
HAL Id: hal-02545999
https://hal.science/hal-02545999v1

Submitted on 22 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using the HINT network emulator to develop
opportunistic applications

Antoine Auger, Gwilherm Baudic, Victor Ramiro, Emmanuel Lochin

To cite this version:
Antoine Auger, Gwilherm Baudic, Victor Ramiro, Emmanuel Lochin. Using the HINT network emu-
lator to develop opportunistic applications. the Eleventh ACM Workshop, Oct 2016, New York City,
United States. pp.35-36, �10.1145/2979683.2979699�. �hal-02545999�

https://hal.science/hal-02545999v1
https://hal.archives-ouvertes.fr


Demo: Using the HINT Network Emulator to Develop
Opportunistic Applications

Antoine Auger, Gwilherm Baudic, Victor Ramiro, Emmanuel Lochin
Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)

Université de Toulouse, 31055 Toulouse Cedex 4, France
{first.second}@isae.fr

ABSTRACT
In this work, we show how to use HINT, a real-time event-
driven network emulator, to support the development pro-
cess of opportunistic applications. In this demo, we use this
emulator in conjunction with an example Android chat ap-
plication to demonstrate its features.

Keywords
DTN, Emulation, Opportunistic networks, Architecture

1. INTRODUCTION
Developers of applications running over opportunistic net-

works, must not only deal with network characterization,
but also with its impact on their application. Indeed, the
complexity to evaluate the performance before a real world
deployment is still an open issue.

Simulations help to gain insight in the network behav-
ior [2, 3, 4], but they do not support real nodes, and typ-
ically focus on network performance. Testbeds provide an
almost real world feedback, but they are heavy and expen-
sive to deploy. Currently there is no tool to help during the
development process.

For this purpose, we propose HINT [1], a new hybrid em-
ulation system for opportunistic networks, where nodes can
be either real or virtual. Thanks to the support of Android
devices as real nodes, it aims to help developers to conceive
and test their opportunistic applications before moving to a
real-world deployment.

In this demo, we show the development process of an op-
portunistic application from development, test and perfor-
mance evaluation perpectives. We show three different use
cases for HINT: How to connect an application to an op-
portunistic network, to test the application using the HINT
emulator and finally to easily test different application sce-
narios using the HINT monitoring system.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

2. HINT IN A NUTSHELL
In this section, we present the main details of the HINT

architecture. HINT is a lightweight real-time event-driven
emulator meant to fit into existing development environ-
ments.

We define two interaction levels: the real world and the
emulated world. In the real world, real nodes (i.e., Android
mobile devices) run applications to be tested, while in the
emulated world, both virtual nodes and real nodes interact
in an opportunistic way. HINT defines nodes’ interaction be-
tween all nodes at the emulated world, and applies changes
in real-time according to contact opportunities. Real nodes
can only communicate with the emulator (at the real world
level), and not directly with each other. Hence, we en-
sure that all connections go through HINT. Several network
topologies can be drawn, according to the considered user
scenario.

Core Emulator

Message Broker

Monitoring
& Tuning

Database

Real world

HINT emulator

App

ULL

App

ULL

App

ULL

Figure 1: HINT network emulator architecture.

Figure 1 shows the main architecture. HINT is organized
around the event-driven Core Emulator which runs the ex-
periment scenario. Events define contact or intercontact
durations and message management (creation, replication,
forwarding, etc.). The Message Broker allows the commu-
nication between each pair of nodes (real or virtual). It is
used to represent node buffers and store messages. The User
Link Layer is deployed on the real nodes as an Android ser-
vice, to act as an abstraction layer between the emulator and
the application. This makes HINT transparent to the appli-
cation being tested. A Cross-layer Monitoring and Tuning
system, implemented with a web interface, allows to follow
the experiment in real-time and adjust parameters. Finally,
a Database stores the characteristics of each node, along
with the data required for the Monitoring system.



(a) (b)

Figure 2: A set of screenshots: (a) shows the web-based monitoring interface for HINT; (b) shows different views of the
OppChat Android application.

3. DEMO OVERVIEW
We now present the validation of the HINT emulator. Our

scenario defines an opportunistic network of 50 nodes, split
into 47 virtual nodes and 3 real nodes (Android devices).
Pairwise contact and intercontact events are generated ac-
cording to an homogeneous exponential distribution. All
nodes route their messages using the forward protocol. Real
nodes both deploy an opportunistic chat application and
the HINT user link layer. The chat application can either
broadcast messages to all connected nodes or deliver a pri-
vate message to a specific node.

HINT application development: first, we demonstrate
how to bind an existing application to the HINT emulator
using the User Link Layer package. We develop OppChat,
an Android opportunistic chat application. OppChat takes
advantage of our User Link Layer service to seamlessly ex-
change messages with other nodes through the HINT Core
Emulator. Indeed, to send a chat message the application
just needs to call the appropriate User Link Layer method.
To receive messages, the application declares a standard
Broadcast Receiver subclass that appropriately filters and
handles incoming chat messages. When messages are for-
warded to a node within the HINT Core Emulator, they are
placed into Message Broker queues. Then, the broker fires a
notification to the User Link Layer of the corresponding real
node. Finally, the message is consumed from the broker by
the User Link Layer and passed to the application by means
of a Broadcast Intent to be finally displayed in OppChat.

HINT validation: the goal of this experience is to test
the correctness of the HINT emulated connections with both
emulated and real nodes. We deploy OppChat on real nodes
(see Figure 2b). When this chat application must broadcast
one message to all other opportunistic nodes, one message
is created for each node in the emulator. When a message is
sent from OppChat, the User Link Layer transmits it to the
broker using a TCP connection. We show that the network
connection delay is negligible compared to the contact and
intercontact durations tested. Messages are routed among
nodes within HINT until their delivery to the final desti-
nation where they are displayed at the chat log window. In
this special validation, we can send messages between two or
more real nodes connected to HINT. Since there is no direct
connection between the real nodes but rather an emulated
connection with the HINT Core Emulator, once a message is
sent it will traverse the emulated opportunistic network be-

fore arrival to all other real nodes. This allows developers to
test the interaction of the application on different scenarios
of emulated opportunistic networks.

HINT monitoring: finally, we demonstrate the use of
the HINT Monitoring system. HINT provides a real-time
monitoring interface for different levels of granularity: met-
rics for the whole emulated opportunistic network, pairwise-
based metrics and a node status view. In this experiment,
a real node sends a private message to another real node
thanks to the OppChat application. We set nodes’ buffer
size limit to 20 bytes and tail drop buffer policy. To show
the impact on node’s buffer size and its drop ratio, we in-
tentionally send “message bursts” (10 copies of the original
message). We then monitor the global drop ratio, as well as
the hop number distribution (see Figure 2a).

4. CONCLUSION
In this demo, we presented the use of HINT to develop,

test and monitor a simple opportunistic application. The
aim of HINT is to help bridge network characterization and
real application development. Differently from a simulator,
our proposal is designed to handle both real and virtual
nodes in the same setup. Compared to testbeds, our system
has low hardware requirements (one computer and some An-
droid devices) and may be easily deployed in development
environments.

Acknowledgments. This research was supported in part
by the French Ministry of Defense through financial support
of the Direction Générale de l’Armement (DGA).

5. REFERENCES
[1] G. Baudic, A. Auger, V. Ramiro, and E. Lochin. Using

emulation to validate applications on opportunistic
networks. Available: http://arxiv.org/abs/1606.06925,
June 2016.

[2] X. Chang. Network simulations with OPNET. In ACM
WSC’99, 1999.

[3] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell,
and J. Kopena. Network simulations with the ns-3
simulator. SIGCOMM demonstration, 14, 2008.

[4] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE
simulator for DTN protocol evaluation. In Proceedings
of the 2nd international conference on simulation tools
and techniques. ICST, 2009.


