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1. Abstract

This report is an additional material to our article in the Journal of Machine Learning
Research (JMLR). Both documents deal with an algorithm that we designed, named NRBM
(Non convex Regularized Bundle Methods), to deal efficiently with regularized non convex
risks as often encountered in the machine learning field. The JMLR article provides more
details on NRBM and report empirical evaluation on many real machine learning problems
while this report provides additional theoretical results related to the convergence analysis
of algorithm NRBM.

Main part of this work was done while the first author, Trinh Minh Tri DO, was with
UPMC.

2. Introduction

The algorithm we describe here is designed to deal with the following general unconstrained
optimization problem

minw f(w)

with f(w) = λ
2‖w‖

2 +R(w)
(1)

where w ∈ RD are the model parameters and R(w) (the main objective) is a data-fitting
measurement to be minimized which we consider to be not necessarily smooth everywhere
nor convex.

This report provides theoretical elements on the convergence of our algorithm named-
NRBM. As will be seen proofs hold for general risks, including non convex and non smooth
risks under two assumptions, the first one being very standard (Lipschitz continuous risk)
while the second is moot. Hence, although our analysis does not clearly prove that NRBM
algorithm converges towards a stationary solution for non convex risks it still provides in
our opinion valuable results that may be of interest.
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We first recall the notations and the algorithm as they are described in the paper on
NRBM, then we detail our analysis on convergence.

3. Non-Convex Regularized Bundle Method (NRBM)

3.1 Notations

Cutting Planes. A cutting plane (CP) cw′ is an approximation of f which is accurate for
w lying in the vicinity of w′ where the CP is defined, i.e. where the gradient is computed.
It is defined as :

cw′(w) = 〈aw′ ,w〉+ bw′

with aw′ ∈ ∂f(w′)
bw′ = f(w′)− 〈aw′ ,w

′〉
(2)

Raw and modified cutting plane. We distinguish between a raw linear cutting plane
of the risk cwj (with cwj (w) = 〈awj ,w〉 + bwj ) that is built at a particular iteration j of
the algorithm and the eventually modified versions of this cutting plane that might be used
in posterior iterations. Indeed a cutting plane may be modified multiple times for solving
conflicts as in standard NBM method. At iteration t we note ctj (with ctj(w) = 〈aj ,w〉+ btj)
the cutting plane which is derived from cwj , the raw CP originally built at iteration j.
Unlike NBM, the normal vector aj in our algorithm might be different than the subgradient
awj computed at wj , due to our particular solving conflict method. However, once defined
at iteration j, the normal vector aj keeps fixed over iterations. On the contrary, the offset
might be modified for solving conflicts occurring after iteration j, and we use a superscript
t indicating the iteration number for the cutting plane’s offset btj .

Current and best solutions. We note wt the current solution found at iteration t. It
is the one that minimizes the approximated problem at the previous iteration. Also, we
note w∗t the best solution up to iteration t, i.e. the solution wj(j ≤ t) with minimum value
f(wj) .

Approximated problem. Like in Bundle Methods (CRBM, NBM, etc), we build an
accurate approximation of f by using an ensemble of cutting planes of R built at different
coordinates. Let C be a working set of (active) cutting planes, the approximation of f is:

f(w) ≈ gt(w) =
λ

2
‖w‖2 + max

c∈C
c(w)

The minimization of the approximation function is called the approximated problem. Con-
sider a working set C of active cutting planes, it is defined as:

w̃ = argmin
w

λ

2
‖w‖2 + max

c∈C
c(w) (3)

We note w̃t the minimizer of the curent approximation function gt(w) and vt is the
minimum of the curent approximation function, i.e. vt = gt(w̃t).
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Bundle. The bundle Bt denotes the state of the algorithm at iteration t. It consists in a
bundle of cutting planes which were built at previous solutions, ctj for j = 1..t. Similarly
to non-convex bundle methods, we define a locality measure which is associated to any
active cutting plane. It is related to the locality between the point where the cutting plane
was built and the best current observed solution. We note stj the locality measure between
cutting plane ctj and the best observed solution up to iteration t, w∗t . The full bundle
information is:

Bt = {ct1, ..., ctt, c̃tt−1, s
t
1, ..., s

t
t, s̃

t
t−1} (4)

where c̃tt−1 is an aggregated cutting plane and s̃tt−1 is its locality measure to the best observed
solution w∗t .

Aggregation cutting plane. The aggregation cutting plane at iteration t is noted c̃tt.
This aggregation cutting plane is not directly built from a solution, it may be viewed as a
convex combination of the cutting planes in the bundle, designed to accumulate information
from past cutting planes (allowing for limited memory vesrions where one maintains only a
fixed number of CP in the bundle). Our aggregation technique differs from standard NBM
in that we define a locality measure, s̃tt, for the aggregated CP which is estimated as a
similar convex combination (with the same weights) of the locality measures associated to
the cutting planes in the bundle.

Locality measure. At iteration t, we define the locality measure between CP ctj built at
wj and w∗t as:

stj = s(wj ,w
∗
t ) =

λ

2

‖wj −w∗j‖2 +

t∑
k=j+1

‖w∗k −w∗k−1‖2


which yields a natural recursive formulate:

stj = st−1
j +

λ

2
‖w∗t −w∗t−1‖2,∀j < t (5)

3.2 Algorithm

The main algorithm is described in Algorithm 1. It takes as input an initial solution and
values for hyper parameters λ and ε. It produces as output a solution of the optimization
problem, w∗. It calls Algorithm 2, which itself calls Algorithm 3. We focus here on a full
variant of the NRBM algorithm where the bundle at iteration t includes all the cutting
planes built at previous iterations. Yet since all our discussion and theoretical elements
require only the aggregation cutting plane and the cutting planes built at iteration t to
belong to the bundle. Hence all the discussion hereafter holds for a limited memory variant
of NRBM where the bundle includes only a subset of the cutting planes.

Note that there are two conditions that should hold when modifying the offset of a
cutting plane when a conflict is solved. The two conditions are given below and provide an
upper bound U and a lower bound L for btt, these conditions are used in Algorithm 3.

btt ≤ R(w∗t )− 〈awt ,w
∗
t 〉 − stt = U

btt ≥ f(w∗t )− λ
2‖wt‖2 − 〈awt ,wt〉 = L

(6)

If L ≤ U any value in (L,U) works (in our implementation we set btt = L).
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Algorithm 1 NRBM

1: Input: w1, λ, ε
2: Output: w∗

3: Initialization:
4: Compute cutting plane cw1 of R
5: [c1

1, s
1
1] = [c̃1

1, s̃
1
1] = [cw1 , 0]

6: w̃1 = −a1/λ
7: B1 = {c1

1, s
1
1, c̃

1
1, s̃

1
1}

8: for t = 2 to ∞ do
9: wt ← w̃t−1

10: Compute cutting plane cwt of R
11: w∗t = argminw∈{w1,...wt} f(wt)
12: Bt = UpdateBundle(Bt−1,w

∗
t−1,w

∗
t , cwt ,wt)

13: (w̃t, vt, c̃
t
t, s̃

t
t) = MinimizeApproximationProblem(Bt,λ)

14: gapt = f(w∗t )− vt
15: if gapt < ε then return w∗t
16: end for

Algorithm 2 UpdateBundle

1: Input: Bt−1 = {ct−1
1 , ..., ct−1

t−1, c̃
t−1
t−1, s

t−1
1 , ...st−1

t−1, s̃
t−1
t−1},w∗t−1,w

∗
t ,wt, cwt

2: Output: Bt = {ct1, ..., ctt, c̃tt−1, s
t
1, ...s

t
t, s̃

t
t−1}

3: if w∗t 6= w∗t−1 then Descent Step
4: for j = 1..t− 1
5: stj = st−1

j + λ
2‖w

∗
t −w∗t−1‖2

6: btj = min[bt−1
j , R(w∗t )− 〈aj ,w∗t 〉 − stj ]

7: end
8: s̃tt−1 = s̃t−1 + λ

2‖w
∗
t −w∗t−1‖2

9: b̃tt−1 = min[b̃t−1
t−1, R(w∗t )− 〈ãt−1,w

∗
t 〉 − s̃tt−1]

10: c̃tt−1(w) := 〈ãt−1,w〉+ b̃tt−1

11: [ctt, s
t
t] = [cwt , 0]

12: else Null Step
13: [ct1, ..., c

t
t−1, c̃

t
t−1, s

t
1, ...s

t
t−1, s̃

t
t−1] = [ct−1

1 , ..., ct−1
t−1, c̃

t−1
t−1, s

t−1
1 , ...st−1

t−1, s̃
t−1
t−1]

14: if (bwt ≤ R(w∗t )− 〈awt ,w
∗
t 〉 − s(wt,w

∗
t )) then

15: [ctt, s
t
t] = SolveConflictNullStep(w∗t ,wt, cwt)

16: else [ctt, s
t
t] = [cwt ,

λ
2‖wt −w∗t ‖2]

17: end

4. Convergence analysis for NRBM

In this section, we present the analysis of convergence rate of NRBM and the result on
the convergence toward a stationary solution. Our analysis of convergence rate of NRBM
is based on the fact the approximation gap decreases towards zero, and the algorithm
requires a limited number of iteration to reach a gap lower than a given (positive) precision
ε. Concerning the nature of the solution found by NRBM, we show that if the algorithm
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Algorithm 3 SolveConflictNullStep

1: Input: w∗t ,wt, cwt with parameters (awt , bwt)
2: Output: ctt with parameters (at, b

t
t) and stt

3: stt = λ
2‖w

∗
t −wt‖2

4: Compute L,U according to (6)
5: if L ≤ U then [at, bt] = [awt , L] else
6: at = −λw∗t NullStep2 case
7: btt = f(w∗t )− λ

2‖wt‖2 − 〈at,wt〉

reaches a null approximation gap after a finite number of iterations then a stationary solution
is found. Furthermore, if the algorithms does not reach a null gap after a finite number of
iterations then it generates cluster points which are stationary solutions.

These results are gained under two assumptions that we presented and discussed in
section 4. In Section 4.2, we present some useful results concerning the gap, the locality
measure of the aggregation cutting plane, and the minimum of the approximation problem.
These preliminary results are then used to derive our main results concerning convergence
rate analysis convergence to a stationary solution (Section 4.3 and 4.4).

4.1 Assumptions

The necessary assumptions for proving our main results are the following:

• H1 : The empirical risk is Lipschitz continuous with a constant G.

• H2 : The number of iterations where a conflict is solved by modifying the normal
vector at (NullStep2 case in Algorithm 1) is finite.

H1 is a rather standard assumption. It was used for instance in (Smola et al., 2008;
Shalev-Shwartz et al., 2007; Joachims, 2006), for proving convergence results. It is in par-
ticular a reasonable assumption in case of smooth almost everywhere risks such as those one
gets using hinge loss and maximum margin criterion (SVM, structured output prediction,
etc).

H2 is less intuitive. Recall that there is a NullStep2 at iteration t if and only if the
raw cutting plane built at current solution wt is not compatible with the best observed
solution w∗t . Hence, since the current solution and the best observed solution get closer
as the iteration number increases we may hope that NullStep2 do not arise after a finite
number of iterations. Furthermore, it is very likely that if the algorithm gets close enough
to a stationary solution w∗ lying within a smooth area then it should converge towards
this stationary solution without conflicts anymore, as it would do in case of a convex and
smooth objective. This is particularly expected for our algorithm (compared to standard
non convex bundle methods) since it focuses on maintaining a good approximation function
around the best current solution. Another important point is that we did not observe
any case of infinite number of conflicts in our experiments (on both academic optimization
problems and machine learning problems) where NullStep2 mainly occurred in a few early
iterations.
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At the end these claims are still not proved so that the convergence of NRBM to a
stationary solution is not fully proved here, but we believe that our convergence analysis
establishes some important elements towards a fast and fully proved bundle method for
minimizing non-convex regularized function.

4.2 Preliminary results

The three preliminary results below establish, first a link between the gap, gapt = f(w∗t )−vt,
and the locality measure s̃tt of the aggregation cutting plane, second a lower bound on the
minimum of the approximation function, vt = minw gt(w), and finally the bounds on the
solution generated by NRBM.

Lemma 4.1 Following inequality always holds:

s̃tt +
λ

2
‖w̃t −w∗t ‖2 ≤ gapt (7)

As a consequence:
s̃t+1
t ≤ gapt (8)

Proof
First, we know that:

R(w∗t )− c̃tt(w∗t ) ≥ s̃tt (9)

Then:

s̃tt + 〈ãt,w∗t 〉+ b̃tt ≤ R(w∗t )

⇐⇒ s̃tt + 〈ãt,w∗t 〉+ b̃tt + λ
2‖w

∗
t ‖2 − vt ≤ R(w∗t ) + λ

2‖w
∗
t ‖2 − vt

⇐⇒ s̃tt + 〈ãt,w∗t 〉+ b̃tt + λ
2‖w

∗
t ‖2 − vt ≤ f(w∗t )− vt = gapt

(10)

Next, using that:

w̃t = − ãt
λ

(11)

and:
gt(w̃t) = vt = − 1

2λ‖αtAt‖2 + αtBt = −λ
2‖

ãt
λ ‖

2 + b̃tt
= λ

2‖
ãt
λ ‖

2 − λ‖ ãt
λ ‖

2 + b̃tt = λ
2‖w̃t‖2 − 〈ãt, ãt

λ 〉+ b̃tt
= λ

2‖w̃t‖2 + 〈ãt, w̃t〉+ b̃tt

(12)

we get:
〈ãt,w∗t 〉+ b̃tt + λ

2‖w
∗
t ‖2 − vt

= 〈ãt,w∗t 〉+ b̃tt + λ
2‖w

∗
t ‖2 − λ

2‖w̃t‖2 − 〈ãt, w̃t〉 − b̃tt
= −λ〈w̃t,w

∗
t 〉+ λ

2‖w
∗
t ‖2 − λ

2‖w̃t‖2 + λ‖w̃t‖2
= λ

2‖w
∗
t − w̃t‖2

(13)

so that Eq. (7) is satisfied.
Furthermore, since w∗t+1 is either w̃t or w∗t (depending on the iteration t + 1 being a

descend step or a null step), ‖w∗t+1 −w∗t ‖2 ≤ ‖w̃t −w∗t ‖2. Then:

s̃t+1
t = s̃tt +

λ

2
‖w∗t+1 −w∗t ‖2 ≤ s̃tt +

λ

2
‖w̃t −w∗t ‖2 ≤ gapt (14)
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Lemma 4.2 The minimum value of the approximation function at iteration t, gt(w), is
lower bounded by:

vt ≥ max
αt∈[0,1]

−q
2

(αt)
2 + lαt +m (15)

where
q = 1

λ‖at − ãt−1‖2
l = ctt(wt)− c̃tt−1(wt)

m = λ
2‖wt‖2 + c̃tt−1(wt).

Furthermore

l ≥ s̃tt−1 > 0 (16)

m ≥ f(w∗t )− gapt−1 (17)

l ≥ f(w∗t )−m. (18)

Proof
Since the aggregated cutting plane and the new added cutting plane at iteration t are a

subset of the active cutting planes at iteration t, we can define a simple lower bound on vt,
noted vlowt , through:

vt ≥ vlowt = min
w

λ

2
‖w‖2 + max

[
〈ãt−1,w〉+ b̃tt−1, 〈at,w〉+ btt

]
(19)

Note that vlowt may be characterized as the maximum of the above objective in its dual
form:

vlowt = maxα̃t−1,αt −λ
2‖

α̃t−1ãt−1+αtat

λ ‖2 + α̃t−1b̃
t
t−1 + αtb

t
t

s.t 0 ≤ α̃t−1, αt ≤ 1
α̃t−1 + αt = 1

(20)

where α̃t−1, αt ∈ R are Lagrange multipliers. The above quadratic program of the two
variables may be easily rewritten so that we get:

vt ≥ vlowt = max
αt∈[0,1]

− 1
2λ‖ãt−1 + αt(at − ãt−1)‖2 + αt(b

t
t − b̃tt−1) + b̃tt−1

= max
αt∈[0,1]

− 1
2λ‖at − ãt−1‖2(αt)

2 + (‖ãt−1‖2
λ − 〈at,ãt−1〉

λ + btt − b̃tt−1)αt − ‖ãt−1‖2
2λ + b̃tt−1

(21)

which has the same shape as in Eq. (15), with q = 1
λ‖at − ãt−1‖2, l = (‖ãt−1‖2

λ − 〈at,ãt−1〉
λ +

btt − b̃tt−1) and m = −‖ãt−1‖2
2λ + b̃tt−1. Identifying the linear term in Eq. (15), while noticing

that wt = w̃t−1 = − ãt−1

λ , we get the right expression for l:

l = ‖ãt−1‖2
λ − 〈at,ãt−1〉

λ + btt − b̃tt−1

= 〈at,wt〉+ btt − 〈ãt−1,wt〉 − b̃tt−1

= ctt(wt)− c̃tt−1(wt)

(22)

To show that l > 0 we use the positive linearization error constraint in first equation of
Eq. (6) for c̃tt−1 and w∗t :

R(w∗t )− s̃tt−1 ≥ c̃tt−1(w∗t ) (23)

7
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Considering the second constraint in Eq. (6):

λ

2
‖wt‖2 + ctt(wt) ≥ f(w∗t ) (24)

Summing the two above inequalities we finally get:

ctt(wt)− s̃tt−1 ≥ c̃tt−1(w∗t ) (25)

then l > 0 since the locality measure is positive.

To show the result in Eq. (17), we rewrite the constant term m based on Eq. (15):

m = −‖ãt−1‖2
2λ + b̃tt−1

= ‖ãt−1‖2
2λ − ‖ãt−1‖2

λ + b̃tt−1

= λ
2‖wt‖2 + 〈ãt−1,wt〉+ b̃tt−1

= λ
2‖wt‖2 + c̃tt−1(wt).

(26)

Using the definition of b̃tt−1, it may further be rewritten as:

m = λ
2‖wt‖2 + 〈ãt−1,wt〉+ b̃tt−1

= λ
2‖w̃t−1‖2 + 〈ãt−1, w̃t−1〉+ b̃t−1

t−1 + min[0, R(w∗t )− 〈ãt−1,w
∗
t 〉 − b̃t−1

t−1 − s̃tt−1]

= vt−1 + min[0, R(w∗t )− c̃t−1
t−1(w∗t )− s̃tt−1]

(27)

In the case there is no conflict between c̃t−1
t−1 and w∗t , i.e. R(w∗t )− c̃t−1

t−1(w∗t ) ≥ s̃tt−1, then
m = vt−1 and:

f(w∗t )−m = f(w∗t )− vt−1 ≤ f(w∗t−1)− vt−1 = gapt−1 (28)

On the contrary, if there is conflict between c̃t−1
t−1 and w∗t , i.e. R(w∗t )− c̃t−1

t−1(w∗t ) < s̃tt−1,
using Eq. (8):

m = vt−1 +R(w∗t )− c̃t−1
t−1(w∗t )− s̃tt−1 ≥ vt−1 +R(w∗t )− c̃t−1

t−1(w∗t )− gapt−1 (29)

In this case, w∗t 6= w∗t−1 because it is not possible to exist a conflict between c̃t−1
t−1 and

w∗t−1 (by construction of aggregated CP, see Eq. (9)), which implies it is a descent step.
Hence w∗t = w̃t−1, and we may write:

m ≥ vt−1 +R(w∗t )− c̃t−1
t−1(w̃t−1)− gapt−1

⇐⇒ m ≥ λ
2‖w̃t−1‖2 + c̃t−1

t−1(w̃t−1) +R(w∗t )− c̃t−1
t−1(w̃t−1)− gapt−1

(30)

since vt−1 is the minimum value of λ
2‖w‖

2 + c̃t−1
t−1(w) which is minimized at w̃t−1. Then:

m ≥ λ
2‖w̃t−1‖2 +R(w∗t )− gapt−1

⇐⇒ m ≥ f(w∗t )− gapt−1
(31)

where we used w∗t = w̃t−1 again.

Finally, we show the result in Eq (18). Using Eq (22) and Eq (26), we have

8
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l ≥ f(w∗t )−m
⇐⇒ l +m ≥ f(w∗t )

⇐⇒ ctt(wt)− c̃tt−1(wt) + λ
2‖wt‖2 + c̃tt−1(wt) ≥ f(w∗t )

⇐⇒ λ
2‖wt‖2 + ctt(wt) ≥ f(w∗t )

(32)

which resumes to our second condition when solving conflict (Cf Eq. (6)).

Lemma 4.3 Let Ḡ = max(‖λw1‖, G) where G is the Lipschitz constant of R, we have:

∀t, ‖wt‖ ≤
Ḡ

λ
. (33)

Furthermore:
∀t, ‖at‖ ≤ Ḡ
∀t, ‖ãt‖ ≤ Ḡ.

(34)

Proof

First, w1 trivially satisfies the inequality. Next assume Eq. (33) is satisfied for w1 ...
wk. We show now it is also true for wk+1. Actually, wk+1 coincides with w̃k, the minimizer
of gk(w), so that:

wk+1 = w̃k = 1
λ

(∑
j=1..k αjaj + αk+1ãk−1

)
(35)

where
∑

j=1..k+1 αj = 1 and αj ≥ 0 ∀j. Using Eq. (11), we have ãk−1 = −λw̃k−1 = −λwk,
so that:

wk+1 =
∑

j=1..k αj
aj

λ + αk+1(−wk) (36)

Furthermore, ‖aj‖ ≤ Ḡ for j < k + 1 since:

a) if aj is a raw subgradient of R then ‖aj‖ ≤ G ≤ Ḡ
b) otherwise, aj is a modified normal vector at iteration j: aj = λw∗j (NullStep2 case)

where w∗j ∈ {wi}i=1..j , so that ‖aj‖ ≤ Ḡ by induction hypothesis.

At the end, wk+1 is a convex combination of vectors upper bounded by Ḡ
λ , then it is

also upper bounded by Ḡ
λ .

Finally the results in Eq. (34) are straightforward from the above proof.

4.3 Convergence Rate

We provide here an upper bound on the convergence rate of our algorithm. The analysis is
based on a lower bound of the decrease of the gap (Lemma 4.4). Using this lower bound,
Theorem 4.1 proves that Algorithm 1 converges to a solution with accuracy ε with a rate
O(1/λε). The only hypothesis required in this section is Hypothesis H1.

9
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Lemma 4.4 Approximation gap produced by Algorithm 1 satisfies:

gapt−1 − gapt ≥ min(
gapt−1

2
,
(gapt−1)2λ

8Ḡ2
) (37)

Proof Starting from the lower bound in Lemma 4.2, we can apply a result from (Teo
et al., 2007) which states that the minimum of 1

2qx
2− lx with l, q > 0 and x ∈ [0, 1] is upper

bounded by − l
2 min(1, l/q). Then, using the same notation for q, l and m as in Lemma 4.2:

minαt
t∈[0,1]

q
2(αtt)

2 − lαtt ≤ − l
2 min(1, l/q)

⇐⇒ −maxαt
t∈[0,1]−

q
2(αtt)

2 + lαtt ≤ l
2 min(1, l/q)

⇐⇒ −maxαt
t∈[0,1]−

q
2(αtt)

2 + lαtt +m ≤ m+ l
2 min(1, l/q)

⇒ −vt ≤ m+ l
2min(1, l/q)

⇒ f(w∗t )− vt ≤ f(w∗t )−m− l
2 min(1, l/q)

(38)

From Eq. (18), we have l ≥ f(w∗t )−m so that:

f(w∗t )− vt ≤ f(w∗t )−m−
f(w∗t )−m

2
min(1,

f(w∗t )−m
q

) (39)

Combining f(w∗t ) − m ≤ gapt−1 (Lemma 4.2) and the monotonicity of h(x) = x −
x
2 min(1, x/q) into Eq. (39) leads to:

gapt ≤ gapt−1 −
gapt−1

2
(1,

gapt−1

q
) (40)

Finally subsituting the value of q and using hypothesis Lemma 4.3, q = 1
λ‖at − ãt−1‖2 ≤

4Ḡ2/λ, and we get the claim.

Theorem 4.1 Algorithm 1 reaches a gap below ε with a number of iterations O(1/λε).

Proof Let consider the two quantities occurring in Eq. (37), gapt−1/2 and λgap2
t−1/8Ḡ

2.

We first show that the situation where gapt−1/2 > λgap2
t−1/8Ḡ

2 (i.e. gapt−1 > 4Ḡ2/λ)
may only happen a finite number of iterations, T0.

Actually if gapt−1 > 4Ḡ2/λ Lemma 4.4 shows that gapt ≤ gapt−1/2 and the gap is
at least divided by two every iteration. Then gapt−1 > 4Ḡ2/λ may arise for at most
T0 = log2(λgap1/4Ḡ

2) + 1 where gap1 = λ
2‖w1 + a1/λ‖2 (it may be obtained analytically

since the approximation function in the first iteration is quadratic).

Hence after at most T0 iterations the gap decreases according to gapt − gapt−1 ≤
−gap2

t−1/8Ḡ
2 ≤ 0. To go further we introduce a function u(t) which is an upper bound

of gapt (Teo et al., 2007). Solving differential equation u′(t) = − λ

8G
2u

2(t) with bound-

ary condition u(T0) = 4Ḡ2/λ gives u(t) = 8Ḡ2

λ(t+2−T0) ≥ gapt/∀t ≥ T0. Next solving

u(t) ≤ ε ⇐⇒ t ≥ 8Ḡ2/λε + T0 − 2, so that a solution is reached with accuracy ε within[
T0 + 8Ḡ2/λε− 2

]
iterations.

10
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4.4 Stationary Solution

We show now that under assumptions listed in Section 4.1, Algorithm 1 either converges
towards a stationary solution, or it generates cluster points that are stationary solutions.
The proof requires both assumptions H1 and H2.

We prove first a preliminary result.

Lemma 4.5 The normal vector, ãt, and the locality measure, s̃tt, of the aggregation cutting
plane c̃t is a convex combination of {(aj , stj)j=1..t}, i.e. there are numbers βt ∈ [0, 1]t such
that:

(ãt, s̃
t
t) =

∑
j=1..t

βtj(aj , s
t
j) and

∑
j=1..t

βtj = 1 (41)

where aj is the normal vector of cutting plane added at iteration i, which has eventually
been modified CP.

Proof
We prove the lemma by induction.
The lemma is true for first iteration since [ã1, s̃

1
1] = [a1, s

1
1] = [aw1 , 0]. Now assume that

the lemma is true for t first iterations, we show that the lemma is also true at iteration
t+ 1. By definition:

• (ãt+1, s̃
t+1
t+1) is a convex combination of {(a1, s

t+1
1 ), ...(at+1, s

t+1
t+1), (ãt, s̃

t+1
t )} (*).

Next since lemma is assumed to be true for iteration t, (ãt, s̃
t
t) is a convex combination

of {(a1, s
t
1), ..., (at, s

t
t)}. And, by definition of locality measure in Algorithm 1:

st+1
j = stj + λ

2‖w
∗
t+1 −w∗t ‖2 ∀j ≤ t

s̃t+1
t = s̃tt + λ

2‖w
∗
t+1 −w∗t ‖2

(42)

Then:

• (ãt, s̃
t+1
t ) is a convex combination of {(a1, s

t+1
1 ), ..., (at, s

t+1
t )} (**).

Now, combining (*) and (**) we get that (ãt+1, s̃
t+1
t+1) is also a convex combination of

{(a1, s
t+1
1 ), ..., (at, s

t+1
t ), (at+1, s

t+1
t+1)}.

Theorem 4.2 If gapt = 0 at iteration t of Algorithm 1, then w∗t = w̃t and w∗t is a
stationary point of the objective function f , i.e. 0 ∈ ∂f(w∗t ).

Proof
From Lemma 4.5 (ãt, s̃

t
t) is a convex combination of {(aj , stj)}i=1..t with coefficients βtj .

Let LA =
{
i|βtj > 0

}
be the set of “active” cutting plane indexes with non-null β

coefficients, which is not empty since
∑
βtj = 1. Lemma 4.1 implies that if gapt = 0 then

w∗t = w̃t and s̃tt = 0. Since s̃tt is a convex combination (with same β coefficients as above)
of stj then: s̃tt = 0⇒ stj = 0 ∀i ∈ LA. Futhermore, stj = 0⇒ wj ≡ w∗t so that wj is the best
observed solution up to iteration t, and it is also the best observed solution up to iteration

11
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i, meaning that iteration i was a descent step, which implies that aj ≡ awj is a subgradient
of R at wj = w∗t .

At the end, since ãt is a convex combination (considering only βtj > 0) of subgradi-
ents of R at w∗t , it is a subgradient of R at w∗t . Then (λw∗t + ãt) is a subgradient of
f(w) = λ

2‖w‖
2 +R(w) at w∗t . Recalling that w∗t = w̃t and that w̃t = − ãt

λ (Cf. (Eq. 11)),
we get that (λw̃t + ãt) = 0 ∈ ∂f(w∗t ) so that w∗t is a stationary solution of f .

Theorem 4.3 If Algorithm 1 does not reach a stationary solution in a limited number of
iterations, the two infinite sequences (wt) and (w∗t ) produced by NRBM Algorithm 1 have
cluster points1.

Proof In the case where Algorithm 1 does not reach a null gap within a finite number
of iteration, the two sequences (wt) and (w∗t ) are infinite. Note that the sequence (wt) is
bounded (Lemma 4.3), and the sequence (w∗t ) is also bounded as it picks elements from the
sequence (wt).

Since the two sequences (wt) and (w∗t ) are bounded, they have cluster points since the
Bolzano-Weierstrass theorem (see (Moore, 2008)) states that any bounded sequence in RD

has a convergent subsequence.

The following theorem show that any cluster point of the sequence (w∗t ) are stationary
solution of the objective function f(w).

Theorem 4.4 Let w∗ be a cluster point of the sequence (w∗t ). Then under assumptions H1
and H2, w∗ is a stationary solution of f(w).

Proof
We first give an outline of the proof. We prove the theorem by showing that the

subdifferential of the objective function at the cluster point contains a null subgradient, i.e.
0 ∈ ∂f(w∗). This is equivalent to show there exist a subgradient a∗ of R(w) at w∗ that
statisfies λw∗ + a∗ = 0. However, since the subdifferential of R at w∗ cannot be computed
explicitly, we rely on the fact that if a sequence of subgradients of R converges, its limit
is also a subgradient of R (Luksan and Vlcek, 2000). Actually the subgradient a∗ that we
look for is actually a convex combination of limits of subgradient sequences. Since each of
the subgradient sequence converges toward a subgradient, a∗ converges towards a convex
combination of subgradients so that it is itself a subgradient of R.

The proof is organized as follows. First, we propose a candidate a∗ satisfying the equality
λw∗ + a∗ = 0 (Eq. 46). Then we show that this candidate is actually a subgradient of
R(w) at w∗ so that the claim is correct.

From Lemma 4.5, (ãt, s̃
t
t) is a convex combination of points in the set {(aj , stj)}i=1..t.

Then according to Caratheodory’s Theorem (Luksan and Vlcek, 2000), there are at most
D + 2 indexes {ut,j ∈ [1, t]|j = 1..D + 2} and D + 2 weights αut,j ∈ [0, 1] (where D denotes
the dimension of aj ’s) such that:

1. Let {xn} be a sequence of real vectors, then x is a cluster point of {xn} if for every ε > 0, there are
infinitely many points xn such that ‖x− xn‖ < ε.

12



Regularized Bundle Methods for convex and non convex risks: additional material

(ãt, s̃
t
t) =

∑
j=1..D+2

αut,j (aut,j , s
t
ut,j ) (43)

Let wut,j be the point where the cutting plane with normal vector aut,j was built and con-
sider the concatenation of vectors qt = (wut,1 ,wut,2 ,wut,D+2 ,aut,1 ,aut,2 ,aut,D+2 , αut,1 , αut,2 , αut,D+2).
A similar reasoning as in Theorem 4.3 applies to the sequence of vectors qt so that the se-

quence (qt) has cluster points. Let K be an infinite set of indices such that w∗t
K→ w∗,

then there exists an infinite set K1 ⊂ K such that ∀j = 1..(D + 2) (aut,j ,wut,j , αut,j )
K1→

(a∗j ,w
∗
j , α
∗
j ). Then (ãt, s̃

t
t)

K1→ (ã∗, s̃∗) with (ã∗, s̃∗) =
∑

j=1..D+2 α
∗
j (a
∗
j , s
∗
j ).

We show now that ∀j, α∗j > 0⇒ w∗j ≡ w∗. First the the measure definition obeys:

s̃tt =
∑
j=1..t

αjs
t
j + αt+1s̃

t
t−1 (44)

Then from Lemma A.1, Eq. (43):

gapt ≥ s̃tt =
∑

j=1..D+2

αut,js
t
ut,j ≥

∑
j=1..D+2

αut,j‖wut,j −w∗t ‖2 (45)

Then, since gapt
t→∞→ 0 we get that ∀j s.t. α∗j > 0 : ‖wut,j −w∗t ‖2

t→∞→ 0. Finally using

that wut,j
K1→ w∗j and w∗t

K1→ w∗, we obtain that ∀j, α∗j > 0⇒ w∗j ≡ w∗.

Next recalling that w̃t = − ãt
λ , w̃t

K→ w∗ and ãt
K→ ã∗:

w∗ = − ã∗

λ

⇐⇒ w∗ = −
∑D+2

j=1

α∗ja
∗
j

λ

⇐⇒ λw∗ +
∑D+2

j=1 α∗ja
∗
j = 0

(46)

In the following we show that
∑D+2

j=1 α∗ja
∗
j is a subgradient of R at w∗. Based on this

result λw∗ +
∑D+2

j=1 α∗ja
∗
j is a subgradient of f at w∗, and since this subgradient is null w∗

is a stationary solution of f .

As a first possibility every a∗j (with non-null α∗j ) may be a subgradient of R at w∗ (recall
that we showed that w∗j ≡ w∗). This is the case if all (wt

j)t∈K1 are subgradients of R since

in this case aut,j
K1→ a∗j and R being Lipschitz continuous implies that a∗j is a subgradient of

R. Furthermore a convex combination of subgradients is a subgradient, hence in this case∑D+2
j=1 α∗ja

∗
j is a subgradient of R.

Unfortunately, the NullStep2 case in our Algorithm 3) makes that a particular aut,j may
not be a subgradient of R at wut,j .

In this case we have to rely on Hypothesis H2. Let TL be the index of the last NullStep2
iteration and let k denote the number of a NullStep2 iteration (hence k ≤ TL). Since there
are only descent steps after iteration TL, and since a locality measure cannot decrease:
∀t > TL, stk > skk > 0 (cf. Line 5 in Algorithm 2). This has to be contrasted to the fact that

∀j, α∗j > 0 ⇒ stut,j
K1→ 0. Hence there exists an infinite subset K2 ⊂ K1 (with indices larger

13
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than TL) such that : ∀t ∈ K2 stut,j < skk. As a conclusion, iteration number stut,j cannot

correspond to a NullStep2 iteration, and aut,j is actually a subgradient of R at wt,j .

Finally, since (aut,j ,wut,j , αut,j )
K2→ (a∗j ,w

∗
j , α
∗
j ), and assuming R is Lipschitz continuous,

a∗j (for j such that α∗j > 0) are subgradient of R at w∗ (Luksan and Vlcek, 2000). Then w∗

is a stationary solution of f .

4.5 Extension to Line Search Variant

All previous results hold for the full line search strategy except that we have to show that
the norm of the normal vectors ai of all cutting planes is bounded by a constant G. Since
Lemma A.3 shows this is true for all CP built at all curent solutions wt, it is sufficient here
to show this is true for the solutions found by linesearch.

Actually using Hypothesis H1, it is easy to show that:

S(w1) = {w | f(w) ≤ f(w1)} ⊂ Ball(w1, 2‖w1‖+
2G

λ
)

Let note ∆w = w −w1. Then:

λ
2‖w‖

2 +R(w) ≤ λ
2‖w1‖2 +R(w1)

⇔ λ
2‖w1 + ∆w‖2 +R(w1)− (R(w1)−R(w)) ≤ λ

2‖w1‖2 +R(w1)

⇒ λ〈∆w,w1〉+ λ
2‖∆w‖2 −G‖∆w‖ ≤ 0

⇒ λ
2‖∆w‖(‖∆w‖ − 2‖w1‖ − 2G

λ ) ≤ 0

(47)

And we finally get that a solution w of a line search necessarily lies in a ball centered
at w1 with radius 2‖w1‖+ 2G

λ ). Hence the norm of the normal vectors of all CP in the full
linesearch strategy is bounded by a constant and the proofs in the appendix hold for this
variant.

Finally, the things are more complicated for the greedy line search strategy and the
proofs do not hold anymore in their actual shape. Yet, such a strategy is less expensive
than the full one and it is efficient in practice. All results of the line search variant in the
experiment section have been gained using this implementation.
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