
HAL Id: hal-02546094
https://hal.science/hal-02546094

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FrameKit and the prototyping of CASE environments
Fabrice Kordon, Jean-Luc Mounier

To cite this version:
Fabrice Kordon, Jean-Luc Mounier. FrameKit and the prototyping of CASE environments. [Research
Report] lip6.1997.001, LIP6. 1997. �hal-02546094�

https://hal.science/hal-02546094
https://hal.archives-ouvertes.fr

FrameKit and the prototyping of CASE environments

Fabrice Kordon & Jean-Luc Mounier,
Laboratoire d’Informatique de Paris 6

Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France

E-mail:

Fabrice.Kordon@masi.ibp.fr, Jean-Luc.Mounier@masi.ibp.fr

1. Introduction

Software engineering methodologies rely on various
and complex graphical representations as SA-RT [2], OMT
[16] Class-Relation [6] etc. They are more useful when as-
sociated to CASE (Computer Aided Software Engineering)
tools designed to take care of constraints that have to be res-
pected. Such tools help engineers and facilitate the promo-
tion of such methods.

However, implementation of such CASE tools is a com-
plex task since they require various functions such as a gra-
phical user interface, database facilities and, of course, the
operations related to the methodology they implement
(compilation, animation/simulation of specifications, code
generation from specification, etc.).

CASE tools may share a common architecture and rely
on a software platform [10] enabling the sharing of softwa-
re components (i.e. a model compiler may produce infor-
mation for both simulation and code generation) and easy
tool evolution by addition of new functions.

The impact of the ECMA-NIST reference model is im-
portant in the Software engineering industry. CASE tools
have now given way to CASE environments which may be
adapted to a specific adaptation of a design methodology.
Thus, tools architecture have changed dramatically to sup-
port the new possibilities derived from these techniques.
The ECMA-NIST reference model has been derived to
other application domains : for example, CORBA [5] is de-
dicated to the integration of various application at a the
source level.

New Operating Systems, as Chorus, MACH, MacOS or
Windows-95/NT may be considered as open shells, in-
creasingly adapted to software plug-in. The evolution of
Operating Systems goes with sophisticated implementation
environments (and tools) composed of API’s (Application
Programming Interfaces). Some development environ-
ments now enable cross development over a set of target
platforms. As an example, Metrowerks CodeWarrior on
macintosh [15] allows cross development over a set of

tar-
get architectures

 (hardware + OS) : Mac/MacOS, Mac/
OpenStep and PC/Win32/x86, Java, Be/BeOS, embedded
processor PPC821/860 and MagicCap.

In this paper, we present FrameKit, a software platform
dedicated to the prototyping and quick implementation of

CASE environments. FrameKit is valuable to quickly im-
plement a CASE environment, either for evaluation purpo-
ses or as a final product, especially if graphical
representations are involved. Our aim is to provide a gene-
ric CASE environment that can be filled with specific infor-
mation enabling to customize it in discrete ways. FrameKit
emphazizes the following aspects :

• A generic graphical user interface is able to be quickly
adapted to a new graphical representation,

• A system platform manages users and proposes services
offered by tools to end-users;

• The dynamic integration of software components is
achieved without recompilation of the environment by
means of configuration files;

• Enhanced API’s for discrete languages is provided for
Ada, C and Unix shell.
Section 2 shows how we parameterized a CASE envi-

ronment and section 3 presents our interpretation of the five
integration axis introduced in [19]. Then, section 4 presents
main characteristics of FrameKit and section 5 focuses on
the construction procedure of a dedicated CASE environ-
ment. We present an example and discuss advantages of
this prototyping approach.

2. Parameterization of a software environ-
ment

A CASE environment helps system designers in that it
offers them a set of services related to a given design
methodology, based on a set of graphical or textual repre-
sentations. Other useful services performing administration
tasks (creation of a new user, installation, uninstallation)
are also important to enable its operation for large projects.

Let us define the potential parameters of a generic CASE
environment. It has to deal with :

i.

manipulation of representations that are major enti-
ties for design methodologies and quite difficult to
handle,

ii.

tools and the services they provide (required data,
outputs...),

iii.

users and their characteristics (access rights...),

iv.

storage of information (for representations and asso-

Ce document a été créé à l’aide de FrameMaker 4.0.4

Figure 2 :

Hierarchical formalism.

Upper page

Inner page

Hierarchical model graph of the full description

2.a 2.b

representation of the box

representation of
the upper page

representationf of
the inner page

ciated results).
Points (iii) and (iv) are not parameters of a given CASE

environment and will be discussed in next section. On the
contrary, point (i) and (ii) are basic parameters that diffe-
rentiate one CASE environment from another.

2.1. Formalisms and models

To deal with representation (point i), we distinguish two
notions, formalism and model :

• A

formalism

 describes a possible representation of a
knowledge domain;

• A

model

 is an instance of formalism (Figure 1). It is one
representation expressed using the related formalisms.
In FrameKit, description of formalisms is object-orien-

ted. This allows an easy management and updating of for-
malisms. Each class in the formalism is either a node or an
edge (interconnecting nodes) and contains a set of labels
(string values, digits...) that characterizes instances of the
object. Additional information (how it looks, is it a link to
a «sub-level» when the formalism is hierarchic, etc.) must
also be provided to fully describe the formalism.

Figure 1 shows the relation between a formalism (on the
left) and a model (on the right). A simple formalism dedi-
cated to the description of a local network is defined on the
left. It has three classes : two nodes («computer» and
«hub») and one edge («link»). On the right a model desi-
gned according these rules is presented. Any object is iden-
tified by means of a set of labels (attributes in the sense of

OO technology).
Thus, Models are formalism instances. A «tool palette»

can be easily deduced from the formalism description. Its
goal is to present the set of items that can be instanciated in
a model.

Formalisms may be composed when they are hierarchi-
cal. In that case, some nodes are associated to another for-
malism. These nodes (called «boxes») can be «opened» to
display its content in a new page. Models are thus com-
posed of pages; each page is a part of the model.

Figure 2 shows how it works. In Figure 2.a, an node in a
page is associated to another page. The description of the
model structure (Figure 2.b) is an oriented graph in which,
nodes represent pages and, edges links between a box and a
page. So, hierarchical graphical descriptions are described
using a set of (flat) formalisms.

2.2. Services

To enable a flexible access to tools’ functions (point ii),
we introduce the notion of

service

. A service is a tool func-
tion that can be applied on a set of data. It produces results
related to the associated model. A service is associated to a
set of formalism. So, a user working on a model associated
to one formalism in this set, potentially reach it.

2.3. Producing a dedicated CASE environment

Producing a dedicated CASE environment using Frame-
Kit consists in the definition of the involved formalisms and

Figure 1 :

Relation between a formalism and a model.

Formalism Model
shape name information

type=node
name=
Computer

type=node
name=Hub

type=edge
name=Cable

Host name,
type,
IP adress,

Type
Throughput

Throughput

M1
PC,
0.0.0.1

M2
Mac,
0.0.0.2

M3
Sun,
0.0.0.3

dlink
100 Mb/s

10 Mb/s

100 Mb/s

10 Mb/s

Figure 3 :

From the Generic CASE environment to the cus-
tomized one.

Dedicated
user interface

Generic CASE

Set of tools +
possible

adaptation layer

set of
formalisms

Dedicated CASE

environment
environment

the implementation of associated tools. When tools are im-
ported, they may need an adaptation layer (discussed in sec-
tion 4.2.).

When formalisms and tools are ready. It is necessary to
declare formalisms and define access to tools’ functions by
means of services, according to the methodology that is
being implemented.

Figure 3 illustrates the production of a dedicated CASE
environment from the generic one, a set of formalisms and
a set of tools working on these formalisms.

3. The FrameKit environment

FrameKit is a generic CASE environment that only of-
fers basic services to manage users, data and graphical for-
malism. In order to achieve a good design, [19] considers
five integration axis : presentation, data, process, control
and platform.

3.1. The presentation axis

The presentation axis deals with users’ interaction. To
ease both learning and use of an environment, it is valuable
that any tool respects a common look and feel.

To meet presentation axis needs, FrameKit provides a
generic user interface : Macao [14]. This user interface ful-
fills two major needs :

• graphical model editing, according to the rules of the
corresponding formalism,

• service display and invocation.
Macao is a polymorphic editor able to manipulate mo-

dels after the corresponding formalism description. A for-
malism is described by a file that contains the following
information :

• declaration of classes (nodes and edges),
• declaration of labels associated to nodes and edges,
• declaration of connection rules between edges and

nodes.
The construction of a new formalism does not imply any

recompilation of Macao. All the required information is de-
fined in an external file that expresses possibilities of the
formalism.

Macao has two modes :

standalone

 and

connected

. A
login procedure (with user identification) to FrameKit mo-
ves Macao into the connected mode. It then becomes both
a graph editor and the «front end» of the platform. It dis-
plays menus downloaded by the platform and allows any
user to select a service.

Macao is able to send a model description to FrameKit
on request. Each description is divided into messages that
carry out syntactical information only (the model descrip-
tion), aesthetic information (appearance of nodes and ed-
ges) remains at the user interface level because it is useless
for tools.

Macao also achieves interactivity by means of simple
widget-like mechanisms that build different types of dialog
boxes. These dialog boxes may be activated either by the
platform itself or by tools.

3.2. The data axis

The data axis deals with both data storage in a repository
and data representation. The definition of representation
standards, as well as unified access mechanisms are key
points to ease data exchange between tools.

The basic representation in FrameKit relies on a messa-
ge based approach. Each element in the model (nodes, ed-
ges, their relations and their labels) are stored using
elementary messages. This description technique is generic
because it works regardless any knowledge of the corres-
ponding formalism.

Each node or edge instance has an internal and unique
identifier. The node or edge class is referenced using a
string that must be recognized by tools, the platform only
carries out the information without analyzing it. So, the un-
derstanding of a model relies on conventions between the
person who designs a model using a formalism and the tool
that works on this model. Such a storage procedure is basic
but available for any type of graphical model.

The same message based techniques is used when Ma-
cao transfers a model to FrameKit or for communication
between platform processes. Messages are made using AS-
CII strings; this solves most portability problems as well as
exploitation of data by programs running on discrete target
architectures without having to use XDR mechanisms. In
fact, all FrameKit data are stored in ASCII.

To achieve unified access mechanism in FrameKit, we
type data using tool-defined keys and behaviors. Tool-defi-
ned keys are keywords used to find out an information in
the FrameKit repository. The platform uses this informa-
tion but does not have any knowledge of the corresponding
semantics. Three types of data behavior correspond to three
persistency approaches :

•

model-associated

 data concern all the information asso-
ciated to a model. It is useful to properly handle version
management : when a model changes, associated results
become obsolete and should be deleted and recomputed
if needed. Such data are stored with the model descrip-
tion in a cell stamped by its last modification date. The

cell is destroyed when the model is updated;
•

user-associated

 data concern all the information related
to a user (preferences, information potentially shared by
models...). This information remains reachable until the
user is deleted;

•

global data

 concern all the information related to a
CASE environment. It is stored in cells that may be
associated to a tool, a formalism or to the platform itself
(administration data only). Data last as long as the
entity (tool, formalism or platform).
Whatever its behavior is, information may also be asso-

ciated to a given target architecture (a program library for
example). It is then tagged as well and the corresponding
link is dynamically computed considering the characteris-
tics of the host running the application.

3.3. The process axis

The process axis deals with the scheduling of operations
according to the design methodology implemented in the
CASE environment. Mechanisms to enable and disable ser-
vices according :

i.

the user’s function in the project,

ii.

the current state of the work.
FrameKit proposes two mechanisms to perform process

integration :
•

Access rights

 to services are defined for both users and
groups. So, it is possible to meet point (i), hiding servi-
ces to people for which access is inappropriate (i.e. do
not have the proper role in a project according to the
ECMA definition). Access rights are computed when a
user get connected to the platform while conditions are
evaluated each time a service is launched. When a user
has no right on a service, it is not displayed to him;

•

Service preconditions

 may be associated to services.
So, they may be ordered according either to specific
attributes (like «the service was never launched», «the
services has been run OK» or «the service has been run
with problems») or to session variables that may con-
tain any string. When a new model is received by the
platform, all services attributes are set to «service was
never launched» and variables to an empty string. Both
service attributes and variables are model-associated
data; they are reset when the model is updated. When a
service condition is unverified, it is displayed but dim-
med.

3.4. The control axis

The control axis deals with the fine control of a tool : the
platform must be able to run it properly. Standards must be
defined in order to have a generic way to drive discrete
components having discrete behavior and characteristics.

Like formalisms in Macao, declaration of a new service

requires no recompilation of the platform. All the required
information is provided in configuration files that contain :

• the external name of the service is used as an identifier
for users. There is one external name per language sup-
ported in FrameKit;

• the internal name of the service is a unique name that
identifies it. This name is necessary to obtain service
attributes in service preconditions;

• the executable file name defines the tool that will be
invoked when the menu item is selected;

• the executable file parameters are associated optional
check marks in the service menu. If a check mark is
enabled, the corresponding flag is set, otherwise not;

• extra information may also be provided about the tool
execution like «can the service be softly interrupted».

3.5. The platform axis

The platform axis deals with the interaction of platform
and tools with operating systems mechanisms (i.e. commu-
nication mechanisms). Encapsulation of basic mechanisms
relying on target architecture characteristics is thus a key is-
sue for both the environment portability and the integration
of software components implemented out of FrameKit.

To achieve this point, we have parameterized some ma-
jor concepts in the design of FrameKit :

• A high level communication model has been defined :
several implementation are proposed (some may have
restrictions). Then, any software component able to
support one of these implementations should be easily
integrated in FrameKit;

• A high level transmission of information by means of
messages is built on top of the communication model,
like the Macao widget-like mechanisms to manage inte-
raction with users (mentioned in Section 3.1.);

• A repository (already mentioned in Section 3.2.) offers
storage services. This repository hides File system rela-
ted mechanisms (file naming system...).

4. Design and implementation of an applica-
tion in FrameKit

Developing an application to be integrated in FrameKit
is easy. Process integration axis is managed by the platform
itself. So, Application should mainly care of the four other
integration axis (presentation, data, control and platform).

4.1. Tool architecture and FrameKit APIs

To hide target architecture related mechanisms (and
meet platform integration), all presentation, data, control
axis are implemented and available for applications by
means of Application Program Interfaces (API).

Three API’s encapsulate required concepts and are
available for discrete programming languages (currently,

Figure 4 :

Software architecture of an executable program
designed for FrameKit.

Access to user
interface Services

Tool
algorithms

C
om

m
u

nication and

system
 environm

ent

A
cc

es
s

to

re
p

os
it

or
y

Ada, C and Unix shell) :
• the first one encapsulates all accesses to the repository

system. It deals with the dynamic construction of file
links as well as the exploitation of stored models. A
high level structure and associated services allows the
manipulation of model pages (for hierarchic forma-
lisms) as well as nodes and edges without having to
care about the message based storage mechanisms. It is
also useful to create results using the same functions.
Results are stored in the repository like models (see
Section 3.2.) and may thus be easily sent back to the
user interface;

• the second one manages both communication mecha-
nisms and system environment services (process crea-
tion, transmission/reception of flags). It deals with
particularly delicate aspects of the execution environ-
ment. Tools that do not bypass this API should be porta-
ble to any of the supported target architectures;

• the last one deals with presentation aspects. It offers a
unified (and simplified) look and feel for applications. It
implements dialog boxes and all result display mecha-
nisms offered by the Macao user interface.
The «main» program of an application implemented in

the FrameKit environment is a part of the FrameKit libra-
ries. Its goal is to properly initialize all required resources
to operate the three API’s and call the «tool main program».

The architecture presented in Figure 4 is strongly
recommended : tool’s algorithms should be expressed in a

(set of) program unit(s) using functions of the provided
API. The software architecture presented in Figure 4 is also
the one of any platform components.

4.2. Integration of an application in FrameKit

The main classical integration procedures defined in [11,
9] are available in FrameKit :

•

strong integration

 : if source code is available, it is pos-
sible to adapt it to fit the API described in the previous
section;

•

encapsulation

 : if only the executable file (reasonably
disconnected from a graphical user interface) is availa-
ble, it is possible to drive the tool by means of a specifi-
cally implemented process (Figure 5.a). If tool libraries
are provided, this technique is still valid; in this case,
the tool is composed of one executable file only
(Figure 5.b).
Another technique, called rehosting, consists in the emu-

lation of the imported software original execution environ-
ment [9]. This technique is yet available in FrameKit
because no rehosting library has been implemented yet.
However, such an implementation is technically possible
(but highly time consuming and thus not planned).

4.3. FrameKit implementation

FrameKit is composed of four components (Figure 6) : a

connection demon

 waits for connections from the

user in-
terface

 (Macao). When a connection is established, it forks.
The father process waits for another connection. The son
becomes a

connection manager

 and manages the current
connection.

A session is associated to each model opened during a
session. Each session is handled by a

session manager

 pro-
cess. All FrameKit processes and tools communicates
through a

software communication bus

 [18].
Connection between services and tools, as well as the

user interface customization are performed by means of
configuration files. Thus, no recompilation of any Frame-
Kit component is needed when a new service, or formalism
is integrated.

This major capability allows one to quickly design a gra-
phical representation (it automatically get the correspon-
ding user interface) and related tools for evaluation
purpose. The result can be successively improved and ex-

Figure 5 :

Encapsulation techniques in FrameKit.

The FrameKit environment

process that drives the tool

tool
(only an executable file is provided)

driver tool
driver part (specific implementation)

tool libraries

5.a 5.b

Figure 6 :

The FrameKit software architecture.

co
n

n
ec

ti
o

n

d
em

o
n

S
es

si
o

n

se
rv

er

Software communication
bus

u
se

r
in

te
rf

ac
e

to
o

l
n

to
o

l
2

to
o

l
1

...

login

tended. FrameKit thus implements an evolutionary prototy-
ping approach [3]. In the next section, we present CPN-
AMI 2.0, a Petri-net oriented CASE environment built
using FrameKit.

5. Building dedicated CASE environment

This section deals with the construction of a dedicated
CASE environment on top of FrameKit. We first present an
experimentation and then discuss the advantages of the pro-
cedure.

5.1. Building of the CPN-AMI 2.0 environment

The complexity of distributed systems is a problem
when designers want to evaluate their safety. Systematic
tests of the application cannot be considered as verification
because of the potentially infinite number of states due to
the parallelism.

Formal modeling is a key for verification of system spe-
cifications. Many formalisms such as Petri nets [13], Alge-
braic specifications [12] or B [1] are good candidates for
the modeling and formal analysis of such systems.

CPN-AMI 2.0 is an environment dedicated to the mode-
ling, the evaluation and code generation of distributed sys-
tems. The corresponding methodology is presented in [7]
and involves three formalisms : OF-Class and H-COSTAM
are dedicated to structured design of an application, and
Colored Petri nets are used to evaluate interesting proper-
ties of distributed systems.

OF-Class focuses on the preliminary design and structu-
ration of the system (coherence between software compo-
nent interfaces).

H-COSTAM emphasizes the implementation aspects of
the system (the mapping of conceptual solution into an ope-
rational software architecture).

Transformations from one formalism to another one are
controlled as described in [8].

The CPN-AMI 2.0 environment is build on top of Fra-
meKit, by addition of the following elements (Figure 7) :

• The description of the three formalisms customizes the
user interface;

• A set of tools provides services for OF-Class : a syntax
checker, a transformer into Petri nets (to evaluate the
correctness of the model). A simulator is planned for
preliminary debug of the specification;

• A set of tools provides services for H-COSTAM : a syn-
tax checker, a transformer into Petri nets (to compute
properties that could be used for code generation). A
code generator is under development;

• A set of tools provides services for Petri net models : a
syntax checker (for users who directly design a Petri
net), a set of tools to compute properties of the model
according to the Petri net theory and a simulator for
model checking.
Some of these tools have been especially designed for

the FrameKit environment. They where implemented using
the provided program libraries and tested first out of the en-
vironment. Then, their integration mainly consisted in the
registration of the corresponding service and its association
with the proper program invocation. This registration of a
completed tool takes approximately ten minutes; the lon-
gest declaration took about one hour (the tool’s menu offe-
red 35 services to declare).

Some others have been adapted from other CASE tools.
For example, invariant computation (place invariants, tran-
sition invariants, traps and deadlock detection) for Petri
nets are modules extracted from GreatSPN [4]. We only
had executable files and input/output file exchange format.
Integration has been performed using the technique of Fi-
gure 5.a. The main driver was written in Unix shell script.
It successively invokes a program that translates FrameKit
internal representation into the one of GreatSPN, the
GreatSPN module corresponding that computes the expec-

Figure 7 :

Software components especially designed for CPN-AMI.

H-COSTAM

OF-Class

CPN-AMI 2.0

Syntax checker
Tranformer into Petri nets
Simulator

Syntax checker
Tranformer into Petri nets
Code generator

Syntax checker
Simulator
Invariant computation
Deadlocks and traps

Petri nets

Macao for
OF-Class, H-COSTAM

and petri Nets

ted invariant (with the appropriate parameters) and finally
translates back the results to be displayed on the user inter-
face. It took half a day to perform the whole tool adaptation
and service registration.

CPN-AMI is still being improved and extended by addi-
tion of new tools in order to cover and fully implement our
design methodology for distributed systems.

5.2. Benefits in the construction of a dedicated
CASE environment

After having experimented FrameKit, it appears that
using it to build a CASE environment raises two major ad-
vantages.

The first one deals with the user interface. The design of
new graphical representation with is very easy, even com-
pared with Tcl/tk based approaches [17]. Macao already
implements all editing functions (cut/copy/paste, alignment
functions etc.) and the design of a new formalism consists
in writing a configuration file that describes possible enti-
ties according to the principles presented in section 2.1. So,
it is very easy to build numerous «prerelease» of a graphical
representation to check its use.

The second one is related to the definition of communi-
cation techniques between tools. Involved mechanisms are
quite complex and it is easier to take benefits from an alrea-
dy existing standard. A proposal to the five integration axes
introduced in the ECMA reference model is thus a key issue
in FrameKit.

6. Conclusion

In this paper, we have presented FrameKit, a software
platform dedicated to the rapid prototyping of CASE envi-
ronment. FrameKit architecture is similar to the ECMA re-
ference model [10].

It focuses on the quick definition of new graphical repre-
sentations, handled by a generic user interface.

FrameKit also contains a development kit composed of
program libraries in various languages (C, Ada and Unix
shell). This eases both the implementation and integration
of new tools. FrameKit also has good capabilities to inte-
grate software components that were not especially desi-
gned for it.

FrameKit is operational and we have used it to build the
CPN-AMI 2.0 CASE environment that implements a desi-
gn methodology for distributed systems described in [8]. To
achieve it, we had to describe three formalisms (one is hie-
rarchical) and register the services of a dozen of tools.

The first version, released on Internet in the first quarter
of 1997 (

<http://www-masi.ibp.fr/framekit>

) is quite
satisfactory. We plan to enrich it with new mechanisms to
ease the quick design of code generators as well as model
simulators.

7. References

[1] R. Abrial, "The B-book", Cambridge University Press,
1995.

[2] D.Hatley & I.Pirbhai, "Strategies for real-time system spe-
cification", Donset house publishing Co, 1988

[3] R. Budde, K. Kuhlenkamp, L. Mathiassen & H. Zülligho-
ven, "Approaches to prototyping", Springer Verlag, Berlin,
1984.

[4] G. Chiola, "A Graphical PN/Tool for Performance Analy-
sis", International Workshop on modelling techniques and
performance evaluation,AFCET, Paris, March 1987.

[5] OMG document, "CORBA 2.0", July 1995
[6] Desfray P., "Object Engineering, the Fourth Dimension",

Addison-Wesley, 1994.
[7] A. Diagne & P. Estraillier, "Formal Specification and

Design of Distributed Systems", In Proceedings of the First
International Workshop FMOODS’96, Paris, March 1996.

[8] A.Diagne & F. Kordon, "A Multi Formalisms Prototyping
Approach from Formal Description to Implementation of
Distributed Systems", à paraître in proceedings of the 7th
"International Workshop on Rapid System Prototyping",
N.Kanopoulos Ed, IEEE comp Soc Press, Greece, June
1996.

[9] ECMA, "Portable Comon Tool Environment", Technical
Report ECMA-149, European Computer Manufacturers
Association, Geneva, Switzerland, December 1990.

[10] ECMA, "A Reference Model for Frameworks of Stoftware
Engineerings Environments", ECMA report number TR/55
(version 3), NIST Report, April 1993.

[11] C.Fernstrom & L.Ohlsson, “The ESF Vision of a Software
Factory”, Proceedings of the International Conference on
Software Development Environments & Factories, Berlin,
May 1989.

[12] M.C. Gaudel, "Algebraic Specifications", Chapter 22 in
"Software Engineer's Reference Book", John Mc Dermid
ed, Butterworth, 1991.

[13] K. Jensen, "Coloured Petri Nets. Basic Concepts, Analysis
Method and Practical Use (vol 1)", EATC Monographs on
Theoretical Computer Science, Springer Verlag 1992.

[14] Macao Home page, ttp://www-masi.ibp.fr/macao
[15] Metrowerks home page, http://www.metrowerks.com/
[16] Rumbauh & Blaha, "Object Oriented Modeling and

Design"; Prentice Hall; 1991
[17] J. Ousterhout, "Tcl and the Tk Toolkit", Addison-Wesley

Publishing Company, 1995
[18]

T

ooltalk Home page

,

http://brunhilda.sensor.com/manuals/
tooltalk/

[19] A.Wasserman, "Tool Integration in Software Engineering
Environments", proceedings of the International Workshop
on Environments, Chino, September 1989 and LNCS 467 :
"Software Engineerings Environements", pp 138-150.

