
HAL Id: hal-02546018
https://hal.science/hal-02546018

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable streaming protocol for lossy networks
Mathias Brulatout, Hicham Khalife, Vania Conan, Jérémie Leguay, Emmanuel

Lochin, Jérôme Lacan

To cite this version:
Mathias Brulatout, Hicham Khalife, Vania Conan, Jérémie Leguay, Emmanuel Lochin, et al..
Reliable streaming protocol for lossy networks. 2015 International Wireless Communications
and Mobile Computing Conference (IWCMC), Aug 2015, Dubrovnik, Croatia. pp.1486-1491,
�10.1109/IWCMC.2015.7289302�. �hal-02546018�

https://hal.science/hal-02546018
https://hal.archives-ouvertes.fr

To cite this version : Brulatout, Mathias and Khalifé, Hicham and
Conan, Vania and Leguay, Jérémie and Lochin, Emmanuel and
Lacan, Jérôme Reliable streaming protocol for lossy networks.
(In Press: 2015) In: The International Wireless Communications &
Mobile Computing Conference, 24 August 2015 - 27 August 2015
(Dubrovnik, Croatia).

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13912

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Reliable Streaming Protocol for Lossy Networks
Mathias Brulatout, Hicham Khalifé,

Vania Conan
Thales Communications & Security

4 rue des Louvresses
92230 Gennevilliers, France

firstname.name@thalesgroup.com

Jérémie Leguay
Huawei Technologies Co. Ltd

Mathematical and Algorithmic Sciences lab
French Research Center

jeremie.leguay@huawei.com

Emmanuel Lochin, Jérôme Lacan
ISAE Toulouse

10 avenue Édouard Belin
31400 Toulouse, France
firstname.name@isae.fr

Index Terms—Reliable transport, linear on-the-fly coding
scheme, lossy link.

Abstract—This paper introduces REST, a reliable streaming
protocol for lossy networks. REST ensures full reliability while
recovering losses as soon as possible thanks to the proactive
injection of redundancy packets encoded following an on-the-fly
scheme. It dynamically adapts the sending of codes depending
on the estimation of the packet error rate with periodic acknowl-
edgments to limit feedback dependency and protocol overhead.
Results show that data are smoothly delivered to the receiving
application with minimum overhead when errors are uniform.
For systems with limited processing capacity, we propose to use
a bounded encoding window to deliver data more uniformly
while limiting decoding matrices size. We study the performance
of REST under different network conditions and highlight the
underlying trade-offs behind each system parameter. We show
that an optimal acknowledgement frequency can be estimated to
minimize overhead while meeting system requirements in terms
of delivery delay and computational power.

I. INTRODUCTION

The physical layer of today’s wireless communication sys-
tems such as LTE/LTE-A and Wi-Fi focuses on lossless con-
nectivity which are achieved by accurate network planning and
link budget allocation. This paper considers wireless networks
where the channel is still difficult to estimate in a stable and
timely manner, leading to lossy network links. Such harsh
conditions can be found in public safety and military systems,
preventing accurate and stable channel estimation due to long
propagation delays, fast mobility and high interference.

In this context, this paper targets a particular type of
streaming applications which require a full reliable service.
Such applications cannot tolerate any losses and should con-
sume data in-order as soon as possible. An example of such
application in surveillance systems is the streaming of audio or
video flows that should be consumed in real-time by operators
but also recorded in a lossless manner for later use. Our goal
is then to design a reliable streaming protocol which recovers
losses as soon as possible. As lossy networks often suffer from
scare resources and sometimes long delays, we also seek to
limit protocol overhead and processing complexity.

To ensure a full reliable streaming service, feedback from
the receiver to the source are necessary to organize the
recovery of losses. However, they introduce high overhead
if all packets are acknowledged, like in TCP [2], and they

can also slow down the error recovery process in case of
high round trip times (RTT), as the connection may stall
if no feedback is received [4]. To provide full reliability in
lossy networks, there is one coded based reliability mechanism
which proposes to integrate the use of an on-the-fly code
(RLNC [1]) in TCP. The resulting proposal, named CTCP [3],
mitigates the retransmission of a full data block by sending
redundancy packets. In this paper and in the context of reliable
streaming over lossy networks, CTCP is not appropriate as it
generates too much overhead from acknowledging every single
data packet, depends too much on RTT estimation and does not
deliver data smoothly to the application as it follows standard
TCP behaviour.

This paper aims at filling this gap by presenting REST (Re-
liable Streaming for Lossy Networks), a reliable streaming
protocol which ensures full reliability while repairing losses
as soon as possible thanks to the proactive injection of
redundancy based on an on-the-fly coding scheme. It dy-
namically adapts the sending of redundancy codes depending
on the estimation of the packet error rate (PER) using an
Exponentially Weighted Moving Average (EWMA) with peri-
odic acknowledgments which limits feedback dependency and
protocol overhead. REST builds upon the on-the-fly coding
scheme of Tetrys [6] to perform reliable streaming.

For uniform errors, results show that REST leads to a smooth
data delivery with minimum redundancy overhead. However,
for bursty errors, the size of decoding matrices still varies in an
unpredicted way. For systems with limited processing capacity,
we thus propose to use a bounded encoding window to deliver
data more uniformly to the application while limiting decoding
matrices size. We evaluate our solution under different network
conditions and study the underlying trade-offs behind each
system parameter such as the frequency of acknowledgements
(fACK) and the encoding window size on the protocol over-
head and the data delivery speed to application. We show
that an optimal fACK can be found depending on network
conditions and system requirements.

This paper is structured as follows. Sec. II presents the state
of the art on reliability mechanisms and compares on-the-
fly coding versus block coding. Sec. III details the design of
REST and Sec. IV presents its performance evaluation. Sec. V
concludes this paper and discusses future work.

II. RELATED WORK

Two mechanisms have been initially proposed to ensure
reliability. A first one is based on retransmission and another
one based on redundancy. The former, a reactive scheme,
also known as Automatic Repeat reQuest (ARQ), ensures
reliability with retransmissions. This implies a feedback from
the receiver notifying a lost packet. While this is quite a simple
mechanism, it is also RTT-dependant, which can be a problem
in long delay and lossy networks. Hence, it is not adapted to
streaming applications.

The latter, a proactive scheme known as Application-Layer
Forward Error Correction (AL-FEC), introduces redundancy
at the sender side. Since it is known that there will be lost
packets, the sender can send more data to overcome losses.
The choice of which data to send is crucial, and there is a
theoretical limit, where n lost packets can be recovered using n
redundancy packets. These codes use a block approach, where
some redundancy is added to each fixed-size block of data.
Decoding is no longer possible when you lose more than the
added redundancy. On the opposite, if only few packets are
lost, some of the repair packets become useless.

A solution to this problem, known as Hybrid FEC-ARQ
(or H-ARQ) mechanism, is to use receiver’s feedback to send
additional repair packets or to adjust the redundancy level of
the FEC to the observed packet loss rate. However, when using
such mechanisms to achieve full reliability, large RTT might
lead to very long delays to efficiently recover a packet.

On the contrary, the principle of on-the-fly codes (such as
Tetrys [6] or RLNC [3], [1]) is to build repair packets from a
source packets set (the coding window) which is updated with
the receiver’s feedback (as seen in Fig. 1). We use a parameter
k which is defined as the number of data packets sent between
two repair packets. Although initially RLNC was proposed
in a non-systematic version while Tetrys was in a systematic
one, both codes can be enabled indifferently in both modes.
The main difference leads in the way the coding coefficients
are computed: RLNC uses a pseudo-random generator while
Tetrys uses a deterministic function based on the sequence
numbers. The receiver’s feedback update is done in a way
that any source packet sent is included in the coding window
as long as the sender does not receive its acknowledgement.
The method used by the sender to generate a repair packet
is simply a random linear combination over a finite field Fq

of the data source packets belonging to the coding window.
Then, the receiver performs the inverse linear combinations to
recover the missing source packets from the received data and
repair packets. In this approach, there is no fixed partitioning
of the data stream as would be required with block codes.

In the following, we detail REST which borrows this concept
of on-the-fly code to proactively inject repair packets.

III. RELIABLE STREAMING FOR LOSSY NETWORKS

We present our solution, called REST, a light-weight
and adaptive reliable streaming protocol. Like Tetrys [6],
REST sends on-the-fly codes at an inline redundancy rate k
to proactively recover packet losses and smooth data delivery.

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

R(9,10)

P10

P9

R(1..8)

P8

P7

R(1..6)

P6

P5

R(1..4)

P4

P3

R(1,2)

P2

P1

P3

P2

Missing Pkts

R(1,2)

R(1..6)

R(1..6) R(1..8)

Available Redundancy
Packets

Fig. 1. Example of Tetrys with k = 2.

However, it aims at providing full reliability while ensuring
that data are delivered continuously to the application and
minimizing overhead. It can be implemented as a type II H-
ARQ (incremental redundancy), a UDP transport proxy or a
reliable tunnel (like RBSCP [5]). REST is made out of the
three following mechanisms:

• A full reliability mechanism which ensures that all losses
are recovered and that the session terminates when there
is no more data to send;

• An adaptation of the inline redundancy based on a
continuous packet loss rate estimation with a light-weight
acknowledgment mechanism;

• A mobile encoding window to limit the impact of bursts
on the data delivery speed to application and bound the
decoding complexity at the receiver.

The three mechanisms are described in the three following
sections. Table I lists the different notations used in this paper.

A. Full reliability

REST provides a reliability layer working in all kinds of
environments, independently from the PER and the inline re-
dundancy ratio. After sending the entire data stream once, the
sender continues to send linear combination of the remaining
non-acknowledged packets until they are acknowledged by the
receiver to ensure reliability. Each sent packet contains a F
flag that the sender sets to one to indicate the end of the flow.

TABLE I. Notations

Parameter Meaning
Px Data packet of index x.

R(x, y) Repair packet coding packet from Px to Py.

R Sender’s inline redundancy ratio.

p Channel’s packet error rate.

k Number of data packets between two repair packets.

W Sender’s encoding window maximum size.

fack Receiver’s acknowledgement frequency.

α Receiver’s EWMA smoothing factor.

WEWMA Receiver’s EWMA window size.

Once the receiver makes the final decoding, it tells the sender
using the F flag of the ACK messages to close the transport
session (as seen on Fig. 2). This ensures a reliable transfer,
without knowing the missing packets in the receiver’s buffer
and with a light-weight feedback mechanism.

B. Adaptive redundancy ratio to smooth data delivery
REST aims at delivering continuous flows of data in a reli-

able fashion. While lossy networks have varying behaviours,
a fixed inline redundancy ratio is not appropriate. Adding
more inline redundancy than necessary increases the overhead,
while an insufficient inline redundancy induces potentially that
huge matrices must be inverted at the receiver side, consuming
massive computing resources. Adaptive inline redundancy is
compulsory to smooth data delivery to the application while
minimizing overhead. Depending on the channel PER p, the
required inline redundancy can be estimated using Eq. 1a.
The sender sends N packets with R ∗N redundancy packets,
both subject to a PER p, R being the redundancy ratio. This
amount of received data should be greater than N . The value
k (estimated in Eq. 1b) represents the amount of data packets
between two redundancy packets.

(N +R×N)(1− p) ≥ N ⇔ R ≥ 1

1− p
− 1 (1a)

k =

⌊
1

R

⌋
(1b)

Using this equation and knowing the PER, the sender can
adapt its redundancy ratio. The PER estimation is computed
by the receiver and sent back to the sender in ACK messages.
We use an Exponentially Weighted Moving Average (EWMA)
characterized by its smoothing factor α and a time window
WEWMA. In our simulation, we compute this average using
a time window WEWMA of three seconds and a smoothing
factor α = 0.8 to give more weight to newer values, hence to
have a faster reaction to varying error rates (such as bursts).

We use a light-weight periodic feedback mechanism using
a constant frequency fACK . Unlike CTCP, whose receiver
sends ACK for every packet, we use simple cumulative and
periodic feedback reducing channel’s occupation. A study of
REST behaviour with a varying fack is presented in Sec. IV-E.

C. Mobile encoding window to limit decoding complexity
In order to master the computing resources at the receiver

even in chaotic situations (bursty channels), decoding com-
plexity must be bounded in some embedded systems. This
can be done using a mobile encoding window of size W .
Compared to the classic sliding window with a potentially
infinite size, the mobile window grows until reaching its
maximum size. Each repair packet is coding a maximum
number of packets. When the encoding window is full, we
continue to send multiple repair packets coding the same set
of packets (with different coefficients). Note that, while the
encoding window can be blocked for some time in case of
important burst, we still continue to send new data packets in
order to smooth future packet delivery at receiver side.

R(1,2)

P3

Sender’s buffer

P4

P5

P7

P8

R(1–4)

R(1–4)

P6

R(1–4)

R(7–10)

R(7–10)

R(7–10)

R(1,2) R(1–4)

R(1,2) R(1–4) P5

R(1,2) R(1–4) R(1–4) P5

R(1,2) R(1–4) R(1–4) P5 P6

R(1,2) R(1–4) R(1–4) R(1–4) P5 P6

R(1,2)

P1 P2 P3 P4 P5 P6 P7

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8 P10

P7 P8 P10 R(7–10)

P7 P8 P9 P10

ACK(1,F=0)

ACK(1,F=0)

ACK(8,F=0)

ACK(11,F=1)

Receiver’s buffer

P1

P2 P1

P2 P1

P3 P2 P1

P4 P3 P2 P1

P4 P3 P2 P1

P5 P4 P3 P2 P1

P5 P4 P3 P2 P1

P6 P5 P4 P3 P2 P1

P6 P5 P4 P3 P2 P1

P7 P6 P5 P4 P3 P2 P1

P8 P7 P6 P5 P4 P3 P2 P1

P9 P8 P7 P6 P5 P4 P3 P2 P1

P10 P9 P8 P7

P10 P9 P8 P7

P10 P9 P8 P7

P10 P9 P8 P7

P9

P10

P1

P2

k=2

k=1

k=4

k=6

Fig. 2. A complete data exchange. Data packets are in black, repair
packets are in red and recovered packets in grey. Encoding window of size

W = 4 is the red frame in the sender’s buffer.

D. A complete example

Consider the data exchange illustrated in Fig. 2 where the
sender sends data at a Constant Bit Rate (CBR) and the
receiver sends acknowledgements at a frequency fack. For an
illustration purpose, we choose a very small encoding window
size of four packets (W = 4). At first, the sender sends
a repair packet for every two packets of data sent. Hence,
k = 2. Receiver stores every useful repair packets until it has
enough to decode (when n repair packets together coding n
lost packets are received). Then, an ACK sent by the receiver
notifies the sender of an increasing error rate, resulting in a
higher inline redundancy ratio (k = 1, see III-B). Having a
maximum size and having grown to its full size (see III-C),
the encoding window will not change until a decoding is
notified. This allows a fast decoding after receiving the repair
packet R(1, 4) three times. Before the last R(1, 4) emission,
the redundancy ratio is changed (k = 4) since more packets
are received by the receiver. At the end of the emission, the
sender still has not received the final ACK (with a F flag set
to 1), thus it enters in its reliable mode (see III-A) and sends
repair packets only, until the receiver sends the expected final
ACK.

IV. PERFORMANCE EVALUATION

This section presents the performance evaluation of REST.

A. Simulation setup

We used NS-3 to simulate the transmission of a 1MB file
over a lossy network. Table II presents the different parameters
used. Various packet error rate models are used to simulate
different network behaviours. Note that the decoding process
is simulated. As an abstraction, we suppose that all repair
packets are linearly independent from each other. Hence,
when receiving exactly n repair packets covering n losses,
decoding is possible. This is almost always true when the
coding coefficients are chosen in a sufficiently large field.

B. Reliable version with fixed inline redundancy

The goal of this simulation is to understand the underlying
trade-offs in terms of overhead, decoding complexity and

TABLE II. Simulation parameters.

Parameter Value
Link rate 10Mbps

RTT 300ms

Payload size 450bytes

CBR packet interval 0.008s

ACK interval (1/fACK) 0.2s

0

50

100

150

200

250

300

350

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(a) 0% inline redundancy

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(b) 15% inline redundancy

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(c) 20% inline redundancy

0

5

10

15

20

25

0 5 10 15 20 25 30

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(d) 30% inline redundancy

Fig. 3. Reliable version with a uniform PER of 15%. Left y-axis :
Decoded matrix size (red). Right y-axis : ACK sequence number (green).

delivery time to the application. We define the overhead as
the ratio of the sum of useless coded packets and acknowl-
edgements, over the total amount of sent packets.

Fig. 3 shows how REST behaves on a 15% uniform PER
link, but with different static inline redundancy ratios, re-
spectively 0%, 15%, 20% and 30%. When the redundancy
is smaller or equal than the loss rate as in Fig. 3(a) and
3(b), many missing packets are recovered at the end of the
transmission, ending in a single and very costly decoding
process. However, transferring time is minimum. Fig. 3(c)
shows the case with 20% redundancy where multiple decod-
ing of various sizes happen during transfer. The application
receives a continuous data flow, despite some useless recovery
packets received leading to a very small overhead. However,
the application can receive a continuous data flow. Fig. 3(d)
shows that for a high redundancy of 30%, each lost packet is
quickly recovered, through very simple decoding operations.
Overhead is huge and application-layer data rate is uniform.

Table III shows the total streaming duration for 1MB and
the mean packet delay for the four different runs presented
in Fig. 3. The packet delay is the difference between the
reception and the emission of a data packet. If a packet is
not lost, delay is equal to the link delay. In case of a loss, the

TABLE III. Delivery times for the Reliable version.

Redundancy
ratio

Streaming
duration

Packet delay
(mean)

Packet delay
(std dev)

0% 21.96s 2.00s 4.91s

15% 21.96s 0.89s 2.12s

20% 22.53s 0.23s 0.32s

30% 25.01s 0.16s 0.06s

packet delay is equal to the sum between the link delay and
the time until the packet is decoded at receiver. One can see
that streaming duration remains the same when the injected
redundancy is less or equal than the error rate. Beyond the
error rate threshold, streaming duration increases as more and
more useless redundancy packets are sent. On the opposite, the
packet delay decreases (mean and standard deviation) as the
inline redundancy injected grows. Notice that the mean packet
delay has a lower bound, which is the link delay (RTT/2).

These results clearly show how the reliability and the on-
the-fly decoding features work whereas a lack of adaptability
from the sender side and a varying application-layer rate
are obvious weaknesses to this solution. When it comes
to smoothing application-layer rate (minimizing the standard
deviation of packet delay), a simple solution would be to
always overcome losses with a huge inline redundancy ratio
hence generating a huge overhead. These results motivate the
adaptive redundancy injection proposed in next section.

C. Proactive injection of adaptive redundancy

Using the redundancy adaptation presented in Sec. III-B, we
achieve a uniform application-layer rate with uniform PER and
almost no overhead except for a handful of packets (between
0.5 and 1% of useless sent packets). Fig. 4(a)(c) and (e) present
the acknowledged sequence numbers and the size of decoded
matrices over time. Fig. 4(b)(d) and (f) present the estimated
error rates and the real-time inline redundancy ratio k. An
infinite coding window is considered here.

As lossy networks have varying behaviours, we considered
more varying packet loss distribution such as a sinusoidal one
(although not very representative of any channel, it models
simple variations varying from 0% to 20% with a 10% mean
error rate) and a more realistic bursty model (a burst of one
to 20 packets happens randomly after a loss which has 1%
chance of happening). Results for these two distributions are
presented in Fig. 4. For implementation purpose, we assume
that an infinite k ratio is equal to 100.

One can see that two decoding of the same size occur in the
descending sinus phase (one decoding for each sinus wave. See
Fig. 4(c) and Fig. 4(d)). The same behaviour can be observed
(with different matrix sizes) with the burst error model. When
a set of burst increases the measured error rate, decoding is
not possible until a return to a lower error value.

Adaptive redundancy shows great improvements in terms
of overhead and matrices size reduction. However, in realistic
conditions such as bursty PER distribution, matrices size re-

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r
Time (s)

(a)

0

5

10

15

20

25

0 5 10 15 20 25

0

2

4

6

8

10

12

R
ed

un
d

an
cy

 a
nd

 e
rr

or
 r

at
io

s
(%

)

V
al

ue
 o

f k
 (

pa
ck

e
ts

)

Time (s)

(b)

0

20

40

60

80

100

120

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(c)

0

5

10

15

20

25

0 5 10 15 20 25

0

20

40

60

80

100

R
ed

un
d

an
cy

 a
nd

 e
rr

or
 r

at
io

s
(%

)

V
al

ue
 o

f k
 (

pa
ck

e
ts

)

Time (s)

(d)

0

20

40

60

80

100

120

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(e)

0

5

10

15

20

25

30

0 5 10 15 20 25

0

20

40

60

80

100

R
ed

un
d

an
cy

 a
nd

 e
rr

or
 r

at
io

s
(%

)

V
al

ue
 o

f k
 (

pa
ck

e
ts

)

Time (s)

(f)

Fig. 4. Adaptive version with a uniform(a)(b), sinus(c)(d) and bursty(e)(f)
PER. (a)(c) and (e) : Decoded matrix size (red) and ACK sequence number
(green). (b)(d) and (f) : Left y-axis (in %) Estimated error rate (blue), Inline

redundancy (red). Right y-axis k value (green).

mains potentially large, leading to a non-uniform application-
layer rate.

D. Mobile window with adaptive redundancy

As in section IV-C, error model is based on a burst model
(a burst of one to 20 packets happens randomly after a
loss which has 1% chance of happening). Results in Fig. 5
represent simulations using an encoding window maximum
size W = 100. In theory, the size of decoded matrices can be
up to 100 packets (in case of a huge burst of 100 consecutive
losses). In reality, their sizes evolve around W ∗ p.

This solution achieves a more uniform rate at the application
layer than the adaptive one in more realistic conditions; i.e.
bursty networks. There is a slight overhead though, induced by
useless repair packets sent. This is due to the fact that, when
a block is decoded, feedback takes some time to reach its
destination. Meanwhile, the sender still sends repair packets
from the same window. This overhead depends on the en-
coding window size, the ACK frequency and the RTT (see
Section IV-E for a thorough study). Even with a high RTT

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

0

500

1000

1500

2000

2500

D
ec

od
ed

 m
at

rix
 s

iz
e

(p
ac

ke
ts

)

A
ck

 s
eq

ue
n

ce
 n

um
be

r

Time (s)

(a)

0

5

10

15

20

25

30

0 5 10 15 20 25

0

20

40

60

80

100

R
ed

un
d

an
cy

 a
nd

 e
rr

or
 r

at
io

s
(%

)

V
al

ue
 o

f k
 (

pa
ck

e
ts

)

Time (s)

(b)

Fig. 5. Mobile Adaptive version with a bursty PER. (a) : Decoded matrix
size (red) and ACK sequence number (green). (b) : Left y-axis (in %)

Estimated error rate (blue), Inline redundancy (red). Right y-axis k value
(green).

100
200
300
400
500
600
700
800
900

1000

30 60 90 120
150

180
210

240
270

300
R

T
T

 (
m

s)

Encoding window size (packets)

6

8

10

12

14

16

18

20

22

O
ve

rh
ea

d
 (

%
)

(a) Overhead

100
200
300
400
500
600
700
800
900

1000

30 60 90 120
150

180
210

240
270

300

R
T

T
 (

m
s)

Encoding window size (packets)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
pa

ck
et

 d
el

ay
 (

s)

(b) Mean packet delay

Fig. 6. Overhead(a) and mean packet delay(b) depending on RTT and
encoding window size.

and a bursty PER, we provide a uniform application layer
rate with minimum overhead when encoding window size is
well chosen. Indeed, a small window combined with a high
RTT will smooth the application-layer rate, but at a substantial
overhead. Many useless repair packets will be sent by the
sender over the network, while waiting for an incoming ACK
which takes longer than usual to reach its destination, resulting
in a significant overhead.

Using multiple network conditions, we study the effect of
the RTT on the encoding window size. Fig. 6(a) shows that a
low RTT and a large encoding window limit the overhead. A
threshold can be seen beyond which, a small encoding window
combined with a higher RTT induce a large overhead. This is
due to the fact that many redundancy packets encoding the
same data packet range are sent while the receiver’s feedback
takes too much time to reach the sender. Fig. 6(b) represents
the mean packet delay with varying RTT and encoding window
size. For a given RTT, say 500ms, it shows a minimum packet
delay for sufficiently large encoding windows, 120 in this case
because the maximum window size is never reached.

E. Feedback and loss dependence

In this section, we study the impact of the ACK frequency
and the error rate on the overhead and the mean packet delay.
In the simulations, we set a moderate RTT of 300ms and
use different fACK from 100ms to 1s. Error model is set to
the most representative one, which is the burst model, with a
default mean error rate of 10%.

100
300
500
700
900

1100
1300
1500
1700
1900

30 60 90 120
150

180
210

240
270

300

A
C

K
 in

te
rv

al
 (

m
s)

Encoding window size (packets)

5

10

15

20

25

30

35

40

45

O
ve

rh
ea

d
 (

%
)

(a) Overhead

100
300
500
700
900

1100
1300
1500
1700
1900

30 60 90 120
150

180
210

240
270

300

A
C

K
 in

te
rv

al
 (

m
s)

Encoding window size (packets)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
ea

n
pa

ck
et

 d
el

ay
 (

s)

(b) Mean packet delay

Fig. 7. Overhead(a) and mean packet delay(b) depending on fACK and
encoding window size with RTT=300ms.

5
10
15
20
25
30
35
40
45
50

30 60 90 120
150

180
210

240
270

300

M
ax

 b
ur

st
 s

iz
e

(p
ac

ke
ts

)

Encoding window size (packets)

6

8

10

12

14

16

O
ve

rh
ea

d
 (

%
)

(a) Overhead

5
10
15
20
25
30
35
40
45
50

30 60 90 120
150

180
210

240
270

300

M
ax

 b
ur

st
 s

iz
e

(p
ac

ke
ts

)

Encoding window size (packets)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

M
ea

n
pa

ck
et

 d
el

ay
 (

s)

(b) Mean packet delay

Fig. 8. Overhead(a) and mean packet delay(b) depending on max burst
size and encoding window size with RTT=300ms.

Fig. 7(a) shows the mean overhead depending on the interval
between two ACKs (1/fACK) and the encoding window size.
A high fACK (resp. a low ACK interval) introduces a constant
overhead of around 10%, whatever the encoding window
size. This is due to the fact that some ACK do not reduce
the encoding buffer size hence make the encoding window
progress. The overhead is created at the receiver side in this
case. In the opposite direction, a low fACK (resp. a high
ACK interval) induces a high overhead at the sender side.
Fig. 7(a) shows that an optimal value for fACK exists for a
given encoding window. This is clear for encoding windows
larger than 30 packets. Both Fig. 6(a) and Fig. 7(a) show that
the optimal value for fACK depends on network parameters
such as the RTT.

Fig. 7(b) represents the mean packet delay with varying
ACK intervals and encoding window size. Results show that
reducing the ACK frequency while targeting a similar mean
packet delay can be achieved by significantly increasing the
coding window.

Fig. 8(a) shows the mean overhead depending on the maxi-
mum burst size and the encoding window size. Burst occurring
probability is still the same but with varying burst size, hence a
ascending PER as the max burst size grows. The same trend is
shown in this figure as on Fig. 6(a) and 7(a). A lower encoding
window size increases the overhead (even more when bursts
can get bigger). One can notice though, that an increasing
window size reduces the effect of bursts on overhead. In other
words, a bigger encoding window can absorb bigger bursts in
terms of overhead while increasing packet delay.

Fig. 8(b) represents the mean packet delay with varying
maximum burst size and encoding window size. It shows a
minimum gain with a small burst size (30 packets or less)
whatever the encoding window size is because below these
two points, maximum encoding window size is never reached.
Setting a high burst size with a small encoding window
increases the mean packet delay way too much since the
encoding window is full most of the time.

To conclude on these results, there are two options depend-
ing on the system’s needs. One can set a maximum delivery
delay depending on the streaming application needs and figure
out the minimum encoding window size (hence the minimal
computational power to comply with those restrictions) and
the optimal ACK frequency. One can also set a maximum
window size (when computational power is limited) and seek
the optimal ACK frequency to minimize the average delay to
recover packets. The optimal value will depend on network
conditions (RTT, losses).

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented REST, a new reliable mechanism
for streaming applications in challenged networks. Based on
on-the-fly codes such as Tetrys and RLNC, reliability is
ensured even in case of losses on the feedback channel. With
the two features that are redundancy adaptation and a mobile
encoding window, we limit overhead and encoding/decoding
operations complexity by reducing both sender’s buffer and de-
coded matrices sizes. Our feedback mechanism is lightweight
using a suited ACK frequency. We analyzed the impact of the
acknowledgement frequency and the encoding window size on
network conditions and application requirements. We showed
that an optimal ACK frequency can be found to minimize
overhead while meeting system requirements in terms of
computational limitation and application-layer target delay.

In future work, we plan to extend REST to integrate an
adaptive ACK mechanism. The goal will be to choose an
optimal fACK so that the overhead is minimum. As this
would maximize the size of decoding matrices and thus slow
down the data delivery to application, the choice of the
ACK frequency should take the data delivery speed to the
application as a constraint. As also seen in this paper, this
frequency should be adapted to network conditions.

REFERENCES

[1] M. Médard J. K. Sundararajan, D. Shah. Arq for network coding. In

[2] Van Jacobson and Michael J. Karels. Congestion avoidance and control,
1988.

[3] MinJi Kim, Jason Cloud, Ali ParandehGheibi, Leonardo Urbina, Kerim
Fouli, Douglas J. Leith, and Muriel Médard. Network Coded TCP
(CTCP). CoRR, abs/1212.2291, 2012.

[4] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling
tcp throughput: A simple model and its empirical validation. In Proc. of
ACM SIGCOMM, 1998.

[5] L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Rate Based Satellite
Control Protocol. Betascript Publishing, 2011.

[6] P. U. Tournoux, E. Lochin, J. Lacan, A. Bouabdallah, and
V. Roca. On-the-fly erasure coding for real-time video applications.

