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Abstract

Focusing waves back to their original source position is possible both experimentally

and numerically thanks to time reversal mirrors (TRM). For a TRM placed in the source

far-field, the focusing spot of the reversed wavefield is subject to the diffraction limit

and can’t be smaller than half the minimum wavelength, even for a very small source.

Yet, numerous time reversal experiments in resonating media have shown subwave-

length focusing. In this work, we show that it is possible to model these subwavelength

focusing observations with simple physics, only the 2-D standard acoustic wave equa-

tion, and with specific fine scale heterogeneity. Our work is based on the spectral

element method to solve the wave equation and to model time reversal experiments.

Such a method makes it possible to propagate very long time series in complex and

strongly discontinuous media with high accuracy. The acoustic wave equations are

solved at the fine scale in media with one or more split rings of size much smaller

than the wavelength. Such split rings produce a Helmholtz resonance effect as well

as propagation band-gaps. We show that, in such media, even with a single split ring

resonator, subwavelength focusing down to 1/13th of the minimum wavelength can be

observed.
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1. Introduction

Waves created by a localized source diverge from their origin and time reversal

methods have the ability to focus these waves back to their original source location us-

ing a time reversal mirror (TRM) regardless how complex the media are, provided that

there is no attenuation. It is based on the theory of time reversal invariance and spatial

reciprocity of the wave equations [1], provided that the attenuation can be neglected. It

has been widely studied in the acoustic [2, 3, 4, 5], ultrasound acoustic [6, 7, 8], elec-

tromagnetic [9, 10] and elastic wave domains [11, 12]. In seismology, it has been used

in seismic interferometry, earthquake source localization and reconstruction [13, 14],

or in tomographic imaging [15].

The diffraction limit is a well known wave phenomenon which can be observed in

many circumstances such as refocusing of light by optical lens [16, 17]. It states that

any focusing and imaging resolution of acoustic, elastic or electromagnetic waves, has

a resolution limit of λ/2, where λ is the wavelength. Indeed, wavefield spatial vari-

ations smaller than λ/2, such as evanescent waves in the near-field of a point source

(see [1] page 72 for a precise definition of the source near-field), decrease very quickly

from its origin and become negligible just a few wavelengths away. It can be shown

that, for a TRM placed in the far-field of a source (that is, a few wavelengths away),

regardless how spatially small the source is, the focusing spot at the source original

location can never be smaller than roughly half of the wavefield wavelength [18]: this

is the so-called diffraction limit. Nevertheless, one of the most astonishing observa-

tion about time reversal is the subwavelength focusing which, in some specific media,

beats the diffraction limit [19]. Recent works, such as “superlens” designed by meta-

material with negative index of refraction to enhance the evenscant waves in the near

field [20, 21, 22, 23], or “hypenlens” made of anisotropic metamaterial with hyperbolic

dispersion relations to transfer the evanescent waves into propagating waves [24, 25],

show subwavelength imaging capacity.

In homogeneous media, the spatial resolution of the time reversal focusing spot is

limited not only by the diffraction limit, but also the aperture of the TRM. However,

when the medium between the source and the TRM is heterogeneous and strongly scat-
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tering, the focusing resolution will be enhanced significantly [26, 27], but not beyond

the diffraction limit. Nevertheless, Mathias Fink and his group achieved the subwave-

length focal spot by using an “acoustic sink” in the time reversal refocusing process,

although an active time-reversed source must be used to recover the evanescent waves

[28]. A more meaningful experiment designed by [29] showed focal spots far beyond

the diffraction limit (λ/13) in the electromagnetic domain with TRM placed in the far

field, and a random distribution of scatterers placed in the near field of the focusing

point. Following this work, it has been shown that strongly coupled subwavelength

Helmholtz resonators, for example, an array of soda cans, can be very efficient to focus

waves to the subwavelength scale from the far field [30, 31]. The Helmholtz resonator

has been reported to have negative effective bulk modulus, and can be used for the

design of negative acoustic index metamaterials [32, 33]. These experiments promise

a wide range of applications in various fields such as telecommunications [34], un-

derwater communications [35, 36], optical imaging [37], sensing at higher frequencies

[38, 39].

The numerous observations of time reversal subwavelength focusing mentioned

above are intriguing, especially for the soda cans experiment. Recent results show the

same sharp focusing spot but with soda cans arranged in a different way and without

using time-reversal [40]. However, the authors of this later recent work conclude that

no sub-diffraction-limited focusing is observed if the diffraction limit is defined with

respect to the wavelength of the guided mode in the metamaterial medium rather than

the wavelength of the bulk wave in air. A complete understanding of the processes

involved is not trivial and is bounded by observation and experimental limitations such

as the one linked to the dissipation loss of the media, which reduce the resonance

quality factor Q and finally influence the focus resolution and the position accuracy of

the focus spot [41], or linked to the experimental difficulties to tune media parameters

and to obtain fine observations.

The objective of this work is to show that it is possible to model and reproduce

these observations with only the standard acoustic wave equation in 2-D but associated

with a specific fine scale description of a heterogeneous medium producing Helmholtz

resonance. To do so, we rely on the Spectral Element Method (SEM) to solve the
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acoustic equation in the time domain [42, 43, 44, 45]. The spectral element method

is a powerful tool which has the flexibility and accuracy to handle strongly discontin-

uous with complex unstructured meshes, meanwhile offering a spectral convergence

with the polynomial degree, leading to a very low dispersion, and still very efficient

thanks to its diagonal mass matrix, its explicit time scheme and parallel implementa-

tion. Numerical modeling makes it possible to flexibility control all relevant parameters

of the experiment and measure all physical quantities such as pressure or particle dis-

placement anywhere in the domain, opening the door to a better understanding of this

phenomenon.

The article is organized as follows: in section 2 the basic theory of time-reversal

acoustics and its SEM implementation are described. In Section 3, we observe the

focusing phenomenon submitted to the diffraction limit in two simple homogeneous

media. Then, we introduce heterogeneities with split ring shape of subwavelength size.

We show that, even if only simple physics is used at the subwavelength scale, once

these fine scale structures have been introduced, Helmholtz resonance and frequency

band-gaps can be easily observed. From the numerical method perspective, such a

modeling is only possible thanks to the very low dispersion and meshing flexibility of-

fered by SEM. Then, in such media, focusing spots with a resolution below the diffrac-

tion limit are observed. Finally, in Section 4, we offer some physical interpretations of

our observations.

2. Acoustic time reversal equations and numerical implementation

In the present section, we briefly recall the acoustic wave and the time reversal

equations. Then an overview of the numerical scheme of the Spectral Element Method

(SEM) and a description of the time reversal implementation are given. The description

and the experiments are done in a 2-D framework but would remain valid in 3-D.
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2.1. The acoustic equations

For an acoustic domain Ω, for all positions x = (x, z) and any time t, the fluid

velocity potential q(x, t) is solution of :

1

κ
q̈ −∇·u̇ = f ,

u̇ =
1

ρ
∇q ,

(1)

where κ(x) is the acoustic bulk modulus, ρ(x) is the (mass) density, u(x, t) is the

displacement vector, u̇(x, t) is the velocity vector and f(x, t) is a scalar external source

term. Since Ω is unbounded (to avoid any reflections at the boundary), a radiation

boundary condition is imposed to the infinity (Sommerfield condition). Note that the

acoustic pressure p is directly proportional to q̇.

2.2. Time reversal and the diffraction limit

According to the representation theorem [46, 1], for a given acoustic subdomain V

in Ω of boundary S (see Fig. 1a), for any x ∈ V, assuming zero initial condition, we

have:

q(x, t) =

∫ ∞
−∞

dτ

∫
V

f(x′, τ)G(x, t− τ ;x′) dΩ′

+

∫ ∞
−∞

dτ

∮
S

1

ρ

[
∇′q(x′, τ)G(x, t− τ ;x′)− q(x′, τ)∇′G(x, t− τ ;x′)

]
· n dS′

(2)

where G(x, t;x′) is the Green function, solution of Eq. (1) for f = δ(x − x′)δ(t), δ

the Dirac distribution, ∇′ the gradient operator with respect to x′ coordinates, n the

outward normal to S, dΩ′ and dS′ indicate that the integrals are computed for the x′

variable.

A time reversal experiment (numerical or not) is performed in two steps, the for-

ward and the backward steps:

• In the forward step, a source f (usually localized in time and space) is triggered

at time t0. For the sake of simplicity, we assume in this section that t0 = 0. The

velocity potential qd can be then obtained for any location x and time t, using
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the first part of the representation theorem (Eq. (2)):

qd(x, t) =

∫ ∞
−∞

dτ

∫
V

f(x′, τ)G(x, t− τ ;x′) dΩ′ . (3)

During this first stage, qd and ∇qd are recorded on the contour S until a time T

is reached such that all the energy is gone from V, that is, for any location x in

V, qd(x, T ) = 0 and ∇qd(x, T ) = 0.

• In the backward step, qd and ∇qd are time reversed and sent back in Ω from

S using the second part of the representation theorem to obtain the reversed

velocity potential:

qr(x, t) =

∫ ∞
−∞

dτ

∮
S

1

ρ

[
∇′qd(x′, T − τ)G(x, t− τ ;x′)− qd(x′, T − τ)∇′G(x, t− τ ;x′)

]
·n dS′

(4)

It can be shown that [19],

qr(x, t) = qd(x, T − t)− qd(x, t− T ) . (5)

Similarly, in terms of pressure (because p ∝ q̇):

pr(x, t) = −pd(x, T − t)− pd(x, t− T ) (6)

The back-propagated wavefield qr is therefore the sum of the direct wavefield reversed

in time and shifted by T , qd(x, T − t), and minus the direct wavefield shifted by T ,

qd(x, t− T ). This means that the back-propagated wavefield qr first shows a collapse

of the wavefield toward the source location until the collapse time T is reached and

then a diverging field equal to the direct wavefield qd but negative and delayed by T .

Because of the near-field, the direct field qd spot size at the origin time and position is

much smaller than the wavelength and even singular in the case of a point source f . For

qr, the sum of converging and diverging field at collapsing time leads to the diffraction

limit: the size of the focusing spot is no smaller than half the wavelength. Obtaining a

focusing spot smaller than half the wavelength is a so-called subwavelength focusing,

which is the object of the numerical experiments of this work.
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2.3. Spectral element numerical implementation

SEM [42, 43, 44, 45] is a finite element method that solves the weak form of Eq. (1)

in the time domain: for all admissible test function w, the following equation needs to

be satisfied:

m (w, q̈) + a(w, q) = (w, f) , (7)

where

m (w, q̈) =

∫
Ω

1

κ
wq̈ dΩ ,

a(w, q) =

∫
Ω

1

ρ
∇w ·∇q dΩ ,

(w, f) =

∫
Ω

fw dΩ .

Compared with classical low degree finite elements, SEM is based on a tensorised

high degree polynomial approximation per element, combined with precise numerical

quadrature linked to the so-called Gauss-Lobatto-Legendre (GLL) points. As a con-

sequence, SEM displays some interesting characteristics, important for the numerical

experiments presented in this article :

• it has a spectral convergence with the element polynomial degree leading to a

very low dispersion, allowing very long signal modeling with a high accuracy;

• the mass matrix is exactly diagonal, making it possible to use efficiently explicit

time scheme;

• it can handle any kind of material discontinuities (including solid-fluid).

However, the SEM has one critical drawback: the mesh need to be based on quadrilat-

eral (in 2-D) or hexahedron (in 3-D) elements. This is not a problem in 2-D, but in 3-D

the hexahedron meshes can be very difficult to generate for complex structures.

The only specificity of our experiments is the need to introduce the S contour in-

tegral of Eq. (4) in SEM to obtain the reversed wavefield qr. In order to compute this

contour integral, we rely on the simplest possible quadrature: S is represented by dis-

cret set of equally spaced points xs, s ∈ 1, .., N associated width a contour length (or
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surface in 3-D) dS. N is chosen to obtain 10 points per wavelength of the direct wave-

field. Once S is discretized, the reversed field qr given by Eq. (4) can be associated to

the solution of the Eq. (1) for a source

fr(x, t) =
∑

s=1,N

dS

ρ(xs)
[∇qd(xs, T − t)δ(x− xs) + qd(xs, T − t)∇δ(x− xs)]·n .

(8)

Such a source presents no difficulty for SEM and the source term (w, f) in Eq. (7) for

f = fr is introduced the same way it is done for any classical point source (the only

difference with classical SEM usage is that there are 2 sources at N locations at the

same time).

In practice, to perform a time reversal experiment, SEM is used a first time to

compute the direct wavefield and to record qd and ∇qd at the xs point set. Using

SEM a second time, these records are then time reversed and sent back in Ω as sources

according to Eq. (9) to obtain qr.

Note that another elegant and efficient solution to implement TRM, based on the

direct discrete differentiation of the forward wavefield, has been presented by [47].

3. Numerical Experiments

In this section, we first validate the numerical time reversal method elaborated

in the previous section in simple media. Then, after presenting a direct modeling of

Helmholtz resonators, we perform numerical time reversal experiments in resonating

media, displaying the subwavelength focusing phenomenon.

3.1. Focusing at the diffraction limit in homogeneous media

The method is tested in the numerical set up presented in Fig. 1b. It is a domain of

30× 30m2, filled with air (Vp =
√
κ/ρ = 343.6ms−1, ρ = 1.2 kg m−3). To prevent

reflections caused by the scattering of waves from the domain boundaries, perfectly

matched layers (PML) absorbing boundaries are implemented all around the domain

[48]. The source is placed in the center of the domain. Around the source, a 5× 5m2

square box area in which a different medium from the surrounding air can be used.

The TRM is arranged to form a circular cavity with a radius of 12.5m. Note that the
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circular geometry of the TRM is irrelevant to the focusing results shown below. The

same results would be obtained for an arbitrary closed shape TRM in the far field of

the source.

The source term has the following form:

f(x, t) = δ(x− x0)g(t) , (9)

where x0 is the source location and the time function g(t) is Ricker wavelet (i.e. second

derivative of a Gaussian function, see Fig. 2a) with a central frequency f0 = 110 Hz,

corresponding roughly to a maximum frequency fmax = 300 Hz (see Fig. 2b). Note

that computing accurately the wavefield in the vicinity of such a point source imposes

a denser mesh than usual near x0. Nevertheless, computing accurately the near-field is

only necessary to visualize it but is not necessary to compute accurately the far-field.

More details about this point can be found in Appendix A.

Two kinds of media are used in the embedded 5× 5m2 square box:

1. the air. In this case the Ω is fully homogeneous, with a dominant wavelength

λ ' 3m;

2. an anisotropy medium with bulk modulus κ = 141673Pa (the same to that of the

air), with two velocities, v1 = 343.6m s−1 for the horizontal direction and v2 =

56.6m s−1 for the vertical direction associated to two dominant wavelengths,

λ1 ' 3m and λ2 ' 0.5m respectively. Note that a standard fluid with a scalar

density ρ cannot be anisotropic, nevertheless, introducing a density matrix allows

for anisotropic fluid (See Appendix B for more details).

For the two models, we compute the acoustic pressure p for both forward and time-

reversed steps described in section 2.2. Snapshots of both pd and pr at different time

steps are shown in Fig. 3. Pressure field cross-sections through the source location

along the x − x′ and z − z′ directions at the forward origin time (t0) are shown in

Fig. 4a and at the time-reversal focus time (T − t0) are shown in Fig. 4c. It can be seen

that, in both cases, pd(x, t) and pr(x, T − t) have an opposite sign but the same spatial

shape, which is predicted by Eq. (6), except for the focusing time (around t = T − t0).

For the homogeneous case (case 1), from the snapshots and the cross-sections of

the direct wavefield at t = t0 shown in Figs. 3a and 4a, we can clearly see the very
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narrow isotropic source spot (almost singular) related to the source near-field. For the

time reversed wavefield, the isotropic focusing spot is also clearly visible at t = T − t0
(see the wavefield snapshots and cross-sections in Fig. 3b and 4c), but, as expected, its

width corresponds approximately to the diffraction limit λ/2.

For the anisotropic media (case 2), the waves travel faster in the x direction than in

the z direction, leading to an elliptic wavefront (see Fig. 3c, top panel). Moreover, the

wavefield is more complex because of the reflection and diffraction at the boundaries

between the anisotropy and the isotropy media (see Fig. 3c, middle and bottom panels).

Nevertheless, a clean elliptic focus spot is observed for the time reversal experiment

(see Fig. 3d, bottom panel). Similarly to the homogeneous case, the focusing spot

reaches the diffraction limit. Besides, due to anisotropy, the diffraction limits is more

complex than for the isotropic case: it has different width in each direction (∼ λ1/2

along x and ∼ λ2/2 along z), as shown in the cross-sections in Figs. 4b and 4d.

The anisotropic case shows one of the ambiguity on the focusing spot size that

often leads to confusion: if measured along the z axis, the focusing spot is of size

λ2/2, which is much smaller than the focusing spots obtained in the air medium. One

could draw the wrong conclusion that the diffraction limit is beaten, at least in one

direction. This is obviously not the case: when computed with the velocities of the

medium in the vicinity of the source location, the focusing spot size is exactly the one

predicted by the diffraction limit.

It should be mentioned that it is sometimes written that, from a purely numerical

point of view, computational time reversal modeling can exactly reproduce the direct

wavefield, leading to an “exact reversibility” [49] . This could be potentially misleading

as it seems to contradict the results we are showing here. Nevertheless, this “exact

reversibility” is obtained with admissible initial conditions as a source and not with a

more physical external source term f such as the one used in this work (see Eq. 9). We

believe that such admissible initial condition “sources” can only produce a propagating

wavefield and cannot model physical sources generating a near-field. Indeed, based on

initial conditions, the source far-field maximum frequency cannot be controlled for an

arbitrary small size source, and controlling independently both the maximum frequency

and the spatial extent of the source is necessary to model physical sources. As the λ/2
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diffraction limit is directly related to the source near-field, there is no contradiction.

Finally, these two simple experiments show the validity and precision of our mod-

eling approach.

3.2. Subwavelength focusing in media with Helmholtz resonator inclusions

Subwavelength focusing is mostly observed in some very specific media: resonat-

ing metamaterial media [31, 41, 50]. In this section, we first check that the Helmholtz

resonator behavior can be fully reproduced with our modeling scheme. Then, time

reversal experiments are performed in media that includes Helmholtz resonators (res-

onating media).

3.2.1. Helmholtz resonator modeling

A Helmholtz resonator produces an acoustic resonance by a process analogous to

the oscillation of a mass-spring oscillator. It must contain a neck connected to a cavity

filled with a larger volume of air. The larger volume of air acts as the spring, while the

neck act as the mass. According to the specific shape of Helmholtz resonator used in

this work (see below and Fig. 5a), and the formula given, for example, by [51], the

natural frequency is approximately:

fH '
Vp
2π

√
A

V L
, (10)

where A is the cross-sectional area of the neck, V is the volume of the cavity, L is the

length of the neck, Vp is the velocity of the air. For 2-D Eq. (10) becomes:

fH '
Vp
2π

√
d

π(r2l)
, (11)

where l is the length of the neck, r is the diameter of the ring, d is the width of the

neck.

To numerically model a Helmholtz resonator, we mesh a split ring made of alu-

minum, with a density of 2700 kg m−3, and velocity 5000 ms−1 (see Fig. 5a). The

mesh design of resonator complex and fine structure is done thanks to the mesh soft-

ware CUBIT. The ring has r = 8.5cm, d = 0.3cm, and l = 1.1cm, which, according

to Eq. (11) the resonance frequency is about 383Hz.This is consistent with the numer-

ical experiment: using a broadband source with a central frequency of 300Hz inside
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the ring, the pressure signal recorded outside the ring (Figs. 6a and 6c) shows a clear

low frequency resonance of about 390Hz. This frequency is much lower than the first

eigenfrequency of an air filled closed cavity of the same size (about 4040Hz) and

consistent with the one predicted by Eq. (11). Based on this, we conclude that the

Helmholtz resonator can be successfully modeled by SEM thanks to an appropriate

mesh and medium properties.

3.2.2. Time reversal experiments in resonating media

In this section, we consider two time reversal experiments: in the first one, a single

ring is used and in the second, a multiple ring net is used. Each of these two experi-

ments is performed twice: one with a source central frequency close to the Helmholtz

resonant frequency and one with a much lower source central frequency.

We first consider a single ring located in the middle of a 8× 8m2 model area. We

perform three experiments with each time a different source location (see source 1, 2

and 3 in Fig. 5a). Source 1 is inside the ring, source 2 is to the right side of the ring,

and source 3 above the exit of the ring. The distances between the three positions are

all in sub-wavelength range ( ∼ λ/13). A broadband source is used with a central

frequency of 300Hz, which is close to the natural frequency of the ring. All three

sources lead to a strong resonance and almost a monochromatic signal outside the ring

(Fig. 7a). However, when the recorded signals are time-reversed and send back to their

original positions, interestingly and unlike the single soda can experiments shown in

the Supplementary material of [30], we can here identify the three different focus spots

according to its position. From the cross-section we can clearly see the differences

(Fig. 8a): for source 1 and 3 both a narrow focusing spot with a width of the diameter

of the ring is observed (∼ λ/13) ; for source 2 the focus spot is not narrow but disturbed

by the ring. Even with noisy data, it would be simple to make the difference between

source 1 or 3 from source 2, which is sub-wavelength source localization.

We then perform the same experiment with a periodic ensemble of 7 × 7 rings

arranged on a square matrix as shown in Fig. 5b. Since all the rings have the same

natural frequency and are spatially very close to each other (the spacing between rings

is much smaller than λ), coupling between resonators can be observed leading to a
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complex signal at the TRM as shown in Figs. 6b and 6d. Interestingly, the observed

and predicted [52, 53] forbidden frequency band, or band gap, (400Hz − 600Hz) can

be observed in the signal spectra (Fig. 6d). The coupling between the 7 × 7 rings

leads to a much longer resonance signals than the single ring case. Therefore it takes

a very long time (T ) to let all the acoustic energy out of the TRM contour S, which

significantly increase the computing time. Fortunately, the resonance attenuates to a

relatively small amplitude after 1s (see Figs. 6b) and we choose to truncate signals to

T = 1s. This nevertheless leads to an imperfect time reversal experiment and explains

the spurious waves outside of the TRM contour in Fig. 7d. Compared to the single

ring case, the observed focusing spot is slightly different (see Figs. 7d and 8b). Nev-

ertheless, as it can be seen from the cross-sections (Fig. 8b), these differences do not

change the main conclusion: it is obvious that the acoustic pressure field focus back

to the ring where the source was triggered, even if a small amount of pressure can be

measured in the neighbor rings. Finally, two sources in two adjacent rings are used (see

Fig. 5b). As observed from the back-propagated field at focusing time cross-sections

(Fig. 8b), source 1 and 2 can be very clearly differentiated. This once again shows that

a subwavelength focusing has been achieved. This result is consistent with that of the

sound experiment shown by [30].

Finally, we show that, in order to obtain a subwavelength focusing in our time rever-

sal experiments, it is important that the source frequency band contains the Helmholtz

resonant frequency of the split ring. If we use a lower source central frequency f0 =

120Hz, which is two times smaller than the natural frequency of the ring, and perform

similar time reversal experiments to the one done above with one ring and multiple

rings (12 × 12), nearly no resonance can be observed in the far field. With such a low

frequency source, no subwavelength focusing can be observed for the one ring case

(Figs. 9a and 9c). For the multiple rings case, the observed focus spot size is about λ/4

(Fig. 9d) which is below the theoretical diffraction limit in the air. Even if the focusing

spot is not as small as the one observed for f0 = 300Hz, this could be considered as a

subwavelength focusing. Nevertheless, as it will be shown in the next section, this not

the case.
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4. Discussion and Conclusions

4.1. Non-periodic homogenization and effective medium

For a better understanding of the results obtained in Section 3.2, we use the non-

periodic homogenization [54, 55, 56, 57] to compute the effective medium “seen” by

the wavefield.

The non-periodic homogenization is an operator Hε0 that, for a given medium

(κ(x), ρ(x)) and a given wavefield propagating in that medium with a minimum wave-

length λmin , makes it possible to compute the effective medium

(κ∗(x),L∗(x)) = Hε0 (κ, ρ) , (12)

where L∗ is a density matrix that can carry anisotropy (see Appendix A). The effective

medium depends on the parameter ε0:

ε0 =
λ0
λmin

, (13)

where λ0 is a user defined scale: it is the limit between what the user desire to consider

as small scales and as large scales. In practice, λ0 = 0.5λmin (ε0 = 0.5) is often a

good choice for many media, but it can be a smaller value depending on the demanded

accuracy and the specific medium considered (as for most asymptotic methods, only

the convergence of the solution as a function of ε0 is warrantied). The objective of the

homogenization process is to remove the small scales and to keep the large scales in a

consistent way with the wave equation solution. Depending on ε0, the effective wave-

field computed in the effective medium (κ∗,L∗) is the same as the reference wavefield

(computed in the original medium) up to the desired accuracy with a convergence as ε20

[56]. The non-periodic homogenization process is similar to the classical two scale pe-

riodic homogenization applied to wave propagation problems [58], but is not bounded

to periodic medium, and specifically designed for deterministic medium with no natu-

ral scale separation. It has mainly two differences compared to the classical two scale

periodic homogenization: firstly, the resulting effective medium is not spatially con-

stant (it varies with x, but is smoother than the original medium); secondly, for a fixed

ε0, it depends on the maximum frequency of the source (through λmin ).
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In practice, the non-periodic homogenization is often used as a pre-processing tool

to simplify a complex medium before solving the wave equation (see [59] for exam-

ple). But here, it has another application: the non-periodic homogenization process

makes it possible to upscale the medium to the wavefield scale and reveals how the

medium is perceived by the wavefield for a particular λmin and therefore for a par-

ticular source frequency. This is very useful because this upscaling phenomenon is

a non-linear process that can lead to counter intuitive effects. Indeed, for the experi-

ments in Section 3.2, one could think that, as the ring(s) area is a compound medium of

the background air and a faster medium (aluminum), the effective velocity in this area

should be slightly faster than the air. The homogenization process shows a completely

different result. Applied to our rings for the 100Hz source (see Fig. 10), it can be seen

that the effective velocity in the rings area is two times slower than the surrounding air.

This effective low velocity in the ring area explains the observed focusing spot size:

while it is twice smaller than the theoretical diffraction limit in the air, it corresponds

exactly to the diffraction limit for the computed effective velocity of the ring area.

Therefore, in that case, the observations do not correspond to subwavelength focusing.

This result is consistent with asymptotic mathematical analysis preformed in periodic

settings [60] or with random heterogeneities [61]. It is also consistent with a result ob-

tained with random slow velocity inclusions with the fast multipole method [62]. This

later work is nevertheless less spectacular than ours with Helmholtz inclusions: indeed,

obtaining a slow velocity area and therefore a smaller focusing spot with slow velocity

inclusions is intuitively expected whereas with Helmholtz inclusions, which imply a

mixing of the background medium (the air) with faster inclusion (the aluminum), we

could intuitively expect a faster effective medium and therefore a larger focusing spot

where the opposite is observed.

Unfortunately, the same non-periodic homogenization process cannot be applied

to the 300Hz source. When reaching the resonance frequency, the medium disper-

sion relation becomes singular [53] and the wavefield no longer exhibits any minimum

wavelength. This breaks the main hypothesis of homogenization and makes any in-

terpretation of the obtained effective medium beyond that frequency difficult (the ef-

fective L∗ becomes locally negative). This confirms that Helmholtz resonance is the
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critical point to obtain a subwavelength focusing. Nevertheless, it raises the question

of subwavelength focusing’s definition: what is λ/2 when the effective wavelength is

locally undefined? It indicates that it is probably possible to reconcile subwavelength

observations with the diffraction limit, but this remains to be precisely established. The

importance of a network of Helmholtz resonators has been established mathematically

by [63]. Our numerical results nevertheless go a bit further as it appears to be possible

to observe sub-wavelength focusing with a single Helmholtz resonator.

4.2. Conclusions

In this work, we have proposed to apply the Spectral element method to model

the time-reversal focusing of 2-D acoustic waves. We have first shown that with a

simple split ring shape heterogeneity, it is possible to model the Helmholtz resonance

phenomena, as well as frequency band gaps by combining several split rings. Perform-

ing numerical time reversal experiments in media containing one or more Helmholtz

resonators, we have shown it is possible to observe the so-called subwavelength fo-

cusing, provided that the source central frequency is close to the resonant frequency.

We have observed a λ/13 focusing spot size in the single resonant split ring and mul-

tiple resonant split rings experiments, where λ/13 corresponds to the dimension of

one Helmholtz resonator. Thanks to the non-periodic homogenization tool, we have

shown that, if the sources central frequency is much lower than the Helmholtz resonant

frequency, the observed ∼ λ/4 focusing spot doesn’t correspond to subwavelength fo-

cusing but to the diffraction limit for the local minimum wavelength computed in the

effective medium of the compound medium of the rings and the air.

From the numerical point of view, this work shows that numerical schemes such

as SEM are stable and precise enough to reproduce Helmholtz resonance, band gaps

and finally subwavelength focusing, which, to our best knowledge, has not been done

before. From the physical world point of view, our work shows that, in order to observe

subwavelength focusing, only very simple physics (the standard acoustic wave equa-

tion) and small scale scattering heterogeneities with a specific shape is required. More-

over, if it is often argued both experimentally and theoretically [30, 63] that a combi-

nation of several sub-wavelength resonators is necessary to observed a sub-wavelength
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focusing phenomenon, our numerical modeling experiments suggest that it is possible

to observe such a phenomenon with a single resonator.

As to the existence of sub-wavelength focusing, a definitive answer is probably out

of reach at this stage and is subject to interpretation. Because Helmholtz resonators do

not show a macroscopic effective minimum wavelength for frequencies close to the res-

onance frequency, in such cases the definition of near-field evanescent waves smaller

than half wavelength loses its meaning. Therefore, on one hand, sub-wavelength focus-

ing probably does not exist. Nevertheless, on the other hand, in practice, the focusing

spot reaches the size of the Helmholtz resonator, which is much smaller than the wave-

length of the surrounding media and is impossible to achieve with classical media. In

that perspective, Helmholtz resonators display a phenomenon as useful and intriguing

as sub-wavelength focusing.

This work open the door to a better and simpler understanding of sub-wavelength

focusing phenomenon. Indeed, if experimental work can be difficult to set up, numer-

ical modeling are very simple and makes it possible to access any physical quantities

anywhere, anytime.
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Appendix A. About the point source and the spectral element method

The fact that the Dirac function δ(x − x0) in the source term (9) cannot be ac-

curately expended on the polynomial basis embedded in the spectral element method

often leads to the conclusion that the source is somehow spatially low-pass filtered by

the polynomial basis. This is not wrong, but we prefer to present this aspect in a dif-

ferent way. In order to be accurate, for SEM as for any finite element method, it is

necessary that:

1. integrals in each term of Eq. (7) must be precisely computed;

2. the exact solution to the considered equations is correctly approximated by its

projection on the spectral element basis.

About the first point, for a point source, the source term can always be exactly inte-

grated, whatever the chosen spectral element basis is:

(w, f) =

∫
Ω

w(x)δ(x− x0)g(t) dΩ = w(x0)g(t) , (A.1)

and therefore no difficulty can be expected from this point. For the second point, the

spectral element basis setup (basically estimating the size and degree of the elements)

is usually based on an estimate of the minimum wavelength of the far-field calculated

from the maximum frequency of the source and on the minimum wavelength of the

medium. Nevertheless, the near-field of a point source is singular and cannot be cor-

rectly expended on any classical polynomial basis, and we expect an error near the

source at least. Interestingly, because the near-field carries no energy and decays very

rapidly with the distance to the source [1], it has no consequence on the far-field and

only the wavefield in the element containing the source is affected. If accurately com-

puting the near-field is necessary, as it is the case here, one can simply increase the

density of element near the source, keeping in mind that the element containing the

source will never accurately represent the near-field (but only this one). For example,

to obtain Fig. 4a, the element size close to the source are about λ/40 and therefore, the

picture is accurate everywhere but exactly at the source, which has (almost) no visual

effect.
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Appendix B. Anisotopy in fluid

To allow anisotropy in acoustic media, instead of the classical acoustic constitutive

relation

u̇ =
1

ρ
∇q , (B.1)

we can use the following more general relation

u̇ = L ·∇q , (B.2)

where L is the density matrix. Such a density matrix naturally appears when upscaling

media with fine structures compared to the wavelength [45]. If for classical isotropic

acoustic media Lij(x) = δij/ρ(x), (i, j = 1, 2), where δij the Kornecker symbol, for

more general media, L may be less simple and allows anisotropy.
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multiple rings (b) cases; (c) and (d), are the corresponding amplitude spectra together with source wavelet
amplitude spectra for comparison .
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Figure 7: Pressure field snapshots, computed for a source central frequency f0 = 300Hz, at different time
steps for the forward modeling step in the one ring case (a), for the corresponding backward step (b), for
the forward step in the multiple rings case (c) and for the corresponding backward step (d). t = t0 is the
source origin time for the forward modeling sequences (a) and (c). t = T − t0 corresponds to the focusing
time for the backward modeling sequences (b) and (d). For the one-ring case, t0 = 0.01s, t1 = 0.015s,
t2 = 0.019s and T = 0.1s. For the multiple rings case, t0 = 0.01s, t1 = 0.02s, t2 = 0.03s and
T = 0.5s. Note that panels don’t have all the same spatial scale.
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Figure 8: Pressure field cross-sections along the horizontal (x − x′) axis for backward step at the focusing
time t = T − t0 computed in the one ring medium (a). Three different source locations (see Fig. 5a):
source 1 is in the ring and source 2 is at the rightside of the ring, source 3 is above the exit of the ring, the
distance between each two sources is about λ/13, where λ is the dominant wavelength in the background
air. In (b) are presented the same cross-sections but computed in the multiple rings medium. Two source
locations in two different rings are used (see Fig. 5b). The focusing spot obtained in the background air
(“without ring” line) is also displayed for comparison.
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Figure 9: Pressure field snapshots at the focusing time for a source central frequency f0 = 100Hz in the
single ring medium (a) and in the multiple rings medium (b). The two bottom panels (c) and (d) show cross-
section in the above pressure field, along vertical and horizontal axis. The focusing spot obtained in the
background air (“without ring” line) is also displayed for comparison.
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Figure 10: Cross-section along the x axis of the two effective velocities V ∗h =
√
κ∗L∗11 and V ∗v =√

κ∗L∗22, computed with the non-periodic homogenization, through the mutiple rings medium a minimum
wavelength of 0.3 m. The observed slight effective anisotropy is a common effect of upscaling.
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