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Abstract

When a Monte Carlo algorithm is used to evaluate a physical observable A, it is possible to slightly modify the

algorithm so that it evaluates simultaneously A and the derivatives ∂ςA of A with respect to each problem-parameter

ς. The principle is the following: Monte Carlo considers A as the expectation of a random variable, this expectation

is an integral, this integral can be derivated as function of the problem-parameter to give a new integral, and this

new integral can in turn be evaluated using Monte Carlo. The two Monte Carlo computations (of A and ∂ςA) are

simultaneous when they make use of the same random samples, i.e. when the two integrals have the exact same

structure. It was proven theoretically that this was always possible, but nothing insures that the two estimators have

the same convergence properties: even when a large enough sample-size is used so that A is evaluated very accurately,

the evaluation of ∂ςA using the same sample can remain inaccurate. We discuss here such a pathological example:

null-collision algorithms are very successful when dealing with radiative transfer in heterogeneous media, but they

are sources of convergence difficulties as soon as sensitivity-evaluations are considered. We analyse theoretically

these convergence difficulties and propose an alternative solution.

Keywords: Monte Carlo method, Direct derivatives, Null-collision algorithm, Sensitivity, Integral

formulation

2010 MSC: 00-01, 99-00

1. Introduction

When numerically simulating linear-transport physics using Monte Carlo algorithms, one of the most recurrent

difficulties is the handling of highly non-homogenous or fast-variating media. This difficulty was encountered since

the beginning of neutron-transport and plasma-physics modelling. But a quite elegant trick was soon identified as

a way to bypass this difficulty : virtual collisionners can be added where the true collisionners are scarce so that

the total collisionner-density is homogeneous. Of course, in order to ensure that the physical problem is unchanged,

when a particle interacts with a virtual collisionner, it simply continues its path as if no collision had occurred

[1, 2, 3, 4]. This is the meaning of the denomination null-collision algorithm or fictitious-collision algorithm1. The
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first practical benefit is that the next collision event can be sampled as if the medium was homogenous. Then the

choice is made to select a true-collision or a virtual-collision as function of their local respective-amounts and this

is how the spatial information is recovered. But several other benefits were recently foreseen in [1] and practically

tested in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], mainly for radiative-transfer applications. The main idea is

that null-collision algorithms transform the non-linearity of Beer-extinction into a linear-recursive problem that

Monte Carlo handles without approximation[14]. This was for instance used in [5] to deal with absorption-spectra

of molecular gases combining very numerous transitions: the summation over all transitions could be treated by

the Monte Carlo algorithm itself, which was previously assumed impossible because this summation was inside the

exponential of Beer-extinction. Similarly, the vanishing of the exponential allowed the extension of implicit Monte

Carlo algorithms for inversion of absorption and scattering coefficients from intensity measurements [6]. Outside

radiative transfer, a very similar idea was used to solve Electromagnetic Maxwell equations for energy propagation

in particle-ensembles of statistically-distributed shapes despite of the nonlinearity associated to the square of the

electric field[13]. Again similar is the algorithm proposed in [14] solving Boltzmann equation for micro-fluidics

applications despite of the nonlinearity of the collision operator.

Back to radiative-transfer applications, the ideas suggested in [1] have motivated significant developments in the

computer-graphics community for the cinema industry. Here the benefit of using null-collisions is that it extends to

participating media (aerosols or clouds) the orthogonality between data-description and data-treatment that was

at the heart of the most recent use of Monte Carlo for rendering complex scenes [7, 9, 8, 10]. The algorithm is

indeed processed without any knowledge of the exact spatial-information, and it is only when a collision occurs that

access to the field is required: the interaction between the radiative-transfer algorithm and the field-data is strictly

restricted to this very moment. This allows the implementation of numerous acceleration techniques with little

changes by comparison with those developed for handling complex surfaces. One of these techniques consists in the

setting of an acceleration grid, adjusting the amount of virtual collisionners so that the total collisionner-density is

both homogeneous in part and close enough to the real density-field. This avoids the sampling of too many useless

virtual-collisions. This is one of the starting points of the present paper: null-collision algorithms allow the use of

any amount of virtual-collisionners but numerical efficiency justifies that one tries to reduce them to the minimum.

However, we show here that reducing the amount of virtual-collisionners to a minimum leads to convergence

difficulties when evaluating sensitivities. Sensitivity evaluation is a very general feature of Monte Carlo techniques:

when a Monte Carlo algorithm is used to evaluate a physical observable A, it is always possible to modify the

algorithm in such a way that it evaluates both A and the derivatives ∂ςA of A with respect to each problem-parameter

ς, and most commonly the corresponding implementation is quite straightforward [17, 18, 19, 20, 21, 22, 23]2. But

evaluating sensitivities using null-collision algorithms is pathological: the better we adjust the acceleration grid,

the worse the statistical convergence rate. In Sec. 2 we will illustrate this pathological behaviour evaluating the

transmissivity of a beam through a non-homogeneous column. Then we propose an alternative approach in Sec. 3

where the design of the sensitivity-evaluation algorithm starts from the standard integral solution of the Boltzmann

equation, i.e. without virtual-collisionners. The resulting sampling requirements are then addressed with the

2This is not at all straightforward for domain-deformation sensitivities[19, 20], but we here stick to pure parametric sensitivities
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null-collision approach viewed as a simple rejection-sampling approach. This introduces the cost of sampling an

additional random variable, but at this cost the convergence difficulties vanish. We illustrate the numerical behaviour

of this modified algorithm is Sec. 4 using a benchmark inspired of [1].

2. Convergence difficulties when evaluating sensitivities

In this section we design a Monte-Carlo algorithm using the standard null-collision approach for the evaluation

of the distribution function f , i.e. the solution of Boltzmann equation, and apply the technique of [19, 17] for

simultaneous evaluation of a sensitivity ∂ςf with respect to ς, where ς is a parameter appearing in the absorption

and scattering coefficients. The Boltzmann equation that we use is linear with constant speed particles. It matches

the monochromatic radiative-transfer equation exactly and all application examples will be restricted to radiative

transfer. We choose to make use of the notation f instead of the more radiative-transfer oriented notation I = hνcf

(the specific intensity) in order to simplify the access for readers of the plasma and neutronics communities. The

monochromatic radiative-transfer equation becomes
∂tf + c~ω.~∇f = −(ka + ks)cf + kacf

eq +

∫
4π

kscf
′pS(−~ω′| − ~ω) dω′, ∀~x ∈ Ω,∀~ω ∈ S2

f(~y, ~ω+) = f∂Ω(~y, ~ω+), ∀~y ∈ ∂Ω, ∀~ω+ ∈ S2
+

f(~x, ~ω, 0, ς) = f0(~x, ~ω), ∀~x ∈ Ω,∀~ω ∈ S2

(1)

where f ≡ f(~x, ~ω, t, ς) with ~x the location, ~ω the propagation direction and t the time. For incoming scattering in

any direction ~ω′ of the unit sphere S2, we write f ′ ≡ f(~x, ~ω′, t, ς) and pS is the single scattering phase function,

i.e. pS(−~ω′| − ~ω)dω′ is the probability density that the scattering direction is ~ω for this incoming direction ~ω′.

The constant particle-speed is c and the coefficients ka ≡ ka(~x, t, ς), ks ≡ ks(~x, t, ς) and ke = ka + ks are the

absorption coefficient, the scattering coefficient and the extinction coefficient respectively. feq ≡ feq(~x, t) is the

equilibrium distribution (following the Planck function). Ω is the geometrical domain and ∂Ω its boundary at which

the distribution function f∂Ω is known for all locations ~y and all directions ~ω+ of the incoming hemisphere S2
+. f0

is the initial condition.

Introducing null-collisions. In order to design a null collision algorithm (NCA)[1] we add a field of virtual collision-

ners such that the total extinction coefficient is practicable, in the sense that we can sample the corresponding beer

extinction:


∂tf + c~ω.~∇f = −k̂cf + kacf

eq +

∫
4π

kscf
′pS(−~ω′| − ~ω) dω′ +

∫
4π

kncf
′δ(~ω − ~ω′) dω′, ∀~x ∈ Ω,∀~ω ∈ S2

f(~y, ~ω+) = f∂Ω(~y, ~ω+), ∀~y ∈ ∂Ω,∀~ω+ ∈ S2
+

f(~x, ~ω, 0, ς) = f0(~x, ~ω), ∀~x ∈ Ω,∀~ω ∈ S2

(2)

where kn ≡ kn(~x, t, ς) is the null-collision coefficient, k̂ = ka + ks + kn is the total extinction-coefficient and δ is

the Dirac distribution. Equation(2) is strictly equivalent to Eq.(1) because of the Dirac distribution that insures∫
4π
kncf

′δ(~ω − ~ω′) dω′ = kncf .

When numerically adressing the solution f(~x0, ~ω0) of this transport equation at (~x0, ~ω0) (also solution of Eq.(1))

using the Monte Carlo method, one of the most standard approach consists in a simple statistical reading that
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allows to view f(~x0, ~ω0) as an average over radiative paths that are tracked backward from the observation location

(~x0, ~ω0) to the sources[1]. In this reading, the pure transport term ∂tf + c~ω.~∇f corresponds to the spatial and

temporal propagation of f in direction ~ω at constant-speed c. The collisional term −k̂cf corresponds to either

an absorption or a scattering event (including the null-collision events that are forward scattering events). When

combining it with the transport term this leads to collision locations that are distributed exponentially along the

line of sight (Beer law). Tracking the path backward, this means that the preceeding collision at ~x1 is at a distance

λ0 that is a realisation of a random variable Λ0 of probability density pΛ0
(λ0) = exp(−k̂λ0) (see Fig. D.1). Once ~x1

is sampled, the collision type is sampled in turn to decide wether an absorption, a true scattering or a null collision

occurs. In the backward tracking picture, this corresponds respectively to the three remaining terms

• with kacf
eq an absorption event is translated into thermal emission and the algorithm stops with the Monte

Carlo weight feq(~x1) (the source at ~x1),

• with
∫

4π
kscf

′pS(−~ω′|−~ω) dω′ a scattering event is translated into the sampling of a “previous” direction ~ω1

and the algorithm continues recursively as if evaluating f(~x1, ~ω1),

• with
∫

4π
kncf

′δ(~ω − ~ω′) dω′ and its Dirac function, a null collision event is translated into a pure forward

scattering event, i.e. the “previous” direction ~ω1 is equal to ~ω0.

Of course the statistical translation includes the boundary conditions: when backward reaching the boundary at a

location ~xi and direction ~ωi, the algorithm stops with the Monte Carlo weight f(~xi, ~ωi) (the incoming source at

the boundary). The corresponding Monte Carlo algorithm is detailed in Alg. 1 and illustrated in Fig. D.1.

Integral formulation. This null-collision algorithm belongs to the family of analog Monte Carlo algorithms, i.e.

algorithms that can be designed without any formal development because they only numerically-implement the

well established statistical pictures of radiation physics. However, in the present context it is very much useful to

also choose a viewpoint under which the same algorithm appears as a statistical estimate of the integral solution of

Eq.(2). For sake of clarity we only write this integral solution at the stationary limit:

f(~x, ~ω, ς) = exp

(
−
∫ λ∂Ω

0

k̂
(
~̃x
)

dλ̃

)
f∂Ω(~y, ~ω)

+

∫ λ∂Ω

0

exp

(
−
∫ λ

0

k̂
(
~̃x
)

dλ̃

)
ka(~x′, ς)feq(~x′)

+ ks(~x
′, ς)

∫
4π

pS(−~ω′| − ~ω) dω′f(~x′, ~ω′, ς)

+ kn(~x′, ς)f(~x′, ~ω, ς)

dλ

(3)

where ~̃x = ~x− λ̃~ω, ~x′ = ~x−λ~ω, ~y = ~x−λ∂Ω~ω, with λ∂Ω the distance to the first boundary-intersection starting at

~x in the direction −~ω, i.e. λ∂Ω = min{‖~x− z‖; z ∈ Vect−(~x, ~ω) ∩ ∂Ω} where Vect−(~x, ~ω) = {~x− λ′~ω; λ′ ∈ R+}.
This standard Fredholm equation, typical of the formal solution of linear-transport physics, can be transformed

using the following property

exp

(
−
∫ λ∂Ω

0

k̂
(
~̃x
)

dλ̃

)
=

∫ +∞

λ∂Ω

k̂(~x′) exp

(
−
∫ λ

0

k̂
(
~̃x
)

dλ̃

)
dλ
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to give

f(~x, ~ω, ς) =

∫ +∞

λ∂Ω

k̂(~x′) exp

(
−
∫ λ

0

k̂
(
~̃x
)

dλ̃

)
f∂Ω(~y, ~ω)dλ

+

∫ λ∂Ω

0

k̂(~x′) exp

(
−
∫ λ

0

k̂
(
~̃x
)

dλ̃

)
ka(~x′,ς)

k̂(~x′)
feq(~x′)

+ ks(~x
′,ς)

k̂(~x′)

∫
4π

pS(−~ω′| − ~ω) dω′f(~x′, ~ω′, ς)

+ kn(~x′,ς)

k̂(~x′)
f(~x′, ~ω, ς)

 dλ

(4)

Then

• pΛ̂(λ) = k̂(~x′) exp
(
−
∫ λ

0
k̂
(
~̃x
)

dλ̃
)

can be viewed as the probability density function of the free path Λ̂ (the

distance until next collision),

• PA = ka
k̂

, PS = ks
k̂

and PN = kn
k̂

can be viewed as the probabilities that the collision is an absorption, a

scattering event or a null-collision respectively,

• and the two integrals over [0, λ∂Ω[ and [λ∂Ω,+∞[ can be gathered into a single integral over [0,+∞[ using

the Heaviside function H

to give

f(~x, ~ω, ς) =

∫ +∞

0

pΛ̂(λ)dλ



H(λ− λ∂Ω)w∂Ω

+ H(λ∂Ω − λ)


PA(~x′, ς)wA

+ PS(~x′, ς)
∫

4π

pS(−~ω′| − ~ω) dω′f(~x′, ~ω′, ς)

+ PN (~x′, ς)f(~x′, ~ω, ς)




(5)

with w∂Ω = f∂Ω(~y, ~ω) and wA = feq(~x′). This last equation is the integral formulation that we needed in order to

construct Alg. 1 at the stationary limit: Alg. 1 is indeed nothing more than the algorithmic-reading of Eq. 5 (and

reciprocally Eq. 5 is nothing more than the integral translation of Alg. 1, [18]):

•
∫ +∞

0
pΛ̂(λ)dλ stands for the sampling of the distance of the collision (according to the k̂-field),

• H(λ− λ∂Ω) stands for the case where the sampled collision is outside the boundary, then the algorithm stops

at the boundary with the Monte Carlo weight w∂Ω (the value of f corresponding to the incoming radiation),

• H(λ∂Ω − λ) stands for the case where the sampled collision is at a location ~x′ inside the volume, and then

three collision types are possible:

– PA(~x′, ς) stands for the case where the collision is an absorption, then the algorithm stops at the boundary

with the Monte Carlo weight wA (the value of feq at the collision location),

– PS(~x′, ς) stands for the case where the collision is a scattering event, then
∫

4π
pS(−~ω′| − ~ω) dω′ stands

for the sampling of a new direction ~ω′ according to the phase function and the algorithm continues

recursively with the estimation of f at ~x′ in direction ~ω′,

– PN (~x′, ς) stands for the case where the collision is null, then the algorithm continues recursively with

the estimation of f at ~x′ in the unchanged direction ~ω

5



Straightforward application of sensitivity-evaluation techniques. Now that we have constructed the integral formu-

lation of Alg. 1 we can apply the sensitivity-evaluation technique introduced in [17, 19, 20]. It consists in derivating

Eq. 5 with respect to ς and multiplying and dividing by each of the probabilities and probability density functions

that depend on ς. This leads to an integral formulation of the sensitivity that has the very same structure as that

of Eq. 5:

∂ςf(~x, ~ω, ς) =

∫ +∞

0

pΛ̂(λ)dλ

H(λ− λ∂Ω)wς∂Ω

+ H(λ∂Ω − λ)



PA(~x′, ς)wςA

+ PS(~x′, ς)
∫

4π

pS(−~ω′| − ~ω)dω′

 ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)


+ PN (~x′, ς)

 ∂ςkn(~x′,ς)
kn(~x′,ς) f(~x′, ~ω, ς)

+ ∂ςf(~x′, ~ω, ς)







(6)

with wς∂Ω = 0 and wςA = ∂ςka(~x′,ς)
ka(~x′,ς) f

eq(~x′). Because of their identical structure, we can gather Eq. 5 and 6 into one

using the vectorial notation {w;wς}:

{f(~x, ~ω, ς); ∂ςf(~x, ~ω, ς)} =

∫ +∞

0

pΛ̂(λ)dλ

H(λ− λ∂Ω) {w∂Ω;wς∂Ω}

+ H(λ∂Ω − λ)



PA(~x′, ς) {wA;wςA}

+ PS(~x′, ς)
∫

4π

pS(−~ω′| − ~ω)dω′

f(~x′, ~ω′, ς);

 ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)


+ PN (~x′, ς)

f(~x′, ~ω, ς);

 ∂ςkn(~x′,ς)
kn(~x′,ς) f(~x′, ~ω, ς)

+ ∂ςf(~x′, ~ω, ς)







(7)

The algorithmic-reading of 7 leads to Alg. 2 that evaluates simultaneously f and ∂ςf . The recursive nature of this

algorithm comes from the fact that the final brackets in the scattering and null-collision terms contain f and ∂ςf

at the same location in the same direction. The fact that their sensitivity part includes a summation is translated

into an algorithm incrementing the Monte Carlo weight as explained in Appendix Appendix B.

Simulation examples. At this stage, we designed a null-collision algorithm, constructed the corresponding integral

formulation and applied the proposition of [17, 19, 20] in a straightforward manner so that the algorithm also

evaluates sensitivities. We now test this simulation strategy by evaluating the transmissivity of a non-diffusive

heterogeneous column and also evaluating the sensitivity of this transmissivity w.r.t. ς, a parameter influencing

the absorption coefficient. Hereafter this configuration is called heterogeneous-slab (see Fig. D.2): Ω is a column

of length L with ~ex the normal incoming at location y = 0. The equilibrium distribution is null (cold medium,

feq ≡ 0). The boundary conditions are f∂Ω(0, ~ex) = 0 and f∂Ω(L,− ~ex) = finc. The absorption and scattering

coefficients are ka(x, ς) = (ς − γ)
atan(−α(x−β)+π

2 )

π/2 + γ and ks ≡ 0. Alg 2 is used to evaluate both f(0, ~ex, ς) and

∂ςf(0, ~ex, ς) that correspond to the transmissivity T and its derivative ∂ςT respectively: T = f(0, ~ex, ς)/finc and
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∂ςT = ∂ςf(0, ~ex, ς)/finc. We chose this particular profile of ka, because it is possible to calculate T and ∂ςT

analytically (see the caption of Fig. D.2). Example Monte Carlo results, using N = 10000 samples, are compared

to the analytical solution in Tables D.5a and D.5b. The statistical uncertainty is noted σ (the standard deviation

of the Monte Carlo estimator). In Table D.5b we also provide the number of samples N1% required to achieve a 1%

accuracy. The simulations were made using five different k̂-profiles (each overestimating ka at all locations), with

acceleration-grids, k̂ being uniform within each mesh (see Fig. D.2):

• for k̂20% no grid is used: the profile of k̂ is uniform, equal to 1.2 time the maximum ka-value.

• for k̂1 no grid is used: the profile of k̂ is again uniform, exactly equal to the maximum ka-value.

• for k̂10 the grid is constructed in such a way that across each mesh the variations of ka are 1/10 of the

maximum ka-value, and the profile of k̂ is uniform within each mesh, exactly equal to the maximum ka-value

inside the mesh.

• for k̂100 and k̂1000 the grid is constructed the same way with 1/100 and 1/1000 variation respectively.

The transmissivity results of Table D.5a confirm that the estimation of T is insensitive to the adjustment of the k̂-

field (only the computation time is affected). But the sensitivity results of Table D.5b clearly indicate the opposite:

the statistical convergence is worse when k̂ is close to k and the number of samples required to reach a given

accuracy level can be risen up to infinity when matching k̂ to k exactly. This is the pathological behavior that we

announced in introduction: sensitivities cannot be evaluated accurately when using acceleration grids reducing the

number of virtual collisions.

The variance of the sensitivity estimate. For a better understanding of this behavior, we studied a homogeneous-

slab for which the variance of the Monte Carlo estimate can be calculated analytically. This case is identical to the

previous one (transmissivity of a purely absorbing column) but now k = ka is uniform: ka(ς) ≡ ς, T = exp(−ςL)

and ∂ςT = −LT . Of course, there is no need to make use of a null-collision algorithm as soon as k is uniform. We

only do it for theoretical reasons (with k̂ > k uniform). This allows us to fully identify the reasons why the variance

of the sensitivity estimate rises when reducing kn = k̂ − k. This may sound trivial as soon as when encountering

a null-collision event, the Monte Carlo weight of the sensitivity algorithm includes a factor ∂ςkn(~x′,ς)
kn(~x′,ς) = 1/kn (see

Eq. 7), but reducing kn also reduces the number of such null-collision occurrences. This may lead to a compensation,

maintaining the variance at a finite value. The developments of appendix Appendix A.1 indicate the opposite: the

statistical uncertainty is indeed

σ∂ςT =

√
L2e−kaL

(
kn+1/L
kn

)
− L2e−2kaL

√
N

(8)

Figure D.3 illustrates the meaning of this dependance of σ∂ςT with the problem parameters. In this idealised

case, looking at the behavior of such an algorithm applying sensitivity-evaluation techniques in a straightforward

manner, the difficulty is well identified: when kn
k̂

approaches zero, the number of samples required for a 1%

accurate evaluation of the sensitivity tends to infinity (see Fig. D.3c). This figure also displays the behavior of

an algorithm implementing the very same sensitivity-evaluation technique, but without the use of null-collisions
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(which is possible here in this idealised uniform case). Without null-collisions, the relative value of the standard

deviation of the sensitivity-estimate (Fig. D.3b) is identical to that of the main quantity (the transmissivity-estimate,

Fig. D.3a). This is an ideal behaviour: the sensitivity is estimated with the same relative accuracy as that of the

main quantity. Altogether in this simple example, we see that evaluating sensitivities can be perfectly costless before

using null-collisions and may become pathological when null-collisions are introduced.

Note that in the general case, even without null-collisions, evaluating sensitivities can be truely difficult. Under-

standing the relative variance of sensitivity estimates and comparing them to the relative variance of the algorithm

estimating the main quantity was indeed one of the main concerns of the initial work of De Lataillade[17]. Essen-

tially, serious difficulties arise as soon as the scattering optical-thickness is high. The objective of the present paper

is not at all to address this specific issue: at the end of the following section, when an alternative solution will be

proposed for evaluating sensitivities in null collisions algorithms, the problems associated to highly scattering media

will remain unsolved.

3. An alternative approach

The preceding section identifies convergence difficulties when evaluating sensitivities using null-collisions. Theses

difficulties are not associated to the standard sensitivity-evaluation algorithm itself: considering slab transmission,

we have seen that when we do not make use of null-collisions, the sensitivity-evaluation algorithm converges as

well as the algorithm evaluating the main quantity. So the observed difficulties are only the consequences of intro-

ducing virtual-collisionners. At this stage, null-collision algorithms appear therefore as perfect tools for handling

heterogeneous fields, but are incompatible with the simultaneous evaluation of sensitivities.

We have seen that this problem is related to the term 1
kn

appearing in the Monte Carlo weight of the sensitivity

algorithm. At which stage did this term appear and can we bypass this step? Clearly, 1
kn

appeared when derivating

with ς the null-collision probability PN (ς) = 1 − PA(ς) − PS(ς), with PA(ς) = ka(ς)/k̂ and PS = ks(ς)/k̂. A first

way to suppress this 1
kn

term consists in making k̂ dependent on ς. This is always possible because k̂ is a free

parameter and we can therefore adjust it to the variation of ka(ς)+ks(ς) so that PN does not depend on ς anymore.

We first tested this solution and it proved itself already quite practical: the corresponding details are provided in

Appendix Appendix D. But we finally retained another algorithm, starting from the integral solution of the original

Boltzmann Eq. 1, i.e. prior to the introduction of virtual-collisionners. The idea consists in first designing an

algorithm evaluating simultaneously f and ∂ςf as if the heterogeneity of the field could be handled without difficulty

and only introduce null-collisions in a second stage. For this, we can simply rewrite Eq. 5 with kn = 0 (no virtual

collisionners):

f(~x, ~ω, ς) =

∫ +∞

0

pΛ(λ)dλ
H(λ− λ∂Ω)w∂Ω

+ H(λ∂Ω − λ)

 PA(~x′, ς)wA

+ PS(~x′, ς)
∫

4π

pS(−~ω′| − ~ω) dω′f(~x′, ~ω′, ς)




(9)

The only differences with Eq. 5 are that
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• PN = 0,

• the random variable Λ̂ of probability density pΛ̂(λ) = k̂(~x′) exp
(
−
∫ λ

0
k̂
(
~̃x
)

dλ̃
)

(the free path in the k̂-field)

is replaced with the random variable Λ of probability density pΛ(λ) = ke(~x
′, ς) exp

(
−
∫ λ

0
ke(~̃x, ς)dλ̃

)
(the

free path in the original ke-field).

This equation can then be derivated with respect to ς and multiplied/divided by each of the probabilities and

probability density functions that depend on ς (exactly the same way Eq. 7 was constructed from Eq. 5) to give

∂ςf(~x, ~ω, ς) =

∫ +∞

0

pΛ(λ)dλ

H(λ− λ∂Ω)

(
−w∂Ω

∫ λ∂Ω

0

∂ςke(xl, ς)dl + wς∂Ω

)

+ H(λ∂Ω − λ)



PA(~x′, ς)

(
−wA

∫ λ

0

∂ςke(xl, ς)dl + wςA

)
+ PS(~x′, ς)

∫
4π

pS(−~ω′| − ~ω)dω′
−

∫ λ

0

∂ςke(xl, ς)dlf(~x′, ~ω′, ς)

+ ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)







(10)

A main point of the present paper is that this integral equation, although it was derived the same way as Eq. 7,

cannot be interpreted in algorithmic terms: the integral pattern
∫
∂ςkedl is not yet transformed into a statistical

expectation. An additional random generation will be required. At this stage let us introduce an arbitrary random

variable L of probability density function pL and write
∫
∂ςkedl =

∫
pL(l)dl ∂ςkepL(l) . Reporting this into Eq. 10 and

using
∫
pL(l)dl = 1 leads to

∂ςf(~x, ~ω, ς) =

∫ +∞

0

pΛ(λ)dλ

H(λ− λ∂Ω)

∫ λ∂Ω

0

pL(l|λ∂Ω)dl

(
−w∂Ω

∂ςke(xl, ς)

pL(l|λ∂Ω)
+ wς∂Ω

)

+ H(λ∂Ω − λ)

∫ λ

0

pL(l|λ)dl



PA(~x′, ς)
(
−wA ∂ςke(xl,ς)

pL(l|λ) + wςA

)
+ PS(~x′, ς)

∫
4π

pS(−~ω′| − ~ω)dω′
− ∂ςke(xl,ς)

pL(l|λ) f(~x′, ~ω′, ς)

+ ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)







(11)

At this stage, null-collisions have not been introduced. Therefore, the algorithmic reading of Eq. 11 would not be

practical as soon as the ke-field is heterogeneous: the difficulty would come from the sampling of Λ. The objective

of introducing null collisions will therefore be to replace Λ with another path-length Λ̂, shorter in average but easy

to sample, and compensate the too many collisions by the fact that some of them are null. However, this not as

trivial as in the algorithm for the main quantity because of the new random variable L that we needed to introduce

when transforming Eq. 10 into Eq. 11 (transforming it into an expectation). Indeed ∂ςke needs to be integrated
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along the whole path, now including null collisions. In statistical terms, this means that the recursivity of the

path-sampling algorithm is only insured if the Monte Carlo weight associated to null collisions includes the term

−∂ςke(xl, ς)/pL(l|λ)f(~x′, ~ω, ς), exactly like for true scattering events:

∂ςf(~x, ~ω, ς) =

∫ +∞

0

pΛ̂(λ)dλ

H(λ− λ∂Ω)

∫ λ∂Ω

0

pL(l|λ∂Ω)dl

(
−w∂Ω

∂ςke(xl, ς)

pL(l|λ∂Ω)
+ wς∂Ω

)

+ H(λ∂Ω − λ)

∫ λ

0

pL(l|λ)dl



PA(~x′, ς)
(
−wA ∂ςke(xl,ς)

pL(l|λ) + wςA

)
+ PS(~x′, ς)

∫
4π

pS(−~ω′| − ~ω)dω′
− ∂ςke(xl,ς)

pL(l|λ) f(~x′, ~ω′, ς)

+ ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)


+ PN (~x′, ς)

 − ∂ςke(xl,ς)
pL(l|λ) f(~x′, ~ω, ς)

+ ∂ςf(~x′, ~ω, ς)







(12)

Equations 5 and 12 have now a similar structure: all the samples used to evaluate f can also be used for the

evaluation of ∂ςf . But in order to complete the evaluation of sensitivity, we must add one sample (of L) per

collision. Thanks to this similar structure, we can gather them into a single vectorial writting (exactly the same

way Eq. 7 was constructed from Eq. 5 and 6):

{f(~x, ~ω, ς) ; ∂ςf(~x, ~ω, ς)} =

∫ +∞

0

pΛ̂(λ)dλ

H(λ− λ∂Ω)

∫ λ∂Ω

0

pL(l|λ∂Ω)dl

{
w∂Ω ; − w∂Ω

∂ςke(xl, ς)

pL(l|λ∂Ω)
+ wς∂Ω

}

+ H(λ∂Ω − λ)

∫ λ

0

pL(l|λ)dl



PA(~x′, ς)
{
wA ; − wA ∂ςke(xl,ς)

pL(l|λ) + wςA

}
+ PS(~x′, ς)

∫
4π

pS(−~ω′| − ~ω)dω′f(~x′, ~ω′, ς) ;


− ∂ςke(xl,ς)

pL(l|λ) f(~x′, ~ω′, ς)

+ ∂ςks(~x
′,ς)

ks(~x′,ς) f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)




+ PN (~x′, ς)

f(~x′, ~ω, ς) ;

 − ∂ςke(xl,ς)
pL(l|λ) f(~x′, ~ω, ς)

+ ∂ςf(~x′, ~ω, ς)






(13)

The algorithmic-reading of 13 leads to Alg. 3 that is an alternative to Alg. 2 for evaluating simultaneously f and

∂ςf . As explained in the algorithmic reading of Eq.7, the recursive nature of this algorithm comes from the fact

that the final brackets in the scattering and null-collision terms contain f and ∂ςf at the same location in the same

direction. The fact that their sensitivity part includes a summation is translated into an algorithm incrementing the

Monte Carlo weight as explained in Appendix B. It is interesting to note that the integral
∫
pL(l)dl ∂ςke(xl, ς)/pL(l)

can be more or less difficult to evaluate depending on the profile of ∂ςke. But this can be easily handled using

importance sampling based on the k̂-adjustment grid, as explained in Appendix C.
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4. Simulations using the alternative approach

4.1. Transmissivity of a purely absorbing column

Applying the alternative approach of Sec. 3 to the evaluation of column-transmissivities leads to the content of

Fig. D.3d and Table D.5c. For the homogeneous-slab configuration, Fig. D.3 shows that not only the pathological

behavior of Sec. 2 is removed, but the sensitivity is estimated with a statistical uncertainty that is perfect for a

simultaneous evaluation: its dependence on the parameters of the problem is identical to that of the main quantity.

As above, in this very simple case, this uncertainly can be expressed analytically (see Appendix A.2) and indeed

σ∂ςT
∂ςT

=
σT
T

=

√
1− e−kaL√

N

For the heterogeneous-slab configuration, the uncertainty cannot be predicted theoretically, but the conclusions of

Fig. D.5 are identical to those of Fig. D.3: in terms of relative accuracy, the convergence rate is equal to that of

the algorithm evaluating the main quantity. It is therefore strictly independent of the adjustment of k̂ to k. The

use of an acceleration grid does only what we expect: it reduces the number of null-collisions but does not impact

the variance anymore.

4.2. Full radiative transfer in a 3D configuration

In [1], a cubic benchmark configuration was used to test null-collision algorithms when dealing with three-

dimension highly-heterogeneous fields for all ranges of optical thickness and single-scattering albedo. We here make

use of the same configuration, named heterogeneous-cube hereafter, in order to test our alternative approach with

3D radiation (see Fig. D.4):

• radiation is monochromatic;

• the cube is of side 2L, with 0K black faces;

• the inside-temperature field is such that feq varies from feq = feqmax (at the center of the face at x = −L) to

feq = 0 (at x = L and (y = ±L, z = ±L)) and mimics the shape of flame: feq(x, y, z) = η(x, y, z)feqmax (see

the η profile in Fig. D.4);

• the fields of absorption and scattering coefficients follows the same spatial dependence: ka(x, y, z) = η(x, y, z)ka,max

and ka(x, y, z) = η(x, y, z)ks,max;

• The single-scattering phase function is that of Henyey-Greenstein with a uniform value of the asymmetry

parameter g;

• k̂ is adjusted to k using a regular cubic-grid (k̂ uniform within each mesh): the only parameter for k̂ is

therefore the number of mesh per direction.

The evaluated quantity A(x, y, z) is the stationary net-power density and the free physical parameters are ka,maxL,

ks,maxL and g. In Table D.6 we reproduce the computations of Table 1 in [1], i.e. testing wide ranges of optical

thicknesses but fixing g = 0 (isotropic scattering). In the same table we also provide two sensitivities, ∂ka,max and
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∂ks,max , that we evaluated simultaneously with A. As in [1], although they are not displayed, we checked that

simulation results with non-isotropic scattering lead to the exact same conclusions.

These conclusions are very similar to those reached on the slab-transmissivity example: Table D.7 highlights

the same features as Fig. D.5, the standard deviation of Alg. 3 being independent of k̂, whereas it increases when

k̂ gets close to ke for Alg. 2.

5. Conclusion

The simulation examples of the preceding section indicate that the solution proposed in Sec. 3 is practical. Sen-

sitivities can be accurately evaluated even when using null-collision algorithms. We still face convergence difficulties

for highly-scattering media, but this is an open question identified in all linear-transport physics, independently of

the use of null-collisions.

The way we bypassed the convergence difficulties specific to null-collisions is in rupture with the principle of

evaluating sensitivities ∂ςA simultaneously with the main quantity A: in all previous works, the two evaluations were

truly simultaneous in the sense that the very same samples were used in the A and ∂ςA Monte Carlo algorithms.

Here, all the samples used to evaluate A are also used for the evaluation of ∂ςA, but in order to complete the

evaluation of ∂ςA, some additional random variables must be sampled. The sensitivity evaluation has therefore a

specific computation-cost. In all our test-cases, this cost was very small compared to the total computation cost, and

considering the wide range of tested optical depths we may state that this additional cost has no practical significance

for radiative transfer applications. Other linear-transport physicas wold have to be investigated specifically.

In the present text, we only gave very little indications about absolute computer-requirements. We provided

some computation-time examples in Fig. D.6, without the use of any acceleration grid. Most of our analysis was

made with another measure: the average number of random generation per path, which should be proportional to

the computation time, but only once all optimisations will be implemented. As illustrated in [7, 9, 8, 10], such

data-access considerations in relation with null-collision algorithms (i.e the time associated to a close adjustment of

k̂ to k) is an ongoing computer-science research. The question of implementing the corresponding tools (developped

by the computer-graphics community) together with the present sensitivity evaluation algorithm will be discussed

in a separate paper.

Appendix A. Analytical variances for homogeneous-slab

Ω is a slab of length L with ~ex the incoming normal at location ~y = 0 and f∂Ω(L,− ~ex, .) = finc as boundary

condition (see figure D.2). The equilibrium distribution feq is null (no emssion) and the absorption and scattering

coefficients are ka ≡ ς and ks ≡ 0. The transmissivity is T = f(0, ~ex, ., ς)/finc.

Appendix A.1. For the standard approachs

Using Eq.(7),

∂ςT (L, ς) =

∫ ∞
0

k̂e−k̂λ dλ


H(λ− L) 0

+ H(L− λ)

 PA(ς) 0

+ PN (ς)
(
−1
kn(ς)T (L− λ, ς) + ∂ςT (L− λ, ς)

)) 
 (A.1)

12



To get the analytical variance for the standard approach (Alg. 2) in homogeneous-slab, we started by designing a

countable categorisation of paths: Cn (n ∈ N∗) is the set of paths that crossed the column and met n null-collisions

and C all other paths (path without null-collisions). The probability pn that a path belongs to the Cn category is

pn = k̂n

n! L
ne−k̂L

(
1− ka(ς)

k̂

)
The Monte Carlo weight wn obtained at the end of a path belonging to the Cn is

wn = −n
kn

The weight of a path belonging to C is zero. Therefore, the variance of the Alg. 2 is

V arAlg.2(∂ςT (L, ς)) =
∑∞
n=1 pnw

2
n −

(∑∞
n=1 pnwn

)2

= L2e−kaL
(
kn+1/L
kn

)
− L2e−2kaL

(A.2)

Appendix A.2. For the alternative approach

Using Eq.(13),

∂ςT (L, ς) =

∫ ∞
0

k̂e−k̂λ dλ


H(λ− L) (−L)

+ H(L− λ)

 PA(ς) 0

+ PN (ς) ∂ςT (L− λ, ς)


 (A.3)

The variance of a Bernoulli law of p parameter is p(1− p), and therefore the variance of Alg. 3 is

V arAlg.3(∂ςT (L, ς)) = L2e−kaL
(
1− e−kaL

)
(A.4)

Similarly for Alg. 1,

V arAlg.1(∂ςT (L, ς)) = e−kaL
(
1− e−kaL

)
(A.5)

Appendix B. Incrementation of the Monte Carlo weights

The standard approach of Alg. 2 is designed from the algorithmic-reading of Eq. 7 and the recursive nature of

this algorithm comes from the fact that the final brackets in the scattering and null-collision terms contain f and

∂ςf at the same location in the same direction. As the integral formulation of f and ∂ςf have identical structures,

we can just use one unique sampled-path to evaluate simultaneously f and ∂ςf . For a better understanding of

the meaning of this unique sampled-path, we express here the Monte Carlo weight for one path example: the

path displayed in Fig. D.1, i .e. one null-collision at location ~x1, two scatterings at location ~x2 and ~x3, and one

boundary-collision at location ~y4. Thanks to the algorithmic-reading of Eq. 7, after one null-collision at location

~x1. The notations are simplified by writing ”f” instead of w”f”. We have

∂ςf( ~x0, ~ω0, ς) = ∂ςf( ~x1, ~ω0, ς) +
∂ςkn( ~x1, ς)

kn( ~x1, ς)
f( ~x1, ~ω0, ς) (B.1)
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At this stage, ∂ςf and f need to be evaluated at the same location ( ~x1) in the same direction ( ~ω0). According to

Eq. 7, it’s possible to use the same path to evaluate ∂ςf and f . Therefore, after one scattering-collision at location

~x2 in direction ~ω2, we have ∂ςf( ~x1, ~ω0, ς) = ∂ςf( ~x2, ~ω2, ς) + ∂ςks( ~x2,ς)
ks( ~x2,ς)

f( ~x2, ~ω2, ς) and f( ~x1, ~ω0, ς) = f( ~x2, ~ω2, ς),

∂ςf( ~x0, ~ω0, ς) = ∂ςf( ~x2, ~ω2, ς) + ∂ςks( ~x2,ς)
ks( ~x2,ς)

f( ~x2, ~ω2, ς) + ∂ςkn( ~x1,ς)
kn( ~x1,ς)

f( ~x2, ~ω2, ς)

= ∂ςf( ~x2, ~ω2, ς) +
(
∂ςks( ~x2,ς)
ks( ~x2,ς)

+ ∂ςkn( ~x1,ς)
kn( ~x1,ς)

)
f( ~x2, ~ω2, ς)

(B.2)

Similarly, after one scattering at location ~x3 in direction ~ω3,

∂ςf( ~x0, ~ω0, ς) = ∂ςf( ~x3, ~ω3, ς) + ∂ςks( ~x3,ς)
ks( ~x3,ς)

f( ~x3, ~ω3, ς) +
(
∂ςks( ~x2,ς)
ks( ~x2,ς)

+ ∂ςkn( ~x1,ς)
kn( ~x1,ς)

)
f( ~x3, ~ω3, ς)

= ∂ςf( ~x3, ~ω3, ς) +
(
∂ςks( ~x3,ς)
ks( ~x3,ς)

+ ∂ςks( ~x2,ς)
ks( ~x2,ς)

+ ∂ςkn( ~x1,ς)
kn( ~x1,ς)

)
f( ~x3, ~ω3, ς)

(B.3)

and after the boundary-collision at location ~y4 in direction ~ω3,

∂ςf( ~x0, ~ω0, ς) = wς∂Ω +
(
∂ςks( ~x3,ς)
ks( ~x3,ς)

+ ∂ςks( ~x2,ς)
ks( ~x2,ς)

+ ∂ςkn( ~x1,ς)
kn( ~x1,ς)

)
w∂Ω (B.4)

where wς∂Ω = 0 and w∂Ω = f∂Ω( ~y4, ~ω3, ς). The summation of f and ∂ςf is therefore translated into an algorithm

incrementing the Monte Carlo weight. This is how the Monte Carlo weight is incremented in the fully recursive

algorithm of Alg. 3.

Appendix C. The additional sampling

To evaluate ∂ςT with the alternative approach of Alg. 3, we must evaluate

∫ λ

0

∂ςke( ~xl, ς)dl. We make use of

one additional sampling: ∫ λ

0

∂ςke( ~xl, ς)dl =

∫ λ

0

pL(l)dl ∂ςke( ~xl, ς)/pL(l) (C.1)

However, depending on the the profile of ∂ςke, this integral can be source of variance if the spatial variations of

pL(l) do not sufficiently match those ∂ςke( ~xl. We did not yet adress this importance-sampling issue and bypassed

it using stratified sampling: we increased the number of ”collisions” by including the grid-intersections to write∫ λ

0

∂ςke( ~xl, ς)dl =

∫ β1

0

pL(l1)dl1 ∂ςke( ~ζ1, ς)/pL(l1)

+

∫ β2

0

pL(l2)dl2 ∂ςke( ~ζ2, ς)/pL(l2)

+ ...

+

∫ βn

0

pL(ln)dln ∂ςke( ~ζn, ς)/pL(ln)

(C.2)

where n is the number of grid-intersections along the path [ ~x0, ~xλ]. For all i ∈ [1, n], ~zi is the location of the ith

”collision”, βi is the length between two successive ”collisions” and ~ζi = ~zi − li~ω (see Fig. D.8).

This stratified sampling is only meaningful if we assume that the grid is sufficiently refined to capture the spatial

variation of ∂ςke( ~xl). But initially, the grid was only designed to reduce the amount of null-collisions. Therefore,

another grid-refinement criterium should be introduced if this strategy is retained. But again, stratified sampling is

not the only possible solution and the grid may be used differently: make pre-computations in each mesh and sample

L only once along the whole path using importance sampling, which would suppress the increase of computation

costs when refining the grid in Fig. D.5 (R increasing in Fig. D.5c).
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Appendix D. Another possible approach: k̂ varying with ke

In Eq. (5), we chose to use a constant upper bound of ke noted k̂. Nevertheless, nothing prevents us from

varying k̂ according to the parameter ς, while preserving the fact that k̂(., ς) is independent of space in order to

still enable an easy sampling of Λ̂. Thus, we have complete freedom in the choice of these variations, and we will

choose them to reduce the variance as much as possible.

In addition, we have shown that the explosion is due to the fact that Monte Carlo’s weight includes a factor 1/kn.

This factor appeared when applying the sensitivity evaluation technique to Eq. (5), especially because of the term

∂ς

(
kn
k̂

)
.

Therefore, and now that k̂ depends on ς, we may impose ∂ς

(
kn
k̂

)
= 0, which implies the following relation:

∂ς k̂ =
∂ςke k̂

ke

Thus, by derivating Eq. (5), we obtain:

∂ςf(~x, ~ω, ς) =

∫ +∞

0

pΛ̂(λ)dλ



H(λ− λ∂Ω)

[
−w∂Ω

∫ λ∂Ω

0

∂ς k̂(~xl, ς)dl + wς∂Ω

]

+ H(λ∂Ω − λ)



PA(~x′, ς)


ψ(~x, λ, ς)wA

+
(
∂ςka
ka
− ∂ς k̂

k̂

)
|~x′,ς

wA

+ wςA



+PS(~x′, ς)
∫

4π

pS(−~ω′| − ~ω) dω′


ψ(~x, λ, ς)f(~x′, ~ω′, ς)

+
(
∂ςks
ks
− ∂ς k̂

k̂

)
|~x′,ς

f(~x′, ~ω′, ς)

+ ∂ςf(~x′, ~ω′, ς)


+PN (~x′, ς)

 ψ(~x, λ, ς)f(~x′, ~ω, ς)

+ ∂ςf(~x′, ~ω, ς)






(D.1)

with ψ(~x, λ, ς) =

(
∂ς k̂(~x′,ς)

k̂(~x′,ς)
−
∫ λ

0

∂ς k̂(~xl, ς)dl

)
We have implemented the algorithm resulting from this integral formulation and compared it with the approach

proposed in the core of the present paper. Whatever the case, it was always less efficient.
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f̄N = 0 ;
foreach i in 1 : N do

j = 0 ;
~x0 = ~x ;
~ω0 = ~ω ;
t0 = t ;
Loop = .true. ;
while Loop do

Beer sampling of λj ;
tj+1 = tj − λj

c
;

~xj+1 = ~xj − λj ~ωj ;
if tj+1 < 0 then

if λj∂Ω < λj then
f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ;

else
f̄N = f̄N + f0( ~xj − ctj ~ωj , ~ωj) ;

end
Loop = .false. ;

else
if λj∂Ω < λj then

f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ;
Loop = .false. ;

else
Uniform sampling of r ;
if 0 < r < PA( ~xj+1, tj+1, π) then

f̄N = f̄N + f eq( ~xj+1, tj+1) ;
Loop = .false. ;

else if PA( ~xj+1) < r < PA( ~xj+1, tj+1, π) + PS( ~xj+1, tj+1, π) then
Sampling of ~ωj+1 ;

end
end

end
j = j + 1 ;

end
end
f̄N = f̄N

N
;

1

Algorithm 1: The initial backward tracking null-collision algorithm. The objective of simultaneously evaluating

sensitivities will be discussed on the basis of this initial algorithm, with the idea that only small algorithmic

modifications should be required to reach this goal. N is the number of samples used to produce one Monte

Carlo estimate of f(~x, ~ω, t, ς) along the algorithmic reading of Eq.(5). This estimate is noted f̄N . ka, ks, kn

and k̂ = ka + ks + kn are respectively the absorption coefficient, the scattering coefficient, the null-collision

coefficient and the total extinction coefficient. At a given collision, PA(~x, t, ς) = ka(~x,t,ς)

k̂
, PS(~x, t, ς) = ks(~x,t,ς)

k̂
and

PN (~x, t, ς) = kn(~x,t,ς)

k̂
are respectively the absorption probability, the scattering probability and the null-collision

probability. x0 = x is the initial position, ω0 = ω is the initial direction, and t0 = t is the observation time. Ω

is the geometrical domain, ∂Ω its boundary at which the distribution function f∂Ω is known for all locations ~y

and all directions ~ω+ of the incoming hemisphere S2
+. feq is the equilibrium distribution (following the Planck

function) and f0 is the initial condition. For all j ∈ N, xj+1 = xj−λjωj , tj+1 = tj− λj
c , yj+1 = xj−λj∂Ωωj s.t.

λj∂Ω = min{‖xj − ~y‖; ~y ∈ Vect−(xj ,ωj) ∩ ∂Ω} where Vect−(~x, ~ω) = {~x− λ~ω; λ ∈ R+}.
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{
f̄N = 0 ; ∂ς f̄N = 0

}
;

foreach i in 1 : N do
j = 0 ;
~x0 = ~x ;
~ω0 = ~ω ;
t0 = t ;
w = 0 ;
Loop = .true. ;
while Loop do

Beer sampling of λj ;
tj+1 = tj − λj

c
;

~xj+1 = ~xj − λj ~ωj ;
if tj+1 < 0 then

if λj∂Ω < λj then{
f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf∂Ω( ~yj+1, ~ωj)

}
;

else{
f̄N = f̄N + f0( ~xj − ctj ~ωj , ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf0( ~xj − ctj ~ωj , ~ωj)

}
;

end
Loop = .false. ;

else
if λj∂Ω < λj then{

f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf0( ~xj − ctj ~ωj , ~ωj)
}

;
Loop = .false. ;

else
Uniform sampling of r ;
if 0 < r < PA( ~xj+1, tj+1, ς) then

w = w + ∂ςka( ~xj+1,tj+1,ς)
ka( ~xj+1,tj+1,ς) ;

{
f̄N = f̄N + f eq( ~xj+1, tj+1) ; ∂ς f̄N = ∂ς f̄N + w f eq( ~xj+1, tj+1)

}
;

Loop = .false. ;
else if PA( ~xj+1) < r < PA( ~xj+1, tj+1, ς) + PS( ~xj+1, tj+1, ς) then

Sampling of ~ωj+1 ;
w = w + ∂ςks( ~xj+1,tj+1,ς)

ks( ~xj+1,tj+1,ς) ;
else

w = w + ∂ςkn( ~xj+1,tj+1,ς)
kn( ~xj+1,tj+1,ς) ;

end
end

end
j = j + 1 ;

end
end{
f̄N ; ∂ς f̄N

}
=

{
f̄N

N
; ∂ς f̄N

N

}
;

1.
Algorithm 2: The standard approach to the simultaneous evaluation of f and its sensitivity. ∂ς f̄N is a Monte

Carlo estimate of ∂ςf(~x, ~ω, t, ς) corresponding to the algorithmic reading of Eq.(7). It is constructed together

with f̄N . Notations are described inthe caption of Alg. 1. The incrementation of the Monte Carlo weight w is

detailled in Appendix Appendix B
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{
f̄N = 0 ; ∂ς f̄N = 0

}
;

foreach i in 1 : N do
j = 0 ;
~x0 = ~x ;
~ω0 = ~ω ;
t0 = t ;
w = 0 ;
Loop = .true. ;
while Loop do

Beer sampling of λj ;
tj+1 = tj − λj

c
;

~xj+1 = ~xj − λj ~ωj ;
if tj+1 < 0 then

if λj∂Ω < λj then
Sampling of lj ∈ [0, λ∂Ω] according to pL ;
w = w − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj) ;{
f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf∂Ω( ~yj+1, ~ωj)

}
;

else
Sampling of lj ∈ [0, ctj] according to pL ;
w = w − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj) ;{
f̄N = f̄N + f0( ~xj − ctj ~ωj , ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf0( ~xj − ctj ~ωj , ~ωj)

}
;

end
Loop = .false. ;

else
if λj∂Ω < λj then

Sampling of lj ∈ [0, λ∂Ω] according to pL ;
w = w − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj) ;{
f̄N = f̄N + f∂Ω( ~yj+1, ~ωj) ; ∂ς f̄N = ∂ς f̄N + wf∂Ω( ~yj+1, ~ωj)

}
;

Loop = .false. ;
else

Sampling of lj ∈ [0, λ]according to pL ;
Uniform sampling of r ;
if 0 < r < PA( ~xj+1, tj+1, ς) then

w = w +
(
∂ςka( ~xj+1,tj+1,ς)
ka( ~xj+1,tj+1,ς) − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj)

)
;

{
f̄N = f̄N + f eq( ~xj+1, tj+1) ; ∂ς f̄N = ∂ς f̄N + wf eq( ~xj+1, tj+1)

}
;

Loop = .false. ;
else if PA( ~xj+1, tj+1, ς) < r < PA( ~xj+1, tj+1, ς) + PS( ~xj+1, tj+1, ς) then

Sampling of ~ωj+1 ;
w = w +

(
∂ςks( ~xj+1,tj+1,ς)
ks( ~xj+1,tj+1,ς) − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj)

)
;

else
w = w − ∂ςke( ~xj − lj ~ωj , ς)/pL(lj) ;

end
end

end
j = j + 1 ;

end
end{
f̄N ; ∂ς f̄N

}
=
{
f̄N

N
; ∂ς f̄N

N

}
;

1

.
Algorithm 3: The alternative approach to the simultaneous evaluation of f and its sensitivity. It corresponds

to the algorithmic reading of Eq.(13). Notations are described in the captions of Alg. 1 and Alg. 2. The incre-

mentation of the Monte Carlo weight w is detailled in Appendix Appendix B

18



Ω

∂Ω

•
~ω0

~x0

λ0

•
~ω1 = ~ω0

~x1

•
~ω2

~x2

•
~ω3 ~x3

•
~y4

λ3
∂Ω

Figure D.1: Example of a backward-sampled path obtained from Alg. 1, 2 or 3. Ω is the geometrical domain and ∂Ω its boundary. ~x0

and ~ω0 are the position and direction when starting the backward tracking (i.e. the end of the path) . This path is composed of one

null-collision at location ~x1 = ~x0−λ0 ~ω0 (the initial direction ~ω1 is kept and therefore ~ω0 = ~ω1), two scatterings at locations ~x2 (from

direction ~ω2 to direction ~ω1) and ~x3 (from direction ~ω3 to direction ~ω2), and one boundary intersection at location ~y4 = ~x3−λ3
∂Ω ~ω3.
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f∂Ω = fincf∂Ω = 0

y = 0 y = L

ka[m−1]

x
~ex

β

γ

ς

ka

k̂20%

k̂1

k̂10

k̂100

Figure D.2: The heterogeneous-slab configuration: a non diffusive heterogeneous column of length L. The absorption coefficient profile

is ka(~x, ς) = (ς − γ)
atan(−α(~x−β)+π

2
)

π/2
+ γ. Different k̂ profiles are used, closer and closer to ke ≡ ka: k̂20% is equal to 1.2max (ke)

and k̂n is constant in pieces on the grid: k̂ is exactly equal to the maximum ke-value inside a mesh and the grid is constructed

in such a way that the variations of ke are identical across each mesh). α, β, ς and γ are arbitrary parameters that allow us to

choose the shape of the absorption coefficient profile, in particular, ς is the problem-parameter. The equilibrium distribution feq is

null (no emission) and the boundary conditions are f∂Ω(L,− ~ex) = finc and f∂Ω(0, ~ex) = 0. By choosing this ke-profile, we can

calculate the transmissivity and the sensibility analytically: T = exp (− (ς − γ)K − γL) and ∂ςT = −Kexp (− (ς − γ)K − γL) where

K = 1
ς/2

(
(L− β) atan (−αL+ αβ) + βatan (αβ)− 1

2α
log
(

1+(αβ)2

1+(−αL+αβ)2

))
+ L.
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(b) Alg. 2 without null-

collision
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(c) Alg. 2 with null-collision: the standard

approach
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(d) Alg. 3 with null-collision: the alterna-

tive approach

Figure D.3: Statistical convergence for the homogeneous-slab configuration: number of samples required to reach a 1% accuracy (N1%)

when evaluating the slab transmissivity or its sensitivity as function of the ratio kn
k

(i.e. the amount of null-collisions), for optical-

thicknesses keL ≡ kaL ranging from 0.01 to 9. In this particular case the variances of Alg. 1, 2 and 3 are known analytically (see

Appendix Appendix A) and therefore N1% is also known analytically. It is displayed using solid lines. Also displayed are some example

Monte Carlo simulations, only confirming that the analytical prediction is correct. These theoretical analysis of statistical convergence

are provided for the the following four algorithms: (a.) transmissivity estimation, with null-collision, using Alg. 1 (the standard null-

collision algorithm described in Section. 2); (b.) sensitivity estimation, without null-collision, using Alg. 2 (the standard sensitivity

evaluation algorithm described in Section. 2), here with kn ≡ 0 which is possible in this particular case because ke is homogeneous;

(c.) sensitivity estimation, with null-collision, using the same standard approach as in (b.) (i.e. Alg. 2, but now with kn 6= 0); (d.)

sensitivity estimation, with null-collision, using the alternative approach (i.e. algorithm Alg. 3 described in Section. 3).
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Figure D.4: The heterogeneous-cube configuration: the cube is of side 2L, centred on ~O, with 0K black faces perpendicular to the three

axes of a cartesian coordinate system ( ~O, x, y, z). The inside-temperature field is such that feq varies from feq = feqmax (at the center of

the face at x = −L) to feq = 0 (at x = L and (y = ±L, z = ±L)): feq(x, y, z) = η(x, y, z)feqmax with η(x, y, z) = L−x
2L

(
1−

√
y2+z2

2L2

)
.

The fields of absorption and scattering coefficients follow the same spatial dependence: ka(x, y, z) = η(x, y, z)ka,max and ka(x, y, z) =

η(x, y, z)ks,max. The single-scattering phase function is that of Henyey-Greenstein with a uniform value of the asymmetry parameter

g. The total extinction coefficient k̂n is chosen constant in pieces on a n× n× n-regular grid, exactly equal to the maximum ke-value

inside each mesh. In particular, k̂1 is uniform on the whole cube and equal to ka,max + ks,max.
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Transmissivity

k̂ T σ C̄ R̄

k̂20% 0.327 5.179E-03 116.65 235.2

k̂1 0.327 5.358E-03 96.64 194.6

k̂5 0.327 5.264E-03 20.06 38.7

k̂10 0.332 4.984E-03 9.86 20.5

k̂100 0.335 5.285E-03 1.45 3.4

k̂1000 0.322 4.815E-03 0.72 1.8

(a) Evaluation of transmissivity T with Alg. 1.

Sensitivity with the standard approach

k̂ ∂ςT σ N1% R̄

k̂1 -1.915E-03 5.910E-05 95E+03 194.6

k̂5 -1.8357E-03 6.347E-05 120E+03 38.7

k̂10 -1.868E-03 1.008E-04 304E+03 20.5

k̂100 -1.852E-03 2.250E-04 1516E+03 3.4

k̂1000 -1.491E-03 5.083E-04 - 1.8

(b) Evaluation of sensitivity ∂ςT with Alg. 2.

Sensitivity with the alternative approach

k̂ ∂ςT σ N1% R̄

k̂1 -1.801E-03 2.836E-05 24E+03 288.4

k̂5 -1.838E-03 2.745E-05 22E+03 63.4

k̂10 -1.819E-03 2.720E-05 22E+03 37.7

k̂100 -1.822E-03 2.703E-05 22E+03 83.6

k̂1000 -1.807E-03 2.622E-05 20E+03 792.4

(c) Evaluation of sensitivity ∂ςT with Alg. 3.

Figure D.5: Simulation results for the heterogeneous-slab configuration: evaluation of the transmissivity T of a non diffusive het-

erogeneous column of length L where the absorption coefficient profile is such that ka(~x, ς)L = (ς − γ)
atan(−α(~x−β)+π

2
)

π/2
+ γ with

ς = 200, γ = 0.0, α = 1000, β = 0.0005L. T and ∂ςT are evaluated using N = 10000 samples. The exact solution can be obtained

by solving the radiative transfer equation analytically: Texact = 0.326 and ∂ςTexact = −1.827E − 03. N1% is the number of paths

that need to be sampled in order to reach σ = Texact
100

for transmissivity or σ = ∂kTexact
100

for sensitivity. C̄ is the average number

of null-collision per path and R̄ the average number of random generation per path. Table D.5a confirms that the computation time

decreases when k̂ gets closer to ka: the average number of random generation per path decreases when k̂ is well adjusted because

there are less null-collisions. Table D.5b highlights the fact that the better k̂ is adjusted, the greater is the standard deviation of the

sensitivity estimator. With Table D.5c we see that with the alternative approach the standard deviation of the sensitivity estimator is

independent of k̂. The fact that R̄ increases when adjusting k̂ in Table D.5c is associated to the repeated sampling of L each time a

mesh is crossed. This could be replaced with only one sample along the complete path but using importance sampling on the basis of

the information carried by the acceleration grid (see Appendix C).
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Alternative approach

ka,maxL ks,maxL A σA ∂ka,maxA σ∂ka,maxA ∂ks,maxA σ∂ks,maxA t(s)

0.1 0.1 -0.483582 8.58E-05 0.160386 8.37E-04 0.002091 1.72E-04 0.79

0.1 1.0 -0.481834 9.00E-05 0.176627 8.74E-04 0.001992 5.89E-05 1.28

0.1 3.0 -0.477867 9.92E-05 0.212956 9.53E-04 0.002097 4.17E-05 2.69

0.1 10.0 -0.463074 1.26E-04 0.342196 1.17E-03 0.002190 3.82E-05 10.91

1.0 0.1 -0.366069 2.09E-04 0.106597 1.69E-04 0.010256 4.19E-04 0.91

1.0 1.0 -0.356424 2.13E-04 0.110277 1.70E-04 0.010256 1.42E-04 1.31

1.0 3.0 -0.335872 2.20E-04 0.116637 1.72E-04 0.009890 9.37E-05 2.31

1.0 10.0 -0.276546 2.28E-04 0.125441 1.91E-04 0.007140 6.91E-05 7.16

3.0 0.1 -0.219088 2.21E-04 0.049387 6.51E-05 0.011163 5.03E-04 1.04

3.0 1.0 -0.209163 2.18E-04 0.047957 6.92E-05 0.010262 1.63E-04 1.28

3.0 3.0 -0.190149 2.10E-04 0.044937 7.74E-05 0.008717 9.89E-05 1.90

3.0 10.0 -0.143655 1.83E-04 0.035626 9.88E-05 0.005079 6.15E-05 4.16

10.0 0.1 -0.071489 1.19E-04 0.008151 3.47E-05 0.003764 4.13E-04 1.00

10.0 1.0 -0.068583 1.15E-04 0.007778 3.54E-05 0.002880 1.30E-04 1.08

10.0 3.0 -0.063426 1.06E-04 0.006771 3.69E-05 0.002478 7.59E-05 1.27

10.0 10.0 -0.050710 8.50E-05 0.004806 4.00E-05 0.001365 4.27E-05 1.93

Figure D.6: The heterogeneous-cube configuration: feqmax = 1, g = 0, ~x0 = (0, 0, 0), and N = 106 samples. Evaluation of A =

A
4πka( ~x0)f

eq
max

(the stationary net-power density) and its sensitivities ∂ka,maxA and ∂ks,maxA using the alternative approach of Alg. 3

for k̂1 = ka,max + ks,max. We check here that the alternative approach recovers the results of Table 1 in [1] with ζ = 1 (the

extinction criterion defined in [5]). The computation times displayed in the last column correspond to an Intel Core i5 - 2.5Ghz without

parallelization.
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Standard approach Alternative approach

∂ka,maxA σ∂ka,maxA ∂ks,maxA σ∂ks,maxA ∂ka,maxA σ∂ka,maxA ∂ks,maxA σ∂ks,maxA

k̂1 0.110196 1.97E-04 0.010612 1.75E-04 0.110236 1.69E-04 0.010652 1.43E-04

k̂23 0.110598 2.25E-04 0.011006 2.06E-04 0.110258 1.69E-04 0.010666 1.44E-04

k̂103 0.110202 3.95E-04 0.010506 3.85E-04 0.110345 1.69E-04 0.010649 1.43E-04

k̂1003 0.109576 1.04E-03 0.010004 1.03E-03 0.110104 1.69E-04 0.010532 1.43E-04

k̂10003 0.114101 2.72E-03 0.014621 2.72E-03 0.110199 1.69E-04 0.010719 1.43E-04

(a) ζ = 1

Standard approach Alternative approach

∂ka,maxA σ∂ka,maxA ∂ks,maxA σ∂ks,maxA ∂ka,maxA σ∂ka,maxA ∂ks,maxA σ∂ks,maxA

k̂1 0.110457 8.41E-05 0.010622 1.02E-04 0.110407 8.79E-05 0.010572 8.14E-05

k̂23 0.110434 1.15E-04 0.010648 1.21E-04 0.110365 9.99E-05 0.010579 7.92E-05

k̂103 0.110251 2.19E-04 0.010490 2.17E-04 0.110393 1.17E-04 0.010632 7.26E-05

k̂1003 0.110180 5.92E-04 0.010401 5.90E-04 0.110406 1.22E-04 0.010627 6.99E-05

k̂10003 0.112980 1.82E-03 0.013008 1.82E-03 0.110533 1.22E-04 0.010560 6.95E-05

(b) ζ = 0.1

Figure D.7: The heterogeneous-cube configuration for ka,maxL = 1, ks,maxL = 1, feqmax = 1, g = 0, ~x0 = (0, 0, 0) and N = 106

samples. ζ = 1 in Table D.7a and ζ = 0.1 in D.7b. Simulations are made for various adjustements of the k̂ profile to the true profile of

ke = ka + ks (using the k̂n notation as defined in Fig. D.2). These Tables confirm the conclusion of Fig. D.5: the standard deviation

of the alternative approach is independent of k̂ whereas it was increasing when k̂ was getting close to ke in the standard approach.
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Ω

∂Ω

•
~ω

~x

•

~ω′

~x′ = ~z3

β1

β2

β3

k̂1 k̂2

k̂3 k̂4

•~z1

•~z2

Figure D.8: In this 2D sketch, Ω is partitionned into four areas and k̂ is constant in pieces on these areas. We denote k̂1, k̂2, k̂3 and k̂4

these constants. ~x and ~ω are the location and direction at the start of the backward tracking of the path. ~x′ = ~z3 is the location of a

scattering event (from ~ω′ to ~ω). ~z1 and ~z2 are grid-collisions. β1 = || ~z1 − ~~x||, β2 = || ~z2 − ~z1|| and β3 = || ~z3 − ~z2||.
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[6] M. Galtier, M. Roger, F. André, A. Delmas, A symbolic approach for the identification of radiative properties,

Journal of Quantitative Spectroscopy and Radiative Transfer 196 (2017) 130–141.

[7] P. Kutz, R. Habel, Y. K. Li, J. Novák, Spectral and decomposition tracking for rendering heterogeneous

volumes, ACM Transactions on Graphics (TOG) 36 (4) (2017) 111.

[8] J. Novák, I. Georgiev, J. Hanika, W. Jarosz, Monte carlo methods for volumetric light transport simulation,

in: Computer Graphics Forum, Vol. 37, Wiley Online Library, 2018, pp. 551–576.

[9] J. Novák, A. Selle, W. Jarosz, Residual ratio tracking for estimating attenuation in participating media., ACM

Trans. Graph. 33 (6) (2014) 179–1.

[10] M. Raab, D. Seibert, A. Keller, Unbiased global illumination with participating media, in: Monte Carlo and

Quasi-Monte Carlo Methods 2006, Springer, 2008, pp. 591–605.
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