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Asymptotics of mild solutions to the time-dependent Oseen
system.

Paul Deuring

Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62228 Calais, France.

Abstract

We consider mild solutions to the 3D time-dependent Oseen system with homo-
geneous Dirichlet boundary conditions, under weak assumptions on the data. Such
solutions are defined via the semigroup generated by the Oseen operator in Lq. They
turn out to be also Lq-weak solutions to the Oseen system. On the basis of known
results about spatial asymptotics of the latter type of solutions, we then derive point-
wise estimates of the spatial decay of mild solutions. The rate of decay depends in
particular on Lp-integrability in time of the external force.
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1 Introduction

In this article, we consider mild solutions to the 3D the time-dependent Oseen system

u′ −∆xu+ τ ∂x1u+∇xπ = f, divxu = 0 in Ω
c × (0,∞), (1.1)

where Ω
c

:= R3\Ω, with Ω an open, bounded set in R3 with smooth boundary. Thus Ω
c

is an exterior domain, which we suppose to be connected. Equation (1.1) is supplemented
by homogeneous Dirichlet boundary conditions on ∂Ω and an initial condition,

u(t)|∂Ω = 0 for t ∈ (0,∞), u(0) = U0. (1.2)

The Oseen system is a linearization of the time-dependent Navier-Stokes system with
Oseen term,

u′ −∆xu+ τ ∂x1u+ (u · ∇x)u+∇xπ = f, divxu = 0 in Ω
c × (0,∞). (1.3)

This latter system is usually considered as a model for the flow of a viscous incompressible
fluid around a rigid body moving with constant velocity and without rotation, with the
set Ω corresponding to the rigid body. The functions u : Ω

c × (0,∞) 7→ R3 (velocity) and
π : Ω

c × (0,∞) 7→ R (pressure) are the unknowns of problem (1.1), (1.2), whereas the
functions f : Ω

c × (0,∞) 7→ R3 (volume force) and U0 : Ω
c 7→ R3 (initial velocity), as well

as the number τ ∈ (0,∞) (Reynolds number), are given quantities.

Mild solutions to (1.1), (1.2), which only involve the velocity among the two unknowns
velocity and pressure, are introduced via the semigroup generated by the Oseen operator.
We refer to (3.1) for the definition of this operator, and to the proof of Theorem 3.2 for
a discussion of the associated semigroup. A precise definition of a mild solutions to (1.1),
(1.2) is given in Theorem 3.4.
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In the work at hand, we study the spatial decay of such solutions. It turned out their decay
rate is highest if U0 ∈ Lq0σ (Ω

c
) and f ∈ L1

(
0,∞, Lq1σ (Ω

c
)
)

for some q0, q1 ∈ (1, 3/2), and
if |U0(x)| and |f(x, t)| tend to zero sufficiently fast for |x| → ∞. (See Section 2 for the
definition of Lqσ(Ω

c
). In this situation we obtain that

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−(3+|α|)/2
(1.4)

for a. e. t ∈ (0,∞), a. e. x ∈ Bc
R0

:= R3\BR0 , and for α ∈ N3
0 with |α| ≤ 1. Here u

denotes the mild solution to (1.1), (1.2) associated with U0 and f (Theorem 3.4). The
parameter R0 is some fixed number from (0,∞) with Ω ⊂ BR0 . Concerning the condition
|α| ≤ 1, it means that u and the spatial gradient ∇xu are estimated in (1.4). The function
ν appearing in (1.4) is defined by ν(x) := 1 + |x| − x1 for x ∈ R3. Its presence should
be interpreted as a mathematical manifestation of the wake extending downstream in the
flow behind a rigid body. If f ∈ Lp

(
0,∞, Lq1σ (Ω

c
)
)

for some p ∈ (1,∞), the rate of decay
of |∂αxu(x, t)| diminishes to −(3 + |α|)/2 + 1/(2 p′). So in particular this rate is linked to
Lp-integrability in time of f . If the relation U0 ∈ Lq0σ (Ω

c
) only holds for some q0 ∈ [3/2, 3),

we also obtain a lower rate, and if q0 ≥ 3, we have no result at all. We refer to Theorem 4.2
for a detailed statement of our results. In the remark following this theorem, we explain
what exactly we mean by the condition mentioned above that |U0(x)| and |f(x, t)| are to
tend to zero sufficiently fast for |x| → ∞.

A link between the rate of spatial decay of ∂αxu on the one hand and Lp-integrability of f
with respect to time on the other already appears in [17, Theorem 6.1] and [18, Theorem
5.2], but with certain Lp-norms in time and in space of u additionally influencing the spatial
asymptotics of u. The former theorem specifies the spatial decay of regular solutions to
(1.1), and the latter one extends these results to Lq-weak solutions of (1.1). No specific
boundary conditions are imposed in [17] and [18]. A simplified version of [18, Theorem
5.2] is stated below as Theorem 2.4, which is the starting point of the work at hand. In
[17] and [18], we applied [17, Theorem 6.1] and [18, Theorem 5.2], respectively, to some
solutions whose existence is known from literature; see [17, Theorem 6.2, 6.3] and [18,
Theorem 6.1, 6.2, 6.3]. However, these examples are either restricted to an L2-framework
([17, Theorem 6.2] and [18, Theorem 6.1, 6.2, 6.3]), or they deal with solutions whose
lifespan T0 ∈ (0,∞) is finite, which are much more regular than required for our theory
and are associated with a right-hand side f ∈ Lp

(
0, T0, L

q(Ω
c
)3
)

required to satisfy the
condition p = q ([17, Theorem 6.3]). But as the key point of [18, Theorem 6.1, 6.2] we
could improve the decay rates obtained in [9] and [12].

The work at hand with its focus on mild solutions shows that we may handle solutions
with data of low regularity. In fact, these solutions exist for any t > 0 if U0 ∈ Lqσ(Ω

c
)

and f ∈ L1
loc

(
[0,∞), Lqσ(Ω

c
)
)

for some q > 1 (Theorem 3.4). In addition, we are able to
express our decay bounds exclusively in terms of the data; no norms of the solution are
involved. Moreover, in the assumptions U0 ∈ Lq0σ (Ω

c
) and f ∈ Lp

(
0,∞, Lq1σ (Ω

c
)
)
, a large

range of parameters q0, q1 ∈ (1,∞), p1 ∈ [1,∞) is admitted, and our estimates exhibit
how the choice of these parameters influences the spatial asymptotics of the solution. In
this respect we recall the example given in (1.4): if q1, q2 ∈ (1, 3/2), p = 1, then |∂αxu(x, t)|
tends to zero as O

(
[|x| ν(x)]−(3+|α|)/2 ) for |x| → ∞. This rate is best possible in the sense

explained in the remark following Theorem 4.2.

Our proof of (1.4) consists in verifying the assumptions of Theorem 2.4, with two main
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points. Firstly it must be shown that mild solutions are also Lq-weak solutions as consid-
ered in that latter theorem. This is not completely obvious due to the low regularity of
f ; see the proof of Theorem 3.4. Secondly, certain Lp-norms of u with respect to space
and time variables must be estimated by the data (Corollary 4.2 – 4.5). This is achieved
by means of Lp − Lq-estimates of the Oseen semigroup. In our context the key feature of
these estimates is the rate of temporal decay of spatial Lq-norms of this semigroup. Such
rates are derived in [34], [22], [23], [31] and [32]. We will use results established in [34]
and [32]; see Theorem 3.2 and 4.1.

We point out that according to [21], the velocity part U of a solution (U,Π) to the Oseen
resolvent system −∆U + τ ∂1U + λU +∇Π = F, divU = 0 in the whole space R3 does
not satisfy the estimate ‖U‖2 ≤ C0 |λ|−1 ‖F‖2 with a single constant C0 > 0 for all
F ∈ L2(R3)3 and all λ ∈ C with <λ > 0. As a consequence of this negative result, which
arises because small values of |λ| are admitted, an analogous resolvent estimate cannot
be expected to hold for solutions to the Oseen resolvent problem in Ω

c
, under whatever

boundary conditions. Therefore, in view of [45, Theorem 4.2, point 3.)], it is a safe guess
that maximal regularity is not valid for solutions of problem (1.1), (1.2), not even in an
L2-framework. The negative result in [21] is the reason why we discuss some properties
of the Oseen operator and its associated semigroup in greater detail; see the proof of
Theorem 3.2.

Let us mention some references more distantly related to the work at hand. Knightly [33]
considers even the case that the velocity of the rigid body changes with time. However, his
results are valid only under various smallness assumptions. Mizumachi [39, Theorem 2]
identified a class of initial data U0 and a class of solutions (u, π) to the nonlinear problem

(1.3), (1.2) with f = 0 such that |u(x, t)| ≤ C
(
|x| ν(x)

)−1
for x, t as in (1.4). Takahashi

[44] deals with the Navier-Stokes system with Oseen term in the case Ω = ∅. In [2],
[3], solutions to (1.1) and (1.3) are estimated in weighted Lp-norms, with the weights
adapted to the wake in the flow field downstream to the rigid body. Reference [16] by the
present author combines decay estimates in time and in space for solutions of (1.1) and
of a generalization of (1.3), under Dirichlet boundary conditions and in an L2-framework,
with lower decay rates than those obtained in (1.4) in the case p = 2. Predecessor papers
to this article are [5] – [13]. The theory developed in [17] and [18] is applied in [19] to a
generalization of (1.3), the same as in [16]. Questions of existence, regularity and stability
related to (1.1) or (1.3) are addressed in [24], [28], [29], [37], [38], [41], [42].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, and the length α1+α2+α3

of a multi-index α ∈ N3
0. For R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x − y| < R}.

In the case x = 0, we write BR instead of BR(0).

The set Ω ⊂ R3 and the parameter τ ∈ (0,∞) introduced in Section 1 will be kept fixed
throughout. Recall that Ω is open and bounded, with smooth boundary and connected
complement. Further recall that n(Ω) denotes the outward unit normal to Ω. We fix
a number R0 ∈ (0,∞) with Ω ⊂ BR0 . For R ∈ (0,∞), we define ΩR := BR\Ω and
ZR,∞ := ΩR × (0,∞).
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We additionally recall that also in Section 1, we introduced the function ν : R3 7→ [1,∞)
by setting ν(x) := 1 + |x| − x1 for x ∈ R3.

For I ⊂ R, let χI stand for the characteristic function of I on R. If A ⊂ R3, we denote by
Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3 (unit vector in R3).
If A is some nonempty set and γ : A 7→ R a function, we set |γ|∞ := sup{|γ(x)| : x ∈ A}.
Let p ∈ [1,∞), m ∈ N. If A ⊂ R3 is open, we write ‖ ‖p for the norm of the Lebesgue
space Lp(A), and ‖ ‖m,p for the usual norm of the Sobolev space Wm,p(A) of order m and
exponent p. For an open set B ⊂ R3, the spaces Lploc(B) and Wm,p

loc (B) are defined as the
set of all functions V from B into R or C such that V |A ∈ Lp(A) and V |A ∈ W 1,p(A),
respectively, for any open, bounded set A ⊂ R3 with A ⊂ B. We put ∇V := (∂kVj)1≤j,k≤3

for V ∈W 1,1
loc (B)3.

Let V be a normed space, and let the norm of V be denoted by ‖ ‖. Take n ∈ N.
Then we will use the same notation ‖ ‖ for the norm of Vn defined by ‖(f1, ..., fn)‖ :=(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The space V3×3, as concerns its norm, is identified

with V9.

Let A ⊂ R3 be open and p ∈ (1,∞). We define C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0},
and we write Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3. This
function space Lpσ(A) (”space of solenoidal Lp-functions”) is equipped with the norm ‖ ‖p.
Let p ∈ [1,∞] and B be a Banach space. For any interval J ⊂ R, the notation ‖ ‖Lp(J,B)

stands for the norm of Lp(J,B). Let a, b ∈ R∪{∞} with a < b. Then we write Lp(a, b, B)
instead of Lp

(
(a, b), B

)
. The expression Lploc

(
[a, b), B

)
denotes the space of all functions

v : (a, b) 7→ B such that v|(a, T ) ∈ Lp(a, T, B) for any T ∈ (a, b). This space is to be
distinguished from the space Lploc

(
a, b, B

)
, defined in the usual way. Let T ∈ (0,∞], A ⊂

R3 open, p ∈ [1,∞], q ∈ (1,∞) and n ∈ {1, 3}. Then we write ‖ ‖q,p;T instead of

‖ ‖Lp(0,T, Lq(A)n). For an interval J ⊂ R and a function v : J 7→ W 1,1
loc (A)3, the notation

∇xv stands for the gradient of v with respect to x ∈ A, in the sense that

∇xv : J 7→ L1
loc(A)3×3, ∇xv(t)(x) :=

(
∂xk

(
vj(t)

)
(x)
)

1≤j,k≤3
for t ∈ J, x ∈ A

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
∆xv, divxv and ∂xjv.

For the definition of the Bochner integral, we refer to [46, p. 132-133], or to [30, p. 78-80].

We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol C for constants whose
dependence on parameters must be traced from context. Sometimes we write C(γ1, ..., γn)
in order to indicate that the constants in question is influenced by the quantities γ1, ..., γn.
But in such cases, this constant depends on other parameters as well.

We state an estimate involving the function ν.

Lemma 2.1 ([20, Lemma 4.8]) The inequality ν(x) ≤ C (1 + |y|) ν(x − y) holds for
x, y ∈ R3.

Young’s inequality for integrals will be used frequently. Stated her for the convenience of
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the reader, we will refer to it as “Young’s inequality”.

Lemma 2.2 ([1, Corollary 2.25]) Let n ∈ N and p, p1, p2 ∈ [1,∞] with 1/p = 1/p1 +
1/p2. Then(∫

Rn

∣∣∣∫
Rn

U(x− y)V (y) dy
∣∣∣p dx)1/p

≤ C ‖U‖p1 ‖V ‖p2 for U ∈ Lp1(Rn), V ∈ Lp2(Rn).

Functions V from Lqσ(Ω
c
) with sufficient regularity satisfy the equation divV = 0 :

Lemma 2.3 Let q ∈ (1,∞) and V ∈ Lqσ(Ω
c
) ∩W 1,q(Ω

c
)3. Then divV = 0.

Proof: Let ψ ∈ C∞0 (Ω
c
). Since u ∈ Lqσ(Ω

c
), there is a sequence (ϕn) in C∞0,σ(Ω

c
) with

divϕn = 0 for n ∈ N and ‖ϕn − V ‖q → 0. Then
∫

Ω
c divV · ψ dx =

∫
Ω

c −V · ∇ψ dx =
limn→∞

∫
Ω

c −ϕn · ∇ψ dx = 0. This implies the lemma. �

The Helmholtz-Fujita decomposition of Lq(Ω
c
)3 will play an important role in what follows.

Here are the facts we will use.

Theorem 2.1 For q ∈ (1,∞), there is a linear bounded operator Pq : Lq(Ω
c
)3 7→ Lqσ(Ω

c
)

with Pq(V ) = V for V ∈ Lqσ(Ω
c
). Moreover P ′q = Pq′ for q ∈ (1,∞).

Proof: See [27, Section III.1], [15, Corollary 2.3]. �

Next we state a basic tool for handling Bochner integrals.

Theorem 2.2 Let B1, B2 be Banach spaces, A : B1 7→ B2 a linear and bounded operator,
n ∈ N, J ⊂ Rn an open set and f : J 7→ B1 a Bochner integrable mapping. Then
A◦f : J 7→ B2 is Bochner integrable, too, and A(

∫
J f dx) =

∫
J A◦f dx, where the integral

on the left-hand side is B1-valued and the one on the right-hand side B2-valued.

Proof: See [46, p. 134, Corollary 2], [30, Theorem 3.7.12]. �

We will need mean continuity of the Bochner integral.

Theorem 2.3 ([30, Theorem 3.8.3]) Let B be a Banach space and f : R 7→ B a
Bochner integrable function. Then

∫
R ‖f(s + h) − f(s)‖B ds → 0 for h → 0, where ‖ ‖B

denotes the norm of B .

We define some fundamental solutions, first the heat kernel, H(z, t) := (4π t)−3/2 e−|z|
2/(4t)

for z ∈ R3, t ∈ (0,∞), then a fundamental solution to the time-dependent Stokes system,
Γjk(z, t) := H(z, t) δjk +

∫∞
t ∂zj∂zkH(z, s) ds for z ∈ R3, t ∈ (0,∞), j, k ∈ {1, 2, 3},

and finally a fundamental solution to the time-dependent Oseen system (1.1), Λjk(z, t) :=
Γjk(z − τ t e1, t) for z, t, j, k as before. We will need the following estimate of Λ.

Lemma 2.4 ([17, Corollary 3.3]) Let K > 0. Then for z ∈ Bc
K , t ∈ (0,∞), α ∈ N3

0

with |α| ≤ 2, the estimate |∂αz Λ(z, t)| ≤ C(K, τ)
(
|z| ν(z) + t)−(3+|α|)/2 holds.

The potential functions introduced in the two ensuing lemmas are needed in order to state
the decay result from [18] which we will apply later on (proof of Theorem 4.2).

Lemma 2.5 ([17, Corollary 3.5]) Let A ⊂ R3 be measurable, q ∈ [1,∞), V ∈ Lq(A)3,
and let Ṽ denote the zero extension of V to R3. Then

∫
R3 |∂αxΛ(x− y, t) Ṽ (y)| dy <∞ for

α ∈ N3
0 with |α| ≤ 1, x ∈ R3, t ∈ (0,∞). Define the function I(τ)(V ) : R3 7→ R3 by setting

I(τ)(V )(x, t) :=
∫
R3 Λ(x− y, t) · Ṽ (y) dy for x ∈ R3, t ∈ (0,∞).
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The derivative ∂xlI
(τ)(V )(x, t) exists and equals

∫
R3 ∂xl∂

σ
t Λ(x − y, t) · Ṽ (y) dy for x, t

as above and for l ∈ {1, 2, 3}. The functions I(τ)(V ) and ∂xlI
(τ)(V ) are continuous in

R3 × (0,∞).

Lemma 2.6 ([17, Lemma 3.8]) Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ [1,∞) and f
a function from L1

loc

(
[0, T0), Lq(A)3

)
. Let f̃ denote the zero extension of f to R3×(0,∞).

Then the integral
∫ t

0

∫
R3 |∂αxΛ(x− y, t− σ) · f̃(y, σ)| dy dσ is finite for a. e. t ∈ (0,∞), a.

e. x ∈ R3 and for α ∈ N3
0 with |α| ≤ 1. Thus we may define

R(τ)(f)(x, t) :=

∫ t

0

∫
R3

Λ(x− y, t− σ) · f̃(y, σ) dy dσ

for such t and x. The relation R(τ)(f)(t) ∈W 1,1
loc (R3)3 holds for a. e. t ∈ (0,∞).

The following theorem states the decay result from [18] we mentioned in Section 1.

Theorem 2.4 Take S0 ∈ (0, R0) with Ω ⊂ BS0 . Let q̃, r1, r2, r3 ∈ (1,∞) and take
functions U0 ∈ Lq̃(Ω

c
)3, f ∈ L1

loc

(
[0,∞), Lr1(Ω

c
)3
)

and u : (0,∞) 7→ W 1,1
loc (Ω

c
)3 with

u ∈ C0
(

[0,∞), Lr2(Ω
c
)3
)
, ∇xu ∈ L1

loc

(
[0,∞), Lr3(Ω

c
)9
)

and divxu = 0. Further suppose
that u satisfies the equation∫ T0

0

∫
Ω

c

(
−γ′(t)u(t) · ϑ+ γ(t)

[
∇xu(t) · ∇ϑ+ τ ∂x1u(t) · ϑ− f(t) · ϑ

])
dx dt (2.1)

−γ(0)

∫
Ω

c
U0 · ϑ dx = 0 for γ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(Ω

c
).

Assume there are numbers q ∈ (1,∞) and γ1, γ2, γ3 ∈ [1,∞] such that the function
u|ZR0,∞ belongs to L∞

(
0,∞, Lq(ZR0,∞)3

)
and to Lγ1

(
0,∞, Lq(ZR0,∞)3

)
, the restriction

∇xu|ZR0,∞ is in Lγ2
(

0,∞, Lq(ZR0,∞)9
)

and f |ZR0,∞ in Lγ3
(

0,∞, Lq(ZR0,∞)3
)
. Suppose

that the zero flux condition
∫
∂Ω u(t) · n(Ω) dox = 0 holds for t ∈ (0,∞). Then there is a

zero-measure subset S∞ of (0,∞) such that

|∂αx
[
u−R(τ)

(
f |Bc

S0
× (0,∞)

)
− I(τ)(U0|Bc

S0
)
]
(x, t)| (2.2)

≤ C (‖u|ZR0,∞‖q,∞;T0 + ‖u|ZR0,∞‖q,γ1;T0 + ‖∇xu|ZR0,∞‖q,γ2;T0 + ‖f |ZR0,∞‖q,γ3;T0

+‖U0‖q̃)
(
|x| ν(x)

)−(3+|α|)/2+1/(2 min{γ′1,γ′2,γ′3})

for α ∈ N3
0 with |α| ≤ 1, t ∈ (0,∞)\S∞, x ∈ BR0

c\Nt, where Nt is some zero-measure
subset of BR0

c
.

Proof: This theorem is a simplified but less general version of [18, Theorem 5.2], adapted
to what will be needed in Section 4. �

Under suitable assumptions on U0, the potential function I(τ)(U0)(x, t) diminishes as

O
( [
|x| ν(x)

]−2 )
for |x| → ∞. Here are the details of this result, which will be interesting

in the context of our decay estimate of weak solutions presented in Section 4 (Theorem
4.2). It is the highest rate of decay we could find for I(τ)(U0).

Lemma 2.7 Let q ∈ (3,∞), U0 ∈ Lqσ(Ω
c
) ∩ L1

σ(Ω
c
)3 with supp(U0) compact. Take R ∈

(0,∞) with supp(U0) ⊂ BR. Then |∂αxI(τ)(U0)(x, t)| ≤ C(τ,R)
(
|x| ν(x)

)−(4+|α|)/2 ‖U0‖1
for x ∈ Bc

2R, t ∈ (0,∞), α ∈ N3
0 with |α| ≤ 1.
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Proof: We apply an approach used by Kozono [36, p. 724] in a different context (temporal
decay). By [35, Lemma 2.2], the function u0 has mean value zero:

∫
Ω

c U0 dx = 0. Take
x, t, α as in the lemma. Then we get for y ∈ BR that |x − y| ≥ |x|/2 ≥ R and ν(x) ≥
C (1 + |y|) ν(x− y) (Lemma 2.1), so with Lemma 2.4,

∂αx ∂ylΛ(x− y, t)| ≤ C(τ,R)
(
|x− y| ν(x− y) + t

)−(4+|α|)/2 ≤ C(τ,R)
(
|x| ν(x)

)−(4+|α|)/2
.

Now we find∣∣ ∂αxI(τ)(U0)(x, t)
∣∣ ≤ ∣∣∣∫

BR

[
∂αxΛ(x− z, t)− ∂αxΛ(x, t)

]
U0(z) dz

∣∣∣
=
∣∣∣ ∫

BR

∫ 1

0

3∑
l=1

∂αx ∂ylΛ(x− y, t)|y=ϑ z zl dϑU0(z) dz
∣∣∣

≤ C(τ,R)
(
|x| ν(x)

)−(4+|α|)/2
∫
BR

|z| |U0(z)| dz ≤ C(τ,R)
(
|x| ν(x)

)−(4+|α|)/2 ‖U0(z)‖1.

�

3 Mild solutions of (1.1), (1.2)

We begin by recalling some known results, occasionally discussing a proof if the result in
question is slightly modified or is not stated clearly in literature.

Lemma 3.1 Let B be a Banach space, S : [0,∞) 7→ B a C0-semigroup on B, D(A)
a dense subspace of B, A : D(A) 7→ B the infinitesimal generator of S, and f ∈
L1
loc

(
[0,∞), B

)
. Let the norm of B be denoted by ‖ ‖. Then

∫ t
0 ‖S(t− s) f(s)‖ ds <∞ for

t ∈ (0,∞). Define u(t) :=
∫ t

0 S(t− s) f(s) ds for t ∈ (0,∞). Then u ∈ C0
(

[0,∞), B
)
.

Proof: According to [40, Theorem 1.2.2], there are constants M ∈ [1,∞), ω ∈ [0,∞)
with ‖S(t)X‖ ≤ M eω t ‖X‖ for t ∈ [0,∞). The first claim in the lemma follows from
this. Let t ∈ (0,∞), h ∈ (0, 1]. Then we have u(t + h) − u(t) = A1 + A2, with A1 :=∫ h

0 S(t+h−s) f(s) ds, A2 :=
∫ t+h
h S(t+h−s) f(s) ds−

∫ t
0 S(t−s) f(s) ds. By the estimate

of ‖S(t)(X)‖ mentioned above, we get ‖A1‖ ≤M eω (t+1)
∫ h

0 ‖f(s)‖ ds, and

‖A2‖ =

∫ t

0
‖S(t− s)

(
f(s+ h)− f(s)

)
‖ ds ≤M eω t

∫ t

0
‖f(s+ h)− f(s)‖ ds.

But
∫ h

0 ‖f(s)‖ ds → 0 for h ↓ 0 by Lebegue’s theorem, and
∫ t

0 ‖f(s + h) − f(s)‖ ds → 0
also for h ↓ 0 by Theorem 2.3. Thus the second claim of the theorem is proved. �

Next we introduce the Oseen operator Oq : D(Oq) 7→ Lqσ(Ω
c
) for q ∈ (1,∞) by setting

D(Oq) := Lqσ(Ω
c
) ∩W 1,q

0 (Ω
c
)3 ∩W 2,q((Ω

c
)3, Oq(V ) := Pq(∆V − τ ∂1V ) (3.1)

for V ∈ D(Oq),

where the operator Pq was introduced in Theorem 2.1. We denote the identity mapping
on Lqσ(Ω

c
) by Iq. The ensuing theorem gives some details on the resolvent of Oq.
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Theorem 3.1 Let q ∈ (1,∞). Then the resolvent set %(Oq) of Oq is given by %(Oq) =
{λ ∈ C : τ2<λ > −(=λ)2}. The relation (λ Iq −Oq)−1(F ) ∈ D(Oq) holds for λ ∈ %(Oq)
and for F ∈ Lqσ(Ω

c
).

Let ϑ0 ∈ (π, π/2). There is r0 ∈ (0,∞) such that {λ ∈ C : |λ| ≥ r0, | arg λ| ≤ ϑ0} ⊂
%(Oq) and

|λ| ‖U‖q + |λ|1/2 ‖U‖1,q + ‖U‖2,q ≤ C ‖F‖q for F ∈ Lqσ(Ω
c
) (3.2)

and for λ ∈ C with |λ| ≥ r0, | arg λ| ≤ ϑ0, where U := (λ Iq −Oq)−1(F ).

Proof: The first claim of that theorem, pertaining to %(Oq), holds according to [25,
Theorem 3.1]. The relation (λ Iq − Oq)−1(F ) ∈ D(Oq) for λ ∈ %(Oq), F ∈ Lqσ(Ω

c
) is

obvious by the definition of the resolvent. By [34, Lemma 4.5], there is r0 ∈ (0,∞) such
that |λ| ‖U‖q + ‖U‖2,q ≤ C ‖F‖q for λ ∈ C, |λ| ≥ r0, | arg λ| ≤ ϑ0, F ∈ Lqloc(Ω

c
), with

U defined as above. It follows by interpolation that |λ|1/2 ‖∇V ‖q ≤ C‖F‖q. �

The ensuing theorem deals with the semigroup generated by Oq. In particular it presents
an Lq-Lq-estimate (inequality (3.3)), which we take from [34] and [32]. The estimate in
the following theorem is “global” in the sense that it gives an upper bound of the Oseen
semigroup with respect to Lq-norms on the exterior domain Ω

c
. In Section 4, we will

additionally need “local” Lp − Lq-estimates, that is, upper bounds for Lp-norms on ΩR0

instead of Ω
c
. These latter estimates yield decay rates which are not always available in

the global setting. We further note that [31] and [32] deal with the case of time-dependent
coefficients and rotational terms in the differential equations, a level of generality not
needed here.

Theorem 3.2 Let q ∈ (1,∞). The operator Oq generates an analytic semigroup on
Lqσ(Ω

c
). We write etOq for its value in t ∈ [0,∞). Let U ∈ Lqσ(Ω

c
), and put u(t) :=

etOqU for t ∈ [0,∞). Then u ∈ C0
(

[0,∞), Lqσ(Ω
c
)
)
∩ C∞

(
(0,∞), Lqσ(Ω

c
)
)
, u(t) ∈

D(Oq), u′(t) = Oqu(t) for t ∈ (0,∞), u(0) = U. Moreover

‖∂αxu(t)‖q ≤ C
(
χ(0,1](t) t

−|α|/2 + χ[1,∞)(t) t
−min{1/2, 3/(2q)} |α| ) ‖U‖q (3.3)

for t ∈ (0,∞), α ∈ N3
0 with |α| ≤ 1. In particular ∇xu ∈ L1

loc

(
[0,∞), Lq(Ω

c
)9
)
.

Proof: According to Miyakawa [38, Theorem 4.2], the Oseen operator Oq generates an
analytical semigroup on Lqσ(Ω

c
). Since Theorem 3.1 was not yet available in [38], but

allows to directly reduce this semigroup property to standard results in [40], we present a
proof based on such a reduction, for the convenience of the reader, although the argument
in question is in principle well known. Take ϑ0 ∈ (π/2, π) and choose a number r0

associated to ϑ0 as in Theorem 3.1. We may suppose that r0 ≥ 1. By that theorem
S0 := {λ ∈ C : |λ| ≥ r0, | arg λ| ≤ ϑ0} ⊂ %(Oq) and

‖(λ Iq −Oq)−1(F )‖q ≤ C |λ|−1 ‖F‖q for F ∈ Lqσ(Ω
c
), λ ∈ S0. (3.4)

Put a0 := 2 r0/ sinϑ0, Sϑ0,a0 := {λ ∈ C\{a0} : | arg(λ− a0)| ≤ ϑ0}. Then Sϑ0,a0 ∪ {a0} ⊂
S0. In fact, take λ ∈ C\{a0} with | arg(λ − a0)| ≤ ϑ0. We note that for b > 0, the
function f(x) := x (x2 + b)−1/2 (x ∈ R) is increasing. Obviously <(λ − a0) < <λ, so if

=λ 6= 0, and thus =λ = =(λ − a0) 6= 0, we get with b = (=λ)2 =
(
=(λ − a0)

)2
that
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f
(
<(λ−a0)

)
≤ f(<λ), that is, <(λ−a0)/|λ−a0| ≤ <(λ)/|λ|, and therefore arg(λ−a0) =

arccos
(
<(λ − a0)/|λ − a0|

)
≥ arccos

(
<(λ)/|λ|

)
= arg(λ) > 0. Since | arg(λ − a0)| ≤ ϑ0,

it follows that | arg λ| ≤ ϑ0 in the case =λ 6= 0. If =λ = 0, then λ − a0 ∈ R\{0}, and so
λ ∈ R. Since | arg(λ − a0)| ≤ ϑ0 < π, we get λ − a0 > 0, hence λ > a0 > 0, and thus
| arg λ| = 0 < ϑ0. Thus we may conclude that in any case | arg(λ)| ≤ ϑ0.

In order to obtain that λ ∈ S0, we still have to show that |λ| ≥ r0. To this end, we first
suppose that | arg(λ − a0)| ≥ π/2. Then | sin

(
arg(λ − a0)

)
| ≥ sinϑ0. Thus, if we assume

|λ| < (a0 sinϑ0)/2, we get a contradiction via the estimate

|λ| ≥ |=λ| = |=(λ− a0)| ≥ |λ− a0| sinϑ0 ≥ (a0 − |λ|) sinϑ0 (3.5)

≥
(
a0 − (a0 sinϑ0)/2

)
sinϑ0 ≥ (a0/2) sinϑ0.

Therefore |λ| ≥ (a0 sinϑ0)/2, hence |λ| ≥ r0 by the definition of a0. Altogether we get
λ ∈ S0 if | arg(λ− a0)| ≥ π/2. Suppose that | arg(λ− a0)| ≤ π/2. Then <(λ− a0) ≥ 0, so
that |λ| ≥ <λ ≥ a0 ≥ r0. Since the inequality | arg(λ)| ≤ ϑ0 is already proved, we again
get λ ∈ S0. Obviously a0 ∈ S0, so we have confirmed that Sϑ0,a0 ∪ {a0} ⊂ S0.

As a consequence Sϑ0,a0 ∪ {a0} ⊂ %(Oq) and inequality (3.4) holds for F ∈ Lqσ(Ω
c
), λ ∈

Sϑ0,a0 ∪ {a0}. But for λ ∈ Sϑ0,a0 with | arg(λ − a0)| > π/2, we get |λ| ≥ |λ − a0| sinϑ0

as in (3.5). In the case | arg(λ − a0)| ≤ π/2, we have <(λ − a0) ≥ 0, hence <λ >
0, and then |λ| ≥ |λ − a0| since =λ = =(λ − a0). We may conclude with (3.2) that
‖(λ Iq − Oq)−1(F )‖q ≤ C |λ − a0|−1 ‖F‖q for F and λ as before. As a consequence the
sets {0} and Sϑ0,0 := {λ ∈ C\{0} : | arg(λ)| ≤ ϑ0} are contained in the resolvent set
%(−a0 Iq+Oq) of the operator −a0 Iq+Oq, and by the preceding estimate of (λ Iq−Oq)−1,

we have ‖
(
λ− (−a0Iq +Oq)

)−1
(F )‖q ≤ C |λ|−1 ‖F‖q for F ∈ Lqσ(Ω

c
) and λ ∈ Sϑ0,0. Now

it follows that −a0 Iq + Oq generates an analytic semigroup on Lqσ(Ω
c
) ([40, Theorem

1.7.7, 2.5.2]). We write et (−a0 Iq+Oq) for its value in t ∈ [0,∞), so that the mapping t 7→
et (−a0 Iq+Oq)

(
t ∈ [0,∞)

)
is the restriction of an analytic semigroup to [0,∞). Therefore

the mapping t 7→ et a0 et (−a0 Iq+Oq)
(
t ∈ [0,∞)

)
also is the restriction of an analytic

semigroup to [0,∞), and the operator Oq is the infinitesimal generator of this semigroup.
In view of the uniqueness result in [40, Theorem 1.2.6] and the notation introduced in
Theorem 3.2, we have etOq = et a0 et (−a0 Iq+Oq) for t ∈ [0,∞). The function u introduced
in Theorem 3.2 thus belongs to C0

(
[0,∞), Lqσ(Ω

c
)
)

and to C∞
(

(0,∞), Lqσ(Ω
c
)
)
, with

u(t) ∈ D(Oq), u′(t) = Oqu(t) for t ∈ (0,∞), and u(0) = U0 ([40, Corollary 1.2.3, Theorem
2.5.2 (d), Corollary 2.4.4, Lemma 2.4.2]).

Concerning inequality (3.3), we indicate that (3.3) in the case t ≤ 1 holds according to [34,
(6.38)], whereas the case t ≥ 1 is covered by [34, (1.2)] if α = 0, [34, (1.3)] if |α| = 1, q ≤ 3,
and [32, (2.23)] if |α| = 1, q > 3. Actually, in the case t ≥ 1, |α| = 1, q > 3, another
reference would be [34, (1.6)], but that latter inequality is proved only implicitly in [34].
�

Theorem 3.3 Let q ∈ (1,∞), f ∈ L1
loc

(
[0,∞), Lqσ(Ω

c
)
)
, u(t) :=

∫ t
0 e

(t−s)Oqf(s) ds

for t ∈ [0,∞) (see Lemma 3.1), with the preceding integral denoting an Lqσ(Ω
c
)-valued

and an Lq(Ω
c
)3-valued Bochner integral. Then

∫ t
0 ‖∂xl

(
e(t−s)Oqf(s)

)
‖q ds < ∞, u(t) ∈

9



W 1,q
0 (Ω

c
)3 for a. e. t > 0, divxu = 0, ∇xu ∈ L1

loc

(
[0,∞), Lq(Ω

c
)3
)
, and

∂xlu(t) =

∫ t

0
∂xl
(
e(t−s)Oqf(s)

)
ds for 1 ≤ l ≤ 3 and a. e. t ∈ (0,∞). (3.6)

Proof: Of course, it does not make any difference whether the integral in the definition
of u is considered as an Lqσ(Ω

c
)-valued or an Lq(Ω

c
)3-valued Bochner integral, due to

Theorem 2.2 and the fact that the canonical imbedding of Lpσ(Ω
c
) into Lq(Ω

c
)3 is linear

and bounded. Let T ∈ (0,∞), α ∈ N3
0 with |α| ≤ 1. Then by (3.3),∫ T

0

∫ t

0
‖∂αx

(
e(t−s)Oqf(s)

)
‖q ds dt ≤ C

∫ T

0

∫ t

0

(
χ(0,1)(t− s) (t− s)−|α|/2 (3.7)

+χ[1,∞)(t− s)
)
χ(0,T )(t− s)χ(0,T )(s) ‖f(s)‖q ds dt

≤ C

∫
R

(
χ(0,1)(r) r

−|α|/2 + χ[1,∞)(r)
)
χ(0,T )(r) dr ‖f |ZT ‖q,1;T ≤ C(T ) ‖f |ZT ‖q,1;T ,

where we used Young’s inequality in the second estimate. Inequality (3.7) yields in par-
ticular that

∫ t
0 ‖∂

α
x

(
e(t−s)Oqf(s)

)
‖q ds < ∞ for a. e. t ∈ (0,∞) and for α ∈ N3

0 with
|α| ≤ 1. Take any such t. Let l ∈ {1, 2, 3} and ψ ∈ C∞0 (Ω)3. For σ ∈ {0, 1}, the
operator V 7→

∫
Ω

c ∂σl ψ(x) · V (x) dx
(
V ∈ Lqσ(Ω

c
)
)

belongs to
(
Lqσ(Ω

c
)
)′
, so we get

with Theorem 2.2 and because e(t−s)Oqf(s) ∈ D(Oq) for s ∈ (0, t) that the equation∫
Ω

c ∂lψ(x) · u(x, t) dx = −
∫

Ω
c ψ(x) ·

( ∫ t
0 ∂xl

(
e(t−s)Oqf(s) ds

)
(x) dx holds. Thus the weak

derivative ∂xlu(t) exists and equation (3.6) holds. Since
∫ t

0 ‖∂
α
x

(
e(t−s)Oqf(s)

)
‖q ds < ∞

by the choice of t, we thus have u(t) ∈ W 1,q(Ω
c
)3. Equation (3.6) and inequality (3.7)

imply that ∇xu ∈ L1
loc

(
[0,∞), Lq(Ω

c
)3
)
. In order to show that u(t) ∈ W 1,q

0 (Ω
c
)3 and

divxu(t) = 0, again take t ∈ (0,∞) with
∫ t

0 ‖∂
α
x

(
e(t−s)Oqf(s)

)
‖q ds <∞ for α ∈ N3

0, |α| ≤
1. We have e(t−s)Oqf(s) ∈ D(Oq) ⊂ W 1,q

0 (Ω
c
)3 ∩ Lqσ(Ω

c
) for s ∈ (0, t), in particular

divx
(
e(t−s)Oqf(s)

)
= 0 by Lemma 2.3. It follows with (3.6) that divxu(t) = 0. By the

choice of t and because e(t−s)Oqf(s) ∈ W 1,q
0 (Ω

c
)3 we may conclude that the integral∫ t

0 e
(t−s)Oqf(s) ds exists also as a W 1,q

0 (Ω
c
)3-valued Bochner integral. For ψ ∈ C∞0 (Ω

c
)3,

the operator V 7→
∫

Ω
c ψ V dx is linear and bounded as a mapping on Lqσ(Ω

c
) and on

W 1,q
0 (Ω

c
)3. This observation and Theorem 2.2 imply that the integral

∫ t
0 e

(t−s)Oqf(s) ds

yields the same function both as Lqσ(Ω
c
)- and W 1,q

0 (Ω
c
)3-valued Bochner integral. As a

consequence we have u(t) ∈W 1,q
0 (Ω

c
)3. �

In the ensuing theorem, we collect some of our previous results. They allow us to introduce
the notion of “mild solution “. The theorem then states that such a solution satisfies (1.1)
in the sense of an Lq-weak solutions as formulated in (2.1), for a right-hand side f of low
regularity.

Theorem 3.4 Let q ∈ (1,∞), U0 ∈ Lqσ(Ω
c
), f ∈ L1

loc

(
[0,∞), Lqσ(Ω

c
)
)
, and define

u(t) := etOqU0 +
∫ t

0 e
(t−s)Oqf(s) ds for t ∈ [0,∞). This function u is called a “mild

solution” to (1.1). It satisfies the relations u ∈ C0
(

[0,∞), Lqσ(Ω
c
)
)
, u(0) = U0, u(t) ∈

W 1,q
0 (Ω

c
)3, divxu(t) = 0 for t ∈ (0,∞), and ∇xu ∈ L1

loc

(
[0,∞), Lq(Ω

c
)9
)
. Moreover the

function u fulfills equation (2.1).
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Proof: Put u(1)(t) := etOqU0, u(2)(t) :=
∫ t

0 e
(t−s)Oqf(s) ds for t ∈ [0,∞). By The-

orem 3.2 we know that u(1) ∈ C0
(

[0,∞), Lqσ(Ω
c
)
)
, u(1)(0) = U0, u(1)(t) ∈ D(Oq)

(in particular u(1)(t) ∈ W 2,q(Ω
c
)3 ∩ W 1,q

0 (Ω
c
)3), divxu

(1)(t) = 0 for t ∈ (0,∞), and
∇xu(1) ∈ L1

loc

(
[0,∞), Lq(Ω

c
)9
)
. Let γ ∈ C∞0

(
[0,∞)

)
and ϑ ∈ C∞0,σ(Ω

c
). Choose some

T ∈ (0,∞) with supp(γ) ⊂ [0, T ]. The operator V 7→
∫

Ω
c V · ϑ dx

(
V ∈ Lqσ(Ω

c
)
)

is lin-

ear and bounded. It follows from this and the properties of u(1) listed above that the
function t 7→

∫
Ω

c u(1)(t) · ϑ dx
(
t ∈ [0,∞)

)
belongs to C0

(
[0,∞)

)
and to C∞

(
(0,∞)

)
,

with ∂t
( ∫

Ω
c u(1)(t) · ϑ dx

)
=
∫

Ω
c

(
u(1)

)′
(t) · ϑ dx for t ∈ (0,∞), and

∫
Ω

c u(1)(t) · ϑ dx|t=0 =∫
Ω

c U0 · ϑ dx. Thus γ(ε)
∫

Ω
c u(1)(ε) · ϑ dx→ γ(0)

∫
Ω

c U0 · ϑ dx. From the preceding relations
we get ∫ ∞

0
γ′(t)

∫
Ω

c
u(1)(t) · ϑ dx dt = lim

ε↓0

∫ T

ε
γ′(t)

∫
Ω

c
u(1)(t) · ϑ dx dt (3.8)

= − lim
ε↓0

∫ T

ε
γ(t)

∫
Ω

c

(
u(1)

)′
(t) · ϑ dx dt− γ(0)

∫
Ω

c
U0 · ϑ dx.

Since by (3.3),
∫ T

0

∫
Ω

c |∇xu(1)(t) · ∇ϑ| dx dt < ∞, and because u(1)(t) ∈ W 2,q(Ω
c
)3 for

t > 0, we have
∫∞

0 γ(t)
∫

Ω
c ∇xu(1)(t) · ∇ϑ dx dt = − limε↓0

∫ T
ε γ(t)

∫
Ω

c ∆xu
(1)(t) · ϑ dx ds.

But ϑ ∈ C∞0,σ(Ω
c
), so Pq′(ϑ) = ϑ by Theorem 2.1. Therefore due to the equation Pq = P ′q′

(Theorem 2.1), we get∫ ∞
0

γ(t)

∫
Ω

c
∇xu(1)(t) · ∇ϑ dx dt = − lim

ε↓0

∫ T

ε
γ(t)

∫
Ω

c
Pq
(

∆xu
(1)(t)

)
· ϑ dx ds. (3.9)

By a similar reasoning we find that∫ ∞
0

γ(t)

∫
Ω

c
τ ∂x1u

(1)(t) · ϑ dx dt = lim
ε↓0

∫ T

ε
γ(t)

∫
Ω

c
Pq
(
τ ∂x1u

(1)(t)
)
· ϑ dx ds. (3.10)

Since (u(1))′(t) = Oqu(1)(t) for t > 0, we may conclude from (3.8) – (3.10) that equation
(2.1) is valid with f = 0 and with u(1) in the role of u. Note that in the preceding argument,

the integral
∫ T

0 γ(t)
∫

Ω
c Pq

(
∆xu

(1)(t)
)
· ϑ dx ds, which does not exist in general, does not

arise.

By Lemma 3.1 we know that u(2) ∈ C0
(

[0,∞), Lqσ(Ω
c
)
)
.Moreover Theorem 3.3 yields that

u(2)(t) ∈W 1,q
0 (Ω

c
)3, divxu

(2)(t) = 0 for a. e. t ∈ (0,∞), and u(2) ∈ L1
loc

(
[0,∞), Lq(Ω

c
)9
)
.

Take γ, ϑ and T as above. By the previous relation and Theorem 2.2, and because the
operator V 7→

∫
Ω

c V · ϑ dx
(
V ∈ Lqσ(Ω

c
)
)

is linear and bounded, we get∫ ∞
0

γ′(t)

∫
Ω

c
u(2)(t) · ϑ dx dt =

∫ T

0

∫ t

0

∫
Ω

c
γ′(t)ϑ(x) ·

(
e(t−s)Oqf(s)

)
(x) dx ds dt. (3.11)

Due to inequality (3.3), we have ‖e(t−s)Oqf(s)‖q ≤ C(T ) ‖f(s)‖q for t ∈ (0, T ), s ∈ (0, t).
Moreover the function s 7→ ‖f(s)‖q

(
s ∈ (0, T )

)
is integrable, γ′ is bounded, and ϑ is

bounded with compact support, so
∫ T

0

∫ t
0

∫
Ω

c |γ′(t)ϑ(x) ·
(
e(t−s)Oqf(s)

)
(x)| dx ds dt <∞.

Thus we may apply Fubini’s and Lebesgue’s theorem on the right-hand side of (3.11), to
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obtain ∫ ∞
0

γ′(t)

∫
Ω

c
u(2)(t) · ϑ dx dt (3.12)

= lim
ε↓0

∫ T

0

∫ T

s+ε

∫
Ω

c
γ′(t)ϑ(x) ·

(
e(t−s)Oqf(s)

)
(x) dx dt ds.

By Theorem 3.2 we know that for s ∈ (0,∞), the function t 7→ e(t−s)Oqf(s)
(
t ∈ [s,∞)

)
belongs to C0

(
[s,∞), Lqσ(Ω

c
)
)

and to C∞
(

(s,∞), Lqσ(Ω
c
)
)
. Using once more that the

operator V 7→
∫

Ω
c V · ϑ dx

(
V ∈ Lqσ(Ω

c
)
)

is a bounded functional, we see that for

s ∈ (0,∞), the function Kϑ,s(t) :=
∫

Ω
c ϑ(x) ·

(
e(t−s)Oqf(s)

)
(x) dx

(
t ∈ [s,∞)

)
be-

longs to C0
(

[s,∞)
)
∩ C∞

(
(s,∞)

)
, with K ′ϑ,s(t) :=

∫
Ω

c ϑ(x) · ∂t
(
e(t−s)Oqf(s)

)
(x) dx.

Thus the right-hand side in (3.12) may be transformed by an integration by parts into

limε↓0
[
−
∫ T

0

∫ T
s+ε γ(t)K ′ϑ,s(t) dt ds−

∫ t
0 γ(s+ ε)

∫
Ω

c ϑ(x) ·
(
eεOqf(s)

)
(x) dx ds

]
. But with

Hölder’s inequality and (3.3), |γ(s+ε)
∫

Ω
c ϑ(x) ·

(
eεOqf(s)

)
(x) dx| ≤ C |γ|∞ ‖ϑ‖q′ ‖f(s)‖q,

with the function s 7→ ‖f(s)‖q
(
s ∈ (0, T )

)
being integrable, as already mentioned be-

fore. Moreover, by the continuity of the function r 7→ erOqV
(
r ∈ [0,∞)

)
, and because

this function takes the value V if r = 0, for V ∈ Lqσ(Ω
c
) (Theorem 3.2), we obtain

that γ(s + ε)
∫

Ω
c ϑ(x) ·

(
eεOqf(s)

)
(x) dx → γ(s)

∫
Ω

c ϑ(x) · f(x, s) dx (ε ↓ 0). Therefore∫ T
0 γ(s + ε)

∫
Ω

c ϑ(x) ·
(
eεOqf(s)

)
(x) dx ds →

∫ T
0 γ(s)

∫
Ω

c ϑ(x) · f(x, s) dx ds (ε ↓ 0) by
Lebesgue’s theorem. From (3.12), the transformation of the right-hand side of (3.12)
presented above and the preceding relation, we deduce that∫ ∞

0
γ′(t)

∫
Ω

c
u(2)(t) · ϑ dx dt (3.13)

= − lim
ε↓0

∫ T

0

∫ T

s+ε
γ(t)

∫
Ω

c
ϑ(x) · ∂t

(
e(t−s)Oqf(s)

)
(x) dx dt ds−

∫ T

0
γ(t)

∫
Ω

c
f(t) · ϑ dx dt.

Since ∇xu(2) ∈ L1
loc

(
[0,∞), Lq(Ω

c
)9
)

by Theorem 3.3, and because of Theorem 2.2 and

the linearity and boundedness of the operator V 7→
∫

Ω
c V · ϑ dx

(
V ∈ Lq(Ωc

)3
)
, we get∫ ∞

0
γ(t)

∫
Ω

c
τ ∂x1u

(2)(t) · ϑ dx dt (3.14)

=

∫ T

0
γ(t)

∫ t

0

∫
Ω

c
ϑ(x) · τ ∂x1

(
e(t−s)Oqf(s)

)
(x) dx ds dt.

By (3.3) ‖∇x
(
erOqf(s)

)
‖q ≤ C(T ) r−1/2 ‖f(s)‖q for r, s ∈ (0, T ). Thus with Hölder’s

inequality, ∫ T

0

∫ t

0

∫
Ω

c
|γ(t)ϑ(x) · τ ∂x1

(
e(t−s)Oqf(s)

)
(x)| dx ds dt

≤ C(T ) |γ|∞ ‖ϑ‖q′
∫ T

0

∫ t

0
(t− s)−1/2 ‖f(s)‖q ds dt.

But
∫ T

0

∫ t
0 (t− s)−1/2 ‖f(s)‖q ds dt =

∫ T
0

∫ T
s (t− s)−1/2 dt ‖f(s)‖q ds ≤ C(T )

∫ T
0 ‖f(s)‖q ds.

Since the function s 7→ ‖f(s)‖q
(
s ∈ (0, T )

)
is integrable, it follows that the integral

12



∫ T
0

∫ t
0

∫
Ω

c |γ(t)ϑ(x) · τ ∂x1

(
e(t−s)Oqf(s)

)
(x)| dx ds dt is finite. Thus from (3.14) and Fu-

bini’s and Lebesgue’s theorem,∫ ∞
0

γ(t)

∫
Ω

c
τ ∂x1u

(2)(t) · ϑ dx dt (3.15)

= lim
ε↓0

∫ T

0

∫ T

s+ε

∫
Ω

c
γ(t)ϑ(x) · τ ∂x1

(
e(t−s)Oqf(s)

)
(x) dx dt ds.

Since for 1 ≤ l ≤ 3, the operator V 7→
∫

Ω
c V · ∂lϑ dx

(
V ∈ Lq(Ωc

)3
)

is also linear and
bounded, the same reasoning yields that∫ ∞

0
γ(t)

∫
Ω

c
∇xu(2)(t) · ∇ϑ dx dt (3.16)

= lim
ε↓0

∫ T

0

∫ T

s+ε

∫
Ω

c
γ(t)∇ϑ(x) · ∇x

(
e(t−s)Oqf(s)

)
(x) dx dt ds.

On the other hand, we have e(t−s)Oqf(s) ∈W 2,q(Ω
c
)3 for s ∈ (0,∞), t ∈ (s,∞), hence we

obtain
∫

Ω
c ∇ϑ(x) · ∇x

(
e(t−s)Oqf(s)

)
(x) dx = −

∫
Ω

c ϑ(x) ·∆x

(
e(t−s)Oqf(s)

)
(x) dx for s, t

as before. So we may combine (3.15) and (3.16) to obtain∫ ∞
0

γ(t)

∫
Ω

c

(
∇xu(2)(t) · ∇ϑ+ τ ∂x1u

(2)(t) · ϑ
)
dx dt (3.17)

= lim
ε↓0

∫ T

0

∫ T

s+ε

∫
Ω

c
γ(t)ϑ(x) ·

[
−∆x + τ ∂x1

](
e(t−s)Oqf(s)

)
(x) dx dt ds.

At this point we proceed as in the first part of the proof, using the relations Pq′(ϑ) = ϑ
and P ′q = Pq′ provided by Theorem 2.1. Due to these equations, we may rewrite (3.17) as∫ ∞

0
γ(t)

∫
Ω

c

(
∇xu(2)(t) · ∇ϑ+ τ ∂x1u

(2)(t) · ϑ
)
dx dt (3.18)

= − lim
ε↓0

∫ T

0

∫ T

s+ε

∫
Ω

c
γ(t)ϑ(x) · Oq

(
e(t−s)Oqf(s)

)
(x) dx dt ds.

But (∂t −Oq)
(
e(t−s)Oqf(s)

)
= 0 for s ∈ (0,∞), t ∈ (s,∞) by Theorem 3.2, so it follows

from (3.13) and (3.18) that equation (2.1) holds with U0 = 0 and u(2) in the role of u.
Since u = u(1) + u(2), equation (2.1) holds as stated in the theorem. �

4 Spatial decay of mild solutions.

We use Lp−Lq-estimates of the Oseen semigroup etOq in order to deduce rates of spatial
decay of mild solutions to (1.1), (1.2). Our main tools are Theorem 3.2 as well as the
following theorem which reproduces results from [34] and [32]. Recall that the parameter
R0 ∈ (0,∞) was fixed at the beginning of Section 2.

Theorem 4.1 ([34, (6.18)], [32, (6.4)]) Let q ∈ (1,∞). Then

‖etOqV |ΩR0‖1,q ≤ C t−3/(2 q) ‖V ‖q for V ∈ Lqσ(Ω
c
), t ∈ [1,∞).
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Corollary 4.1 Let q ∈ (1,∞). Then

‖∂αx (etOqV )|ΩR0‖q ≤ C
(
χ(0,1)(t) t

−|α|/2 + χ[1,∞)(t) t
−3/(2 q)) ‖V ‖q

for V ∈ Lqσ(Ω
c
), a. e. t ∈ (0,∞) and α ∈ N3

0 with |α| ≤ 1.

Proof: Theorem 3.2 (t ≤ 1) and 4.1 (t > 1). �

In the ensuing four corollaries, we apply Theorem 3.2 and the preceding corollary in order
to estimate the functions

∫ t
0 e

(t−s)Oq f(s) ds and etOq U0. Recall that the set ZR0,∞ was
introduced at the beginning of Section 2.

Corollary 4.2 Let q ∈ (1,∞). If q < 3/2, take p1 ∈ [1,∞) and set p := p1.

In the case q ≥ 3/2, let p1 ∈
[

1, (1−3/(2q))−1
)
. Then 1 ≥ 3/(2q) > 1−1/p1 ≥ 0. Fix some

p2 ∈ (1,∞) with 3/(2q) > 1/p2 > 1−1/p1, for example p2 := 2
(

3/(2q)+1−1/p1

)−1
. Then

1 ≥ 1/q1 > 1/q1 + 1/q2 − 1 > 0. Define p := (1/q1 + 1/q2 − 1)−1. Then p1, p2, p ∈ [1,∞)
with 1/p = 1/p1 + 1/p2 − 1, 3 p2/(2q) > 1 and p ∈ [p1,∞).

For f ∈ L1
loc

(
[0,∞), Lqσ(Ω

c
)
)
, t ∈ (0,∞), define uf (t) :=

∫ t
0 e

(t−s)Oq f(s) ds. Then
the inequalities ‖uf |ZR0,∞‖q,p;∞ ≤ C ‖f‖q,p1;∞ and ‖uf (t)|ΩR0‖q ≤ C ‖f‖q,p1;∞ hold for
f ∈ Lp1

(
0,∞, Lqσ(Ω

c
)
)
, t ∈ (0,∞).

Proof: The operator V 7→ V |ΩR0 from Lqσ(Ω
c
) into Lq(ΩR0)3 is linear and bounded.

Thus, for any f ∈ L1
loc

(
[0,∞), Lqσ(Ω

c
)
)
, t ∈ (0,∞), we may deduce from Theorem 2.2

that uf (t)|ΩR0 =
∫ t

0

[
e(t−s)Oq f(s)

]
|ΩR0 ds, hence with Corollary 4.1,

‖uf (t)|ΩR0‖q ≤ C

∫ t

0
g(t− s) ‖f(s)‖q ds, (4.1)

with g(r) := χ(0,1)(r) + χ[1,∞)(r) r
−3/(2q) for r ∈ R. In the case q < 3/2, put p2 := 1.

Then we may conclude for any choice of q that p1, p2, q ∈ [1,∞), 1/p = 1/p1 + 1/p2 − 1
and 3 p2/(2q) > 1. The latter inequality yields that g ∈ Lp2(R). At this point we see that
inequality (4.1) and Young’s inequality imply the estimate ‖uf |ZR0,∞‖q,p;∞ ≤ C ‖f‖q,p1;∞

for f ∈ Lp1
(

0,∞, Lqσ(Ω
c
)
)
. Since p1 <

(
1−3/(2q)

)−1
in the case q ≥ 3/2, and 3/(2q) > 1

if q < 3/2, we have in any case that 3 p′1/(2q) > 1. Therefore (4.1) and Hölder’s inequality
yield the estimate of ‖uf (t)|ΩR0‖q stated in the corollary. �

Corollary 4.3 Let the numbers q, p1, p2 be given in one of the following three ways:

q ∈ [1, 3/2), p1 ∈ [1,∞), p := p1,

or q ∈ [3/2, 3), p1 ∈
[

1, (1− 3/(2q))−1
)
, p2 := 2

(
3/(2q) + max{1/2, 1− 1/p1}

)−1
, p :=

(1/p1 + 1/p2 − 1)−1,

or q ∈ [3,∞), p1 ∈
[

1, (1 − 3/(2q))−1
)
, p2 := 2

(
3/(2q) + 1 − 1/p1

)−1
and again

p := (1/p1 + 1/p2 − 1)−1.

Then p is well defined and belongs to [p1,∞). Let l ∈ {1, 2, 3}. Then if q < 3, the inequality
‖(∂xluf )|ZR0,∞‖q,p;∞ ≤ C ‖f‖q,p1;∞ holds for f ∈ Lp1

(
0,∞, Lqσ(Ω

c
)
)
. In the case q ≥

3, the estimate ‖(∂xluf |ZR0,∞)‖q,p;∞ ≤ C (‖f‖q,p1;∞ + ‖f‖q,p;∞) is valid for functions f
belonging to Lγ

(
0,∞, Lqσ(Ω

c
)
)

with γ = p1 and γ = p. (The function uf was introduced
in Corollary 4.2.
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Proof: Suppose that q ∈ [3/2, 3). Then 3/(2q) ∈ (1/2, 1]. On the other hand, the
assumption p1 ∈

[
1, (1 − 3/(2q))−1

)
implies 3/(2q) > 1 − 1/p1. Therefore we have

3/(2q) > max{1/2, 1 − 1/p1} > 0, so 3/(2q) > 1/p2 > max{1/2, 1 − 1/p1}, hence
1 > 1/p2 > 1/2, that is, p2 ∈ (1, 2). Moreover 3/(2q) > 1/p2 > 1 − 1/p1, so by Corollary
4.2 we get 1/p1 > 1/p1 + 1/p2 − 1 > 0 and 3 p2/(2q) > 1. In particular p is well defined
and belongs to [p1,∞).

Next assume that q ≥ 3. Then the conditions on p1 and the definition of p2 imply that
3/(2q) > 1/p2 > 1−1/p1, so Corollary 4.2 yields that p2 ∈ (1,∞), 1/p1 > 1/p1+1/p2−1 >
0 and 3 p2/(2q) > 1. In particular p is again well defined and p ∈ [p1,∞).

If q < 3/2, choose p2 = 1. Then (1/p1 + 1/p2−1)−1 = p by the choice of p in the corollary,
and 3 p2/(2q) > 1 because 3/(2q) > 1 in the case under consideration. Altogether we have
for any choice of q that p1, p2, p ∈ [1,∞), 1/p = (1/p1 + 1/p2 − 1)−1 and 3 p2/(2q) > 1.
If q < 3, we additionally have p2 ∈ [1, 2).

Theorem 3.3 and 2.2 yield that
(
∂xluf (t)

)
|ΩR0 =

∫ t
0

[
∂xl
(
e(t−s)Oq f(s)

) ]
|ΩR0 ds for

f ∈ L1
loc

(
[0,∞), Lqσ(Ω

c
)
)

and a. e. t ∈ (0,∞), for any choice of q; see the beginning of
the proof of Corollary 4.2 as concerns the role of Theorem 2.2. Hence by Corollary 4.1,

‖
(
∂xluf (t)

)
|ΩR0‖q ≤ C

∫ t

0
g(t− s) ‖f(s)‖q ds (4.2)

for f, t as before, with g(r) := χ(0,1)(r) r
−1/2 +χ[1,∞)(r) r

−3/(2q) for r ∈ R. Since p2 ∈ [1, 2)
and 3 p2/(2q) > 1 in the case q < 3, we obtain g ∈ Lp2(R) in that case. Recalling that
p1, p2, p ∈ [1,∞) and 1/p = (1/p1 + 1/p2 − 1)−1, we may thus conclude from (4.2) and
Young’s inequality that in the case q < 3, the estimate ‖(∂xluf )|ZR0,∞‖q,p;∞ ≤ C ‖f‖q,p1;∞
is valid for f ∈ Lp1

(
0,∞, Lqσ(Ω

c
)
)
.

Now suppose that q ≥ 3. Since in this case the relations 1/p = (1/p1 + 1/p2 − 1)−1

and 3 p2/(2q) > 1 are valid, too, we may apply Young’s inequality once more, to obtain( ∫∞
0

( ∫
R χ[1,∞)(t − s) (t − s)−3/(2q) ‖f(s)‖q ds

)p
dt
)1/p ≤ C ‖f‖q,p1;∞. Also by Young’s

inequality we get
( ∫∞

0

( ∫
R χ(0,1)(t − s) (t − s)−1/2 ‖f(s)‖q ds

)p
dt
)1/p ≤ C ‖f‖q,p;∞. Due

to (4.2) and the two preceding estimates, we may conclude that ‖(∂xluf )|ZR0,∞‖q,p;∞ ≤
C (‖f‖q,p1;∞ + ‖f‖q,p;∞). �

Corollary 4.4 For q ∈ (1,∞), U0 ∈ Lqσ(Ω
c
), t ∈ (0,∞), put uU0(t) := etOqU0.

Let q ∈ (1,∞). If q < 3/2, take p ∈ [1,∞), else let p ∈ (2 q/3, ∞). Then the inequalities
‖uU0 |ZR0,∞‖q,p;∞ ≤ C ‖U0‖q and ‖uU0(t)|ΩR0‖q ≤ C ‖U0‖q hold for U0 ∈ Lqσ(Ω

c
), t ∈

(0,∞).

Proof: Use Corollary 4.1 with α = 0. �

Corollary 4.5 Let q ∈ (1, 3). If q < 3/2, take p ∈ [1, 2), else let p ∈ (2 q/3, 2). Take
l ∈ {1, 2, 3}. Then ‖(∂xluU0)|ZR0,∞‖q,p;∞ ≤ C ‖U0‖q for U0 ∈ Lqσ(Ω

c
), where uU0 was

defined in the preceding corollary.

Proof: Use Corollary 4.1 with α = el. �

Now we are in a position to establish our decay result for mild solutions to (1.1), (1.2).

Theorem 4.2 Fix some S0 ∈ (0, R0) with Ω ⊂ BS0 . Choose parameters q, p0, p1, p2, γ
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in the following way:

Take q ∈ (1, 3/2), p1 ∈ [1,∞) and set p0 := 1, γ := p1,

or let q ∈ [3/2, 3), p0 ∈
(

2q/3, 2
)

and p1 ∈
[

1, (1 − 3/(2q))−1
)
, and define p2 :=

2
(

3/(2q) + max{1/2, 1− 1/p1}
)−1

, γ := (1/p1 + 1/p2 − 1)−1,

or choose q ∈ [3,∞), p1 ∈
[

1, (1− 3/(2q))−1
)

and put p2 := 2
(

3/(2q) + 1− 1/p1

)−1
and

again γ := (1/p1 + 1/p2 − 1)−1.

According to Corollary 4.3, the parameter γ is well defined in all three cases and belongs
to [p1,∞). In the case q < 3, let U0 ∈ Lqσ(Ω

c
) and f ∈ Lp1

(
0,∞, Lqσ(Ω

c
)
)
, and define

u(t) := etOqU0 +
∫ t

0 e
(t−s)Oq f(s)ds for t ∈ (0,∞). If q ≥ 3, take f ∈ Lp1

(
0,∞, Lqσ(Ω

c
)
)
∩

Lγ
(

0,∞, Lqσ(Ω
c
)
)

and set u(t) :=
∫ t

0 e
(t−s)Oq f(s) ds, again for t ∈ (0,∞).

Then there is a zero-measure subset S∞ of (0,∞) and for any t ∈ (0,∞)\S a zero-measure
subset Nt of BR0

c
such that

|∂αx
[
u−R(τ)

(
f |Bc

S0
× (0,∞)

)
− I(τ)(U0|Bc

S0
)
]
(x, t)| (4.3)

≤ C
[
‖U0‖q

(
|x| ν(x)

)−(3+|α|)/2+1/(2p′0)
+
(
|x| ν(x)

)−(3+|α|)/2+1/(2 γ′) ‖f‖q,p1;∞
]

if q < 3, and

|∂αx
[
u−R(τ)

(
f |Bc

S0
× (0,∞)

) ]
(x, t)| (4.4)

≤ C
(
|x| ν(x)

)−(3+|α|)/2+1/(2 γ′)
(‖f‖q,p1;∞ + ‖f‖q,γ;∞)

else, for t ∈ (0,∞)\S∞, x ∈ BR0

c\Nt, α ∈ N3
0 with |α| ≤ 1.

The asymptotics of the functions |∂αxR(τ)
(
f |Bc

S0
× (0,∞)

)
| and |∂αxI(τ)(U0|Bc

S0
)| are a

seperate problem, only depending on the behaviour of f and U0, respectively. If both
these latter functions have compact support and are L1, then the former two functions

are bounded by C
(
|x| ν(x)

)−(3+|α|)/2
for x ∈ Bc

R0
, t > 0; see [17, Lemma 4.1] as concerns

|∂αxI(τ)(U0|Bc
S0

)|, and [17, Lemma 4.2] with respect to |∂αxR(τ)
(
f |Bc

S0
× (0,∞)

)
|. In this

situation the functions |∂αxI(τ)(U0|Bc
S0

)| and |∂αxR(τ)
(
f |Bc

S0
×(0,∞)

)
| decrease faster than

the right-hand side of (4.3), except if q < 3/2, p0 = 1, p1 = 1 in Theorem 4.2. Then the
two convergence rates coincide. Under the assumptions of Lemma 2.7, |∂αxI(τ)(U0|Bc

S0
)|

even goes to zero as O
( [
|x| ν(x)

]−(4+|α|)/2 )
for |x| → ∞. For conditions on f and U0

leading to the decay bound C
(
|x| ν(x)

)−(2+|α|)/2
, we refer to [12, Theorem 3.1] and [11,

Theorem 1.1], respectively. These remarks explain why we stated in Section 1 that in-
equality (1.4) holds if U0(x) and f(x, t) decay sufficiently fast for |x| → ∞. It should be
noted that the sum R(τ)

(
f |Bc

S0
× (0,∞)

)
+ I(τ)(U0|Bc

S0
) solves (1.1) in the whole space

R3×(0,∞). So the left-hand side in (2.2) may be interpreted as the perturbation generated
by the presence of the rigid object, in the region far from that object.

Proof of Theorem 4.2: The relation γ ≥ p1 holds according to Corollary 4.3. Suppose
that q < 3. Then we have u = uU0 + uf , with uU0 and uf defined as in Corollary 4.2 and
4.4, respectively. Corollary 4.4 and 4.5 yield that

‖uU0 |ZR0,∞‖q,∞;∞ + ‖uU0 |ZR0,∞‖q,p0;∞ + ‖(∇xuU0)|ZR0,∞‖q,p0;∞ ≤ C ‖U0‖q.
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Moreover, by Corollary 4.2 and 4.3,

‖uf |ZR0,∞‖q,∞;∞ + ‖uf |ZR0,∞‖q,γ;∞ + ‖(∇xuf )|ZR0,∞‖q,γ;∞ ≤ C ‖f‖q,p1;∞.

The assumptions in Theorem 4.2, the preceding inequalities and Theorem 3.4 show that
the conditions on U0, f and u in Theorem 2.4 are fulfilled if this latter theorem is applied
seperately to the cases f = 0 and U0 = 0, respectively. By making use of this theorem
in this way and applying the preceding inequalities, we may conclude that inequality
(4.3) is valid. Note that since γ ≥ p1, the rate of decay of ∂αxuf obtained from Theorem
2.4 is −(3 + |α|)/2 + 1/(2 γ′), in view of the fact that Corollary 4.4 yields a bound for
‖u|ZR0,∞‖q,γ;∞ and ‖∇xu|ZR0,∞‖q,γ;∞.

In the case q ≥ 3, we obtain (4.4) by the same reasoning, but only Corollary 4.2 and 4.3
are relevant, whereas Corollary 4.4 is not needed and Corollary 4.5 is mute in this case. �
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