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ABSTRACT
Medical images are not typically included in protocol of motion laboratories. Thus, accurate scal-
ing of musculoskeletal models from optoelectronic data are important for any biomechanical
analysis. The aim of the current study was to identify a scaling method based on optoelectronic
data, inspired from literature, which could offer the best trade-off between accurate geometrical
parameters (segment lengths, orientation of joint axes, marker coordinates) and consistent
inverse kinematics outputs (kinematic error, joint angles). The methods were applied on 26 sub-
jects and assessed with medical imagery building EOS-based models, considered as a reference.
The main contribution of this paper is to show that the marker-based scaling followed by an
optimisation of orientation joint axes and markers local coordinates, gives the most consistent
scaling and joint angles with EOS-based models. Thus, when a non-invasive mean with an opto-
electronic system is considered, a marker-based scaling is preliminary needed to get accurate
segment lengths and to optimise joint axes and marker local coordinates to reduce kine-
matic errors.

Abbrevations: AJC: Ankle joint centre; CKE: cumulative kinematic error; DoF: degree of freedom;
EB: EOS-based; HB: height-based; HJC: hip joint centre; KJC: knee joint centre; MB: marker-based;
MSM: musculoskeletal models; SPM: statistical parametric mapping; STA: soft tissue artifact;
EBa.m*: EOS-based with optimised joint axes, and all model markers coordinates; MBa.m*: marker-
based with optimised joint axes, and all model markers coordinates; MBl.a.m: marker-based with
optimised segment lengths, joint axes, and selected model markers coordinates; ASIS: anterior
superior illiac spine; PSIS: posterior superior illiac spine
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1. Introduction

Accuracy of musculoskeletal analyses relies on mul-
tiple factors, in which the scaling of the musculoskel-
etal model (MSM) to the subject is of primary
importance. The scaling is generally performed at
multiple layers: muscle, inertial, and geometrical. The
latter is fundamental to compute accurate joint angles
and geometrical parameters (segment lengths, orienta-
tions of joint axes, and anatomical positions corre-
sponding to marker local coordinates or muscle
insertions) that are necessary to compute muscle
paths and moment arms (van den Bogert et al. 2013).
Therefore, a scaling method should provide accurate
geometrical parameters to ensure a non-negative
impact on the inverse kinematics outputs.

Models based on medical images are the current
gold standard, they provide the most accurate

geometrical parameters (Scheys et al. 2006; Blemker
et al. 2007; Valente et al. 2014). In such methods, data
from MRI (Kainz et al. 2016, 2017; Halonen et al.
2017), EOSVR (Cl�ement et al. 2015), or CT-scans
(Bartels et al. 2015; Marra et al. 2015) was used to
reconstruct 3D bone geometries through image seg-
mentation manually (Valente et al. 2014) or semi-auto-
matically (Scheys et al. 2005). Generally, imagery data
acquisition and post-processing is time-consuming. It
limits its use to small cohorts (Handsfield et al. 2014)
and prevents any routine protocol. More recently, sev-
eral authors proposed to use anthropometric similar-
ities to find the closest model within a database of
models extracted from MRIs and scaling it proportion-
ally to the subject (Ding et al. 2019; Klemt et al. 2019).

Scaling methods based on optoelectronic data are
used in many studies (Hamner and Delp, 2013;
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Dupr�e et al. 2018; Muller et al. 2019a) since they
require less required time, knowledge and money.

Many computational methods were developed,
including linear scaling (proportional scaling of the
segment lengths based on the marker placements,
Rassmussen et al. 2005), non-linear scaling (e.g.,
morphing, radial-basis functions,… , Lund et al. 2015;
Zhang et al. 2016; Nolte et al. 2019 ), and optimisa-
tion-based scaling (van den Bogert et al. 1994;
Reinbolt et al. 2005, 2007; Andersen et al. 2010b;
Lund et al. 2015; Muller et al. 2015a) The optimisa-
tion-based scaling relies on dynamic trials according
to Lund et al. 2015 and consists in minimising over a
selected time interval the least-squares error between
experimental markers and their positions on the pre-
defined kinematic model while adjusting geometrical
parameters. This approach tends to distribute the
experimental (soft tissue artefacts (STA), marker
errors,… ) and model errors on the optimised geo-
metrical parameters. Softwares such as OpenSim
(Delp et al. 2007), AnyBody (Damsgaard et al. 2006)
and CusToM (Muller et al. 2019b) use this geomet-
rical scaling method. This optimisation ensures a low
kinematic error (mean distance between experimental
and model markers over all the frames of a given
trial) after running inverse kinematics. However, the
optimised geometrical parameters cannot be directly
validated without medical images.

A few studies proposed direct validations of seg-
ment lengths scaled from optoelectronic data with
medical images. For example, in Kainz et al. (2017)
and Bartels et al. (2015), the Delp leg model (Delp
et al. 1990) was linearly scaled with the Opensim soft-
ware and segment lengths were compared to CT-
scans and MRI extractions. The studies highlighted
differences between linear scaling and medical
imagery up to respectively 30 and 100mm for the
femur length. However, these studies only relied on
one scaling approach and they did not investigate the
geometrical scaling effects on joint angles.

Therefore, the aim of the current study was to
identify a scaling method based on optoelectronic
data offering the best trade-off between accurate geo-
metrical parameters (segment lengths, orientation of
joint axes, marker coordinates) and consistent inverse
kinematics outputs (joint angles and kinematic error).
For this purpose, 5 scaling methods were applied to a
lower limb model on 26 subjects: two image-based
scaling methods, one linear scaling methods, and two
optimisation-based scaling methods. Kinematic errors
and joint angles were evaluated on hip- and knee-
joint functional movements and gait. The primary
assumption of the study was that optimisation-based
scaling methods should provide the best trade-off
between geometrical parameters accuracy with respect
to image-based methods and ensure the best inverse
kinematics consistency by reducing the kine-
matic error.

2. Material and methods

2.1. Experimental data

Optoelectronic and biplanar radiographic data was col-
lected from several studies, all of which received ethical
approvals (Comit�e de Protection des Personnes, 2006-
A00386-45, 2015-A01760-49, 2018-A00173-52).
Twenty-six subjects (four females and twenty-two
males, age: 24.3 ± 11.1 years old, height: 176.2 ± 7.6 cm,
weight: 67.3 ± 9.4 kg, BMI: 21.6 ± 2.14m/kg2) were
equipped with a set of 30 reflective markers: 14 were
placed on anatomical landmarks of the lower limbs and
adapted from ISB recommendations (Wu et al. 2002);
four technical clusters composed of four plate-mounted
markers were strapped on both shanks and thighs
(Figure 1). These clusters were only used in a solidifica-
tion procedure to reconstruct incomplete trajectories of
hidden markers (S€oderkvist and Wedin 1993). They
were not used for inverse kinematics since it has been
shown to have a minor influence on computed joint
angles (Kainz et al. 2016).

Figure 1. Subject equipped with 30 reflective markers (14 sin-
gle markers and 16 markers on technical clusters placed on
both thighs and shanks). A technical marker was placed on
the left iliac crest only for labelling purpose. Foot markers
were not included in this study. Markers were placed by
skilled experimenters who received a training in palpa-
tory anatomy.



Subjects equipped with markers underwent EOSVR

biplanar radiographs (EOSVR Imaging, Paris, France),
allowing three-dimensional reconstruction of the pel-
vis, femurs, tibiae and fibulae following a validated
protocol (Chaibi et al. 2012)— see Figure 3. This data
was used to compute the reference models (image-
based models) presented in section 2.2.3. Hip- and
knee-joint functional movements in upright position
were recorded for the right and left legs by a 12-cam-
eras motion capture system (ViconTM system; Nexus
2 software; Oxford Metrics, UK) at 100Hz: flexion/
extension of the knee; flexion/extension, abduction/
adduction and internal and external rotation of the
hip (Camomilla et al. 2006). Among the 26 subjects, 6
subjects additionally performed two gait cycles.
Markers trajectories were smoothed with a five-frame
central window moving average filter. Two passes
were done in reverse direction to minimise the shift-
ing effect. Gaps in trajectories were filled using a C2-
spline interpolation (gaps shorter than 15 frames, i.e.,
0.15 s) or using a solidification procedure based on
the other markers of the same body segment (gaps
longer than 15 frames).

2.2. Geometrical scaling

For each subject, five geometrical scaling methods
issued from the literature were applied on a generic
model resulting in five scaled models: two image-
based models (raw and optimised) that were

considered as a reference, one linear models and two
optimised models. Figure 2 provides acronyms and a
sum up of the scaling methods applied. Linear and
optimised models were calibrated using algorithms
implemented in CusToM (Muller et al. 2019b), an
open-source Matlab toolbox dedicated to inverse
dynamics based musculoskeletal simulation.

2.2.1. Generic model
A predefined 14 Degrees of Freedom (DoF) lower
limbs kinematic model was used as a generic model
for motion capture data and EOS data. It is adapted
from a leg musculoskeletal model available in the
AnyBody Managed Model Repository (Delp et al.
1990; Lund et al. 2018) and implemented in CusToM.
The lower limbs model had 6 DoF between the
ground frame and the pelvis reference frame, 3 rota-
tional DoF at the hip joint centres (HJCs), and 1 rota-
tional DoF (pure hinge joint) at the knee joint centres
(KJCs) as in (Reinbolt et al. 2005; Andersen et al.
2010b). The kinematic model was composed of 5 seg-
ments (pelvis, both femurs and both shanks), with no
foot —ending at the ankle joint centres (AJCs). ISB
conventions (Wu et al. 2002) were followed for seg-
ment frame orientations. The Z-axis of the thigh was
used as the knee joint axis. In this model, scalable
geometrical parameters were the segment lengths, the
orientations of joint axes, and the model marker posi-
tions. Depending on the type of scaling method

Figure 2. Summary of scaling steps applied to each model. The reader can refer to sections 2.2.2, 2.2.3 and 2.2.4 for more details.



applied thereafter, all part of these parameters
were scaled.

2.2.2. Linear scaling method
One linear-scaled models were computed from the
generic model called marker-based linear scaling.
Homothetic factors were computed from the ratio
between the experimental lengths and the model
lengths. The experimental segment lengths were esti-
mated from experimental markers and the generic
model segment lengths were estimated from model
markers. Pelvis experimental and model lengths were
computed with the right and left posterior superior
iliac spines (RPSIS, LPSIS) and the right and left
anterior superior iliac spines (RASIS, LASIS). Four

lengths were computed: RASIS-to-LASIS, RPSIS-to-
LPSIS, RASIS-to-RPSIS and LASIS-to-LPSIS. The
mean of the fourth ratios between experimental and
model lengths was used as the homothetic factor of
the pelvis. Experimental lengths of the femurs were
computed from HJCs (Harrington et al. 2007) and
the middle of the medial and lateral epicondyles
markers. For the shank, experimental markers placed
on knee epicondyles and malleoli were used to esti-
mate knee and ankle joint positions. It resulted in a
Marker-Based model (MB) presented in figure 2.

2.2.3. Image-based scaling method
An image-based scaling method was applied with
EOS data. An EOS-based model (EB) was built and

Figure 3. X-rays of a subject equipped with 30 markers and with four four-marker plates. X-rays were acquired with EOS.
Reconstruction of bones (pelvis, femurs, tibiae and fibulae) is also shown. The subject is positioned in a ‘shifted-feet’ standing pos-
ition to simplify bony structures recognition. This standing position has been previously validated(Chaibi et al. 2012).



considered as a reference for each subject (Melhem
et al. 2016). The 3D reconstructions of the lower limb
bones were extracted from the biplanar radiographs.
Femurs, tibiae and fibulae were reconstructed based
on a parametric model and on statistical inferences
(Chaibi et al. 2012). Regions were then automatically
segmented on the bones. The HJCs were identified
with a least-squares sphere fitting on the femoral
heads regions of the 3D mesh (Pillet et al. 2014).
Spheres were least-squares fitted on medial and lateral
posterior aspects of femoral condyles. The KJCs were
defined as the mid-points between the two spheres
centres and the knee joint axis by the line passing
through them (Sauret et al. 2016). Finally, malleoli
regions of the fibulae and the tibiae were selected on
the parametric bone models. Their barycentres were
used to create middle points which were considered
as the AJCs.

Moreover, EOS enabled to place the markers in the
segment frame directly from the reconstruction.
Markers’ locations were computed by adjusting
manually 14mm diameter sphere models on the
biplanar radiographs to match markers contours. The
reproductibility of this procedure was previously
determined at 0.35mm (Sauret et al. 2016). HJCs
locations were expressed in the pelvic coordinate sys-
tem based on the external markers of the pelvis seen
on the radiographs (Wu et al. 2002). Markers posi-
tions placed on femurs and tibiae were expressed in
segments frames, following ISB recommendations.

2.2.4. Optimisation-based scaling methods
To obtain the three last models of the study, two
kinds of optimisation-based scaling methods were
applied. Firstly, the optimisation scaling method con-
sisted in optimising homothetic factors of segments,
knee joint axes orientations and model markers local
coordinates (Table 1). It resulted in the computation
of the optimised marker-based model denoted as
MBl:a:m:, with optimised parameters denoted as

subscripts: segment lengths (l), joint axes (a) and
model markers (m).

Secondly, another optimisation-based scaling
method was applied on MB and EB models. It con-
sisted in only optimising joint axes orientations and
every model markers local coordinates specified in
Table 1. It resulted in the computation of the opti-
mised marker-based model denoted as MBa:m�: and
EBa:m�: with optimised parameters denoted as sub-
scripts: joint axes (a) and every model markers local
coordinates (m�).

For all methods, hip- and knee-joint functional
movements recorded as presented in section 2.1 were
used as an input. According to Lund et al. (2015),
dynamic trials are relevant for geometrical scaling, espe-
cially to study motions involving large joint amplitudes.

The MBl:a:m: method was performed using the MB
model as initial guess (see section 2.2.2). The MBa:m�:

and EBa:m�: methods used the MB and EB models as
initial guesses respectively (see Section 2.2.3).

The optimisation-based scaling methods consisted
in the following steps (Muller et al. 2015a): Nf frames
equally spaced in time were extracted from hip- and
knee-joint functional movements data. It was set to
Nf ¼ 100 after prior experiments as a good trade-off
between convergence and computation time. A first
inverse kinematics step (Lu and O’Connor 1999) was
performed over the selected frames (with MB or EB
models) using an interior-point algorithm to get an
initial guess of joint angles q. Then, a parameter opti-
misation step was performed to identify homothetic
factors k, rotations a of joint axes and variations of
marker local coordinates Dp: All variables were nor-
malised between [�1,1] (Reinbolt et al. 2005). These
parameters were optimised by minimising the cumu-
lative kinematic error (CKE), denoted as U, in
Equation 1. The CKE is the cumulative quadratic sum
of the Euclidean distances between experimental
markers positions Xexp,m and model markers positions
X

Rglobal

mod,m over the Nf selected frames:

Table 1. Markers local coordinates allowed to be optimised (Wu et al. 2002) with MBl:a:m: scaling. The seven markers are placed
on the right and left sides. x, y, z coordinates are respectively antero-posterior, longitudinal and medio-lateral. With MBa:m�: and
EBa:m�: every coordinates are optimised. Marker clusters on thighs and shanks were not considered in geometrical scaling and
inverse kinematics. The choice of the coordinates to optimise was based on the analysis of the biomechanical model ensuring a
proper convergence of the algorithm.
Palpated landmarks for marker placement Body segment optimised x-coordinate optimised y-coordinate optimised z-coordinate

Posterior superior iliac spine Pelvis Yes No Yes
Anterior superior iliac spine Pelvis Yes No Yes
Lateral femur epicondyle Thigh No No No
Medial femur epicondyle Thigh Yes No Yes
Fibula head Shank Yes No Yes
Lateral malleolus Shank No No No
Medial malleolus Shank Yes No No



U ¼
XNf

f

XNm

m

jjXexp,mðtf Þ�X
Rglobal

mod,mðqðtf Þ, k, a,DpÞjj2

(1)

where Nm is the number of markers in the model.
The minimisation was bounded with constraints as
shown in Equation (2):

mink, a,Dp Uðqðtf Þ, k, a,DpÞ
s:t: 8s 2 1;Ns½ �½ �,

����
ks
k0s

�1

����< 20%

8a 2 1;Na½ �½ �, aa,min <aa <aa,max

8lc 2 1;Nlc½ �½ �, jDplcj< 0:05m

(2)

where Ns is the number of solids, Na is the number
of parameters associated to the rotation of joint axes
and Nlc is the number optimised marker local coordi-
nates. Markers local coordinates to be optimised are
adapted from (Andersen et al. 2010b) and ensured
the equation system to be determined for a single
frame. Homothetic factors were constrained to vary
by 620% in the MBl:a:m: scaling and they did not
vary in MBa:m�: and EBa:m�:: Marker local coordinates
variations were constrained to vary by ±5 cm. Knee
joint axes (Z-oriented) were optimised with a X-Y
rotation sequence in the thigh local frame. Rotations
were constrained to 620

�
around X-axis and to 630

�

around Y-axis.
Finally, inverse kinematics and parameters opti-

misation were successively executed in a loop until
the mean variation of CKE between (i� 1)th and ith

loops was less than 1%.

2.3. Model evaluation & statistical analysis

Models were evaluated thanks to three quantities: geo-
metrical parameters (segment lengths, rotations of
joint axes, markers local coordinates), kinematic
errors and joint angles.

Segment lengths of MB/MBa:m�: and MBl:a:m: mod-
els were compared to the EB/EBa:m�: reference models
and to the literature (Bartels et al. 2015; Kainz et al.
2017): namely inter-hip distance (right to left HJC),
femur lengths (HJC to KJC) and shank lengths (KJC
to AJC). A non-parametric Friedman’s test verified if
the segment lengths of the five models among sub-
jects were significantly different (p< 0.05). A post-hoc
Tukey’s HSD test assessed significant differences
among models compared to EB models. The X and Y
rotations of joint axes and variations of markers local
coordinates were quantified on optimisation-based
models MBl:a:m:, MBa:m�: and EBa:m�::

Joint angles of hip- and knee-joint functional
movements and gait cycles were computed using
inverse kinematics, also called multibody kinematic
optimisation (Lu and O’Connor 1999; Begon et al.
2017), with markers mentioned in Table 1. They had
a weight factor of 1. Resulting kinematic errors of
functional movements were compared for the five
models. As for the segment lengths, the same statis-
tical tests were applied for kinematic errors. For gait
cycles, joint angles of hips and knees obtained with
all models were compared to EBa:m�: results, consid-
ered as a reference. One-way ANOVA tests using stat-
istical parametric mapping (SPM) (Pataky et al. 2015)
over the duration of the gait trials were computed to
compare each model condition as a repeated measure.
In case of significant difference, two-tailed t-tests
(p< 0.05) between models and the reference EBa:m�:

were applied to identify when these differences
occurred during the gait cycle.

3. Results

3.1. Geometrical parameters

Segment lengths are presented in Table 2. Distances
with respect to the EB model are presented in Figure
4. Significant differences were found among models
for each length (p< 0.05 and p< 0.001). Indeed, for
the right femur, the mean distances between MB and
MBl:a:m: models with the EB model were respectively,
4.0 ± 13.8mm and 8.4 ± 12.5mm. For the left femur,
MB and MBl:a:m: models exhibited mean distances of
0.88 ± 16.3mm and 5.1 ± 13.3mm.

Mean distance of inter-hip distance with the EB
model ranged between �10.8 ± 19.9mm (MB) and
4.0 ± 18.5mm (MBl:a:m:). Right and left shanks lengths
exhibited errors similar to the femurs. Tukey’s HSD
revealed that right femur and tibia lengths from
MBl:a:m: models were significantly different from the
EB model. However, inter-hip distance from MB/
MBa:m�: and MBl:a:m: were not significantly different
from the EB model.

Initial medio-lateral knee axes orientations were
optimised in three models: MBl:a:m:, MBa:m�: and
EBa:m�:: Mean and standard deviation associated to
successive X and Y rotations are presented in Table 3.
Both orientation adjustments were about –2� to 2�

Standard deviations of MBl:a:m: models were higher
than other models (3.22� to 4.06�).

In average, variations of markers local coordinates
of MBl:a:m:, MBa:m�:, EBa:m�: models were respectively
of 5.6 ± 12.7mm, 12.3 ± 9.8mm, 6.3 ± 7.8mm.



3.2. Kinematic errors

Overall, inverse kinematics on hip- and knee-joint
functional movements resulted in different kinematic
errors (Figure 5). MB models exhibited the largest
kinematic errors (27.4 ± 3.7mm). MBl:a:m: and MBa:m�:

models showed lower kinematic errors (11.0 ± 1.6mm
and 6.5 ± 1.2mm). EB model showed higher kinematic
errors than optimised models (8.9 ± 3.1mm) but
EBa:m�: models showed the lowest kinematic
error (5.4 ± 0.8mm).

Friedman’s test revealed significant differences
between the models. The kinematic errors of MB
models were significantly higher than these of
MBl:a:m:, MBa:m�:, EB and EBa:m�: models. Also, kine-
matic errors from EBa:m�: models were significantly
lower than MBl:a:m: and EB models. However, no sig-
nificant difference was found for kinematic errors
from MBa:m�: models with respect to EB and EBa:m�:

models. Finally, MBa:m�:, EB and EBa:m�: models had
similar kinematic errors.

3.3. Joint angles

Among the six subjects who performed two gait
cycles each, significant differences in joint angles were
identified between models, particularly at the hip joint
(Figure 6). Right and left hip flexion angles computed
with EBa:m�: model were significantly different from
these resulting from the MB, MBl:a:m: and EB models.
Also EB models were significantly different from
EBa:m�: models for right and left knee flexion.
Differences between angles arose at different instants
of the stride, depending on the considered joint.

4. Discussion

The primary assumption of the study was that optimisa-
tion-based scaling methods should provide the best
trade-off between geometrical parameters accuracy with
respect to image-based methods and ensure the best
inverse kinematics consistency by reducing the kinematic
error. To investigate this assumption, 5 scaling methods
were applied to a lower limb model on 26 subjects with a

14-DoF generic kinematic model of the lower limbs. The
EOS reconstructions of the cohort, considered as the
image-based ground truth (Melhem et al. 2016), were a
valuable opportunity to assess geometrical scaling meth-
ods based on optoelectronic data. The EOS-based models
(EB and EBa:m�:) have been considered as a reference for
the geometrical parameters and only EBa:m�: models were
considered for the joint angles.

4.1. Geometrical parameters

Optimising lengths and markers concomitantly induce
overfitting for geometrical parameters. Indeed, left and
right femur lengths were best evaluated by the marker-
based (MB) method which does not optimise segment
lengths. However, several studies have claimed that
optimising all geometrical parameters is better at esti-
mating segment lengths (Reinbolt et al. 2005; Andersen
et al. 2010b; Lund et al. 2015). They reported up to 80,
67.1, and 10mm in segment lengths variations between
optimisation-based and linear scaling approaches - see
Table 4. However, none of these studies validated the
optimised segment lengths directly.

The current study showed significantly lower dif-
ferences between MB scaled femur lengths and the EB
reference compared to the literature (Bartels et al.
2015; Kainz et al. 2017), which exhibited up to
100mm differences with CT-scan results. It can be
explained by the cohorts of the these studies which
were partly pathological (osteoarthritis and cerebral
palsy). In the current study, the 26 subjects were
healthy and practiced regular physical activity.

Optimisation of joint axes was required because
such anatomical aspects differ for every subject
(Eckhoff et al. 2003). It led to changes in the orienta-
tions of knee joint axes below 5

�
: These low changes

may indicate that the kinematic errors were mostly
due to inadequate lengths.

Optimisation of model markers local coordinates
was supposed to limit the effects of STA and of the
uncertainty of marker placement, even if this last
source of error was mitigated by the training of the
experimenters (Della Croce et al. 2005). In the last
paragraph of the section 3.1, the changes in marker

Table 2. Segment lengths (mean and standard deviation) for five models: MB, MBl:a:m:, MBa:m�:, EB and EBa:m�::
Friedman’s test investigated significant differences between models and Tukey’s HSD investigated significant differ-
ences with the EB model. �, ��, ��� indicated respective p-values < 0.05, < 0.005, < 0.001.

Friedmans’ test significance MB / MBa:m� : MBl:a:m: EB / EBa:m� :

Right Femur � 435.8 (26.8) 440.2�� (23.3) 431.8 (23.3)
Left Femur � 434.0 (27.3) 438.2� (23.5) 433.1 (22.7)
Inter-Hip ��� 162.7 (19.8) 177.4 (18.4) 173.5 (9.7)
Right Shank ��� 419.6 (24.8) 431.5��� (24.3) 415.7 (23.1)
Left Shank ��� 418.5 (25.2) 431.1��� (24.1) 414.7 (22.7)



local coordinates after optimisation were consistent
with respect to the literature because they had the
same order of magnitude as the reported STA: 20mm
for the shank, 30mm for the thigh and 9mm for the
pelvis (Leardini et al. 2005; Camomilla et al. 2017).
The choice of dynamic trials as an input of the opti-
misation procedures had an impact on the results,
since they are supposed to be subject to STA through
the body motion. Indeed, static trials would have
given relevant results close to the static configuration
but may have suffered from larger kinematics errors
for bigger joint angle magnitudes of the motions to
be analysed. Therefore, in this study, dynamic trials
were preferred to static trials since the motions to be
evaluated were gaits, involving large joint amplitudes.

4.2. Kinematic errors

Resulting kinematic errors of MBl:a:m:, MBa:m�:, EB
and EBa:m�: models were in accordance with literature
results of optimisation-based approaches (Reinbolt

Figure 4. Distance (mean and standard deviation) between segment lengths (femurs, shanks, inter-hip distances) issued from the
reference model (EB) and segment lengths issued from MB, MBa:m�: and MBl:a:m: models. Results from the literature are presented
(Bartels et al. 2015; Kainz et al. 2017). Results from Kainz et al. (2017) refer to Figure 1 of the article, in the accuracy column, typ-
ically developed participants.

Table 3. Frontal plane rotations X and transverse plane rotations Y (mean and standard deviation) of right and left knee rotation
axes for three models: MBl:a:m:, MBa:m�:, EBa:m�::

Optimisation-based models
MBa:m� : MBl:a:m: EBa:m� :

Rotations (
�
) x y x y x y

Right Knee Axis 0.44 (2.26) �2.06 (2.68) 1.21 (3.59) �0.54 (4.06) 1.94 (1.83) �2.02 (2.1)
Left Knee Axis �0.54 (2.14) 1.85 (2.6) �1.84 (3.22) 0.87 (3.57) �0.81 (1.84) 0.81 (2.16)

Figure 5. Kinematic errors (mean and standard deviation) on
hip- and knee-joint functional movements with five models:
HB, MB, MBl:a:m:, MBa:m�:, EB and EBa:m�::

�, ��, ��� indicated
respective p-values < 0.05, < 0.005, < 0.001 with respect to
Tukey’s honest significant difference criterion.



et al. 2005, 2007; Andersen et al. 2010b; Lund et al.
2015; Muller et al. 2015a) - see Table 5. However, MB
models exhibited larger kinematic errors than the lit-
erature. So, tuning only segment lengths is not
enough to scale the model, mainly because of mis-
placements of experimental markers and STA.

On the contrary, the MBl:a:m: and MBa:m�: methods
were robust to the minimisation of kinematic errors over
the 26 subjects, despite various sources of errors (Begon
et al. 2017): measurement errors, segment lengths, DoF
of the model. However, MBl:a:m: model misestimated seg-
ment lengths compared to MB and MBa:m�: models
which were closer to the EBa:m�: reference models.

Therefore, the most appropriate method to be
applied in marker-based geometrical scaling is an
optimisation of marker local coordinates which ena-
bles a better location of markers and minimises STA
effects. These results are in accordance with the
Opensim scaling method (Reinbolt et al. 2005).

4.3. Joint angles

The MBa:m�: and EBa:m�: methods exhibited similar
joint angles. This is of interest since in these models,

the segments lengths were very similar and supposed
to be accurate. It indicates that the optimisation of
the marker local coordinates resulted in a similar
effect on the joint angles computation for both meth-
ods, whereas MBl:a:m: led to different results. Low
kinematic errors of MBa:m�: and EBa:m�: does not
necessarily mean that joint angles were accurate or
that STA were fully compensated (Bonnet et al. 2017).
Kinematic accuracy can only really be assessed with
intra-cortical pins (Andersen et al. 2010a) or biplanar
fluoroscopic data (Gasparutto et al. 2015; Richard
et al. 2017). However, the consistency between both
results and the low kinematic error suggests that the
primary assumption of the study, i.e., that

Figure 6. Hip, knee joint angle means over 12 gait trials performed by 6 subjects with a standard deviation cloud for each of the
5 models for one stride. Dark blue line represents the MB model. Light blue and green lines represent MBl:a:m:, MBa:m�: models
respectively. The EB and EBa:m�: models are in orange and yellow. Shaded rectangles along the x-axis show incidences of signifi-
cant differences between at least 2 model conditions (p< 0.05) after one-way ANOVA and SPM-Bonferroni correction. Vertical bars
represent the timing of the gait events. CTO: Contra-lateral toe-off. CHS: Contra-lateral heel-strike. TO: Toe-off.

Table 4. Maximal length variations between scaling methods in the literature.
Maximal length variations reported Reinbolt et al. 2005 Andersen et al. 2010b Lund et al. 2015 Present study

Value (mm) 67.1 10 80 14.7
Geometrical parameter Right hip location Left foot length Right hip location inter-hip distances

Table 5. Mean kinematic errors of scaled models after
inverse kinematics.
Study/methods Mean kinematic errors (mm)

Reinbolt et al. (2005) 7.8
Andersen et al. (2010b) 5.5
Muller et al. (2015a) 8.6
Lund et al. (2015) 4.5
Present study – MBl:a:m: 10.8
Present study – MBa:m� : 6.5
Present study – EB 8.8
Present study – EBa:m�: 5.3



optimisation-based scaling methods should provide
the best trade-off between geometrical parameters
accuracy with respect to image-based methods and
ensure the best inverse kinematics consistency, is not
supported. It seems more relevant to use MBa:m�:

instead of MBl:a:m: to scale the model in a musculo-
skeletal study.

4.4. Methodological limitations

The study has several limitations that should be
noted. First of all, optimisation-based methods may
lead to overfitting. It tends to spread the experimental
and model errors on the optimised geometrical
parameters, namely the segment lengths, the marker
local coordinates and the joint axes. To ensure a good
balance between correct segment lengths and low
kinematic errors, well-chosen constraints and correct
initial guesses are required. The optimisation-based
methods are robust and guarantee to reduce kine-
matic errors but the results of the study show that it
is preferable to exclude the segment lengths of the
lower limbs from any optimisation-based scaling.

Computationally, a subject was scaled in less than
4minutes for Nf ¼ 100 frames (3.10GHz laptop, 32
Go RAM). This computation time may be reduced by
working on the choice and the number of frames to
include in the optimisation (Muller et al. 2015b). The
study was also limited by the way the scaling was
defined: the homothetic factor was uniformly applied
in all directions of a given segment. It has consequen-
ces on the scaling of large bones such as the pelvis. A
solution may be to declare multiple scaling factors for
each segment and optimise them separately
(Rassmussen et al. 2005; Delp et al. 2007) with well-
chosen markers weights in the optimisation (Trinler
and Baker 2018). Non-linear functions could also be
used to enhance the scaling properties before an opti-
misation as in MBa:m�:, as it has been done in Lund
et al. (2015); Zhang et al. (2016); Nolte et al. (2019).
Another enhancement may be to use a database of
models extracted from MRIs and to get a closer initial
guess, as proposed in (Ding et al. 2019; Klemt
et al. 2019).

Feet scaling is another issue that was not handled
in the current study. Feet data from the EOS biplanar
images have to be considered for a future
extended protocol.

Last, the knee model was limited to one rotational
DoF and its validity is still discussed in the literature
(Gasparutto et al. 2015; Cl�ement et al. 2015): accord-
ing to Kainz et al. 2016, knee models have an

influence on computed joint angles. In the future,
more complex models could be evaluated to confirm
the use of MBa:m�: for scaling.

5. Conclusion

The current study aimed at identifying a scaling
method based on optoelectronic data offering the best
trade-off between accurate geometrical parameters
(segment lengths, orientation of joint axes, marker
coordinates) and consistent inverse kinematics out-
puts (joint angles and kinematic error). The primary
assumption of the study was that optimisation-based
scaling methods should provide the best trade-off
between geometrical parameters accuracy with respect
to image-based methods and ensure the best inverse
kinematics consistency. It has not been supported by
the results, since the optimised segment lengths
obtained with MBl:a:m: were significantly different
from the these obtained from the EOS reference
measures, and led to an higher kinematic error.
Finally, the marker-based scaling with optimised
model marker coordinates and joint axes in MBa:m�:

gave the most consistent scaling and joint angles with
regard to these obtained from the EOS measures.
This study is of interest since this scaling is the first
step to be applied to a model in any musculoskeletal
study. An interesting future work may be to investi-
gate the effect of such scaling on the muscle paths
and the moment arms of the model that are funda-
mental to run accurate musculoskeletal analyses.
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