; X 2 (X 1 + 1)X 3 + 1g.

Let be a q.a.s. in R n . To decide whether is consistent one can compute sat n ( ) by means of Gr obner bases techniques ( GTZ88, [START_REF] Chou | Mechanical Geometry Theorem Proving[END_REF][START_REF] Lazard | Solving zero-dimensional algebraic systems[END_REF]). The answer is true i sat n ( ) 6 = P n (i.e. h(T) does not lie in the radical of the ideal generated by T in P n ). The following result shows more precisely the links between sat n ( ) and Z( ). Theorem 1 Let be a q.a.s. in R n . Then we have : Z( ) = V(sat n ( ))

Proof. > Let = (P; Q) be a q.a.s. in R n . We denote by H the principal ideal generated by h( ) in P n and by I the ideal generated by P in P n . It is clear that 

Z( ) = V( p I) n V(H).
I : h( ) 1 . <

Regular Chains

The concept of regular chains in P n is introduced by Kalkbrenner in Kal91]. The de nition below deals only with ideals and corresponds to a particular case of system of representations presented in Kal95]. Let i be a positive integer and I an ideal in P i 1 , recall that for f 2 P i , we denote by f I the canonical image of f in q( P i 1 =I) X i ].

De nition 4 Let i 2 I N and T be a triangular set of R i . We say that T is a regular chain in P i and that the ideal Rep i (T) of P i is its representation if either i = 0, T = ;, and Rep 0 (T) = f0g, or i > 0 and one of the following assertions holds :

(1) X i 6 2 algVar(T), the set T is a regular chain in P i 1 and

Rep i (T) = ff 2 P i j (8P 2 ap(Rep i 1 (T))) f P = 0g (2) X i 2 algVar(T), the set T X i is a regular chain in P i 1 , for any associated prime ideal P of Rep i 1 ( T X i ) we have init( T X i ) 6 2 P, and

Rep i (T) = ff 2 P i j (8P 2 ap(Rep i 1 ( T X i ))) f P 2 r h T X i P i q(P i 1 =P) X i ] g
Remark 3 With the notations of the above de nition, if X i 2 algVar(T) then it follows from the condition init( T X i ) 6 2 P that deg( T X i P ; X i ) = mdeg( T X i ). Thus if r 2 P i with deg(r; X i ) < mdeg( T X i ), we have deg(r P ; X i ) < deg( T X i P ; X i ).

Remark 4 The following results can be veri ed with general commutative algebra : let I an ideal in A and h 2 A, then p I X] = p I X] and (I : h 1 ) X] = I X] : h 1 .

Thus, if T is a triangular set in P i 1 , we have sat i (T) = hsat i 1 (T)i P i .

Proposition 1 Let i be a positive integer and T be a regular chain in P i .

(i) if X i 6 2 algVar(T) then Rep i (T) = h p Rep i 1 (T)i P i (ii) if X i 2 algVar(T) then Rep i (T) = ff 2 P i j (9m 2 I N) prem(f m ; T X i ) 2 Rep i ( T X i )g
Proof. > Let f 2 P i and P 2 ap(Rep i 1 ( T X i )). We rst assume that X i 6 2 algVar(T).

We have f P = 0 i every coe cient of f, viewed as univariate in X i , lies in P. Thus, f 2 Rep i (T) i every coe cient of f lies in p Rep i 1 (T), i.e. f 2 h p Rep i 1 (T)i P i . Now we assume that X i 2 algVar(T) with t = T X i and h = init(t). For m 2 I N, we denote prem(f m ; t) by r m . There exists q 2 P i and 2 I N such that h f m = qt + r m (1) First let us assume that f 2 Rep i (T). By point (2) of de nition 4 there exists m 2 I N such that f m P 2 ht P i. By choosing m big enough, we can take the same integer m for every prime ideal P in ap(Rep i 1 ( T X i )). With the relation (1) we deduce that t P di- vides r m P . By remark 3 it follows that r m P = 0. Therefore r m 2 h q Rep i 1 ( T X i )i P i , and with (i) we obtain r m 2 Rep i ( T X i ). Conversely, assume that there exists m 2 I N such that r m 2 Rep i ( T X i ). We get r m P = 0 and thus h f m P 2 ht P i. By de nition h 6 2 P, therefore h P is invertible. It follows that f m P 2 ht P i, i.e. f 2 Rep i (T). < Proposition 2 Let i 2 I N and T be a non-empty triangular set of P i such that X i 2 algVar(T). Let us assume that for every P 2 ap( q sat i 1 ( T X i )) we have init( T X i ) 6 2 P. Let r 2 P i such that r 2 sat i (T). Then we have deg(r; X i ) < mdeg( T X i ) ) r 2 q sat i ( T X i ):

Proof. > De ne h = init( T X i ). First we assume that T X i = ;. Then there exists 2 I N such that T X i divides h r. The hypothesis on the degree implies r = 0, which proves the assertion. Now let us assume that T X i 6 = ; and denote ( Q t2 T X i init(t)) by h 0 .

Since r 2 sat i (T) there exists 2 I N and q 2 P i such that (hh 0 ) r + q T X i 2 h T X i i P i .

Let P be a prime ideal associated to q sat i 1 ( T X i ). It is a classical result that h 0 6 2 P. Since h 6 2 P by hypothesis, we have hh 0 P invertible. Therefore T X i P divides r P . As we have deg(r P ; X i ) < deg( T X i P ; X i ), we get r P = 0, and the statement follows. < Proposition 3 Let i 2 I N and T be a non-empty triangular set of P i such that X i 2 algVar(T). Let us assume that for every P 2 ap( q sat i 1 ( T X i )) we have init( T X i ) 6 2 P. Let f 2 P i . Then we have f 2 q sat i (T) () (9m 2 I N) j prem(f m ; T X i ) 2 q sat i ( T X i )

Proof. > We rst consider f 2 p sat i (T). Let m 2 I N such that f m 2 sat i (T). Then we clearly have prem(f m ; T X i ) 2 sat i (T), and the result immediately follows from proposition 2. Conversely, let m be an integer such that prem(f m ; T X i ) 2 q sat i ( T X i ). We assume T X i 6 = ;, else the result is obvious. Let h 0 = Q t2 T X i init(t). There exists 2 I N and q 2 P i such that h f m = q T X i + prem(f m ; T X i ). We easily obtain from this equality that h f m 2 q hTi P i : h 01 . Thus we have f m 2 q hTi P i : (hh 0 ) 1 , i.e. f m 2 p sat i (T). It follows that f 2 p sat i (T). < Theorem 2 Let i 2 I N and T be a regular chain in P i . Then we have Rep i (T) = q sat i (T)

Proof. > For i = 0 the result is obvious. Let i > 0 and let us assume that the equality holds for i 1. If X i 6 2 algVar(T), the equality easily follows from proposition 1 and remark 4. Now we assume that X i 2 algVar(T). From proposition 1 again, we have

Rep i (T) = ff 2 P i j (9m 2 I N) prem(f m ; T X i ) 2 Rep i ( T X i )g

Since X i 6 2 algVar( T X i ) we know that Rep i ( T X i ) = q sat i ( T X i ) from the previous transcendental case. Finally we obtain the result with the proposition 3. < Proposition 4 Let i 2 I N and T be a regular chain in P i . Then we have Rep i (T) 6 = P i . Proof. > It follows from both relations of proposition 1 that 1 2 Rep i (T) i 1 2 Rep i 1 ( T X i ). Thus, since the statement is clear for i = 0, it also holds for any i. <

Towers of Simple Extensions

From now on, i 2 f0; : : :; ng is a integer, k = A 0 A 1 A i are rings, T R i is a triangular set, and F i is an algebra homomorphism of P i+1 into A i X i+1 ]. De nition 5 The set T is a regular set of R i whose associated map is F i and whose associated tower of simple extensions is (A 0 ; : : :; A i ) if one of the both assertions holds :

(1) i = 0, the set T is empty and F i is the identity-map of P 1 (2) i > 0, the set T X i is a regular set of R i 1 whose associated tower of simple extensions is (A 0 ; : : :; A i 1 ) and whose associated map is denoted by F i 1 such that one of the both assertions holds :

(i) X i 6 2 algVar(T) and we have A i = q(A i 1 X i ]) and (8p 2 P i ) F i (p) = F i 1 (p) 1 (ii) X i 2 algVar(T), the element F i 1 (init( T X i )) is a unit in A i 1 and we have A i = q( A i 1 X i ]=hF i 1 ( T X i )i) and (8p 2 P i ) F i (p) = F i 1 (p) hF i 1 ( T X i )i 1 More, in cases (i) and (ii), we state : F i (X i+1 ) = X i+1 .

De nition 6 The sequence (A 0 ; : : :; A i ) is called a tower of simple extensions of k (t.o.s.e. for short) if there exists a regular set of R i whose associated tower of simple extensions is (A 0 ; : : :; A i ). If T is a regular set of R i whose associated t.o.s.e. is (A 0 ; : : :; A i ) the ring A i is called the top-extension of T. Remark 5 Let T R i be a regular set whose associated t.o.s.e. is (A 0 ; : : :; A i ). For 0 j i and x 2 A j , note that x is either a unit in A j or a zero-divisor in A j . More, if j < i and if x is a unit in A j then it is also a unit in A j+1 . Proposition 5 gives an important example of regular sets and proposition 6 characterizes the zero-divisors and units in the T's associated t.o.s.e.

Proposition 5 Let T R i be a normalized triangular set. Then T is a regular set.

Proof. > If i = 0, the statement is clear. Thus, we can assume that i > 0 and that T X i is a regular set. If X i 6 2 algVar(T), the statement is clear again. If X i 2 algVar(T), we have normalized?(init( T X i ); T X i ). In order to show that init( T X i ) cannot be a zero-divisor in T X i 's associated t.o.s.e., it su ces to use remark 5 together with the following classical remark : for a ring A, a polynomial p 2 A X] is a zero-divisor in A X] i there exists an element a 2 A such that a p = 0. < Proposition 6 Assume that T is a regular set of R i whose associated map is F i and whose associated t.o.s.e. is (A 0 ; : : :; A i ). Then, for every p 2 P i we have :

(1) F i (p) = 0 () mod(p; T) = 0 () prem(p; T) = 0 () p 2 sat n (T)

(2) F i (p) is a unit in A i i for every prime ideal P 2 ap(sat n (T)) we have p 6 2 P.

Proof. > The proof is based on the following classical remark. For an ideal I in a noetherian ring A, for x 2 A, the element x I is a zero-divisor in A=I i there exists a prime ideal P associated to I such that x belongs to P ( SZ67], volume 1, p.214). < Theorem 3 The triangular set T is a regular chain i T is a regular set.

Proof. > The statement results easily from proposition 6 and theorem 2. <

Lazard Sets

Remark 6 In Laz91], Lazard introduced what we call Lazard sets (de nition 9). A Lazard set is a particular regular set whose top-extension is a product of elds. The use of eld products is motivated by de nition 7 and proposition 7. Lazard sets are built by means of gcd computations (in the sense of de nition 7) together with de nition 8 and theorem 8. Full details will appear in Maz97] and in a future paper.

De nition 7

Let A be a ring and p 1 ; p 2 ; g be polynomials in A X]. We say that g is a gcd of p 1 and p 2 if the following holds : hp 1 ; p 2 i q(A) X] = hgi q(A) X] Remark 7 If q(A) X] is not a principal ideal domain, the polynomials p 1 and p 2 do not necessarily have gcd in the sense of the previous de nition. They may also have several gcds. But if their leading coe cients are not zero-divisors in A then there exist e; e 0 2 nz(A) such that e g = e 0 g 0 . We chose this de nition to generalize usual gcd algorithms which give a Bezout relation together with a pseudo-divisor (see MR95]).

Proposition 7 ( MR95]) Let A 1 , : : :, A i be integral domains and let A be their direct product (thus, sums and products in A are computed componentwise). Then for every p 1 and p 2 in A X] there exists g 2 A X] which is a gcd of p 1 and p 2 . De nition 8 Let A be a ring of characteristic 0 and p 2 A X] with positive degree.

We say that p is : (i) primitive if the ideal of A generated by the coe cients of p is the unit-ideal. (ii) square-free if p and its derivative generate the unit-ideal of q(A) X]. Proposition 8 Let A be a noetherian ring of characteristic 0 and p 2 A X] with positive degree. Assume that A is a eld or a product of elds and that p is monic and square-free (in the sense of the previous de nition). Then, we have :

(i) the ideal generated by p in A X] is a radical ideal.

(ii) each one of the rings q(A X]) and A X]=hpi is a eld or a product of elds. proof > Property (i) is clear if A is a eld. Assume now that A is a product of elds k 1 k n . We denote by i p the i-th component of p in k 1 X] k n X] and by R i the ideal of A X] generated by (1 1 ; : : :; 1 i 1 ; i p; 1 i+1 ; : : :; 1 n ). Note that the R i are relatively prime ideals and that their product is hpi A X] . Thus we have : hpi A X] = \ n 1 R i and property (i) follows from the fact that the R i are radical ideals. Property (ii) results from the following remark of D. Lazard : if A is a noetherian ring where every element is either a unit or non-nilpotent zero-divisor then A is product of elds. This can be derived from the theory of Lazard rings (see Maz97]).

De nition 9 Let T R n be a regular set. The set T is called : (i) square-free if for 1 i n we have : X i 2 algVar(T) =) F i 1 ( T X i ) square-free, (ii) primitive if for 1 i n we have : if X i 2 algVar(T) then for 1 j < i the coe cients of the polynomial T X i viewed as a multivariate polynomial in A j X j+1 ; ; X i ]. generate the unit-ideal of A j . A triangular set of R n is called a Lazard set if it is normalized, square-free and primitive. A t.o.s.e. is called separable if it is associated to a square-free regular set.

Theorem 4 Let T R n be a Lazard set and let A be its top-extension. Then the following assertions hold : (i) A is a product of elds (ii) sat n (T) is a radical ideal (iii) for every p; q 2 A X] there exists g 2 A X] such that g is a gcd of p and q proof > Property (i), (ii), (iii) follow respectively from propositions 8, 6, and 7. < Remark 8 Let T R n be a Lazard set, F its associated map and A its top-extension. Assume that A is a product of m elds k 1 k m . Let p; q 2 A X]. To compute a gcd of p and q one may apply a standard algorithm in each k i X]. But in practise the k i are not known. So we perform in A X] the variation of subresultant gcd algorithm proposed in MR95] as if A was an integral domain. Then we use a D5-like process [START_REF]PoSSo -Polynomial System Solving Research Project[END_REF]) to split the computations when a zero-divisor is discovered. Let r 2 R n with red?(r; T). To decide whether the element F(r) is a unit in A we proceed from the following way. If r = 0 the answer is false. Else, if r 2 k the answer is true. Else, if mvar(r) 6 2 algVar(T) the answer is given by checking the invertibility of F(init(r)). Else the answer is given by checking the invertibility of the resultant of r and T v w.r.t. v = mvar(r) where the coe cients of those polynomials are interpreted in the top-extension of T v . This process is analogous to the one described in MR95].

A review of the four Methods

In this section we rst recall the speci cations of each method together with the main properties of the decompositions that they compute. A complete review of the algorithms could not take place here. For Wu's method one can refer to Wu87] or Wan91]. However we summarize the main features of the methods of Lazard and Kalkbrener which both involve gcd computations over towers of simple extensions. Moreover, we give a recursive presentation of the rst method proposed by D. Wang in Wan93b] This adaptation appeared to us more concise than the original presentation.

Speci cations

Let F R n be a nite set of polynomials. The algorithms of Wu and Lazard compute a nite family fT 1 ; : : :; T r g of initially reduced triangular sets such that

V(F) = r i=1 W(T i )
In the case of Wu's method, one of the T i , say C, satis es the following :

(i) W(C) V(F) V(C) (ii) V(F) = W(C) S p2C V(F finit(p)g)
Such a triangular set is called a characteristic set for F [START_REF] Wang | An elimination method for polynomial systems[END_REF]). In the case of Lazard's method, each T i is a Lazard set. Lazard's decompositions (but not Wu's ones) are irredundant in the following sense :

j6 =i W(T j ) 6 = j W(T j )
Kalkbrenner's method computes a nite family fT 1 ; : : :; T r g of regular chains but deals rather with variety than regular zeros. The decomposition is such that

V(F) = r i=1 V(Rep n (T i ))
Thus by theorems 1 and 2 we also have

V(F) = r i=1 W(T i )
The proposition 4 guarantees that for every T i we have W(T i ) 6 = ; but we may have S j6 =i W(T j ) = S j W(T j ) for some i. Wang's method computes a nite family f(T 1 ; Q 1 ); : : :; (T r ; Q r )g of ne triangular q.a.s. such that

V(F) = r i=1 Z(T i ; Q i ):
Such a decomposition is produced by trianguler(F; ;; ;) (theorem 5). There is a no reason for a ne triangular system produced by the method of Wang described below (called elimination without projection in Wan93b]) to be necessarily consistent. But, may be due to our optimizations, we never encountered inconsistent ne triangular system during our experiences. Note that Wang proposes also a method called elimination with projection in Wan93b]) to produce necessarily consistent outputs.

Lazard's Method

The main procedure of Lazard's method is called intersect. Given T R n and p 2 R n the operation intersect(p; T) returns a nite family of Lazard sets fS 1 ; : : :; S l g such that V(p) \ W(T) l 1 W(S i ) V(p) \ W(T) Given fT 1 ; : : :; T s g, a nite family of Lazard sets, we de ne intersect(p; fT 1 ; : : :; T s g) as the union of the intersect(p; T i ). Then, given a nite subset F = ff 1 ; : : :; f m g of R n we de ne intersect(F; T) = intersect(f 1 ; intersect(: : :; intersect(f m ; T))). Thus intersect(F; ;) produces a nite family of Lazard sets fS 1 ; : : :; S l g such that V(F) = r i=1 W(S i )

We will not describe here how to produce irredundant decompositions. The operation intersect(p; T) proceeds in the following way. (l 1 ) If normalized?(p; T) holds then go to step (l 2 ) with r = p else go to next step.

(l 1 0 ) If normalized?(p; T) does not hold, compute two polynomials q; r 2 R i+1 such that normalized?(r; T) and mod(pq r; T) = 0 and mod(p; T) = 0 () mod(r; T) = 0. Polynomials q and r are computed by means of an extended (i.e. with Bezout coe cients) version of the gcd algorithm sketched in remark 8. Here the computations may be split if mod(p; T) is a zero-divisor. The polynomial r is also denoted by normalize(p; T). Now, go to next step.

(l 2 ) If r = 0 then returns fTg. Else, if r 2 k then returns f g. Else go to next step.

(l 3 ) Return intersect(tail(r); intersect(init(r); T)) and go to to next step. (l 4 ) Remove the content of r viewed as univariate in mvar(r) and go to next step. (l 5 ) If T mvar(r) frg is a square-free regular set then go to step (l 7 ) (l 6 ) Let v = mvar(r). Compute a (normalized w.r.t. T v ) gcd of r and its derivative w.r.t. v while interpreting their coe cients in the top-extension of T v (here computations may be split). Let g be this gcd, replace r by pquo(r; g). Thus T v frg is now a square-free regular set. Go to step (l 3 ). (l 7 ) Let v = mvar(r). De ne T + v = ft k ; : : :; t l g with mvar(t k ) < < mvar(t l ). Compute D = intersect(t l ; intersect(: : : ; intersect(t k ; T v frg))). Then remove from D any triangular set U such that normalize(init(t i ); U mvar(t i ) ) = 0 for some i 2 fk; : : :; lg. Now, go to next and last step. (l 8 ) return intersect(p; D) where p is the input polynomial.

Kalkbrener's Method

Kalkbrener's Method is not so incremental as Lazard's one. We think that a good way to sketch this method is to give the algorithm of decomposition with the speci cations of Kalkbrener's algorithm for computing gcd over towers of extensions [START_REF] Kalkbrener | A generalized euclidean algorithm for computing triangular representations of algebraic varieties[END_REF]). algorithm gcd n (C; F) Input: C a regular chain in P n 1 and F a nite subset of R n . Output: f(C 1 ; g 1 ); : : :; (C s ; g s )g where every C k is a regular chain in P n 1 and every g k is a polynomial in R n such that S s

1 ap(Rep n 1 (C k )) = ap(Rep n 1 (C))
for all P 2 ap(Rep n 1 (C k )), 1. F = ; ) s = 1 and g 1 = 0, F 6 = ; ) g k P is the gcd of F P in q( P n 1 =P) X n ] for each k 2. if g k 6 2 k and mvar(g k ) = X n then init(g k ) 6 2 P if g k 6 2 k and mvar(g k ) < X n then g k 6 2 P 3. g k 2 hRep n (C k ) Fi P n . algorithm decompose n (F) Input: F a nite subset of R n Output: regular chains T 1 ; : : :; T r of P n such that q hFi P n = \ i p sat n (T i )

decompose n (F) == F := F n f0g empty? F => f;g F \ R 6 = ; => f g := ; F 0 := F \ R n 1 := decompose n 1 (F 0 )
for C 2 repeat := gcd n (C; F n F 0 ) for (C i ; g i ) 2 repeat g i = 0 => := fC i g mvar(g i ) < X n => := decompose n (F fg i g) := fC i fg i gg decompose n (F init(g i )) return P v n ffg 6 = ;. Let us denote P v n ffg by P 0 . For any p 2 P 0 , we have deg(prem(p; f); v) < deg(f; v) deg(p; v). Since P 0 is not empty, we thus obtain s(prem(P 0 ; f)) < s(P 0 ), and consequently s(P 2 ) < s(P). Then termination and correctness follow by application of lemma 1 and induction hypothesis. < By decreasing use of the algorithm eliminer, we easily obtain a triangulation of any q.a.s. as we can see now with the following algorithm.

Theorem 5 Let 1 i n and (P; Q) a q.a.s. in R n such that P R i . Let T a triangular set of R n such that T \ R i = ;. Then the following algorithm trianguler(P; Q; T) computes a nite family f(T 1 ; Q 1 ); : : :; (T r ; Q r )g of triangular q.a.s. such that Z(P T; Q) = r k=1 Z(T k ; Q k ): trianguler(P; Q; T) == P := P n f0g (0 2 Q) or (P \ R 6 = ;) => return (f g) empty? P => return ( f(T; Q)g ) v := mvar(P) := eliminer(v; P; Q) return ( S (P j ;Q j ; j )2 trianguler(P j ; Q j ; j T) ) Proof. > The proof of the algorithm is obtained by induction on the smallest integer such that P R i , which we will denote by i(P). For i(P) = 0, i.e. P R, the result is obvious. Now assume that i(P) > 0. We can eliminate the cases 0 2 Q, P \R 6 = ;, and = ;, which terminate immediately and are clearly correct. Then by speci cations of the algorithm eliminer, we obtain Z(P T; Q) = Z(P; Q) \ V K (T) = (P j ;Q j ; j )2 Z(P j (f j g T); Q j ):

Now we state T j = f j g T. The triplets (P j ; Q j ; T j ) satisfy the input conditions of trianguler. And since i(P j ) < i(P), the result follows from induction. < 3 Implementation

General Requirements

In the introduction we gave three requirements in order to make a fair comparison of the methods for polynomial system solving. The most important is to implement and run the corresponding algorithms with the same human, material and software conditions. More generally, given a system of equations to be solved, we want that the di erence between the corresponding computations only depend on the di erence between the corresponding algorithms. In particular, we want our implementations of those methods to use the same data structures and sub-routines. We will describe this last point below. Another important requirement is to make sure that each computed solution (by one of the implementations of the four methods) is correct. We concentrated on this last point instead of the search of very optimized implementations. We think that only checking by hand some computations (necessarily simple) produced by an implementation is not su cient to make sure that this implementation is correct, especially for mixed dimensional problems. We had a wrong implementation of Wu's method during three years (solving Liu's example in 147 sec) due to a programming mistake in the management of the elimination of the redundant branches. Thanks to our checking process (to be described below) we discovered this bug. However our current implementation of Wu's method does not solve Liu's example any more.

This checking process has been intensively tested for more than one year, is based on simple and well known algorithms and is implemented in a direct way in AXIOM as an over-level of the GB software [START_REF] Gomez | Quelques applications de l' evaluation dynamique[END_REF]) Thus it will be considered as certainly reliable.

In our analysis of the computed solutions we also look for other informations than timings or correctness. Given a solution, we want to know if some of the computed triangular sets are inconsistent or if some quasi-components are contained in another quasi-component (or in the closure of another quasi-component). This could also be done as we will see.

Description of the implementation

Each implementation of the four methods uses the same AXIOM domain for polynomials (with a sparse and recursive representation). We rst de ned an AXIOM category for nite subsets of R n . This category exports and implements operations on sets, ideals and varieties like (I; J) 7 ! I\J and (I; p) 7 ! I : p 1 where I; J R n denote ideals and p 2 R n is a polynomial. We implement these operations by means of Gr obner bases techniques [START_REF] Chou | Mechanical Geometry Theorem Proving[END_REF]) in an AXIOM package using the connection between AXIOM and GB, the very powerful Gr obner engine developed by J.C. Faug ere [START_REF] Gomez | Quelques applications de l' evaluation dynamique[END_REF]). Then we wrote an AXIOM category for (general) triangular sets of R n . This category exports and implements basic operations like (T; v) 7 ! T v and (p; T) 7 ! prem(p; T) and (p; T) 7 ! iRed(p; T) (notation 3 and notation 4) where v is a variable and T R n is a triangular set. It also exports and implements more sophisticated operations like : T 7 ! sat n (T) in order to check consistency of a triangular set, (F R n ; fT 1 ; : : :; T r R n g) 7 ! V(F) ? = i W(T i ) in order to check the correctness of a computed decomposition.

Moreover this category exports (but does not implement) an operation F R n 7 ! zeroSetSplit(F) which represents any method for solving polynomial system by means of triangular sets. From the category of general triangular sets we derived a category for towers of simple extensions. It exports the associated map of a t.o.s.e. implemented with the operation (p; T) 7 ! mod(p; T) (notation 4). It also exports operations like (p; T) 7 ! is-mod(p; T)-a-unit ?. Finally, from the category of t.o.s.e. we derived three categories corresponding to particular properties of regular sets :

a category for the regular sets T R n such that algVar(T) = fX 1 ; X 2 ; : : :; X n g. 

Examples

We now present two tables of results of our experiments. They are respectively dedicated to dimension zero and positive dimension. We give below the sources of our examples. For every example F and every method which decomposes V(F) into triangular systems 1 ; : : :; r we give two informations. The rst one is the computing time (evaluation and garbage collector). The second one :

is n( 1 ); : : :; n( r ) where n( i ) denotes the number of solutions of i , if V(F) has dimension 0 else d( 1 ); : : :; d( r ) where d( i ) denote the dimension of sat n ( i )

In order to make more concise these sequences of numbers we use some notations. Let us take the example 11 with Wang's method in the rst table. The sequence 2 2 ; 4; 16 2 means that the decomposition contains two triangular sets with 16 solutions, one triangular set with 4 solutions and two triangular sets with 2 solutions. The same kind of notation applies for sequences of dimensions. Futhermore in that case, we precise the inclusions between the saturated ideals of the components (when these inclusions could be computed). The following example (Singular points on a curve, example 12) of dimension zero is slightly di erent. This example seems not too di cult but Wu's method failed.

Here the methods give di erent results and we can note that Lazard's decomposition is e cient for timing and legibility.

Wang's method :

fx 2 + x 1; xy 2 + x 1g; ; ; 2x 4 2x 3 x 2 + x; 46x 5 + 48x 4 64x 3 24x 2 + 18x + 2 y 48x 5 51x 4 + 70x 3 + 28x 2 25x ; ; 

Conclusions

For easy examples, we remark that all methods generally have good computing times and that the legibility of the outputs they produce is satisfactory. Nevertheless Wu's method failed in some rather easy zero-dimensionnal examples, namely Caprasse, R5. Futhermore, for both cases of dimension 0 and positive dimension Wu's method solves clearly less problems than the other methods. And for the most di cult examples Wu's method can solve, the outputs are hard to read (see Robot Romin). In our opinion, the reason is the following. Wu's method cannot split the computations (in order to obtain several triangular sets) before computing a characteristic set of F (which is sometimes hard to compute, especially for zero-dimensionnal problems) whereas the other methods may split their computations earlier. More generally, it seems that methods based on gcd computations over tower of simple extensions, namely those of Lazard and Kalkbrener, may discover factorizations that other methods cannot nd (Cyclic-5).

Let us now concentrate on Wang's method. This method may be very e cient for di cult examples. But, the produced outputs are generally less legible than the ones of Kalkbrener and Lazard. Futhermore, as Wu's method, the method of Wang is disappointing in not too di cult zero-dimensional examples, namely Caprasse and Cyclic-5. Note that whereas our implementation of Wu's method produced some inconsistent triangular sets, this never happened with our implementation of Wang's method.

Kalkbrener's method is the only method which solves every example except Liu and often produces the most concise outputs (except for Cyclic-5). Futhermore, this method has the best timings for di cult problems lile f633, Robot Romin, Neural Network. But one has to keep in mind that this method solves polynomial systems in a more lazy way than the other three. This method is also ine cient for some zero-dimensional examples (Cyclic-5, R 7 ) whereas Lazard's method succeeds with these examples. The reason seems to be the use of normalization (in Lazard's method) which can replace big algebraic expressions by a single integer number in zero-dimensional examples .

However, normalization and square-free factorization over tower of separable extensions are time consuming. This is the reason why Lazard's method may also be ine cient in some not di cult examples (Katsura 3, Trinks di cult). For describing a ne varieties by means of regular zeros of triangular sets, Lazard's method gives the best outputs. Moreover, this is the only method which produces irredundant decompositions. We think that the methods based on computation of gcd over tower of extensions are promising. The experiments show that they must be further investigated for more e ciency. A future challenge consists in using our practice of the algorithms of Kalkbrener and Lazard to take advantage of both methods and resolve more di cult problems.

  called algebraic t.o.s.e., a category for the normalized regular sets called normalized t.o.s.e. and a category for the square-free regular sets called separable t.o.s.e. Now, each method is an implementation of the operation F R n 7 ! zeroSetSplit(F) in an AXIOM domain of the suitable category. For instance, Kalkbrener's method is implemented in an domain which belongs to the t.o.s.e category and which is called RegularChains (see the picture below). Note that we implemented the lexTriangular algorithm[START_REF] Maza | Calculs de Pgcd au-dessus des Tours d'Extensions Simples et R esolution des Syst emes d' Equations Alg ebriques[END_REF]) in an AXIOM domain called LexTriangular and which belongs to both categories of normalized t.o.s.e. and algebraic t.o.s.e.

			PolynomialSetCategory
					WangTriSet
			TriangularSetCategory
					WuTriSet
			TowerOfSimpleExtensions (TOSE)	RegularChain
		AlgebraicTOSE	NormalizedTOSE	SeparableTOSE
	LexTriangular	NormalizedAlgebraicTOSE	NormalizedSeparableTOSE	LazardTriSet

2.4 Wang's Method Let = (P; Q) a q.a.s. in R n such that mvar(P) = X i . The algorithm eliminer presented below (proposition 9) splits the q.a.s. into several q.a.s. which contain at most one equation with X i as main variable (see de nition 10). Its proof is based on the following lemma 1 [START_REF] Wang | Some improvements on Wu's method for solving systems of algebraic equations[END_REF]) and lemma 2 (which is a practical remark whose proof is left to the reader). De nition 10 Let 1 i n and = (P; Q) a q.a.s. in R n such that P R i and Q R n . We call elimination of the variable X i in a set of triplets (P k ; Q k ; k ) such that for any k, P k ; Q k and k are nite subsets of R n and verify the following conditions :

(i) P k 6 = ; ) mvar(P k ) < X i (ii) k 6 = ; ) (9t 2 R i n R i 1 ) j k = ftg (iii) Z(P; Q) = S (P j ;Q j ; j )2 Z(P j f j g; Q j ): Lemma 1 Let f a non constant polynomial in R n and (P; Q) a q.a.s. in R n . Then Z(P ffg; Q) = Z(prem(P; f) ffg; Q finit(f)g) Z(P finit(f); tail(f)g; Q): Lemma 2 Let (P; Q) be a q.a.s. in R n and f 2 R n n R . Then init(f) 2 Q ) Z(P ffg; Q) = Z(P ffg; prem(Q; f)) Proposition 9 Let v be a variable in V and (P; Q) a q.a.s. in R n such that mvar(P) v. Then the algorithm eliminer(v; P; Q) below computes an elimination of the variable v in the q.a.s. (P; Q). In particular, if the output of the algoritm is the empty set, then Z(P; Q) = ;. eliminer(v; P; Q) == P := P n f0g (0 2 Q) or (P \ R 6 = ;) => return(f g) P v = ; => return ( f(P; Q; ;)g ) f := a polynomial in P v with minimal degree in v P 1 := ( P v n ffg) finit(f); tail(f)g P v Q 2 := Q finit(f)g empty? ( P v n ffg) => return ( f( P v ; prem(Q 2 ; f); ffg)g eliminer(v; P 1 ; Q) ) P 2 := prem( P v n ffg; f) ffg P v return ( eliminer(v; P 2 ; Q 2 ) eliminer(v; P 1 ; Q) )

Proof. > We will prove termination and correctness by induction on s(P) = P p2Pnf0g deg(p; v). If a constant occurs in P or 0 2 Q, the result is obvious. Else, if s(P) = 0, then P v = ; and the algorithm terminates. The correctness is obvious. Now we assume that s(P) > 0, i.e. P v is not empty. First we remark that s(P 1 ) < s(P) since deg(init(f); v) = 0 and deg(tail(f); v) < deg(f; v). Then two cases can be distinguished : P v = ffg. By induction, eliminer(v; P 1 ; Q) terminates and is correct. Therefore eliminer(v; P; Q) terminates. The correction follows from application of lemma 1 and lemma 2.

Ex. Source or description 1 Solotare Com92] 2 Moeller 4 Com92] 3 Trinks 2 BGK86] 4 Trinks 1 BGK86] 5 Katsura 3 BGK86] 6 system L 2 = fx 2 1 + x 2 + x 3 1;x 1 + x 2 2 + x 3 1; x 1 + x 2 + x 2 3 1g with x 1 < x 2 < x 3 : 7 system L 3 = fx 3 1 + x 2 + x 3 + x 4 1;x 1 + x 3 2 + x 3 + x 4 1; x 1 + x 2 + x 3 3 + x 4 1; x 1 + x 2 + x 3 + x 3 4 1g with x 1 < < x 4 . 8 system R 5 = fx 1 (x 1 + 1);(x 2 2 + x 2 + 1)x 1 + x 2 ;p 3 ; p 4 ; p 5 g where p i = x i x i 1 i 1 + (x i i + 1)x i 1 + x i and x 1 > > x 5 . 9 system R 6 = fx 1 (x 1 + 1);(x 2 2 + x 2 + 1)x 1 + x 2 ;p 3 ; p 4 ; p 5 ; p 6 g with x 1 > > x 6 . 10 system R 7 = fx 1 (x 1 + 1);(x 2 2 + x 2 + 1)x 1 + x 2 ;p 3 ; p 4 ; p 5 ; p 6 ;p 7 g with x 1 > > x 7 . 11 Caprasse Com92] 12 Singular Points : F = ff; @f @x ; @f @y g where f = (y x)(y 2 + x 2 1)(y 2 x).
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Let us examinate the outputs of two examples from the tables. Alonso example(18) corresponds to a prime ideal of dimension 3 whose Kalkbrener's method describes with only one regular chain C. The other algorithms extract points which are in the closure of the regular zeros of C and provide similar results. We e ectively veri ed in these cases that both the outputs of dimension 2 where contained in W(C).

Wang's method : r; t 2 u + 1; v; z + t; (2t 2 + 1)x + t 2 u + 2t 6 t 2 ; 2t 2 + 1; t] ; (fv tr; tuz 1; ry t 2 u 1; (u r 2)x u 2t 4 + 1 ; u; r; t; u r 2] ; r + 2t 4 + 1; u + 2t 4 1; v + 2t 5 + t; (2t 5 t)z + 1; (2t 4 + 1)y 2t 6 + t 2 + 1 ; 2t 4 + 1; 2t 4 1; t] Wu's method : r + 2t 4 + 1; u r 2; v tr; (2t 5 t)z + 1; (2t 4 + 1)y + t 2 u + 1 ; r; t 2 u + 1; v tr; tz + t 2 ; (2t 2 + 1)x + t 2 u + 2t 6 t 2 ; v tr; tuz 1; ry t 2 u 1; (u r 2)x u 2t 4 + 1 Kalkbrener's method : v tr; tuz 1; ry t 2 u 1; (u r 2)x u 2t 4 + 1 Lazard's method : r + 2t 4 + 1; u + 2t 4 1; v + 2t 5 + t; (2t 5 t)z + 1; (2t 4 + 1)y 2t 6 + t 2 + 1 ; v tr; tuz 1; ry t 2 u 1; (u r 2)x u 2t 4 + 1 ; r; t 2 u + 1; v; z + t; (2t 2 + 1)x + 2t 6 t 2 1