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Abstract We investigate the effect of small-scale heterogeneities close to a seismic explosive source,
at intermediate periods (20–50 s), with an emphasis on the resulting nonisotropic far-field radiation. First,
using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field
of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that
the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of
small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost
compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact
with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D
simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source
heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium).
In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional
seismic waveforms associated with some underground nuclear explosions conducted at the Nevada
National Security Site and invert for the full moment tensor, in order to quantify the relative contribution
of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about
35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities
of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is
observed using regional data from nuclear test explosions.

1. Introduction and Motivations

For decades, observations of anomalous phases produced by explosion-type sources have been reported.
These wave trains are short-period Sn and Lg waves with large transverse seismic components or long-period
Love surface waves [Press and Archambeau, 1962; Brune and Pomeroy, 1963; Aki et al., 1969; Priestley et al., 1990;
Vavrycuk and Kim, 2014]. Indeed, an explosive source in a 1-D horizontally layered, isotropic medium, cannot
generate SH or Love waves. Understanding the nature of this transverse shear wave generation is a major issue
for the explosion/earthquake discrimination [Taylor et al., 1989; Woods et al., 1993] and the determination of
explosion characteristics [Nuttli, 1986; Patton, 1991; Mayeda and Walter, 1996].

Numerous different physical processes have been proposed to explain those observations, depending on
the type of waves, on the distance from the receiver to the source region, and on the frequency domain
considered.

Shear waves can be generated along the propagation of an initially compressional and isotropic wavefield, this
latter interacting with geological interfaces (such as the free surface or the Moho) to produce P-to-S or Rg-to-S
conversions [Vogfjord, 1997; Baker et al., 2012]. The Rg-to-Lg scattering has also been well studied (using spec-
tral characteristics of these waves) and is often considered as a major mechanism for shear wave generation
[Gupta et al., 1992; Patton and Taylor, 1995], as well as the S*-to-Lg and P-pS-to-Lg conversions [Xie et al., 2005].
Rodgers et al. [2010] have convincingly shown, using a full numerical 3-D approach, that interaction of the com-
pressional wavefield with free surface topographical features can generate significant transverse shear waves.
At intermediate to low frequencies, path effects are also involved in transverse shear motion generation,
with such mechanisms as off-great circle propagation or multipathing [Levshin and Ritzwoller, 1995] or mode
conversions by coupling between Rayleigh and Love waves [Pedersen et al., 1998].
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Other kinds of explanation suggest that source effects are predominant with postexplosion anelastic phe-
nomenon leading to a nonisotropic far-field radiation. As a direct illustration, one may cite the recent Source
Physics Experiment (SPE) chemical explosions, for which accelerometer records of near-field ground motions
show a very significant transverse component [Townsend and Mercadente, 2014; Townsend and Obi, 2014].

In the region immediately surrounding the source, the shock wave produced by the explosion creates rock
damage, which may lead to asymmetries in the seismic radiation pattern and generate S waves [Johnson and
Sammis, 2001]. Damage may also be at the origin of secondary sources with double-couple or compensated
linear vector dipole (CLVD) attributes, due to elasticity changes (Ben-Zion and Ampuero [2009] or Patton and
Taylor [2011] that tackle the issue of damage related to tensile failure). Further, a short time after the explosion,
spall closure can occur, when the rocks above the source are accelerated upward and then collapse, and this
can be a source of nonisotropic radiations [Springer, 1974; Day and McLaughlin, 1991].

In the case of preexisting stress in the medium, the explosion can release tectonic elastic strain throughout
the damaged zone around the cavity [Press and Archambeau, 1962; Toksoz et al., 1971; Wallace et al., 1985;
Stevens and Thompson, 2015] or by triggering a nearby earthquake [Aki et al., 1969; Aki and Tsai, 1972], which
also leads to shear waves generation. Moreover, interesting numerical experiments tend to show that slid-
ing of discrete rock masses at joints under the effect of the stress wave could be the origin of tangential
components of motion [Heuzé et al., 1990; Vorobiev et al., 2015], which can also be compared to observa-
tions in the far-field by using coupling techniques between hydrodynamic modeling and elastic modeling
[Pitarka et al., 2015].

In this article, we focus on another process which has been little studied and involves the elastic interac-
tions between an explosive source and the elastic heterogeneities located in the near field [Oliver et al.,
1960; Smith, 1963; McLaughlin et al., 1992], at relatively lower frequencies. The isotropic symmetry of the
radiation pattern of the explosion, as well as the compressional mode of radiation, can be broken due to
small-scales inhomogeneities in the immediate vicinity of the source [Leavy, 1993; Ben-Menahem, 1997], which
is different and complementary to the study of the scattering everywhere but at the source [Frankel and
Clayton, 1986]. Recently, some numerical approaches investigated the case of explosions with near-source
heterogeneities and found significant shear waves generation but at higher frequencies [Pitarka et al., 2007;
Stevens and Xu, 2010].

The interests of this paper lie in the following three topics. First, we show that in the low-frequency part of a
propagating wavefield can be found a distinct and highly energetic ballistic S wave component, whose ori-
gin is the interaction of an initially compressional wave with near-field small-scale heterogeneities or even a
single small-scale heterogeneity (in the following, small scales and small distances refer to quantities much
smaller than the minimum wavelength of the wavefield). Leavy [1993] also demonstrated such an occur-
rence but within the restricting context of first-order perturbation theory. As will be discussed, this also
means that the effective moment tensor for an explosion located inside a small-scale heterogeneous region
is deviatoric.

The second interest is to be related to the way we calculate the effective moment tensor associated with
an explosive point source immersed in an area with small-scale heterogeneities. To practically perform such
a study, we could use a purely numerical brute-force approach. To this end, we could, for example, rely
on the spectral element method (SEM) [Patera, 1984; Komatitsch and Vilotte, 1998] as a solver of the elas-
tic wave equation, and compute synthetic seismograms in earth models with small-scale heterogeneities
located within the near-field of a point source explosion. The apparent far-field moment tensor could then be
obtained by inverting those synthetic seismograms. This approach would definitely work (even if very time
consuming), but we choose here a different and more physical one and we will use the brute-force approach
only as a validation tool: we rely on the nonperiodic homogenization to study these source-heterogeneities
interactions. The nonperiodic homogenization technique [Capdeville and Marigo, 2007, 2008; Capdeville et al.,
2010a, 2010b; Guillot et al., 2010] is an asymptotic method designed to upscale media: for a given minimum
wavelength and a given acoustic or elastic media containing fine-scale heterogeneities, it makes it possible
to build a smooth effective medium and an effective wave equation that reproduce the wavefield up to a
desired accuracy. In the present work, the nonperiodic homogenization makes possible to take into account
of interactions of the explosion point source with nearby small-scale heterogeneities by computing an associ-
ated source corrector and subsequently the corresponding effective moment tensor without actually solving

BURGOS ET AL. SOURCE/HETEROGENEITIES INTERACTIONS 4367



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012744

the complete wave equation. As the source corrector mainly depends on the small structure, we can directly
observe the effect of small-scale heterogeneities located close to the point source in a long period context.
It therefore makes a systematic study possible; we can compute the apparent source effect associated with
different small-scale heterogeneity characteristics without actually computing synthetic seismograms in a
complex medium.

Finally, to assess how the outcomes of our numerical approach are compatible with observations, we ana-
lyze Nevada National Security Site (NNSS) explosions’ data, which are well-known for showing nonisotropic
radiation at long period [Wallace et al., 1983, 1985]. Indeed, using only long period data enables us to focus
on source-heterogeneities interaction effects rather than on dynamic effects that cannot be handled in our
context. In our understanding of the problem, the regional inversion of the seismic tensor associated to the
NNSS data will give access to an effective moment tensor whose deviatoric part represents the observed non-
isotropic radiation. So, in this paper, we use the moment tensor inversion at regional scale of well-studied
NNSS data [Given and Mellman, 1986; Patton, 1991; Dreger and Woods, 2002; Ford et al., 2009] to evaluate the
results of our nonperiodic homogenization experiments by comparison. It appears that interactions with mild
local heterogeneities have the potential to generate almost as an anisotropic effective moment tensor for
explosions, as the one inverted for Nevada Site tests.

2. A Numerical Example of Source-Heterogeneity Interaction

We begin with a numerical example of the interaction between an explosive point source and nearby
small-scale heterogeneities. We study the wavefield propagation for two different source locations in the same
2-D elastic medium. The elastic model is built as a 600 × 600 km2 heterogeneous matrix of 50 × 50 square
elements, embedded in a 2400 × 2400 km2 homogeneous square (see Figure 1), with perfectly matched
layers (PML) [e.g., Festa et al., 2005] surrounding the physical domain to mimic radiation conditions. In each
element of the heterogeneous matrix, the elastic properties are homogeneous but their values are randomly
generated with a uniform distribution within ±25% of the outer square elastic values. Only one realization of
the random elastic properties within the heterogeneous matrix is performed: it is therefore a deterministic
medium.

For the first experiment, an explosive point source is located outside the heterogeneous inner square (100 km
away) and inside for the second experiment. For both experiments, the wavefield induced by an explosive
source with a Ricker wavelet time function of 50 s central period and 20 s corner period (corresponding to a
70 km minimum wavelength) is computed using the SEM with a mesh of square elements which honors all
the physical discontinuities of the model.

Snapshots of the resulting seismic kinetic energy for the two cases are shown in Figure 1. It clearly appears
that when the source is outside and more than one wavelength away of the heterogeneous square, only
one circular coherent energy ring, typical of an explosive ballistic isotropic P wavefront, can be observed,
followed by an incoherent coda wavefield. When the source is in the heterogeneous square, a second coher-
ent wave front can be observed, which travels slower than the first one and has a four-lobe radiation pattern,
which is typical of an S wave energy wave front generated by a double-couple source. A simple analysis
(see Figure 4) shows that it is indeed the case. From these simple numerical experiments, we conclude that the
existence of a second wave front (an S wave) leading to an apparent source with a double-couple component
is due to the presence of heterogeneities whose size and distance to the source location are much smaller
than the minimum wavelength. These heterogeneities interact with the near-field (i.e., the evanescent part of
the wavefield carrying no energy, see Aki and Richards [2002, p. 85, equation 4.35]) which is dominant for dis-
tances smaller than a small fraction of the minimum wavelength and can be neglected for distances greater
than one or two wavelength (depending on the desired accuracy). In addition, it can be seen on Figure 2 that
the four-lobe radiation pattern of the double-couple component is not generated by the propagating wave
scattered by the large-scale geometrical feature of the patch of heterogeneities (i.e., the edges of the square
patch in Figure 1).

In the next section, we use the homogenization theory as a tool to calculate and interpret these
source-heterogeneities interactions for 2-D and 3-D cases, avoiding the complex and expensive SEM step.
The 2-D experiments, allowing quick simulation, are used to first explore qualitatively the possible effects
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Figure 1. (a) Heterogeneous medium represented by S wave velocity (km s−1). The starting values for the medium are
P and S wave velocities of 6.1 km s−1 and 3.57 km s−1 and density of 2.8 g cm−3. (b) Kinetic energy snapshot (t = 225 s)
for an explosion outside of the heterogeneous square. (c) Kinetic energy snapshot (t = 150 s) for an explosion inside the
heterogeneous square. The represented domains are a zoom in the 2400 × 2400 km2 actual domain, the kinetic energy
is normalized, source locations are shown as red stars, and the contour of the heterogeneous square as dashed red line.

of the small-scale heterogeneities on the apparent moment tensor. The 3-D experiments, more numerically
intensive, are then used to quantitatively evaluate these effects only.

3. Homogenization Principle Applied to Source-Heterogeneity Interactions

For a given heterogeneous elastic medium, a propagating wavefield with a wavelength much larger than
the heterogeneity scales of the medium, only “sees” them in a effective way. In the case of a general elastic
medium (that is, when no periodicity, no statistical invariance, or natural scale separation assumption can be
made), the nonperiodic homogenization method [Capdeville et al., 2010a; Guillot et al., 2010; Capdeville et al.,
2010b] allows the determination of an upscaled, or effective, elastic medium. Compared to many homoge-
nization methods [e.g., Sanchez-Palencia, 1980; Bensoussan et al., 1978], the effective medium obtained with
the nonperiodic homogenization method is, in general, not spatially uniform but is smoother than the orig-
inal medium. In the forward-modeling context, this asymptotic method can be used as preprocessing stage
before using a numerical wave equation solver: by removing small scales, it makes it possible to accurately
model the propagation of intermediate and low-frequency wavefield at a much lower cost than when using
the original medium with small-scale heterogeneities [see Capdeville et al., 2010b, 2015]. In this paper, we
show that another interest of the method is to make it possible to calculate, understand, and visualize the
interaction of a point source with the surrounding small-scale heterogeneities without actually solving the
full elastic wave equation.

When applied to the elastodynamics issue, the nonperiodic homogenization method is based on the assump-
tion that the spectrum of the considered wavefield is cutoff at a certain frequency, or equivalently, that this
wavefield is defined by a minimal spatial wavelength 𝜆m (which can always be the case after filtering raw
seismic data). When no specific assumption on the spatial variation of the elastic properties can be made

Figure 2. Same as Figure 1 but for a circular patch of heterogeneities instead of a square one.
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(that is, no periodicity, no statistical invariance, or natural scale separation) , the separation between small
(microscopic) scales and large (macroscopic) scales is set by the parameter

𝜀0 =
𝜆0

𝜆m
, (1)

where 𝜆0 is the value below which the scales are considered as small and above which the scales are con-
sidered as large. 𝜀0 is user defined; it controls the degree of details that the effective model will contain with
respect to 𝜆m.

In general, at any space location x and time t, the elastic displacement u(x, t) is driven by the following wave
and constitutive equations

𝜌𝜕ttu − 𝛁 ⋅ 𝝈 = f , (2)

𝝈 = c ∶ 𝝐 (u) , (3)

associated with appropriate initial and boundary conditions, where 𝜌(x) is the medium mass density, c(x) its
fourth-order elastic tensor, 𝝐 (u) = 1

2

(
𝛁u +t 𝛁u

)
the strain tensor, 𝝈(x, t) the stress tensor, and f(x, t) the

seismic source vector.

The homogenization technique aims to approximate equation (2) and equation (3) with the following
effective equation

𝜌𝜀0𝜕ttu𝜀0 − 𝛁 ⋅ 𝝈𝜀0 = f𝜀0 , (4)

𝝈
𝜀0 = c𝜀0 ∶ 𝝐 (u𝜀0 ) , (5)

where (𝜌𝜀0 (x), c𝜀0 (x)) are the 𝜀0 effective mass density and elastic parameters, u𝜀0 (x, t) is the effective displace-
ment (the order 0 homogenized displacement), and𝝈

𝜀0 (x, t) is the effective stress (actually, the average of the
order 0 homogenized stress). As already mentioned, unlike what is usually found in many homogenization
processes, the effective properties here are not spatially uniform and still depend upon the space variable x.
The user defined 𝜀0 parameter controls the level of detail exhibited by the effective medium with respect
to 𝜆m. As a consequence, all the effective quantities and solutions depend upon 𝜀0. When 𝜀0 is small enough,
the effective displacement u𝜀0 is a very good approximation of u (in practice, u𝜀0 converges towards u as 𝜀2

0).

Computing the effective medium 𝜌𝜀0 and c𝜀0 as well as the strain concentrator G𝜀0 (see below and Appendix A)
is not a linear operation and requires to numerically solve a set of partial differential equations. The method
is detailed in Capdeville et al. [2010b] and Guillot et al. [2010].

When the external source term can be described by a moment tensor M acting at x0, the external source
vector is defined as

f(x, t) = −g(t)M ⋅ 𝛁𝛿(x − x0) , (6)

where g(t) is the source time function. When there are small-scale heterogeneities near the point source,
homogenization theory requires a correction of the source leading to the effective f𝜀0 . Corrections for the
receivers are also needed when they are embedded in small-scale heterogeneities (as it can be seen in
equation (A2)), but it is a term in 𝜀0 which indicates it is a small effect. f𝜀0 still has the same form but with an
effective moment tensor M𝜀0 , linearly related to the original moment tensor

M𝜀0 ≡ G𝜀0 (x0) ∶ M , (7)

with G𝜀0 (x), the strain concentrator (see Appendix A). Interestingly, G𝜀0 is a quantity that varies spatially at
the fast scale of the small heterogeneities (that is, with details of medium, even when much smaller than the
wavelength) and which, in general, does not preserve the isotropic nature of M in the explosion case. M𝜀0

is the “apparent” moment tensor and is the only one that can be retrieved with a moment tensor inversion
of the low-frequency part of seismograms. Unless the heterogeneity structure around the source is perfectly
known, it is not possible to recover the original moment tensor M. Nevertheless, assuming some plausible
heterogeneous structures near the source, the homogenization tool can evaluate the effects of such structures
on an explosion and help to interpret and understand some observed and unexpected features of related real
seismic data.
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Let us conclude this section by a general comment. To express the relative contributions of isotropic and
deviatoric parts of the effective moment tensor, the diagonalized effective moment tensor m̄ (whose elements
m̄i are the eigenvalues of M𝜀0 ) can be decomposed as follows:

m̄ =
⎡⎢⎢⎣

m̄1 0 0
0 m̄2 0
0 0 m̄3

⎤⎥⎥⎦ =
1
3

tr(m̄) I +
⎡⎢⎢⎣

m̄′
1 0 0

0 m̄′
2 0

0 0 m̄′
3

⎤⎥⎥⎦ , (8)

where the isotropic moment is defined by the trace of the tensor MI =
(

m̄1 + m̄2 + m̄3

)
∕3 which gives access

to the purely deviatoric remaining tensor (with elements m̄′
i ); this deviatoric tensor can also be decomposed

in double-couple (DC) or compensated linear vector dipole (CLVD) type of source in a nonunique way [Julian
et al., 1998]. Practically, we use the ratio pISO as the isotropic relative contribution (%), defined by Hudson et al.
[1989] as pISO = MI∕

(|MI| + |m̄′
1|) with |m̄′

1| ≥ |m̄′
2| ≥ |m̄′

3|, and pDEV = (1 − pISO) as the deviatoric relative
contribution (%) to the moment tensor.

4. Numerical Experiments in 2-D

In this section, the interaction between a point source and local heterogeneities is qualitatively studied by per-
forming 2-D numerical simulations. For a given heterogeneous elastic medium and a given corner frequency,
the nonperiodic homogenization allows the calculation of the associated effective medium and correction
terms for the source and receivers. As we investigate how the source is affected by local heterogeneities, the
idea is to neglect the effective medium as it is small compared to the wavelength and to focus only on the
effect of the source corrector as computed by the homogenization procedure.

4.1. Experiment Principle and Validation Test
In the following numerical experiments, we generate heterogeneous elastic media with various small-scale
heterogeneities near the source and then compute the corresponding source correctors by using nonperiodic
homogenization.

The heterogeneous medium, a 2400 × 2400 km2 square, is designed to be homogeneous everywhere except
in a small area around the source location (Figure 3). This small area is either composed of a single element or
of a chessboard square of 2 × 2 elements (the elements are always several times smaller than 𝜆m), each with
different constant elastic properties and density. These elements alternate positive and negative anomalies
with respect to the homogeneous medium. For the homogeneous part of the reference medium the elastic
values are those of the lower crust of the Eastern California and Western Nevada model [Song et al., 1996]:
P and S wave velocities of 6.1 km s−1 and 3.57 km s−1 and density of 2.8 g cm−3 (this model will be used in
section 6 for the full moment tensor inversions). The elastic properties in the heterogeneous part are defined
by their contrast with respect to the homogeneous surrounding domain.

To compute the source corrector in the heterogeneous medium, we use the 2-D finite element implemen-
tation of the nonperiodic homogenization of Capdeville et al. [2010b]. To this purpose, a triangular mesh,
which honors all the physical discontinuities of the model, is designed using the software Gmsh [Geuzaine and
Remacle, 2009]. The minimum wavelength of the wavefield 𝜆m is chosen to be roughly equal to 70 km, which
corresponds to a cutoff period of 20 s. In general, the effective medium and source corrector are necessary to
obtain an accurate effective solution. Here we will neglect the effective medium and use the fully surrounding
homogeneous medium instead. As we will see below, such an approximation is fine because the heteroge-
neous area is small. We define 𝜆0 to be equal to 𝜆m (𝜀0 = 1) which is of little importance as 𝜀0 mainly influences
the effective medium (it also affect the corrector but to a less extent) which is neglected and replaced by an
homogeneous one. Additionally, as in our case 𝜆min is large compared to the heterogeneity size, the choice of
𝜀0 has almost no influence.

To validate our approach, we shall systematically compare reference and homogenized solutions both com-
puted with SEM. The reference solution is computed for a simple explosion in the heterogeneous medium,
which requires the design of a fine mesh to account for the discontinuities in the heterogeneous area.
Although we can use larger elements outside the small heterogeneous area, the time step is determined by
the smallest elements of this area, whose size is much smaller than the minimum propagated wavelength 𝜆m.
It induces a large increase in the computational cost of the simulation. On the contrary, the homogenized solu-
tion is computed in a fully homogeneous medium with a corrected source term (equation (7)). It only requires
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Figure 3. (a) Kinetic energy 2-D snapshot (t = 125 s) for the reference run (explosion in a heterogeneous medium).
(b) Kinetic energy 2-D snapshot (t = 125 s) for the homogenized run (corrected source in a homogeneous medium).
The represented domains are a zoom in the 2400 × 2400 km2 actual domain, the kinetic energy is normalized, source
locations are shown as red stars, and receivers locations are shown as red triangles. A zoom in of the 2-D medium
around the source is represented for each graph (lower left corner) by the VS parameter (km/s).

a sparse mesh whose grid spacing is constrained by the minimum wavelength 𝜆m as the effective medium is
neglected (or 𝜆0 if the effective medium is considered). In both cases, PML encircle the physical domain, and
the source time function is a Ricker wavelet with a 20 s corner period.

In order to show the simplicity and accuracy of our procedure, we present an example case for one heteroge-
neous medium. The 12 × 12 km2 heterogeneous part of the medium is composed of 2 × 2 square elements
(6 × 6 km2 for each element, which is more than 10 times smaller than 𝜆m) with a contrast of elastic values
(according to Lamé parameters) and density between nearby elements of 50% (±25% between elements and
the surrounding homogeneous medium). The reference medium is homogenized, and the source corrector is
computed for a point source located at xs =t(720 m, 421 m), with x =t(0, 0) as the center of the heterogeneous
area. The source location has been deliberately chosen slightly off the square centre where the source correc-
tion is the smallest. The relevant source correction is applied to an isotropic moment tensor (equation (7)) to
obtain the corrected, effective source, which leads to a relative contribution of the deviatoric moment pDEV
up to 12.3%.

Figure 3 shows two snapshots of the wavefield kinetic energy at time t = 150 s for the two cases. Similarly, as
observed in Figure 1, two coherent wavefronts arise in the reference solution; the first is the expected P wave
front and the slower second one is typical of an S wave front induced by a double-couple source mechanism,
which is the only deviatoric source type possible in the 2-D case. This strong S wave front is not generated by
any far-field propagation effect but by the interaction between the near-field and small-scale heterogeneities
located in the immediate vicinity of the source. The heterogeneities can be small for their spatial extension
and still interact with the source and create this strong S wave coherent front (if the elastic contrast is large
enough). On the homogenized solution snapshot, it clearly appears that the wavefield, generated by the cor-
rected source and in the absence of any heterogeneities near the source, accurately reproduces the reference
one (including the S wave front).

In Figure 4 are reported the seismograms recorded at the receivers locations (plotted in Figure 3). It can be seen
that the reference (u) and homogenized (u𝜀0 ) solutions are in good agreement for both radial and transverse

components. Using displacement L2 norm misfit 𝜉 =
√

∫ tmax
0 (u𝜀0 − u)2(t)dt ∕

√
∫ tmax

0 u2(t)dt, for instance, we

obtain at the 23rd receiver 𝜉 = 0.062 for the radial component and 𝜉 = 0.076 for the transverse component.
These small remaining differences are due to the fact that the true effective medium has been replaced by a
purely homogeneous medium.

This simple numerical example validates our procedure and emphasizes the near-field nature of this process.
The strong S wave front is due to the heterogeneities in the immediate vicinity of the source; hence, a large
complex medium as shown in Figure 1 or 2 is not necessary, 2×2 heterogeneities (Figure 3), or even one single
heterogeneity (Figure B1) at the source is enough.
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Figure 4. (left) Radial and (right) transverse components of displacement recorded at the receivers shown in Figure 3.
The reference solution is plotted in black and the corrected source solution is plotted in red.

Moreover, this canonical example of a 12 km heterogeneous area which is much smaller than the 70 km min-
imum wavelength associated with the 20 s corner period of the source, is scalable to, for example, a 120 m
heterogeneous area with a 5 Hz corner frequency (corresponding to a 700 m minimum wavelength), which
will produce the exact same result.

4.2. Effect of the Heterogeneity Relative Amplitude
First, we consider how much the source corrector depends on the strength (i.e., the amplitude of the pertur-
bation of elastic values relatively to the homogeneous background medium) of the anomalies located in the
small heterogeneous area. To that purpose, we use the same mesh as the one in the validation test, a 12 × 12
km2 wide area of 2 × 2 heterogeneous square elements around the source (the elements are more than 10
times smaller than 𝜆m). We then generate a series of perturbed elastic values and density ranging from 5% to
150% between nearby elements (corresponding to the range ±2.5% to ±75% between the elements and the
surrounding homogeneous medium). Such heterogeneity contrasts are large but not unrealistic, especially in
the shallower layers of the Earth and at small scales.

All of these heterogeneous models are subsequently homogenized using nonperiodic homogenization at
order 0, and for each model, the source corrector G𝜀0 (x̂) is computed on a 2-D grid sampling x̂ of the part of
the domain around the area of heterogeneities (x̂ ∈ [−12 km, 12 km]2).

Figure 5 shows, for some values of the heterogeneity strength, the distribution of the relative contribution
of the deviatoric moment pDEV(x̂), associated with corrected moment tensor (equation (7)) for each sample
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Figure 5. Deviatoric component pDEV distribution for three 2-D heterogeneous media with various amplitude contrast
values: (a) 20%, (b) 50%, and (c) 80%. Focal mechanisms of the deviatoric component are shown for some specific
source locations on Figure 5.

of the heterogeneous area. This illustrates how strongly the source signature is perturbed as a function of
its location within the area of heterogeneities. Obviously, the pDEV(x̂) values increase as the amplitude of
the elastic and density anomalies increases throughout the heterogeneous area, for example, at x = t(1.2 km,
1.8 km): we find pDEV(20%) = 4.2%, pDEV(50%) = 9.4%, and pDEV(80%) = 13.4%. Moreover, we can notice
throughout the distribution of pDEV that the strongest values are confined to regions with the largest velocity
variations.

The maximum value of pDEV(x̂) (within the heterogeneous area) is picked out for the full range of amplitude
perturbations (Figure 10). It seems to increase logarithmically, reaching, respectively, 18%, 29%, and 39% for
20%, 40%, and 80% elastic values and density perturbations.

4.3. Effect of Heterogeneity Size and Position
Second, we consider the influence of the heterogeneity size on the source corrector, as well as the effect of its
relative location with respect to the point source. To that end, we generate heterogeneous models containing
a single quadrangle heterogeneous area whose size is varying from 2 × 2 km2 to 20 × 20 km2. The elastic
values and density perturbation with the surrounding medium is identical for all the models (50%).

Each heterogeneity model is homogenized using nonperiodic homogenization at order 0. For each model,
the source corrector is computed for a line of source locations starting from the interface between the het-
erogeneous quadrangle and the homogeneous surrounding medium to 500 km away from the quadrangle
(for distance much smaller than 𝜆m to much greater than 𝜆m).

Figure 6. Deviatoric component pDEV associated with the corrected
tensor as a function of the size and the distance (d) to a single 2-D square
heterogeneity (of 50% elastic contrast). The deviatoric component
evolution is represented for different heterogeneity size: 2 × 2 km2 (black),
5 × 5 km2 (red), 10 × 10 km2 (blue), and 20 × 20 km2 (green).

Figure 6 shows, for some heterogene-
ity size values, the relative contribu-
tion of the deviatoric moment pDEV
(for a corrected isotropic moment
tensor) as a function of the distance
to the heterogeneity. Regardless of the
heterogeneity size, pDEV decreases in
a sigmoid-shaped way as a function
of the logarithm of the distance. It
appears that the smaller the hetero-
geneity is, the faster pDEV decreases.
For instance, pDEV reaches half of its
maximum value at 1.1 km distance for
a 2 km heterogeneity, while it reaches
the same value at 2.8 km, 5.1 km, and
7.4 km for a 5 km, 10 km, and 20 km
heterogeneity, respectively. Another
point is that independently of the het-
erogeneity size, pDEV strongly tends
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to zero for a source-heterogeneity distance greater than 20 km, which has to be related to the identical mini-
mum wavelength 𝜆m = 70 km (corresponding to a 20 s minimum period) used for the homogenization of all
heterogeneous models.

5. Numerical Experiments in 3-D

We now keep analyzing the interaction between point source and local heterogeneities but in the 3-D case.
As in the previous section, we use nonperiodic homogenization to compute the source corrector (and neglect
the effective medium) associated with some models containing near-source small-scale heterogeneities.

5.1. Experiment Principle and Validation Test
The 3-D heterogeneous medium is a 1200 × 1200 × 1200 km3 cube, which is designed to be homogeneous
except in one near-source small area (compared to the minimum wavelength 𝜆m) of heterogeneities. The
small heterogeneous area is a 12 × 12 × 12 km3 chessboard cube of 2 × 2 × 2 elements, each with constant
elastic properties and density. These eight elements alternate positive and negative perturbations relatively
to the homogeneous surrounding medium. The elastic values and density of the homogeneous medium and
the heterogeneous elements are the same as that described in section 4.1.

The computation of the source corrector for a heterogeneous medium is performed using the 3-D implemen-
tation of the nonperiodic homogenization at order 0 of Capdeville et al. [2015]. Unlike the 2-D implementation
used in section 4 which is adapted to discontinuous media, this 3-D implementation extensively relies on a fast
Fourier transform iterative algorithm that implies a regular gridding of the medium which is more adapted to
continuous media. Thus, we could expect some numerical difficulties in our case, because of the small-scale
heterogeneities and discontinuities in the model. Nevertheless, this problem will be addressed further in the
section and found not to be really an issue. As in section 4 the minimum period in the wavefield is 20 s, cor-
responding to a minimum wavelength 𝜆m = 70 km. Once again, the (small) lateral variations of the effective
medium are neglected to only keep the source corrector, we use a 𝜀0 equal to 1.

The heterogeneous initial model contains interfaces and since the homogenization requires a continuous
sampling, we reach the smallest possible sampling of 25 m (for 6 km wide heterogeneous elements) using
extensive parallel computing resource to obtain the more accurate possible homogenized solution. This
sampling step corresponds to a 3 × 103 factor compared to the minimum propagated wavelength 𝜆m.

Once again, the accuracy of this approach can be evaluated using a 3-D SEM solver for computing reference
and homogenized solutions. As in section 4, the reference solution is obtained using SEM in the fine-scale
medium. Such a computation is CPU demanding, due to the occurrence of small-scale elements, requiring a
fine hexahedral mesh, hence a small time step. Computing the homogenized solution only requires a sparse
mesh for the homogeneous medium and a corrected source (equation (7)) and is as usual much a cheaper
task than for the reference solution. For both meshes the physical medium is surrounded by PMLs, and the
source time function is a Ricker wavelet of 20 s corner period.

To assess the accuracy of our 3-D procedure, we present a 3-D example case which is similar to the 2-D exam-
ple case shown in section 4.1. The heterogeneous model is homogenized, the effective medium is neglected
and replaced by an homogeneous medium, and the source corrector is computed for a source located at
xs =t(600 m, −2040 m, 600 m), with x =t(0, 0, 0) the center of the heterogeneous area). The corrected source
is obtained by applying the source corrector to an isotropic moment tensor, showing a relative contribution
of the deviatoric moment tensor pDEV roughly equal to 24.3%. We use a 3-D SEM solver to compute the ref-
erence solution (explosion in the heterogeneous medium) and the homogenized solution (corrected source
in a homogeneous medium) for the same configuration of source and receivers locations.

Snapshots of the two resulting wavefields are shown in Figure 7 at time t = 125 s. As in 2-D, two coherent
wavefronts can be observed, the faster one is the P wave front and the slower one is an S wave radiation pat-
tern (SV and SH wave energy). This S wave energy front is generated by the interaction of the compressional
wavefield with the small-scale heterogeneities near the explosive point source. The homogenized solution
presents almost identical wavefield characteristics, which implies that the corrected source accurately inte-
grates the effect of the near-source heterogeneities. It should be emphasized that this source can produce
either DC or CLVD as a function of its location in the heterogeneous area (see Appendix B for a preliminary
analysis of the corrected source decomposition into DC/CLVD in the 3-D case).
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Figure 7. (a) Kinetic energy 3-D snapshot (t = 125 s) for the reference run (explosion in a heterogeneous medium).
(b) Kinetic energy 3-D snapshot (t = 125 s) for the homogenized run (corrected source in a homogeneous medium).
The kinetic energy is normalized, source locations are shown as a blue dots, and receiver locations are shown as red
dots. The 3-D medium around the source is represented for each graph (lower left corner) by the VS parameter (km/s).

We also show the three-component seismograms recorded at the receivers locations for both reference and

homogenized cases in Figure 8. P wave direction component (L) shows a good agreement between reference

and homogenized solutions, while SV wave (Q) and SH wave (T) directions components present lower but

satisfactory agreement in amplitude. For example, at the 25th receiver, the displacement L2 norm misfit 𝜉 is

Figure 8. P wave direction (L, left), SV wave direction (Q, center), and SH wave direction (T , right) components of the
displacement recorded at the receivers shown in Figure 7. The reference solution is plotted in black, and the corrected
source solution is plotted in red.
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Figure 9. Deviatoric component pDEV distribution for three 3-D heterogeneous media with various amplitude contrast
values: (a) 25%, (b) 50%, and (c) 75%.

equal to 0.04 for the L component and 0.24 for the Q component and at the second receiver, 𝜉 is equal to
0.04 for the L component and 0.27 for the T component. These remaining small differences can be due to
the inadequate sampling of our discontinuous heterogeneous medium for the nonperiodic homogenization
procedure and also to the fact that we neglect the effective medium in the source area and propagate the
wavefield in a purely homogeneous medium.

5.2. Effect of the Heterogeneity Relative Amplitude
For the 3-D case, we only consider the effect of near-source anomalies amplitude on the source corrector. For
that purpose, we generate a series of perturbed elastic values and density ranging from 5% to 140% between
nearby elements inside the heterogeneous area (corresponding to the range ±2.5% to ±70% between the
elements and the surrounding medium).

We apply 3-D nonperiodic homogenization on these heterogeneous models and compute the source correc-
tor distribution G𝜀0 (x̂) for a 3-D grid sampling of the heterogeneous area x̂ ∈ [−12 km, 12 km]3.

The distribution of the relative contribution of the deviatoric moment pDEV(x̂) (associated with the
source corrector distribution for an isotropic tensor) is shown in Figure 9 for some amplitude values. As
expected, larger-amplitude anomalies produced stronger pDEV for the whole heterogeneous area. At point
x = t(2.88 km, 1.68 km, −0.24 km), we find pDEV(25%) = 13.2%, pDEV(50%) = 21.4%, and pDEV(75%) = 26.7%.
Besides, it appears that pDEV stronger values are located at the junction of the elements (vertices, faces, and
edges) and also in lobes along the edges.

The maximum values of pDEV(x̂) for the entire series of heterogeneous models are also reported in Figure 10.
It shows a similar trend but a larger increase than the 2-D results, reaching 23%, 37%, and 51% for 20%, 40%,
and 80% elastic values and density perturbations, respectively.

Figure 10. Maximum deviatoric component pDEV for a series of
heterogeneous media with amplitude contrast values ranging from 5% to
135%. The evolution of maximum deviatoric component is shown for the
3-D simulations (black) and the 2-D simulations (grey).

6. Deviatoric Moment
From Explosion Data

The aim of this section is to assess
if the numerically observed effects
of small-scale heterogeneities on
moment tensors (see sections 4 and 5)
are compatible with what can be
measured on long period data from
underground explosions. Such data
are very well suited to achieve our
goal for the following reasons: (1) the
original unaffected moment tensor for
an explosion is a priori known; (2) the
minimum wavelength of the wavefield
is much larger than the characte-
ristic size of the geological hetero-
geneities around the point source;
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Figure 11. Map of the western United States. Stations (blue triangles) and events (black circles) used in this study
are shown. All the events are located within the boundaries of the Nevada Test Site (red). A blowup of the events
distribution is shown on the top right corner.

(3) neglecting 3-D wave propagation effects is less critical than at short period; (4) finally because of the
recurrence of nuclear shots in the same, small areas it is easier to find different sources within a distance small
compared to the wavelength for explosion experiments than for any other type of sources.

We select the well-known database of the U.S. nuclear tests conducted at the Nevada National Security Site
(NNSS, formerly known as the Nevada Test Site) until 1992 for which the date, time, yield, location, and depth
of burial of events are directly available [Springer et al., 2002]. We collect three-component data from all the
regional broadband stations available for the largest NNSS nuclear tests since the year 1980 (about 80 events).
We only keep the data which present a high signal-to-noise ratio in order to obtain a total of 42 events
(from Pahute Mesa and Yucca Flat regions) recorded at 14 stations from the TriNet, Incorporated Research
Institutions for Seismology/U.S. Geological Survey, Berkeley Digital Seismic Network, the Lawrence Livermore
National Laboratory (LLNL) network, and Geoscope networks (Figure 11). Most of the stations are located
between azimuth 180∘ and 310∘ with epicentral distance from 1.8∘ to 4.7∘, except three stations approxi-
mately at 10∘. We remove the instrument response and filter the data between 20 s and 50 s (except for the
LLNL stations, for which we use the period range 10 s–30 s due to inaccurate sensitivity of instruments at
long period).

First, data are analyzed by comparing events whose detonation points are located within a very close distance
to each others such that observed differences in the waveforms can only be related to phenomena occurring
right at the source. Second, multiple events are gathered and compared at the same station in a more sys-
tematic manner. Third, we perform a full moment tensor inversion for some NNSS events in order to obtain
the effective moment tensor, whose deviatoric contribution is a measurement of the observed nonisotropic
radiation. It establishes reference values for comparison with our numerical experiments.

6.1. Nearby Events
As the NNSS database contains a large number of closely located events, we can study the occurrence of
nonisotropic radiation by comparing pairs of very close events. Thus, the possible propagation effects can
be neglected: the distance between a pair of events is small enough with respect to the wavelength of the
wavefield; waves are considered to propagate along similar paths. It implies that anomalous perturbations in
the waveforms between the pair of events are related to a near-source phenomenon only.

All possible combinations of pairs among the 42 selected events have been tested; we find interdistances
between events ranging from 600 m up to 50 km. There is a large number of pairs of events whose inter-
distance is much smaller than the minimum wavelength of the wavefield (roughly equal to 70 km here).
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Figure 12. Three components data from common stations for events MONTELLO (black), HOYA (red), and COMSTOCK
(green). Vertical (Z), radial (R), and transverse (T) components are filtered between 20 and 50 s. On the lower left corner
of each vertical plot, the epicentral distance, and azimuth are indicated.

However, to be compared, both events must also have approximately the same magnitude and be recorded
at a number of common stations which is large enough.

We select two pairs of events from the Pahute Mesa area which satisfy these criteria: MONTELLO/HOYA and
MONTELLO/COMSTOCK. The depths of burial of the events are almost equal, for MONTELLO, HOYA, and
COMSTOCK they are 658 m, 642 m, and 620 m, respectively. The distance between events MONTELLO
and HOYA is 2.5 km and 1.7 km between MONTELLO and COMSTOCK (Figure 12). These interdistances are
much smaller than the smallest wavelength of the wavefield. We can see in Figure 12 that the waveforms of
the couple of events MONTELLO/HOYA present a pretty good agreement for the three components at all com-
mon stations (except for the radial component of the most distant station LON), notably for the transverse
components which show large amplitudes, almost of the same order as the radial and vertical components.
For the couple of events MONTELLO/COMSTOCK (Figure 12) we can notice that while there is a good agree-
ment between radial and vertical components, the amplitude of the transverse components associated with
the event MONTELLO is much larger than the ones associated with the event COMSTOCK (except for the
station LON), which is very small with respect to the radial and vertical components.

In the first case (MONTELLO/HOYA) we observe the same high amplitudes for the transverse components
(and more generally, quite similar waveforms) for events separated by a distance of 2.5 km, the sources of
the two events could have interacted with the local heterogeneities in the same way. However, one has to
consider that source-receiver path effects may also lead to the occurrence of large tangential components. In
the second case (MONTELLO/COMSTOCK) we observe a large discrepancy between seismograms associated
with the two events. This seems to indicate that the phenomenon leading to a nonzero amplitude transverse
component is located near the source and that local heterogeneities < 1.7 km wide may dramatically affect
the regional waveforms (see section 7).

6.2. Station Collection
Another approach to analyze the data and point out the nonisotropic radiation effects in the observations, and
similar to that of the previous section, is to compare all events that have been recorded at the same station.
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Figure 13. Multiple events at same stations. For all the events recorded at each station, the amplitude of the three
components are normalized to the maximum amplitude of the vertical component. The data are filtered between
20 and 50 s except for the LLNL stations (MNV, LAC, and ELK) which are filtered between 10 and 30 s. On the lower left
corner of each vertical plot, the epicentral distance and azimuth are indicated. The scale of the transverse component
may be larger than the others.
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We select the stations that recorded a large number of events, with a high signal-to-noise ratio for the three
components. Moreover, we limit the interdistance between events to a maximum value of 10 km which is
much smaller than the minimum wavelength caught in the filtered data (70 km) even for the LLNL stations
(35 km for a minimum period of 10 s). In order to compare different events with different magnitudes, we shift
and normalize the three components, respectively, by the time and largest value of the vertical component
for each event.

In Figure 13 are shown eight stations that have recorded enough events with a high signal-to-noise ratio
(5 to 7 depending on the stations). These stations present a wide range of epicentral distance (1.8∘ to 10.4∘)
and azimuthal coverage at the regional scale. The LLNL stations (MNV, LAC, and ELK), which are filtered in a
narrower frequency band, present an accurate match of the vertical and radial waveforms for the multiple
events, whereas the waveforms for the transverse component show various amplitudes and some phase shifts
for the different events. The maximum amplitudes are 50% less than the vertical one. The longer-period sta-
tions (CMB, PAS, ANMO, and COR) also present an accurate match for the vertical and radial components, while
the waveforms of the transverse component show diverse amplitudes, with maximum values in the order
of the vertical one except for the station PAS, where maximum amplitudes are 50% more than the vertical
component. At the bottom of Figure 13 are shown seismograms recorded at the station LON: they present
the largest number of records (26 events). Once again, the transverse component waveforms present a range
from low to very high amplitudes.

We notice a large range of amplitudes on the transverse component depending on the events, indeed with
small distance between events compared to the wavelength, a large effect on the transverse component
amplitude is observed, which could be related to a local interaction with the source. Additionally, the dif-
ference between LLNL stations and longer-period stations could be an indication on the size of the local
heterogeneities. Indeed, the interaction between the near-field and small-scale heterogeneities located in
the vicinity of the source requires that the minimum wavelength of the wavefield is much larger than the size
of heterogeneities. As soon as the frequency increases, the minimum wavelength decreases and the size of
heterogeneities can no longer be seen as small scales.

6.3. Moment Tensor Inversion
We now consider the quantification of the nonisotropic radiation for a selection of NNSS events. A classical
representation of the properties of a point source is the full seismic moment tensor [Gilbert, 1971]. In the
case of a pure explosion, the moment tensor is isotropic (only related to volume variation). Otherwise, any
nonisotropic radiation implies a deviatoric part in its moment tensor representation. Therefore, the moment
tensor inversion of a carefully chosen data set provides a measure of the deviatoric parts that can be compared
to results of sections 4 and 5.

We invert for the moment tensors of 11 NNSS events, which are selected according to the number of stations
available for each event (four at least) and the quality of the signal-to-noise ratio on the three components.
We implement a time domain inversion of the data for the full moment tensor; this data vector is made of the
time seismograms u of all their components at all stations available; in vectorial form, d = t

(
u1,… ,uk,…

)
,

where uk is the displacement associated to the kth data. Seismograms can be expressed as linear combina-
tions of components of the moment tensor and the associated Green’s functions [Stump and Johnson, 1977].
The synthetic displacement ūk associated with the kth data is related to mi, the ith component of the moment
tensor and Gki the associated Green’s function, as

ūk(x, t) =
∑

i

Gki(x, t) mi (9)

or in matrix form

ū = G ⋅ m , (10)

where m is a vector gathering the six independent components of the moment tensor and G the correspond-
ing Green’s functions. As we are able to build the Green’s function (we know the location and depth of the
explosions) in equation (10), following Tarantola and Valette [1982], it is simple to solve the least square inverse
problem minimizing the L2 misfit between data u and synthetic seismograms ū to obtain the estimated
moment tensor components:

m = (Gt ⋅ G)−1 ⋅ Gt ⋅ u . (11)

BURGOS ET AL. SOURCE/HETEROGENEITIES INTERACTIONS 4381



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012744

Figure 14. Three-component data (black) and synthetics (red) associated to the best fitting moment tensor solution for
the event BEXAR. The data are filtered between 20 and 50 s except for the LLNL stations (KNB and LAC) which are filtered
between 10 and 30 s. On the lower left corner of each vertical plot, the epicentral distance and azimuth are indicated.

In order to have a better constraint of the isotropic part of the full moment tensor, the moment tensor is
decomposed into a combination of elementary sources, as

mi =
∑

n

an m∗
in , (12)

where m∗
in is the ith component of the nth elementary source and an its associated coefficient. Then we can

rewrite equation (9) with equation (12) as

uk(x, t) =
∑

n

G∗
kn(x, t) an , (13)

where G∗
kn are the Green’s function associated with the elementary sources. We choose to use the decompo-

sition of Kikuchi and Kanamori [1991], based on elementary sources

M ∗
1,…,6 =

⎡⎢⎢⎣
0 1 0
1 0 0
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 0 0
0 −1 0
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 0
0 0 1
0 1 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 1
0 0 0
1 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−1 0 0
0 0 0
0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ .
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Table 1. Summary of the Full Moment Tensor Inversion Resultsa

Event Date Depth mxx myy mzz mxy mxz myz pISO 𝜎FMT 𝜎ISO

COMSTOCK 06/02/88 620 1.147 1.374 2.977 −0.091 −0.160 0.061 0.61 88.3 81.3

ALAMO 07/07/88 622 2.525 2.118 5.880 −0.354 −0.375 −0.076 0.59 92.2 64.8

CONTACT 06/22/89 544 0.835 0.820 1.514 −0.077 −0.163 0.275 0.64 84.5 81.3

AMARILLO 06/27/89 640 0.124 0.167 0.285 −0.013 0.007 0.019 0.67 73.4 63.4

HORNITOS 10/31/89 564 0.939 0.820 1.654 −0.017 −0.105 0.028 0.68 83.9 80.7

BAMWELL 12/08/89 601 0.620 0.731 1.496 −0.110 −0.113 −0.011 0.63 80.9 67.9

HOUSTON 11/14/90 594 0.481 0.490 0.910 −0.056 0.002 −0.174 0.64 86.1 80.3

BEXAR 04/04/91 629 0.674 0.758 1.108 −0.116 −0.045 −0.003 0.76 82.2 75.5

MONTELLO 04/16/91 642 1.523 1.780 3.454 −0.332 −0.101 0.291 0.64 64.8 36.1

HOYA 09/14/91 658 0.978 0.887 1.516 −0.309 0.094 0.007 0.69 85.5 71.3

JUNCTION 03/26/92 622 0.866 1.002 2.068 −0.031 0.147 0.076 0.63 92.2 86.7
aThe depths of burial of the events are in meters. The Cartesian tensor components are in 1016 N m. The variance

reductions for full moment tensor inversion 𝜎FMT and explosive source 𝜎ISO are in percent.

Thus, the components of the full moment tensor are retrieved from the coefficients of the elementary sources,
and we can rewrite equation (12) as

M =
⎡⎢⎢⎣

m1 m4 m5

m4 m2 m6

m5 m6 m3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

a2 − a5 + a6 a1 a4

a1 −a2 + a6 a3

a4 a3 a5 + a6

⎤⎥⎥⎦ . (14)

The computation of the Green’s functions is based on a 1-D elastic model of Eastern California and Western
Nevada [Song et al., 1996]. To address uncertainties in the elastic model, following Ford et al. [2009], we first
compute a population of models by the perturbation of model parameters (for each parameter of the model,
three specific values are possible). Second, in the inversion process, the Green’s function are allowed to shift
with respect to the data (shifts are small compared to the period). The Green’s functions are calculated for
each model and each elementary source by using the normal modes method. The inversion of data for the
full moment tensor (equation (11)) is performed for the 11 selected events and for the whole population of
models. We keep the models and shifts which show the best fit to the data, with the fit 𝜎 (variance reduction)
defined as

𝜎 =
⎛⎜⎜⎜⎝

1 −

∑
k

√
∫ tmax

0 (ūk − uk)2(t)dt

∑
k

√
∫ tmax

0 u2
k(t)dt

⎞⎟⎟⎟⎠
. (15)

As an example, we show data and synthetics waveforms resulting of the full moment tensor inversion for the
event BEXAR in Figure 14. Despite small-amplitude overestimations (stations PAS and PFO) for the vertical and
radial components, the data and synthetics are in good agreement.

All the results of the full moment tensor inversion for the 11 NNSS events are summarized in Table 1. We find
moment tensor solutions with high variance reduction >80% except for MONTELLO and AMARILLO and even
>90% for some events (ALAMO, JUNCTION). The improvement of the variance reduction compared to a purely
isotropic source range from 3% to 29% depending on the amplitudes of the transverse components for the
event. The magnitude of the variance reduction depends on how different is the source from a pure explosion
and, in our case, how strong is the transverse component. In the case of a strong transverse component the
variance reduction between isotropic solution and full moment tensor solution will be large, but with a weak
transverse component it could be small.

We find isotropic moment contributions pISO ranging from 59% to 76%, with an average of about 65%. Our
results are in good agreement with the study of Ford et al. [2009] (which take into account a larger number
of events and with a refined method). Ford et al. [2009] find average pISO values about 64%, with maximum
values at 79%.
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7. Discussion

The present work is a first attempt to show that the elastic interaction between local small-scale hetero-
geneities (or a single heterogeneity) and a point source is a phenomenon that is efficient in perturbing the
initial radiation pattern. The homogenization theory, and its application to the source term, appears to be an
accurate and convenient technique to understand and calculate these local interactions. It allows us to go
further as what can be obtained using the perturbative approach suggested by Leavy [1993], as far as the
heterogeneity size is much smaller than the smallest wavelength of the wavefield.

Moment tensor inversions for carefully chosen NNSS events seem to indicate that the level of anisotropy
in their effective radiation (an average of 35%) is somewhat larger than what can be generally obtained in
the 2-D and 3-D numerical experiments conducted previously in this paper. According to these experiments,
these high values can nevertheless be reached with the following configurations: a moderate amplitude
heterogeneity in the immediate vicinity of the source or a more distant one but with a stronger amplitude.

In this systematic study, we use hypothetical values for the contrast of elastic parameters and density, ranging
from 5% to 145%, as well as for heterogeneity dimensions, down to 6 × 6 × 6 km3. As an example, we can
compare our values with the NNSS area geological settings [Howard, 1985]. Among the four main geological
units that can be distinguished (sedimentary deposits, volcanic tuff, carbonate rocks, and plutonic rocks), we
observe elastic contrasts ranging from 72% to 150% and these units are several kilometers wide and several
hundreds of meters deep. Thus, our hypothetical values are reasonable and more extreme properties for the
heterogeneity size in particular (much smaller features) can be found. Moreover, realistic geology could also
involve anisotropy, solid-fluid interface and complex geometry which we have not investigated yet.

An important application is related to the effective radiation associated with an explosive point source.
We want to underline that the elastic source/small heterogeneities interactions should not be ruled out,
concerning the generation of anomalous S wave observed in the low-frequency part of seismograms, as has
often been the case [Massé, 1981; Patton, 1991]. As pointed by Leavy [1993], the first and main effect related
to the occurrence of small scatterers in the near-field is the generation of a scattered field with a quadrantal
pattern and primary waves similar to those associated with an earthquake and therefore SH-polarized waves
(it should be noted that this polarization is defined with respect to the coordinate system related to this
“earthquake” double-couple). This mechanism may explain an intriguing observation: Rayleigh wave signals
related to explosions at the same test site are similar (in the time and frequency domains) at a given station
and do not change as the number of shots grow [McEvilly and Peppin, 1972].

This fact seemed to rule out the tectonic release hypothesis [Massé, 1981], as these signals should be lowered
after a detonation. On the contrary, our hypothesis does not contradict this observation as the amplitudes
of the initial and scattered fields are linearly related (equation (7)) and not distorted by any real tectonic
component. This observation is particularly interesting and should be accounted for in the scaling of the
long-period explosion spectrum or in yield estimation. Finally, one ought to notice that depending on the rel-
ative geographical position of the couple source/heterogeneities, the characteristics of the earthquake-like
component may be those of a strike-slip, a dip-slip, or a CLVD source mechanisms, which is the same as
the ones classically mentioned when considering tectonic release or block-driven motions, respectively,
to explain anomalous generation of S components for explosive sources.

8. Conclusion and Perspectives

We have studied the macroscopic interaction of point sources with nearby heterogeneities of size much
smaller than the wavelength. Our work is based on the nonperiodic homogenization method which makes
possible to perform such a study without explicitly computing synthetic seismograms in complex models and
to obtain directly the effective moment tensor accounting for the small-scale point source interaction.

We have conducted a set of 2-D and 3-D numerical experiments based on this method which have been
validated against a reference solution computed using the SEM solver. On one hand, the application of non-
periodic homogenization to reference media with small-scale heterogeneities around the source gives access
to the effective moment tensor and the associated deviatoric contribution to the seismic moment. This study
shows deviatoric contributions reaching 21% for 2-D and 27% for 3-D near-source heterogeneities presenting
a 25% contrast of elastic values.
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On the other hand, the full moment tensor inversions of regional waveforms associated with some NNSS
events show an average value of the deviatoric contribution close to 35%.

We therefore conclude that if the contribution of the source heterogeneity to the deviatoric moment ten-
sor is large, it cannot fully explain the observation by itself. However, this conclusion might change for more
complex heterogeneities than the ones studied here.

Nevertheless, these results enhance the contribution of the interactions between the source and local het-
erogeneities among the different physical processes involved in the generation of nonisotropic energy for an
explosive source.

Moreover, these results are not only restricted to explosive sources and show that the difference between the
effective and real moment tensors could be large in presence of local heterogeneities, which should not be
neglected given that the inverse problem only gives access to the effective tensor.

The future developments of this work are numerous. Indeed, the nonperiodic homogenization technique has
only been used here for naive heterogeneity patterns and its application to more complex geometries and
material properties remain to be done. Finally, let us mention that the issue of the topography also remain
to be studied: as nuclear tests are very shallow seismic sources, a continuation of the work of Capdeville and
Marigo [2013] to homogenize a rough topography should be considered.

Appendix A: Homogenization - External Point Source

In this appendix, we shortly recall some features related to the homogenization theory, and the way it deals
with source terms. More explanations and details can be found in Capdeville et al. [2010b]. As shown by these
authors for order 0 asymptotic expansion and with a moment tensor source, the original external force f
should be corrected. To ensure the energy conservation, we need to find a corrected force f𝜀0 such that

(
u , f

)
=
(

u𝜀0 , f𝜀0
)
+ O

(
𝜀0

)
, (A1)

where (, ) stands for the inner product, u the true displacement and u𝜀0 the order 0 homogenized displace-
ment. To the order 1, the relation between the u and u𝜀0 is

u = u𝜀0 + 𝜀0𝝌
𝜀0 ∶ 𝝐 (u𝜀0 ) + O(𝜀0) , (A2)

where 𝝌
𝜀0 is the first-order corrector associated to the problem. 𝝌𝜀0 is solution of the so-called cell problem

which is an elastostatic problem with a set of different loading. An important remark for our purpose is that if
quantities like the effective elastic tensor c𝜀0 only depend on the macroscopic scale (they are spatially smooth
quantities), the first-order corrector depends on both macroscopic and microscopic scales: it is a spatially
rough quantity, as rough as the original medium.

Following the definition for the original external force in equation (6), the corrected force f𝜀0 is associated to
a corrected moment tensor M𝜀0 as f𝜀0 (x, t) = −g(t)M𝜀0 ⋅ 𝛁𝛿(x − x0). Then, using an integration by parts and
the symmetry of the moment tensors, equation (A1) becomes

M ∶ 𝝐 (u) |x0
= M𝜀0 ∶ 𝝐x (u𝜀0 ) |x0

+ O
(
𝜀0

)
. (A3)

To the leading order, we have

𝝐(u) =
(

I + 𝛁𝝌𝜀0 +t 𝛁𝝌𝜀0
)
∶ 𝝐x (u𝜀0 ) , (A4)

and with the strain concentrator G𝜀0 = I + 𝛁𝝌𝜀0 +t 𝛁𝝌𝜀0 , one can finally write equation (A3) as

M𝜀0 ≡ G𝜀0 (x0) ∶ M . (A5)

G𝜀0 is a fourth-order tensor possessing the “minor” symmetries G𝜀0
ijkl = G𝜀0

jikl = G𝜀0
ijlk ; therefore, the symmetry

of the original moment tensor M is preserved but other properties, such as the isotropic part of M, are not.
Specifically, as the first-order corrector 𝜒𝜀0 , the strain concentrator G𝜀0 depends on both macroscopic and
microscopic scales, implying that the effective moment tensor M𝜀0 may spatially vary as fast as the medium
physical properties and independently of the wavelength of the wavefield.

BURGOS ET AL. SOURCE/HETEROGENEITIES INTERACTIONS 4385



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012744

Figure B1. Two-dimensional homogenization of an elliptic heterogeneity. (a) Deviatoric component distribution for
an heterogeneity with a 50% amplitude contrast value. Focal mechanisms of the deviatoric component are shown for
some specific source locations. (b) Kinetic energy snapshot for an explosion in the reference heterogeneous medium at
t = 150 s. (c) Kinetic energy snapshot for the corrected source (the resulting double-couple is represented in the lower
right corner) in an homogeneous medium at t = 150 s. A zoom in of the 2-D medium around the source is represented
at the lower left corner.

Appendix B: Elliptic and Ellipsoidal Heterogeneities

In this section we show examples of 2-D and 3-D numerical simulations with elliptic and ellipsoidal hetero-
geneities to further discuss the properties of the source type produced by the interaction between the near
field and the heterogeneities in the immediate vicinity of the source.

More precisely, the resulting S wave radiation depends on the geometry and the magnitude of the hetero-
geneities located in the near field. As a matter of fact, all of the quadrangles presented in the paper are (x1, x2)
orientated; thus, we show on Figures B1 and B2 two experiments based on elliptical heterogeneities. In both
cases, the heterogeneities are not orientated with domain axis. It clearly appears in those examples that we
do not need right angles to produce significant deviatoric component and that coupled heterogeneities can
produce complex distribution of deviatoric contribution to the moment tensor. For both experiments, the ori-
entation of the double-couple component depends on the location of the source. In the present case, for the
single heterogeneity or the coupled heterogeneities configuration, we obtain double-couples which are not
similarly orientated nor with (x1, x2).

As it is said that in the body of the paper, 2-D moment tensor cannot lead to a CLVD source type but can
only be decomposed in an isotropic part and a double-couple. To go further on this point, we present some
results of a similar experiment to the one described in Figure B2 but for the 3-D case. Figure B3 shows the
geometrical setup of the experiment, a 3-D medium containing two close ellipsoidal heterogeneities. A cross
section of the resulting 3-D deviatoric component distribution is shown on Figure B4, which present quite
similar interaction effect than in the 2-D case (Figure B2). Additionally, Figure B4 shows histograms of the
relative contributions of DC and CLVD for this 3-D deviatoric component distribution when it is significant
(pDEV> 10%). We find locations for the source in the heterogeneous medium where the deviatoric part is a
pure DC, as well as locations where it is a pure CLVD. In this particular setup, we find statistically stronger CLVD

Figure B2. Same as Figure B1 but for two elliptic heterogeneities instead of one.
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Figure B3. Three-dimensional homogenization of two ellipsoidal heterogeneities. Some views of the geometrical setup
are shown (rotated downward from (a) to (d) through (b) and (c)), with the two ellipsoidals respective locations (red
wireframes) and a chunk of 3-D deviatoric component distribution (the (d) view corresponds to Figure B4 cross section).

Figure B4. (a) Cross section in the 3-D deviatoric component distribution for two ellipsoidal heterogeneities with ±50%
amplitude contrast values. The geometrical setup of the medium is shown on Figure B3. Focal mechanisms of the
deviatoric component are shown for some specific source locations. (b and c) DC and CLVD respective contributions to
the deviatoric component for the same 3-D medium. The decomposition in DC (Figure B4b) and CLVD (Figure B4) is only
performed for significant deviatoric component (larger than 10%).

contributions than DC ones. Thus, as a function of the geometrical setup and source location, it is possible to
generate DC or CLVD source type, even if that should be put in perspective with the nonuniqueness of the
decomposition [Julian et al., 1998].
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