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S U M M A R Y
Fluctuations in the rotation rate of the solid Earth over periods from 5 to 100 yr result
from exchanges of angular momentum between the fluid outer core and the solid mantle.
The coupling mechanism mediating angular momentum transfer is not clear yet. Here, I
revisit local Cartesian models for the pressure stress on a bumpy core–mantle interface. One
common approach consists in analysing forced magnetohydrodynamic modes arising from the
interaction between a steady flow along the core–mantle interface and boundary topography.
The wave amplitude scales as the height ζ of corrugations and the pressure stress as ζ 2. As
expected from Newton’s third law, the tangential stress on the fluid is opposite to the tangential
stress on the solid. It is exactly compensated by non-zero mean electromagnetic and Coriolis
forces, which both result from interactions at infinity and not with the electrically insulating
solid. Requiring zero net flux of mass and electrical current at infinity in order to better
model closed systems necessitates to restore mean flow acceleration. This makes possible to
investigate whether there is momentum transfer into the fluid interior or instead dissipation
next to the boundary. Fluid stratification enhances the horizontal stress exerted by the pressure
field on the core–mantle boundary but we have yet to describe the mechanism to transport
momentum from the boundary into the fluid.

Key words: Core; Earth rotation variations.

1 I N T RO D U C T I O N

It has long been known that exchanges of angular momentum between the Earth’s fluid core and solid mantle give rise to the fluctuations in
the Length Of the Day (LOD), a few milliseconds in amplitude, that are observed over the period range 5–100 yr (Hide 1977; Jault et al.
1988; Bärenzung et al. 2018). However, the torques acting between core and mantle that bring about these angular momentum exchanges are
still debated (Roberts & Aurnou 2012; Glane & Buffett 2018).

The strength of the topographic torque produced by dynamical pressure forces acting on irregularities of the core–mantle interface
is particularly uncertain. There were attempts at estimating this torque directly from models of the topography and fluid pressure at the
core–mantle boundary (Hide 1989; Jault & Le Mouël 1990). Fluid pressure with typical amplitude of about 103 N m−2 was obtained from core
surface velocity models assuming tangential geostrophy at the core surface. These models have now been superseded by quasi-geostrophic
models (Pais & Jault 2008; Amit & Pais 2013) and the topography at the core–mantle interface remains poorly known (Schlaphorst et al.
2016). Kuang & Chao (2001) estimated the topographic torque at the core–mantle boundary from its value in a homogeneous dynamo model
and found it too weak to account for the observed LOD variations.

Core–mantle coupling may depend on properties of the core next to the mantle that are not well reproduced in numerical models of the
geodynamo, although our information about these properties for the Earth’s core is also inadequate, see the debate about stratification of the
upper layers of the core (Helffrich & Kaneshima 2010; Irving et al. 2018). Clearly, theoretical studies may help us to find out what are the key
core and mantle properties that determine the strength of the coupling. Various local studies of pressure torque were carried out. Assuming
that the fluid at the top of the core flows with a uniform velocity U0 relative to the solid, the average stress is calculated in the form 〈F〉 =
KU0 (Hide 1977; Lambeck 1980). The coefficient K can then be fed to global models. The aim of such studies is to determine how K varies
with model parameters.

We may learn from studies of the ‘gravity wave torque’ that is responsible for part of the angular momentum transfer between winds in
the atmosphere and the solid Earth. These investigations aim at parametrizing orographic wave drags. Actually, the gravity wave torque is
defined as the part of the ‘mountain torque’ (i.e. the pressure torque) on the solid Earth that is unresolved in global atmospheric reanalysis
projects (Egger et al. 2007). For future reference, it is noteworthy that most of the global mountain torque is cancelled out (at periods over
40 d) by the friction torque. The importance of the gravity waves torque results from the ability of these waves to transfer vertically a mean
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stress over large heights, in the absence of dissipation (McIntyre 1980). The mean stress scales linearly with the basic state flow U0 and the
buoyancy frequency N and quadratically with the topography height (Palmer et al. 1986).

Similarly to these atmospheric studies, Braginsky (1998) investigated topographic core–mantle coupling in the plane tangent to the
boundary. He calculated the tangential pressure stress on a bumpy interface between a stratified fluid layer and an insulating solid in the
presence of a transverse magnetic field. The tangential stress stems from evanescent modes attached to the boundary rather than from gravity
waves propagating deep into the core. The corrugations on the interface, in this model, have wavelength a significant fraction of the core radius,
typically L ∼ 800 km. Therefore, he had to account for the spherical geometry of the core–mantle boundary and incorporated a β-effect in
a quasi-geostrophic model. He found that tangential stress linearly increases with buoyancy frequency N and that it scales with velocity U0

as
√

U0 and with topography height ζ as ζ 2. Glane & Buffett (2018) investigated small-scale rugosity of the core–mantle boundary. They
also found that the tangential stress is dramatically enhanced if the uppermost core is strongly stratified and the boundary is spanned by a
transverse magnetic field. They concluded that a topography with height � 50 m and wavelength L ∼ 100 km yields a tangential stress that
is sufficient to account for the length of the day observations if the buoyancy frequency in the stratified layer is of the order of the rotation
frequency or larger. Such a topography is so small that we cannot hope to detect it with seismic waves.

I revisit several Cartesian models of pressure stress on a bumpy horizontal interface between a conducting fluid and an electrically
insulating solid. The entire set-up is rotating about a vertical axis and permeated by a uniform magnetic field. In all these models, the velocity
and magnetic field perturbations on the fluid side are confined close to the fluid–solid interface. This feature justifies the investigation of a
local Cartesian model. The confinement results either from the orientation of the magnetic field parallel to the fluid–solid interface (Anufriev
& Braginskii 1975; Moffatt 1977; Hassan & Eltayeb 1982) or from the fluid stratification (Braginsky 1998; Glane & Buffett 2018). These
studies consist in the calculation of linear modes forced by the boundary topography, of height ζ . Hence, their amplitude is O(ζ ) also, and
interaction between the pressure field of these modes and the topography results in a spatially averaged tangential stress on the boundary,
which scales as ζ 2.

Although the solid boundary is electrically insulating, the mean electromagnetic force parallel to U0 acting on the fluid half space needs
not be zero if a net electric current flux leaves the system. Similarly, the Coriolis force contributes to the net stress acting on the fluid along U0

if there is a net volume flux transverse to U0 leaving the system. Actually, the previously cited Cartesian models of tangential stress did not
preclude a net flow in the direction orthogonal to the mainstream flow U0 and the boundary undulations. Hence, a mean Coriolis force arises
that cannot be neglected in the balance of forces acting on the fluid. This contrasts with plane layer dynamo models, where the vertically
integrated mass transport is assumed to be zero (Abdel-Aziz & Jones 1988). Similarly to dynamo models and by analogy with the sphere, I
will seek to impose no net mass flux and electrical current at infinity. This necessitates to introduce O(ζ 2) time derivatives of the spatially
averaged flow and magnetic field.

In all the models discussed here, the core–mantle boundary is locally approximated by a plane with sinusoidal undulations. The fluid is
inviscid and the solid is non-conducting, cancelling both the viscous and electromagnetic stresses on the solid wall. In addition, the governing
equations are linearized. I present the common features of these models in Section 2, where I also give expressions for each term of tangential
stress on the boundary. In the remaining of the text, I use these expressions for two different models and show that the tangential stress terms
on the fluid add up to zero. I recapitulate the model developed by both Anufriev & Braginskii (1975) and Moffatt (1977) in Section 3. The
model of Braginsky (1998) and Glane & Buffett (2018), which incorporates stable stratification, is discussed in Section 4. Although the last
two studies apply for two distinct asymptotic limits of the model, they broadly agree for typical geophysical values. I discuss the transfer of
momentum from the boundary into the fluid in Section 5, where I describe the vertical propagation of inertial waves and the concomitant
momentum transport for the special case of horizontal imposed magnetic field. The paper ends with concluding remarks.

2 TA N G E N T I A L S T R E S S E S O N E I T H E R S I D E O F T H E F LU I D – S O L I D I N T E R FA C E

2.1 Linearized equations

An approximately plane interface z = ζ (x) separates an electrically conducting fluid (z < ζ ) from a non-conducting solid (z ≥ ζ ). The entire
set-up rotates about the z-axis with angular velocity �. Far from the boundary, the fluid moves with velocity U0 in the x direction. A uniform
magnetic field pervades both the fluid and the solid regions. The topography is considered as 1-D:

ζ (x) = 	(ζ̂ exp(ikx x)) (1)

where kx is a positive real number, |kxζ | 
 1, and R means taking the real part of the complex expression. The unit vectors in the x, y and z
directions are ex , ey and ez respectively.

The models I discuss here were designed to have stationary velocity and magnetic field solutions, u and b. As a result, the terms ∂u/∂t
and ∂b/∂t are neglected in the momentum and induction equations respectively. The imposed magnetic field B0eB is uniform in directions
that differ between models. The governing equations in the fluid region, after linearization, are:

∂u

∂x
+ 2Ro−1ez × u = −∇ p + Al−1eB · ∇b, (2)

Al−1eB · ∇u − ∂b

∂x
+ R−1

m ∇2b = 0, (3)
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∇ · b = 0, ∇ · u = 0, (4)

where p is the total pressure. The Lorentz force j × B (with j the electrical current density, and B = B0eB + b) breaks down into the Maxwell
stress term B · ∇B/μ and the magnetic contribution −∇(B2/2μ) to the pressure force (μ is the magnetic permittivity). The length, velocity
and magnetic field units are the horizontal scale of the bumps k−1

x , the imposed velocity U0 and
√

ρ0μ U0 respectively (ρ0 is the fluid density).
The pressure unit is ρ0U 2

0 . The Rossby number Ro, the magnetic Reynolds number Rm and the Alfvén number Al are defined as kxU0/�, U0/ηkx

and
√

ρ0μ U0/B0, respectively (η is the fluid magnetic diffusivity). The number Q = Al2/RoRm introduced in this context by Moffatt (1977)
will play a major role in the discussion. It corresponds to the inverse of the Elsasser number. With this choice of units, eq. (1) transforms into

ζ (x) = 	(ζ̂ exp(ix)). (5)

The outward unit normal to the fluid region is given by

n = (−dζ/dx, 0, 1)/
√

1 + (dζ/dx)2 = (−dζ/dx, 0, 1) (6)

because we assume the topography to be small in comparison with the wavelength. In the presence of a steady flow relative to the boundary
ex the linearized expression for the no penetration condition becomes

uz |z=0 = dζ

dx
. (7)

Velocity and magnetic field solutions are sought in the form

u(x, z) = 	(
û(z) exp(ix)

)
, b(x, z) = 	(

b̂(z) exp(ix)
)
, (8)

since they have the same dependence on x as the boundary topography. Eq. (7) transforms into

ûz |z=0 = iζ̂ . (9)

The magnetic field is a harmonic potential field in the solid region z ≥ ζ (x):

bm = −∇ψ, ψ = 	
(
ψ̂ exp(ix − z)

)
. (10)

It is continuous at the fluid–solid interface and subject to the condition

b̂x = −iψ̂, b̂y = 0 b̂z = ψ̂, (11)

at (z = 0). Finally, because we have kept only linear terms in the equations, we can make the ansatz

u(x, z) = 	(û exp(i(x + kz z)), b(x, z) = 	(b̂ exp(i(x + kz z)), (12)

in the fluid region. Here, the z-wavenumber kz may take complex values.

2.2 Tangential pressure stress on the solid

We calculate the average pressure stress on the solid for all investigated models. It can be obtained as

〈Fp〉 = 〈p n · ex 〉 = −〈p
dζ

dx
〉

= −〈
(

p̂ exp(ix) + p̂∗ exp(−ix)

2

) (
iζ̂ exp(ix) − iζ̂ ∗ exp(−ix)

2

)
〉

= i

4

(
p̂ζ̂ ∗ − p̂∗ζ̂

)
, (13)

where the starred superscript denotes the complex conjugate. The expression can be further simplified by assuming that ζ̂ is real (ζ̂ = ζ̂ ∗).
The Lorentz force j × B breaks down into the Maxwell stress term B · ∇B/μ0 and the magnetic contribution −∇(B2/2μ0) to the

pressure force. For an insulating boundary, the Maxwell stress B · ∇B/μ and the magnetic pressure stress on the solid region cancel each
other out. It is thus necessary either to subtract the magnetic pressure from the total pressure before calculating the pressure stress or to add
the contribution of the B · ∇B/μ term to the total pressure contribution. The average x-component of the Maxwell stress on the solid region
is

〈FM 〉 = −〈ex ·
((

(
eB

Al
+ b) ⊗ (

eB

Al
+ b)

)
· n

)
〉. (14)
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When B0 is horizontal (eB = ex ), we have

〈FM 〉 = 1

Al

(
2〈bx

dζ

dx
〉 − 〈ζ ∂bz

∂z
〉
)

= 1

Al

(
2〈bx

dζ

dx
〉 + 〈ζ ∂bx

∂x
〉
)

=
i
(
ζ̂ b̂∗

x − ζ̂ ∗b̂x

)
4 Al

= −
(
ψ̂ ζ̂ ∗ + ψ̂∗ζ̂

)
4 Al

, (15)

using (4) and the first identity (11). There is a factor two difference with Moffatt (1977), where the term proportional to ∂bz/∂z above was
omitted. We derive this term from a linearization of the vertical magnetic field,

bz

∣∣
z=ζ

= bz

∣∣
z=0

+ ζ
∂bz

∂z

∣∣∣
z=0+

. (16)

This requires kzζ 
 1. The Lorentz force contributes also to the pressure term and the magnetic pressure stress has to be added to 〈FM 〉 to
obtain the net action of the electromagnetic forces on the solid region. We have

pM = 1

2

∣∣∣ ex

Al
+ b

∣∣∣2
= 1

2 Al2
+ 1

Al
bx . (17)

The constant term is unimportant and we can omit it. Using the boundary condition (11), we obtain

p̂M = − i

Al
ψ̂ (18)

that we insert in (13) to obtain the magnetic part of pressure stress

〈FpM 〉 =
(
ψ̂ ζ̂ ∗ + ψ̂∗ζ̂

)
4 Al

. (19)

Combining (15) and (19) we find that the mean electromagnetic stress is zero as expected for an insulating solid region. The contribution
from the nonlinear magnetic term is exactly zero because bx and bz are out of phase at z = 0 [see (11) again]. The remaining fluid pressure
stress is 〈Fp〉 − 〈FpM 〉.

When B0 is vertical, magnetic pressure is

p̂M = 1

Al
ψ̂, (20)

and we substitute again p̂ with p̂M in (13) to calculate the magnetic part of the pressure stress,

〈FpM 〉 = i

4 Al

(
ψ̂ ζ̂ ∗ − ψ̂∗ζ̂

)
. (21)

We verify that the magnetic pressure stress is neutralized on the solid side by the Lorentz term

〈FM,S〉 = − 1

Al
〈∂bx

∂z

∣∣∣
z=0+

ζ 〉, (22)

which is once again obtained from linearizing the magnetic perturbation at the boundary.

2.3 Mean forces in the fluid domain

All forces in eq. (2) may contribute to the stress budget on the fluid side. Assuming there is no mass flux at infinity, the net stress associated
with the nonlinear term u · ∇u is zero:

ex ·
∫
V

∇ · (u ⊗ u) dV = ex ·
∫
S

u(u · n)dS = 0 (23)

as a result of the tensor divergence theorem and of the no-penetration condition u · n = 0 at the boundary. The linear part of the Reynolds
stress u · ∇u gives a contribution

〈−2
dζ

dx
ux + ∂uz

∂z
ζ 〉 = −〈dζ

dx
ux 〉, (24)

which is exactly compensated by the nonlinear contribution

〈ux uz〉 (25)

when the no-penetration condition (7) holds. Theoretically, it is not consistent to calculate the stress on the solid region only from the linear
terms when keeping the Reynolds term in the modelling.

Any net flow in the y-direction produces a mean Coriolis force in the x-direction

2

Ro

�
z<ζ

uydV . (26)
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Table 1. Estimates of the various dimensional quantities in the Earth’s core context and dimensionless numbers. Values adopted by Braginsky
(1998), Glane & Buffett (2018) and in this study (Section 4.4). Here, we consider the β-plane tangent to the surface of the core at 45◦ latitude.

Quantity Expression Braginsky (1998) Glane & Buffett (2018) This study

Velocity U0 5 × 10−4 m s−1 5 × 10−4 m s−1 10−4 m s−1

Vertical magnetic field B0 5 × 10−4 T 6.5 × 10−4 T 5 × 10−4 T
Fluid density ρ0 104 kg m−3 104 kg m−3 104 kg m−3

Magnetic diffusivity η 1 m2s
−1

0.8 m2s
−1

0.8 m2s
−1

Pressure unit ρ0 U 2
0 2.5 × 10−3 N m−2 2.5 × 10−3 N m−2 10−4 N m−2

Unit length k−1
x 1.3 × 105 m 1.6 × 104 m 1.6 × 104–1.3 × 105 m

Angular velocity � 5.16 × 10−5 s−1 7.29 × 10−5 s−1 5.16 × 10−5 s−1

Non-dimensional horizontal wavelength χ x 7.4 × 10−2 – 9.2 × 10−3–7.4 × 10−2

Alfvén number Al 1.12 × 10−1 8.6 × 10−2 2.24 × 10−2

Rossby number Ro 7.6 × 10−5 4.31 × 10−4 1.52 × 10−5–1.22 × 10−4

Magnetic Reynolds number Rm 64 10 2–16
Inverse Elsasser number Q 2.59 1.72 2.06

Analogy between the planes y = constant in our set-up and the cylindrical surfaces s = constant in the sphere (s distance to the rotation axis)
would require this term to be zero (Abdel-Aziz & Jones 1988). This condition corresponds, in the sphere, to the Taylor’s constraint (Taylor
1963). However, the zero net flow condition is not imposed in the linearized models discussed here and there is a net flow along the boundary
in the direction orthogonal to its undulations. As a result, the Coriolis force acting on the fluid has non-zero mean. We find it to be

〈FC 〉 = 2

Ro
〈uy

∣∣
z=0

ζ 〉, (27)

assuming that the undulations height is small compared to the vertical scale of the motions ( kzζ 
 1).
When B0 is horizontal, the Maxwell stress on the fluid is opposite to the Maxwell stress on the solid 〈FM 〉 and the total mean magnetic

stress, expressed as 〈FM 〉 + 〈FpM 〉 on the solid, is zero on both sides. This is not true when B0 is vertical. There is a non-zero mean magnetic
force in the fluid region,

〈FM,F 〉 = 1

Al
〈∂bx

∂z

∣∣∣
z=0−

ζ 〉. (28)

The discrepancy between the magnetic stress on the fluid and on the solid results from the discontinuity in the x-averaged bx at the fluid–solid
interface, which gives rise to a current sheet in the y-direction. With b calculated at the order ζ , the net electric current leaving the fluid region
is O(ζ 2). Interaction between this current and the vertical magnetic field yields an O(ζ 2) magnetic force in the x-direction.

2.4 Geophysical estimate of the mean stress at the core–mantle interface

The axial torque exerted by the Earth’s core on the mantle at decadal periods is about 1018 N m, which corresponds to an average tangential
stress of the order of 2.4 × 10−3 N m−2 (Roberts & Aurnou 2012). Glane & Buffett (2018) and Moffatt (1977) adopted larger stresses of
2.7 × 10−2 and 4 × 10−2 N m−2 respectively as nominal values (i.e. axial torques of 1.1 × 1019 and 1.6 × 1019 N m). This is appropriate
if the friction torque cancels out most of the pressure torque as it occurs at the interface between the atmosphere and the solid Earth.

In order to evaluate models of tangential stress at the core–mantle interface, the first step is to calculate the pressure unit, which depends
on the value of U0. Moffatt (1977) assumed U0 = 10−4 m s−1, which is approximately the average zonal flow at the core surface. Braginsky
(1998) and Glane & Buffett (2018) supposed instead U0 = 5 × 10−4 m s−1, which is a typical value of the rms surface velocity [see Gillet
et al. (2015) for estimations of core surface velocities]. Since we seek to assess the average pressure stress in the azimuthal direction, the
mean zonal flow appears to be the most appropriate estimate. The topography height ζ and the buoyancy frequency at the top of the Earth’s
core are very uncertain. Values for all other parameters of the problem are listed in Table 1.

3 L I N E A R S O LU T I O N F O R A N I M P O S E D M A G N E T I C F I E L D PA R A L L E L T O T H E
B O U N DA RY

Remarking that Ro 
 1 in the terrestrial context, Anufriev & Braginskii (1975) and Moffatt (1977) neglected the inertia term in the
momentum equation relative to the Coriolis term. When the magnetic field B0ex permeating the fluid region is strong enough (Q 
 1),
an interior diffusion-free mode can be clearly distinguished from two boundary layer modes. Moffatt & Dormy (2019, pp. 353–355) have
recently discussed helicity generation (and the associated α-effect) in the framework of this model. The configuration is sketched in Fig. 1.
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956 D. Jault

Figure 1. Sketch of the configuration investigated in Section 3. The vertical co-ordinate is stretched, and kx ζ̂ 
 1 in the model. The solid (shaded region) is
insulating. The fluid is conducting. The set-up is rotating and pervaded by a horizontal magnetic field B0. The fluid exerts a tangential pressure stress on the
solid in the direction of the motion U0. The pressure stress on the fluid is neutralized by the Coriolis forces arising from the x-averaged velocity along ey in the
valleys at the boundary.

3.1 Linear modes

From ∇ · b = 0 and the z-component of the momentum equation, we have

p̂ = − Al−1

k2
z

b̂x (29)

for each mode. Then, the x and y components of the momentum equations are:

− 2û y = iRo Al−1 1 + k2
z

k2
z

b̂x ,

2ûx = iRo Al−1b̂y . (30)

Using ∇ · u = 0, there are only two independent components of the induction equation:

iAl−1ûx − ib̂x − Rm−1(1 + k2
z )b̂x = 0,

iAl−1û y − ib̂y − Rm−1(1 + k2
z )b̂y = 0. (31)

It appears that there are solely two independent dimensionless numbers, R−1
m and Ro Al−2. Their ratio is the parameter Q = Al2/RoRm. Moffatt

(1977) makes the assumption Q 
 1. The system of eqs (30) and (31) has a non-trivial solution if its determinant vanishes:

− Q−2
(
1 + k2

z

) = 4k2
z

(
iRm + (

1 + k2
z

))2
(32)

[same as eq. (36) of Moffatt & Dillon (1976)]. When Rm � 1, Q Rm 
 1, the three solutions for k2
z are approximately:

k2
z = −1, k2

z = ± i

2Q
. (33)

We are looking for solutions that vanish as z → −∞. Three solutions for kz satisfy this condition:

kz,1 = −i, kz,2+ = 1 − i

2
√

Q
, kz,2− = − 1 + i

2
√

Q
. (34)

The first root kz, 1 makes the magnetic diffusion term vanish: it corresponds to the interior solution. Since Q 
 1, the last two roots kz,2+ and
kz,2− satisfy |kz| � 1 and correspond to a boundary layer solution, of vertical length scale

√
Q [i.e. the parameter δB of Anufriev & Braginskii

(1975)] in the z-direction.
Appendix A gives expressions for the interior and boundary-layer modes. The boundary condition (9) involves both the interior mode

u1 and the boundary-layer one u2. Inserting the expressions (A3) and (A5) for uz,1 and uz,2 into (9), we obtain the magnetic potential in the
solid region as a function of topography

ψ̂ = iζ̂

Al

(
1 − i

Rm
√

Q

) . (35)
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Tangential stress 957

3.2 Vanishing net stress on the fluid

The boundary layer contribution to the pressure is negligible relative to the interior contribution (29):

p̂ = 1

Al
b̂1,x = i

Al
ψ̂. (36)

Inserting (36) in expression (13) and combining it with (19), the traction exerted by the fluid pressure force on the solid domain is given by

〈Fp − FpM 〉 = −
(
ψ̂ ζ̂ ∗ + ψ̂∗ζ̂

)
2Al

. (37)

Finally, from expression (35) for the magnetic potential ψ̂ , we have

〈Fp − FpM 〉 = Rm
√

Q

Al2(1 + R2
m Q)

|ζ̂ |2 = 1

Ro
√

Q(1 + R2
m Q)

|ζ̂ |2. (38)

The corresponding expression in Moffatt (1977) is incorrect by a factor 3/2 [see explanation after eq. (15) above].
The net flow in the corrugations produces a Coriolis force 〈FC 〉. Identity (27) transforms into

〈FC 〉 = 1

2Ro

(
û y ζ̂

∗ + û∗
y ζ̂

)
= −

(
ψ̂ ζ̂ ∗ + ψ̂∗ζ̂

)
2Al

, (39)

where û y is obtained from (A5). Noting that (39) gives the mean Coriolis stress on the fluid domain whereas (37) is for the solid region, we
verify that the net stress on the fluid side is zero, as it should.

3.3 Electrical current sheet

We can calculate the electric current density jy next to the interface,

jy = − iψ̂√
Q

exp(ix), at z = 0, (40)

from the expression of b2,x given in Appendix A (with
√

ρ/μU0kx chosen as unit of electric current density). These currents are not out of
phase with the topography and hence there is a net flux of electrical currents along the boundary, in the corrugations:

J ζ
y = − <

iψ√
Q

ζ >= R3/2
m

2
√

Ro(1 + R2
m Q)

|ζ |2, (41)

where the overline notation means that the quantity is x-invariant. This surface current flux yields a jump in bx across the surface layer, z =
0. We have

bx |z=0− = −J ζ
y (42)

since bx |z=0+ = 0. This field opposes the base magnetic field B0. Similarly, there is a net flux of electrical currents in the x direction, J ζ
x = J ζ

y .

3.4 Geophysical application

Multiplying by the unit of stress ρU 2
0 , we remark that 〈Fp − FpM 〉 is a linear function of U0 when R2

m Q 
 1. We can verify also that it
varies inversely with the topography wavelength. For an horizontal imposed magnetic field of 3 × 10−3 T, a velocity U0 of 10−4 m s−1 and
a topography wavelength of 800 km, we find a pressure stress of 2 × 10−3 N m−2, which is of the order of the total mean tangential stress at
the core–mantle interface (see Section 2.4).

4 L I N E A R S O LU T I O N F O R A S T R AT I F I E D F LU I D P E R M E AT E D B Y A M A G N E T I C
F I E L D T R A N S V E R S E T O T H E B O U N DA RY

Braginsky (1998) and Glane & Buffett (2018) included fluid stratification in their models. The imposed magnetic field acts in the z-direction
(eB = ez) and the Eulerian advection term ∂u/∂x is retained in the momentum equation. Braginsky (1998) further assumed quasi-geostrophy.
His study is based on the β-plane vorticity equation. Glane & Buffett (2018) focused instead on short wavelength topography, for which
effects due to the sphericity of the Earth can be ignored. Then, eqs (2)–(4) are appropriate to model the dynamics in the plane layer tangent to
the core–mantle boundary (f-plane approximation). I present the two models of Braginsky (1998) and Glane & Buffett (2018) as asymptotic
limits of a general model that includes both variation in latitude of the radial component of the rotation vector (β-plane approximation) and
wide range of imposed magnetic field strength. The problem is depicted in Fig. 2.
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958 D. Jault

Figure 2. Sketch of the configuration investigated in Section 4. The solid (shaded region) is insulating. The fluid is conducting and stably stratified. The set-up
is rotating. A uniform vertical magnetic field B0 is imposed. The fluid exerts a tangential pressure stress on the solid in the direction of the motion U0. The
pressure stress on the fluid (in the opposite direction) is neutralized by the magnetic and Coriolis forces arising from the x-averaged current and velocity along
ey in the valleys at the boundary.

4.1 Linear modes

The fluid layer is stably stratified,

ρ = ρ0(1 + αz), (43)

where α is constant and related to the buoyancy frequency N (α = −N2/g). Vertical transport produces density anomalies, as evidenced by
the mass conservation equation,

∂ρ ′

∂x
+ uz

dρ

dz
= 0. (44)

The momentum eq. (2) is modified by the introduction of a buoyancy term

iu + (2 + χx y)Ro−1ez × u = −∇ p + Al−1ez · ∇b + i
uz

Fr 2
ez, (45)

where the last term stands for −ρ
′
g in dimensionless form and the Froude number Fr is defined from Fr = |kxU0/N|. As in Braginsky (1998),

we assume here the effective rotation vector to be 2� + βy (β-plane approximation with y standing for latitude) and χ x = β/kx� arises as a
measure of the horizontal wavelength of the topography.

I assume henceforth strong stratification Fr 
 1, which yields the hydrostatic equilibrium approximation. Then, the z-component of (45)
gives

p̂ = − 1

k2
z Fr 2

ûx . (46)

The variation of � with y appears in the vorticity equation

− uy + 2iRo−1ux + χx Ro−1uy = −kz Al−1by, (47)

where the pressure term is eliminated. We complement this equation with the x-component of the momentum equation (45), where we consider
� uniform.

We can now transform the induction equation (3), the x-component of (45) and the vorticity equation (47) into a linear system of four
equations for ûx , û y , b̂x , b̂y of which the coefficients are function of kz. There is a non-trivial solution if the determinant vanishes,

Fr 2k6
z + Al2k2

z

(
1 +

( χx

Ro
− 2

)
k2

z Fr 2
) (

γ 2 − i
k2

z

Rm

)
= Al4

(
1 − χx

Ro
+ 4

k2
z Fr 2

Ro2

) (
γ 2 − i

k2
z

Rm

)2

, (48)

where we have used Ro 
 1 and γ is the square root of (1 − iR−1
m ) with negative imaginary part:

γ 2 = 1 − i

Rm
, �(γ ) < 0. (49)
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We estimate the three solutions of the cubic equation (48) for k2
z assuming once again Fr 
 1 together with Ro 
 1 and Fr 2 
 Ro Q. We

obtain

k2
z,1 = γ 2 RoRm Q

(
1 − χx

Ro

)
, k2

z,2 = −iγ 2 Rm + iγ 4 R2
m Fr 2

Q Ro
,

k2
z,3 = i

Ro Q

Fr 2

1 − iQχx

1 − iQχx + 4Q2
. (50)

Expressions for the three modes are derived in Appendix B.

4.2 Horizontal stress balance

We gather in Appendix B that it is sufficient to consider the third mode, which is the boundary layer one, to deduce the dominant terms in the
pressure stress on the solid in the limit Fr 2 
 Ro Q. Under the same condition, the magnetic pressure stress 〈FpM 〉 is negligible relative to
〈Fp〉. Eq. (B23) of Appendix B gives the pressure stress as a function of the dimensionless numbers. We can express it as

〈Fp〉 = − 1

2Fr
√

Ro Q

(
(1 + 4Q2)2 + (Qχx )2

1 + (Q χx )2

)1/4 	(kz,3)

|kz,3| |ζ̂ |2 (51)

[see eq. (B17) for the expression of R(kz, 3)/|kz, 3|]. We have

	(kz,3)

|kz,3| = − 1√
2

(52)

when χ x = 0. As observed by Braginsky (1998) and Glane & Buffett (2018), 〈Fp〉 increases linearly with Fr−1, i.e. with the buoyancy
frequency N. Since Q and χ x are independent of U0, the dimensionless pressure stress 〈Fp〉 scales as U−3/2

0 . Multiplying by the unit of stress
ρU 2

0 , we find that the mean pressure stress varies with velocity as
√

U0 [see eq. (57 b) of Braginsky (1998) and fig. 4C of Glane & Buffett
(2018)].

On the fluid side, the Reynolds stress term is negligible provided Ro Q 
 1 (see again Appendix B). The pressure stress −〈Fp〉
has to be compensated by the mean Coriolis and magnetic forces, 〈FC 〉 and 〈FM,F 〉 since there is no acceleration. In Appendix B,
〈FC 〉 + 〈FM,F 〉 − 〈Fp〉 = 0 we verify in the general case. To make the discussion simpler, we examine here the case Qχ x ≡ 0. Then,
we have

〈FC 〉
〈Fp〉 = 4Q2

1 + 4Q2
,

〈FM,F 〉
〈Fp〉 = 1

1 + 4Q2
. (53)

When Q � 1, the pressure stress on the fluid is mostly neutralized by the Coriolis force, as in the homogeneous model with horizontal
magnetic field (see Section 3). When Q 
 1, it is balanced by the magnetic force instead. This force has no counterpart in the solid, which is
electrically insulating. It is necessary to consider O(ζ 2) perturbations to cancel out both the mean Coriolis force and the mean magnetic force
in the x-direction.

4.3 Asymptotic limits: quasi-geostrophy versus small horizontal length scale

We recover the models of Braginsky (1998) and Glane & Buffett (2018) as limit cases.
The solution of Braginsky (1998) can be obtained as the quasi-geostrophic limit (Q � 1) of the solution presented above. In this limit,

we have

k2
z,3 = Ro

4Fr 2 Q
(i + Qχx ) . (54)

Braginsky referred to the mode of wavenumber kz,3 as the velocity mode and to the mode of wavenumber kz,1 as the magnetic mode. The
original model of Braginsky slightly differs from the model described here inasmuch it includes a density jump between the stratified layer
and the interior far from the boundary. However, this difference is unimportant since Braginsky noted that the mean pressure stress, in his
model, mostly results from the boundary layer mode, which is not affected by the composition change deep inside the fluid. From (54), we
verify k2

x k2
z,3 = (−iκv)2, where ( − iκv) is Braginsky’s notation for the vertical wavenumber (in m−1) of the boundary layer mode. Therefore,

the two models also agree about the mean pressure stress, which depends only on kz, 3 (see eq. B23). We have

〈Fp〉 = −
√

Q

Fr
√

Ro
(
1 + (Qχx )2)1/4

	(kz,3)

|kz,3| |ζ̂ |2,

	(kz,3)

|kz,3| = − 1√
2

√
1 + Qχx

(1 + (Qχx )2)1/2
, kz,3 = |kz,3| exp(iϕ0), (55)

where ϕ0 changes from 5π /4 to π as Qχ x goes from 0 to ∞. The factor 2 discrepancy with the expression (57a) of Braginsky (1998) arises
from the description of the topography as a 2-D function in his article.
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960 D. Jault

Figure 3. Tangential stress as a function of Q (thin black line). Comparison with the short wavelength approximation χ x 
 Q−1 of Glane & Buffett (2018)
(thick full blue line) and the quasi-geostrophic approximation Q � 1 of Braginsky (1998) (thick dashed blue line) for two horizontal wavelengths of the
topography, 100 km (top) and 800 km (bottom). All models agree for Q ∼ 2.

The model of Glane & Buffett (2018) corresponds to the limit of small horizontal wavelength Qχ x 
 1. In this limit, we have

kz,3 = −1 + i√
2

√
Ro Q

Fr

1√
1 + 4Q2

. (56)

Replacing the dimensionless numbers by the nominal set of Glane & Buffett (listed in Table 1), together with χ x = 0, and adopting their
value for the wavenumber unit, we recover solution (11) of their paper, which they obtained after substituting numerical values in algebraic
expressions. As a matter of fact, an expression equivalent to (56) for kz,3 can be found in the original unpublished version of their article (B.
Buffett, personal communication, 2019).

Fig. 3 shows the quantity Fr
√

Ro〈Fp〉 for the two values of kx, adopted by Glane & Buffett (2018) and Braginsky (1998) respectively.
Their models can be presented as special cases of the complete model. They coincide in the parameter range

1 
 Q 
 χ−1
x . (57)

They extend respectively to strong magnetic fields (Q < 1) and to large topography wavelengths (χ x > Q−1). Both models are applicable for
Q ∼ 2, which is the geophysically relevant value (see Table 1).

4.4 Minimum topography height for the model to be applicable

Although the pressure stress increases linearly with buoyancy frequency N, there is a restriction on the range of N values to be considered
since the thickness δB of the boundary layer varies inversely with N. The perturbation approach requires that the bumps are well within the
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boundary layer

|ζ | 
 δB, with δB = (�(kz,3))−1 =
√

2

√
1 + 4Q2 Fr√

Ro Q
, (58)

which is equivalent to

Fr � 1√
2

√
Ro Q√

1 + 4Q2
|ζ |, (59)

assuming here Qχ x ≡ 0. This sets an upper limit on the stratification to ensure that the perturbation approach is justifiable. Using (7) and
(4, right), this condition amounts to ux 
 1, which is also a prerequisite for linearization. Inserting the result (59) in the expression of the
pressure stress (51), we obtain a condition on the pressure stress that depends linearly on the topography amplitude |ζ |:

〈Fp〉 
 1 + 4Q2

2Ro Q
|ζ |. (60)

The maximizing function attains its minimum for Q = 0.5. Multiplying by the unit of stress ρU 2
0 , we obtain 2ρ�U0ζ

∗ as minimum value
of this function (where ζ ∗ dimensional value of |ζ |). Interestingly, this nearly corresponds to the reference value for the topographic stress
obtained from dimensional analysis (Hide 1977). In the limit Q 
 1, the restriction on the pressure stress transforms into

〈Fp〉 
 1

2
σζ ∗ B2

0 U0, (61)

which compares nicely with the electromagnetic stress σζ ∗ B2
0 U0 on an electrically conducting solid with conductance σζ ∗ (σ electrical

conductivity of the fluid). For Q ∼ 1 or larger, the analogy does not hold.
Using 2.4 × 10−3 N m−2 as target value of the tangential stress 〈Fp〉 and 100 km as the topography wavelength, restriction (60) on 〈Fp〉

translates into ζ ∗ � 11 m. To give an example of a possible set of values, ζ ∗ = 100 m corresponds to Fr = 1.55 × 10−4 (i.e. N/� = 0.8)
and to a boundary layer thickness δB of 930 m. The larger value adopted by Glane & Buffett (2018) as nominal tangential stress leads to ζ ∗

� 60 m. The difference with the topography amplitude given in their article originates in the value chosen for U0.

4.5 Physical interpretation in the large magnetic field limit

Glane & Buffett (2018) posited that stratification traps the fluid next to the solid boundary in topography elevations. According to this scenario,
the perturbation ux would oppose U0 within the bumps. Further, they suggested that the coupling mechanism is similar to electromagnetic
coupling between the fluid in the interior and stagnant fluid within topography rises, as initially advocated to explain nutation observations
(Buffett 2010).

When Q 
 1 (large magnetic field limit) and Q χx ≡ 0, expression (61) shows that the magnetic coupling interpretation gives a good
prediction of the tangential stress (within a factor 1/2) for boundary layer modes of vertical scale δB similar to the topography height |ζ |. The
amplitude of ux becomes comparable to 1 (i.e. U0 in physical units) precisely for this value of δB. The velocity perturbation would exactly
oppose U0 within the bumps for a phase difference π between ux and ζ . For Q χx ≡ 0, the phase difference reaches 3π /4 (see eq. 52).

This interpretation rests on an extrapolation of the solution outside its domain of validity (topography height and flow perturbation
amplitude small compared to the boundary layer depth and the base flow velocity, respectively). Another study including nonlinearities is
needed to calculate the solution for large undulations |ζ | ∼ δB and prove or disprove, at least in the small Q limit, the interpretation put
forward by Buffett (2010) and Glane & Buffett (2018). This goes beyond the scope of this paper.

5 T R A N S F E R O F M O M E N T U M F RO M T H E B O U N DA RY I N T O T H E F LU I D

There are two forces, with non-zero averages, acting on the fluid side in addition to the fluid pressure stress 〈−Fp + FpM 〉: the magnetic stress
〈−FM − FpM 〉, also written as 〈FM,F 〉, and the Coriolis force FC. These two terms do not represent interactions with the solid region. They
arise instead from flux of electrical currents and of mass at infinity, which do not occur in closed bodies. When the imposed magnetic field B0

permeating the set-up is horizontal, the tangential stresses are balanced only by the Coriolis force FC due to the mean volume flux since there
is no magnetic force arising from the mean electrical currents. When B0 is vertical, both the Coriolis force and the magnetic force participate
in the equilibrium. Then, the Coriolis and magnetic forces predominate for large and small inverse Elsasser number Q respectively. In both
cases, the success of the models hinges on finite net electrical current and volume fluxes leaving the fluid region. They yield non-zero mean
electromagnetic and Coriolis forces on the fluid that are balanced not in the solid region but at infinity. This feature is undesirable as there
can be no such fluxes in the geophysical situation.

I discuss here the O(ζ 2) x-averaged time-varying fields when the imposed magnetic field is parallel to the boundary. The study when the
magnetic field is transverse and the fluid is stratified is much more difficult.

We are guided by studies of viscous friction in rotating flows. Viscous stresses can be estimated from Ekman layer models although
these models do not necessarily include the acceleration ∂u/∂t . Therefore, study of the viscous boundary layer is completed by investigation
of the fluid response in the interior driven by Ekman pumping.
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After x-averaging, the 2-D problems discussed in Sections 3 and 4 become 1-D. In order to avoid the indeterminacy typical to 1-D
problems and noted, for example, by Jackson (1975, p. 477) in a related context (Hartmann boundary layer in plane layer geometry), I consider
in this section a 2-D topography:

ζ (x, y) = 	
(
ζ̂

(
exp(i(x + ky y)) + exp(i(x − ky y))

))
, (62)

defined in such a way that, after x-averaging, there remains a y-dependent component in the tangential stresses. Also, I find it advantageous to
introduce the characteristic length k−1

y because the group velocity of magnetic Coriolis waves spawn in the fluid interior from the boundary
depends on the horizontal wave length [see Greenspan (1968, pp. 192–195) and Davidson (2014) for the discussion of inertial waves
propagation].

The x-averaged traction on the topography (62) is calculated in Appendix C, where I first calculate the linear solution for each Fourier
component. Keeping the same hypotheses as in Section 3, the two wavenumbers kz,2+ and kz,2− are unchanged while kz,1 becomes

kz,1 = −ik‖, with k‖ =
√

1 + k2
y . (63)

Expression (C7) for the x-averaged traction on the solid involves both ky and the horizontal wavenumber k�. It is obtained as the sum of a
constant and of a sinusoidal components. I discuss here only the sinusoidal one since it corresponds to a well-posed problem.

The net flux of electrical current and mass along the interface have to be balanced by opposite flux in the fluid volume, which drive
2-D perturbations. Because the different fields are independent of x, the momentum and induction equations for these perturbations are
now decoupled. In the absence of uniform pressure gradient and mean electrical field, we have to keep acceleration terms ∂u/∂t and ∂b/∂t
to balance the equations. Inertial velocity modes and magnetic diffusion modes are solution of the momentum and induction equation
respectively.

The flux of electrical current Jζ along the interface in either direction x or y is a function of exp (2ikyy). It gives a boundary condition
for the magnetic field in the fluid volume at z = 0 (see e.g. eq. 42) for bx ). The magnetic field obeys a diffusion equation

∂bx

∂t
= R−1

m ∇2bx , (64)

with boundary conditions:

bx |z=0 = −J ζ
y , bx |z=−∞ = 0. (65)

Then the flux of electrical currents in the fluid volume exactly compensates for the flux along the interface.
By analogy with the relationship between electrical currents and magnetic fields, the velocity field can be written as

u =
(

w,
∂v

∂z
, −∂v

∂y

)
(66)

Writing

v|z=0 = −〈uyζ 〉, vz=−∞ = 0 (67)

where 〈uyζ 〉 is the mass flux along the interface ensures that the mass flux in the fluid volume and along the interface compensate each other.
It corresponds to the boundary condition

uz = ∂

∂y
〈uyζ 〉 (68)

for the velocity field. The solutions consist of inertial waves forced at z = 0. Denoting ω the frequency of plane waves of the form

p = 	 (
p̂ exp(i(ωt + ky y + kz z))

)
, (69)

with similar expressions for the velocity components, we obtain the dispersion relation

ω = ± 2

Ro

√
k2

z

k2
y + k2

z

. (70)

As the waves propagate along the vertical axis (with kz 
 ky), they make the motions z-invariant (Davidson 2014). Thus, they are the
mechanism to transfer momentum from the boundary to the fluid interior.

6 C O N C LU D I N G R E M A R K S

In this paper, the tangential stress results from a steady flow over boundary topography. The two mechanisms that have been proposed to
confine the perturbations close to the fluid/solid interface are evaluated. The first mechanism hinges on the presence of a strong magnetic
field parallel to the interface. Then, the perturbations are localized next to the interface provided that Q 
 1, where Q is the inverse Elsasser
number (see Section 3). The other mechanism requires strong stratification to confine the perturbations next to the interface (Section 4). In
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both cases, the pressure stress acting on the fluid half-space in the direction parallel to U0 is balanced by the magnetic and Coriolis forces
arising from the net flux of electrical currents and of mass along the interface.

The tangential stress calculation leaves aside the question of momentum transfer to the interior. When the fluid is not stratified and
the imposed magnetic field horizontal, inertial waves make the fluid response z-invariant and ensure efficient momentum transfer from the
boundary to the interior.

There remains a lot to be done about the tangential pressure stress at the boundary between a stratified core and a solid mantle. We have
to investigate whether the modes forced at the boundary are evanescent and dissipated over a short distance or are able to propagate as the
inertial waves discussed in Section 5. Furthermore, the linear models discussed in this article cannot describe the situation where the boundary
layer thickness is of the order of the height of the topography. The possible analogy with electromagnetic coupling, albeit not justified for
linearized models, makes this configuration very interesting.

Finally, similarly to the gravity wave torque in the atmosphere, the traction exerted by the pressure on the boundary needs to be considered
together with other stress terms.
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Jault, D. & Le Mouël, J.L., 1990. Core-mantle boundary shape: constraints

inferred from the pressure torque acting between the core and the mantle,
Geophys. J. Int., 101, 233–242.
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A P P E N D I X A : M O D E S I N A H O M O G E N E O U S F LU I D P E R M E AT E D B Y A M A G N E T I C
F I E L D PA R A L L E L T O T H E B O U N DA RY

Expressions for the three vertical wavenumbers are derived in Section 3.1. This appendix presents the corresponding interior and boundary-
layer modes. Examining first the interior solution (u1, b1), Moffatt (1977) found

u1,x = Al b1,x , u1,y = 0, b1,y = −2iRo−1 Al2b1,x , (A1)
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and b1,y = 0 in the asymptotic limit Ro−1Al2 → 0 investigated here. There is no y-component for either u1 or b1 in the interior. We put together
the matching conditions with the potential field in the solid region (10)

b̂1,z + b̂2,z = ψ̂

b̂1,x + b̂2,x = −iψ̂, (A2)

the solenoidal condition (b̂x + kzb̂z = 0) and the relation (|kz,2| � |kz,1|). We deduce that b̂z,2 is negligible (O(
√

Q)) relative to b̂z,1 (still at z
= 0). The solution in the fluid interior is

b1 = (iψ̂, 0, ψ̂) exp(ix + z),

u1 = Al(iψ̂, 0, ψ̂) exp(ix + z). (A3)

Here, the choice for the sign of ψ̂ differs from the choice made by Moffatt (1977) in his eq. (29) to ensure sign consistency from one section
to the next in this article.

Turning to the boundary layer modes, they satisfy

b̂2±,y = ±ib̂2±,x , û2±,x = i
Ro

2Al
b̂2±,y, û2±,y = −i

Ro

2Al
b̂2±,x . (A4)

The modes labelled (2 + ) and (2 − ) multiply exp(z/2
√

Q) exp(ix)(cos(z/2
√

Q) + i sin(z/2
√

Q)) and exp(z/2
√

Q) exp(ix)(cos(z/2
√

Q) −
i sin(z/2

√
Q)), respectively. At (z = 0), the magnetic boundary condition b̂2,y = 0 is satisfied if (b̂2+,y + b̂2−,y = 0). Then, from the first eq.

(A4), we infer (b̂2+,x = b̂2−,x ) also at the fluid–solid interface. We combine this result with (A2) and (A3) to obtain

At z = 0, b̂2+,x = b̂2−,x = −iψ̂,

∀z ≤ 0, b2 = −2iψ̂ exp(z/2
√

Q) exp(ix)(
cos(z/2

√
Q), − sin(z/2

√
Q), −i

√
Q

(
cos(z/2

√
Q) + sin(z/2

√
Q)

))
,

u2 = Ro

Al
ψ̂ exp(z/2

√
Q) exp(ix)(

− sin(z/2
√

Q),− cos(z/2
√

Q),−i
√

Q
(

cos(z/2
√

Q) − sin(z/2
√

Q)
))

. (A5)

The discrepancy between (A5) and the magnetic diffusion layer solution of Moffatt (1977) can be traced back to a sign error in his eq. (35).

A P P E N D I X B : M O D E S I N A S T R AT I F I E D F LU I D P E R M E AT E D B Y A M A G N E T I C
F I E L D T R A N S V E R S E T O T H E B O U N DA RY

Expressions for the three vertical wavenumbers are derived in Section 4.1. This appendix discusses the three corresponding modes.
At leading order, the first mode (u1, b1) is unaffected by diffusion in the z-direction. The mode wavenumber differs according to whether

χ x ≡ 0 (f-plane) or χ x � Ro (β-plane). We have either

u1 = γ b1, (B1)

when χ x ≡ 0 (with γ defined by (49)) or

u1 = iγ

√
Ro

χx
b1, (B2)

when χ x � Ro. The two fields are almost aligned along ey , as there is geostrophic balance between the Coriolis force and the pressure force
directed along ex :

û1,x = 2iRmγ 2 Fr 2 Q
(

1 − χx

Ro

)
û1,y . (B3)

The second solution (u2, b2) is very nearly a free magnetic mode inasmuch advection of the magnetic perturbation by U0 almost exactly
balances diffusion. A very weak velocity perturbation suffices to force it. The induction equation gives

u2 = Fr 2 Rm√
Q Ro

exp
( iπ

4

)
b2. (B4)

Then, from the axial vorticity equation, we find that the mode is mostly aligned along ex ,

b̂2,y = 2Fr 2

Q Ro
b̂2,x . (B5)

The character, kinetic or magnetic, of the third mode (u3, b3) depends on the frequency ratio Fr/Ro = �/N,

b3 = i
Rm

kz,3 Al
u3 = − exp

( iπ

4

) Fr

Q Ro

√
Rm

γ3
u3. (B6)
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with

kz,3 = − exp
( iπ

4

) √
Ro Q

Fr
γ3, γ 2

3 = 1 + 4Q2 + Q2χ 2
x − 4iQ3χx

(1 + 4Q2)2 + Q2χ 2
x

. (B7)

From the axial vorticity equation, we have also

û3,x = 1

2Q
(iQχx − 1) û3,y . (B8)

The boundary conditions (11) for bx and bz involve the second and third modes. We have

b̂2,z = ψ̂, b̂3,z = −ψ̂
Fr

γ3
√

Q Ro

(
iγ

√
Rm + exp

( iπ

4

))
= −iψ̂

γ ′ Fr
√

Rm

γ3
√

Q Ro
(B9)

with

γ ′ = γ

(
1 + exp

(
− iπ

4

) 1√
Rm

)
.

We obtain

b̂2 = ψ̂

(
− exp

(
− iπ

4

)
γ
√

Rm, −2 exp
(
− iπ

4

) Fr 2γ
√

Rm

Q Ro
, 1

)

b̂3 = γ ′√Rmψ̂

(
exp

(
− iπ

4

)
, −2 exp

(
− iπ

4

) Q

1 − iQχx
, −i

Fr

γ3
√

Q Ro

)
. (B10)

The third magnetic boundary condition, on b̂y , determines b̂1.

b̂1 = 2 exp
(
− iπ

4

) Q

1 − iQχx
γ ′√Rmψ̂ey . (B11)

Using the relationships (eqs B1 and B2) between the velocity and magnetic fields, we obtain

û1 = 2ψ̂ exp
(
− iπ

4

)
γ γ ′√Rm Q

(
2iRmγ 2 Fr 2 Q, 1, −2i

γ Q Fr 2
√

Rm√
Q Ro

)
, (B12)

when χ x ≡ 0 and

û1 = 2ψ̂ exp
( iπ

4

)
γ γ ′

√
Rm Ro

χx

Q

1 − iQχx

(
2iRmγ 2 Fr 2 Q, 1, −2i

γ Q Fr 2
√

Rm√
Q Ro

)
, (B13)

when χ x � Ro. From eqs (B4) and (B6 ), we have also

û2 = ψ̂
Fr 2 Rm√

Q Ro

(
−γ R1/2

m , 0, exp
( iπ

4

))
,

û3 = iγ ′ψ̂
(

γ3 Ro Q

Fr
, −2

Ro

Fr

γ3 Q2

1 − iQχx
, exp

(
− iπ

4

) √
Q Ro

)
. (B14)

Thus, the no-penetration condition (9) involves only the third mode in the limit Fr 2/Ro Q 
 1. In this limit, the main pressure term stems
from the third mode

p̂ = 1

Fr 2kz,3
û3,z = i

Fr 2kz,3
ζ̂ (B15)

[see expression (46) for p̂] and the average pressure stress (13) along x on the solid domain is

〈Fp〉 = −1

2

	(kz,3)

Fr 2|kz,3|2 |ζ̂ |2, (B16)

where R(k) is the real part of k. We have:

	(kz,3)

|kz,3| = − 1√
2

(
1 + 4Q2(Qχx )(

1 + (Q χx )2)1/2 (
(1 + 4Q2)2 + (Q χx )2)1/2

)1/2

. (B17)

I write k2
z,3 as

k2
z,3 = (1 + Q2χ 2

x )
Ro Q

Fr 2

g + i f

f 2 + g2
(B18)

with

g = 4Q2(Qχx ), f = 1 + 4Q2 + Q2χ 2
x , (B19)
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f 2 + g2 = (1 + Q2χ 2
x )((1 + 4Q2)2 + (Qχx )2),

�(kz,3)

	(kz,3)
= −g +

√
f 2 + g2

f
. (B20)

We have

|kz,3|2 = (1 + Q2χ 2
x )

Ro Q

Fr 2

1√
f 2 + g2

(B21)

and

〈Fp〉 = −
√

f 2 + g2

2Ro Q(1 + Q2χ 2
x )

	(kz,3)|ζ̂ |2. (B22)

After a few transformations, we can also write the pressure stress on the solid as

〈Fp〉 = 1

2
√

2

1

Fr
√

RoQ
√

1 + Q2χ 2
x

(√
f 2 + g2 + g

)1/2
|ζ̂ |2. (B23)

The dominant term in the mean Coriolis force 〈FC 〉 acting on the fluid originates also from the third mode. Writing the y-component of the
velocity perturbation as

û3,y = 2i
Q

1 − iQχx
kz,3ζ̂ (B24)

we have

〈FC 〉 = − 2Q

Ro(1 + Q2χ 2
x )

(�(kz,3) + Qχx	(kz,3)) |ζ̂ |2. (B25)

From (28), we calculate the mean magnetic force on the fluid. The boundary layer term (third mode) is dominant again. We find

〈FM,F 〉 = − �(kz,3)

2Ro Q
|ζ̂ |2. (B26)

We have

〈FM,F 〉 + 〈FC 〉 = − (1 + 4Q2 + Q2χ 2
x )�(kz,3) + 4Q3χx	(kz,3)

2Ro Q(1 + Q2χ 2
x )

|ζ̂ |2,

= −
√

f 2 + g2

2Ro Q(1 + Q2χ 2
x )

	(kz,3)|ζ̂ |2 (B27)

Then, noting that (B22) is the expression for the pressure stress acting on the solid whereas (B27) is the expression for the total stresses acting
on the fluid we verify that the total tangential stress on the fluid is zero, 〈FM,F + FC − Fp〉 = 0.

Lastly, the dominant term (24) in the contribution of the Reynolds term to the mean stress is

1

2
	(kz,3)|ζ̂ |2. (B28)

It is much smaller than either 〈FC 〉, 〈FM 〉 or 〈Fp〉 (by a factor Ro Q). The magnetic pressure stress is O(Rm |ζ̂ |2/(Ro Q)) and is thus negligible
in comparison with 〈FM 〉 in the limit Fr 2/Ro Q → 0.

A P P E N D I X C : T R A C T I O N O N A 2 - D T O P O G R A P H Y P E R M E AT E D B Y A N U N I F O R M
H O R I Z O N TA L M A G N E T I C F I E L D

This appendix gives the results necessary to the discussion in Section 5. First, the results of Section 3 and Appendix A are generalized to a
single Fourier component of a 2-D topography:

ζ (x) = 	
(
ζ̂ exp(i(x + ky y))

)
, (C1)

with outward unit normal to the fluid region given by:

n = (0, 0, 1) − 	
(

iζ̂ exp(i(x + ky y))
) (

1, ky, 0
)
. (C2)

The solution in the fluid interior becomes

b1 = (
iψ̂

k‖
,

ikyψ̂

k‖
, ψ̂) exp(i(x + ky y) + z),

u1 = Al(
iψ̂

k‖
,

ikyψ̂

k‖
, ψ̂) exp(i(x + ky y) + z),

p = i

k‖ Al
ψ, (C3)
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with k� given by (63). The boundary layer solution can be obtained as

b2 = i
(k‖ + 1)

k‖
ψ̂ exp

(
z

2
√

Q

)
exp

(
i(x + ky y)

)
(

− cos

(
z

2
√

Q

)
− ky sin

(
z

2
√

Q

)
, sin

(
z

2
√

Q

)
− ky cos

(
z

2
√

Q

)
, ik2

‖
√

Q

(
cos

(
z

2
√

Q

)
+ sin

(
z

2
√

Q

)))
,

u2 = − (k‖ + 1)

2k‖

Ro

Al
ψ̂ exp

(
z

2
√

Q

)
exp

(
i(x + ky y)

)
(

sin

(
z

2
√

Q

)
− ky cos

(
z

2
√

Q

)
, cos

(
z

2
√

Q

)
+ ky sin

(
z

2
√

Q

)
, ik2

‖
√

Q

(
cos

(
z

2
√

Q

)
− sin

(
z

2
√

Q

)))
. (C4)

The horizontal velocity perturbation, at z = 0, is parallel to the topography: the flow is directed along the valleys. Considering the x-averaged
stress on the interface (C1) defined by a single Fourier component, we have

〈Fp〉 = − 1

4k‖ Al
(ψζ ∗ + ψ∗ζ )

〈Fp − FpM 〉 = − (k‖ + 1)

4k‖ Al
(ψζ ∗ + ψ∗ζ ) . (C5)

We can check again that the pressure stress on the fluid is exactly balanced by the Coriolis contribution 〈FC 〉. Since the flow perturbation next
to the solid boundary is perpendicular to the wave vector (i, ky, 0), the tangential pressure stress is directed along the wave vector. Finally, the
no-penetration condition (9) gives

ψ̂ = iζ̂

Al

(
1 − ik‖(k‖ + 1)

2Rm

√
Q

) . (C6)

We note that ψ̂ is independent of the sign of ky.
We are now in the position to calculate the x-averaged traction exerted by the fluid pressure force on the topography defined by eq. (62).

From the expression (C6) of the magnetic potential in the solid region, we derive :

〈Fp − FpM 〉 = − (k‖ + 1)

2k‖

(
ψ̂ ζ̂ ∗ + ψ̂∗ζ̂

)
Al

(
1 + cos(2ky y)

)

= 2(k‖ + 1)2 Rm
√

Q

Al2((k‖(k‖ + 1))2 + 4R2
m Q)

(
1 + cos(2ky y)

) |ζ̂ |2. (C7)
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