
HAL Id: hal-02545977
https://hal.science/hal-02545977

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The worst case analysis of the Garey-Johnson algorithm
Claire Hanen, Yakov Zinder

To cite this version:
Claire Hanen, Yakov Zinder. The worst case analysis of the Garey-Johnson algorithm. [Research
Report] lip6.2008.002, LIP6. 2008. �hal-02545977�

https://hal.science/hal-02545977
https://hal.archives-ouvertes.fr

The Worst-case Analysis of the Garey-Johnson

Algorithm

Claire Hanen, LIP6, Université Pierre et Marie Curie and

Université Paris X-Nanterre, France

Yakov Zinder, Department of Mathematics,

Faculty of Science, University of Technology, Sydney, Australia

February 13, 2007

Abstract

The Garey-Johnson algorithm is a well known polynomial-time al-

gorithm constructing an optimal schedule for the maximum lateness

problem with unit execution time tasks, two parallel identical proces-

sors, precedence constraints and release times. The paper is concerned

with the worst-case analysis of a generalisation of the Garey-Johnson

algorithm to the case of arbitrary number of processors. In contrast

to other algorithms for the maximum lateness problem, the tight per-

formance guarantee for the even number of processors differs from the

tight performance guarantee for the odd number of processors.

keywords: scheduling,parallel machines, UET tasks, precedence con-

straints, maximum lateness

1

1 Introduction

In this paper we consider the problem of scheduling a set N={1,2,. . . ,n}

of n tasks (jobs, operations) on m > 1 parallel identical processors (ma-

chines) subject to precedence constraints in the form of an anti-reflexive,

anti-symmetric and transitive relation on N . If task i precedes task j, de-

noted i → j, then the processing of task i must be completed before the

processing of task j begins. Each processor can process only one task at

a time, and each task can be processed by any processor. Once a proces-

sor begins executing a task, it processes this task until its completion (i.e.

no preemptions are allowed). Each task j requires one unit of processor’s

time and its processing can commence only after the specified non-negative

integer release time rj .

Since no preemptions are allowed and all processors are identical, any

schedule σ can be determined by specifying for each task j its completion

time Cj(σ) in such a way that

• Cj(σ) ≥ rj + 1, for all j ∈ N ;

• not more than m tasks are assigned the same completion time;

• if i→ j, then Cj(σ) ≥ Ci(σ) + 1.

The goal is to find a schedule that minimizes the criterion of maximum

lateness

Lmax(σ) = max
j∈N

[Cj(σ)− dj], (1)

where dj is an integer due date associated with task j.

In the three-field notation (see for example [2]), the above problem is

denoted by P |prec, pj = 1, rj |Lmax, where the terms prec and rj indicate

2

the presence of precedence constraints and release times, and pj = 1 reflects

the fact that all processing times are equal to one unit of time. If the partially

ordered set of tasks is an in-tree, then the term prec is replaced by in− tree.

Analogously, the term out− tree indicates that the partially ordered set of

tasks is an out-tree. If all due dates are equal to zero, the maximum lateness

problem becomes the makespan problem P |prec, pj = 1, rj |Cmax with the

criterion

Cmax(σ) = max
j∈N

Cj(σ).

If the term rj is omitted, then all tasks have the same release time of zero.

It is well known that even P |prec, pj = 1|Cmax is NP-hard in the strong

sense [6], [5]. Moreover, as has been shown in [9], the P |prec, pj = 1|Cmax

problem remains NP-hard in the strong sense even if the partially ordered

set of tasks is a bipartite graph. As far as the maximum lateness problem

is concerned, P |out− tree, pj = 1|Lmax is also NP-hard in the strong sense

[3]. This implies the NP-hardness in the strong sense of P |in − tree, pj =

1, rj |Cmax. These NP-hardness results boost the interest in the worst-case

performance of various approximation algorithms [1], [7], [8], [10].

This paper is concerned with the Garey-Johnson algorithm [4]. Although

the Garey-Johnson algorithm was originally developed for the P2|prec, pj =

1, rj |Lmax problem, i.e. the problem with only two processors, it can be

generalized to the case of arbitrary number of processors. We will refer to

this generalization by GJ-algorithm. Although the Garey-Johnson algorithm

is among the most popular scheduling algorithms, its worst-case performance

in the case of arbitrary number of processors has remained unknown for

almost three decades. In what follows we analyze the worst-case performance

of the GJ-algorithm.

3

2 ∆-modified due dates

If i → j and ri ≥ rj , then the replacement of rj by ri + 1 does not affect

the feasibility of any schedule. Since one can recalculate all release times

in O(n2) operations, without loss of generality we will assume that i → j

implies the inequality ri + 1 ≤ rj . Without loss of generality we will also

assume that minj∈N rj = 0.

Let D1, ..., Dn be arbitrary nonnegative integers, then for any task i and

any two numbers s and d such that

ri ≤ s ≤ Di ≤ d, (2)

S(i, s, d) will denote the set of all tasks j such that j 6= i, Dj ≤ d, and either

i → j or rj ≥ s. We will say that integers D1, . . . , Dn are consistent if for

every task j

rj ≤ Dj − 1, (3)

and for any task i and any two integers s and d satisfying (2), either Di = s

and |S(i, s, d)| = m(d − s), or |S(i, s, d)| < m(d − s). It is easy to see

that this definition is equivalent to the definition of consistency given in [4].

Indeed, according to [4], integers D1, . . . , Dn are consistent if the inequality

(3) holds for every j ∈ N , and for any task i and any two integers s and d

satisfying (2), the inequality

|S(i, s, d)| ≥ m(d− s) (4)

implies

Di ≤ d−
⌈ |S(i, s, d)|

m

⌉
. (5)

The equivalence of both definitions follows from the fact that the inequal-

ities |S(i, s, d)| > m(d − s) and (5) contradict (2), and that the equality

|S(i, s, d)| = m(d− s) together with (5) and (2) implies Di = s.

4

Lemma 1 If integers D1, ..., Dn are consistent and i → j, then Di ≤

Dj − 1.

Proof

Suppose that i→ j and Di ≥ Dj . Since D1, ..., Dn are consistent, ri < Di,

and analogously to [4], s = d = Di satisfy (2). For these s and d, j ∈

S(i, s, d) and hence |S(i, s, d)| > m(d − s), which contradicts the definition

of consistency.

Let ∆ be an arbitrary integer. We will say that integers D1, ..., Dn are

∆-modified due dates if they are consistent and Di ≤ di + ∆ for all i ∈ N .

As has been shown in [4], there exists an algorithm which for any given ∆ in

O(n3) operations either calculates ∆-modified due dates or establishes that

such due dates do not exist at all. The idea of this algorithm is based on the

definition of consistency in [4] and can be outlined as follows. In order to

compute for a given ∆ a set of ∆-modified due dates we first set Dj = dj +∆

for all j ∈ N . If (3) holds for all j ∈ N and the inequality (5) holds for

all triples (i, s, d) satisfying (2) and (4), integers D1, ..., Dn themselves are

∆-modified due dates. If some j does not satisfy (3), the desired set of ∆-

modified due dates does not exist at all. Suppose that Dj ≥ rj + 1 for all

j ∈ N , but for some triple (i, s, d) satisfying (2) and (4)

Di > d−
⌈ |S(i, s, d)|

m

⌉
. (6)

It is easy to see that if ∆-modified due dates exist, then the due date asso-

ciated with i is not greater than the right-hand side of the inequality (6).

Hence we set

Di = d−
⌈ |S(i, s, d)|

m

⌉
and again check (3) and the inequality (5) for all triples (i, s, d) satisfying

5

(2) and (4). At each such iteration we either conclude that the desired set of

∆-modified due dates does not exist, or establish that the current integers

D1, ..., Dn are ∆-modified due dates, or reduce value of some Di. The

result that this procedure terminates in O(n3) operations is based on three

observations. First, that it suffices to consider only values of d coinciding

with one of the current integers Di. Second, that for a given d it suffices

to consider only values of s coinciding with one of release times or d itself.

Third, that if the procedure is structured as three nested loops, where the

outer loop selects d in decreasing order, the next loop selects i, and for fixed

d and i the inner loop selects s in increasing order, each triple cannot appear

in more than one iteration.

The following lemma shows that the existence of a schedule that meets

due dates d1 + ∆, ..., dn + ∆ implies the existence of ∆-modified due dates.

Lemma 2 Let σ be an arbitrary schedule and Dj = Cj(σ), for all j ∈ N ,

then D1, ..., Dn are consistent.

Proof

Since σ is a feasible schedule, ri ≤ Ci(σ) − 1 = Di − 1 for all i ∈ N .

Suppose that some triple (i, s, d) satisfies (2) and the equality |S(i, s, d)| =

m(d − s). Then at least (d − s) + 1 time units are required to complete

all tasks constituting the set S(i, s, d) ∪ {i}. Since Cj(σ) = Dj ≤ d for

each j ∈ S(i, s, d) ∪ {i}, there exists a task j ∈ S(i, s, d) ∪ {i} such that

Cj(σ) ≤ s. From the definition of S(i, s, d), either i = j or i→ j. Therefore

Di = Ci(σ) ≤ s, and by (2), Di = s.

Now suppose that some triple (i, s, d) satisfies (2) and the inequality

|S(i, s, d)| > m(d− s). Then

d−
⌈ |S(i, s, d)|

m

⌉
≤ d− |S(i, s, d)|

m
< s,

6

and since s and d are integers,

d−
⌈ |S(i, s, d)|

m

⌉
+ 1 ≤ s.

Because at least
⌈ |S(i, s, d)|

m

⌉
time units are required to complete |S(i, s, d)|

tasks, there exists a task j ∈ S(i, s, d) such that

Cj(σ) ≤ d−
⌈ |S(i, s, d)|

m

⌉
+ 1.

Since for this task Cj(σ) ≤ s, rj < s, and by the definition of S(i, s, d),

i→ j. Hence, Di = Ci(σ) < s, which contradicts (2).

We will say that schedule σ is active if there is no schedule σ′ such that

Cj(σ′) ≤ Cj(σ) for all j ∈ N and at least one of these inequalities is strict.

In what follows, for any integer t, we will refer to the time interval [t− 1, t]

also as a time slot t.

Lemma 3 If a schedule σ is active, then Cj(σ)− rj ≤ n for all j ∈ N .

Proof

Suppose that there exists a task j such that Cj(σ) − rj > n. Then all

m processors are idle in at least one time slot t satisfying the inequalities

rj < t < Cj(σ). Because σ is active, this implies the existence of a task g

such that g → j and t < Cg(σ) < Cj(σ). Among all these tasks g select

a task with the smallest completion time. Let it be task i. Since i → j,

ri < rj < t and task i can be processed in the time slot t without changing

completion times of all other tasks which contradicts the fact that σ is

active.

The following lemma establishes upper and lower bounds on the optimal

value of the criterion.

7

Lemma 4 Let σ∗ be an optimal schedule and ∆∗ be the minimal ∆ allowing

∆-modified due dates. Then

max
v∈N

(rv − dv) < ∆∗ ≤ Lmax(σ∗) ≤ n + max
v∈N

(rv − dv).

Proof

If ∆ = rj − dj for some j ∈ N , then ∆-modified due dates D1, . . . , Dn do

not exist, because in this case

Dj ≤ dj + ∆ = rj ,

which contradicts the inequalities Dj ≥ rj + 1. Hence,

max
v∈N

(rv − dv) < ∆∗.

Without loss of generality we assume that σ∗ is active, because otherwise

σ∗ can be replace by an active schedule σ′ such that Cj(σ′) ≤ Cj(σ∗), for all

j ∈ N , and hence also optimal. Consider any task j satisfying the equality

Cj(σ∗)− dj = Lmax(σ∗). Then using Lemma 3 we have

Lmax(σ∗) = Cj(σ∗)− rj + rj − dj ≤ n + rj − dj ≤ n + max
v∈N

(rv − dv).

To complete the proof, we observe that Cj(σ∗) ≤ dj + Lmax(σ∗), for all

j ∈ N , and therefore by Lemma 2 the integers C1(σ∗), C2(σ∗), ..., Cn(σ∗)

are Lmax(σ∗)-modified due dates. Hence, ∆∗ ≤ Lmax(σ∗).

3 GJ-algorithm for an arbitrary number of pro-

cessors

The algorithm considered in this paper is a straightforward generalization

of that presented in [4] for the two-processor case. Both algorithms use as

8

a subroutine the so called list algorithm. The list algorithm assumes that

the tasks are arranged in a list. In the description of this algorithm, L will

denote a list of tasks and σL will denote the corresponding schedule. We

will say that an unscheduled task j is available for processing in schedule

σL in time slot t if rj < t and Ci(σL) < t for all i such that i→ j.

List Algorithm

1. Set t = minj∈L rj + 1, π = 1 and L′ = L.

2. Scan L′ from left to right starting from the πth element of this list and

find the first task g available for processing in σL in time slot t. If g

does not exist, then go to step 4.

3. Set Cg(σL) = t. Let g be the kth element in L′. Set π = k and

eliminate g from the list L′. If the number of elements in L′ is not less

than π and the number of tasks with completion time equals t is less

than m, then go to step 2.

4. If L′ is empty, then stop. Otherwise set t = max[t + 1,minj∈L′ rj + 1]

and π = 1, and go to step 2.

As in Lemma 4, let ∆∗ be the minimal ∆ allowing ∆-modified due dates.

GJ-algorithm

1. Set ∆L = maxv∈N (rv − dv) and ∆U = n + maxv∈N (rv − dv). Using

the binary search, compute ∆∗ and ∆∗-modified due dates.

2. Construct a list schedule for a list where tasks are arranged in the

non-decreasing order of there ∆∗-modified due dates.

Recall that, for a given ∆, the number of operations needed to com-

pute ∆-modified due dates or to determine that these due dates do not

9

exist is O(n3). The selection of ∆U and ∆L is justified by Lemma 4. So,

the calculation of ∆∗ and the corresponding ∆∗-modified due dates can be

accomplished in O(n3 log2 n) operations.

In what follows, σ∗ will denote a schedule minimizing the maximum late-

ness, D1, ..., Dn will denote ∆∗-modified due dates calculated in accord with

the first step of the GJ-algorithm, and σ̄ will denote a schedule constructed

by this algorithm.

4 Decomposition procedure

For any integers t and D, denote by δ(t, D) the set of all tasks v such that

Cv(σ̄) = t and Dv ≤ D.

Lemma 5 For any task q and any integers D and t, satisfying

Dq ≤ D, rq < t < Cq(σ̄) and |δ(t, D)| < m,

there exists a task h ∈ δ(t, D − 1) such that h→ q.

Proof

Since the schedule σ̄ is constructed in accord with the list algorithm and

since |δ(t, D)| < m and rq < t, there exists a task b such that Cb(σ̄) ≥ t and

b → q. Among all such tasks b select a task with the smallest completion

time. Let it be task h. Lemma 1 implies that Dh ≤ Dq − 1 ≤ D− 1. Hence

the lemma holds if Ch(σ̄) = t. In order to prove this equality, assume that

Ch(σ̄) > t. The relation h → q implies rh < rq, and since the schedule σ̄

was constructed in accord with the list algorithm, there exists a task f such

that Cf (σ̄) ≥ t and f → h. Then by transitivity f → q, which contradicts

the selection of h.

10

Further exploring the structure of σ̄, we observe that

max
v∈N

[Cv(σ̄)−Dv] ≥ max
v∈N

[Cv(σ̄)− (dv + ∆∗)] = Lmax(σ̄)−∆∗

and by Lemma 4,

≥ Lmax(σ̄)− Lmax(σ∗) ≥ 0.

Hence, if

max
v∈N

[Cv(σ̄)−Dv] = 0,

then σ̄ is an optimal schedule for the original problem. Since our goal is the

worst-case analysis of the GJ-algorithm, we will assume that there exists a

task g such that

Cg(σ̄)−Dg > 0. (7)

The following procedure, which will be referred to as a decomposition

procedure, constructs for any task g, satisfying (7), a sequence of tasks

j0 = g, ..., jl(g) and the sequence of corresponding sets of tasks M0, ...,

M l(g). Suppose that the sequence j0, ..., ji and the corresponding sequence

of sets M0, ..., M i−1 have been already constructed. Obviously, if i = 0, no

sets have been constructed yet. Let t be an integer such that t < Cji(σ̄) and

|δ(t, Dji)| < m. Observe that both inequalities hold for example for t = 0.

Among all such t select the largest one and denote it by τ . Then

M i = ∪τ<t≤Cji
(σ̄)δ(t, Dji).

If rq ≥ τ for all q ∈ M i, then the procedure terminates with l(g) = i. If

rq < τ for at least one q ∈M i, then according to Lemma 5 δ(τ,Dji−1) 6= ∅.

If |δ(τ,Dji − 1)| = 1, then the procedure terminates with l(g) = i. In this

case, the task constituting the set δ(τ,Dji − 1) will be denoted by jl(g)+1. If

11

|δ(τ,Dji − 1)| ≥ 2, then choose as ji+1 any task q satisfying

Dq = max
v∈δ(τ,Dji

−1)
Dv

and start a new iteration by constructing the set M i+1.

Lemma 6 If task g satisfies (7) and the decomposition procedure cannot

determine jl(g)+1, then

min
v∈∪l(g)

i=0M i

rv = min
v∈M l(g)

Cv(σ̄)− 1.

Proof

Since jl(g)+1 does not exist, according to the decomposition procedure

min
v∈M l(g)

rv = min
v∈M l(g)

Cv(σ̄)− 1. (8)

Suppose that for some k < l(g) there exists j ∈Mk such that

rj < min
v∈M l(g)

Cv(σ̄)− 1.

Then by Lemma 5 there exists task h ∈M l(g) such that h→ j. Since h→ j

implies rh < rj ,

rh < min
v∈M l(g)

Cv(σ̄)− 1,

which contradicts (8).

Lemma 7 Let g satisfy (7) and let, in the corresponding decomposition,

j ∈Mk, then

rj ≥

 rjl(g)+1
+ l(g)− k + 1 if jl(g)+1 exists

l(g)− k if jl(g)+1 does not exist
. (9)

12

Proof

Suppose that jl(g)+1 exists and k = l(g). If

rj < min
v∈M l(g)

Cv(σ̄)− 1,

then according to the decomposition procedure and Lemma 5, jl(g)+1 → j.

Hence, rj ≥ rjl(g)+1
+ 1 and the lemma holds. If

rj ≥ min
v∈M l(g)

Cv(σ̄)− 1,

then the same result follows from the observation that

min
v∈M l(g)

Cv(σ̄)− 1 = Cjl(g)+1
(σ̄) ≥ rjl(g)+1

+ 1.

Since minu∈N ru = 0, the lemma also holds if jl(g)+1 does not exist.

Suppose that the lemma holds for any k > w for some nonnegative

integer w < l(g). Let k = w, then by the assumption, for any u ∈

δ(Cjk+1
(σ̄), Djk

− 1)

ru ≥

 rjl(g)+1
+ l(g)− (k + 1) + 1 if jl(g)+1 exists

l(g)− (k + 1) if jl(g)+1 does not exist
.

If rj < Cjk+1
(σ̄), then by Lemma 5 there exists h ∈ δ(Cjk+1

(σ̄), Djk
− 1)

such that h→ j and therefore

rj ≥ Ch(σ̄) ≥ rh + 1 ≥

 rjl(g)+1
+ l(g)− k + 1 if jl(g)+1 exists

l(g)− k if jl(g)+1 does not exist
.

If rj ≥ Cjk+1
(σ̄), then (9) follows from rj ≥ Cjk+1

(σ̄) ≥ rjk+1
+ 1. Hence,

the lemma holds for any k.

Lemma 8 If task g satisfies (7), then

Dg ≥

 Djl(g)+1
+ l(g) + 1 if jl(g)+1 exists

l(g) + 2 if jl(g)+1 does not exist
.

13

Proof

If jl(g)+1 exists, then the inequality

Dg ≥ Djl(g)+1
+ l(g) + 1

follows from the fact that according to the decomposition procedure Dji ≥

Dji+1 + 1 for all 0 ≤ i ≤ l(g).

Suppose that jl(g)+1 does not exist, then by Lemma 7 and the condition

(3) of consistency, Dg ≥ l(g) + 1. Suppose that the lemma does not hold,

i.e. suppose that Dg = l(g)+1. Then, taking into account that according to

the decomposition procedure Dji ≥ Dji+1 + 1 for all 0 ≤ i ≤ l(g), Djl(g)
= 1

and rjl(g)
= 0. If |M i| ≤ m for all 0 ≤ i ≤ l(g), then all tasks constituting

each M i are processed in the same time slot, and therefore Cg(σ̄) = l(g)+1

which contradicts (7).

Let k be the largest i among all i satisfying |M i| > m. In order to show

that k = l(g), assume that k < l(g) . Then, for each k < i ≤ l(g), all tasks

constituting M i are processed in the same time slot Cji(σ̄) = l(g) − i + 1.

Hence,

min
q∈Mk

Cq(σ̄)− 1 = Cjk+1
(σ̄) = l(g)− k.

This by virtue of Lemma 7 implies that for any j ∈Mk

rj ≥ min
q∈Mk

Cq(σ̄)− 1,

which contradicts the decomposition procedure which should terminate after

the construction of set Mk. Hence, k = l(g). Let s = 0 = rjl(g)
and

d = 1 = Djl(g)
. Then, since |δ(Cjl(g)

(σ̄), Djl(g)
)| ≥ 2,

|S(jl(g), s, d)| ≥ |M l(g) − {jl(g)}| > m(d− s)

which contradicts the fact that the ∆∗-modified due dates are consistent.

14

5 Completion times in σ̄ and ∆∗-modified due dates

It is convenient to introduce the following notation:

α(m) =


2

m + 1
if m is odd

2
m

if m is even
.

Lemma 9 For any positive integer p⌈
2p− 1

m

⌉
≥ α(m)p.

Proof

Let m be even. Since 2p− 1 is odd, 2p−1
m cannot be integer, and therefore⌈

2p− 1
m

⌉
=

⌈
2p− 1

m
+

1
m

⌉
≥ 2p

m
= α(m)p.

If m is odd and 2p−1
m < 1, then 2p−1

m + 1
m < 1, and therefore⌈

2p− 1
m

⌉
=

⌈
2p− 1

m
+

1
m

⌉
>

2p

m
> α(m)p.

Finally, let m be odd and 2p−1
m ≥ 1, then 2p−1

m ≥ 2p
m+1 , and therefore⌈

2p− 1
m

⌉
≥

⌈
2p

m + 1

⌉
≥ 2p

m + 1
= α(m)p

which completes the proof.

Lemma 10 If task g satisfies (7) and jl(g)+1 does not exist, then

Cg(σ̄) ≤ [1− α(m)][l(g) + 2] + Dg − [1− α(m)].

Proof

From the construction of M l(g), there exists a task q ∈M l(g) such that

rq = min
v∈M l(g)

Cv(σ̄)− 1.

15

Let s = rq and d = Dg, then by Lemma 6 and the fact that Dj ≤ Dg, for

all j ∈ ∪l(g)
i=0M

i,

rq = s < Dq ≤ d and (∪l(g)
i=0M

i − {q}) ⊆ S(q, s, d).

If |S(q, s, d)| = m(d − s), then by the consistency of the ∆∗-modified

due dates Dq = s, which contradicts the inequality s < Dq. Therefore

|S(q, s, d)| < m(d − s). On the other hand, each time slot Cji(σ̄), where

1 ≤ i ≤ l(g), contains at least two tasks from M i, and any other time slot

t, satisfying the inequalities rq < t < Cg(σ̄), contains exactly m tasks from

∪l(g)
i=0M

i. Consequently,

m[Cg(σ̄)− rq − l(g)− 1] + 2l(g) ≤ |S(q, s, d)| < m(d− s) = m(Dg − rq).

Hence

Cg(σ̄) < l(g) + 1− 2l(g)
m

+ Dg. (10)

If m is even, then since 2l(g) is also even and (10) is a strict inequality,

Cg(σ̄) ≤ l(g) + 1− 2l(g)
m

+ Dg −
2
m

.

Consequently,

Cg(σ̄) ≤ l(g)+2−2[l(g) + 2]
m

+Dg−1+
2
m

= [1−α(m)][l(g)+2]+Dg−[1−α(m)].

If m is odd, then from (10)

Cg(σ̄) < l(g) + 1− 2l(g)
m + 1

+ Dg,

and because both 2l(g) and m + 1 are even

Cg(σ̄) ≤ l(g) + 1− 2l(g)
m + 1

+ Dg −
2

m + 1
.

16

Hence

Cg(σ̄) ≤ l(g) + 2− 2[l(g) + 2]
m + 1

+ Dg − 1 +
2

m + 1
= [1− α(m)][l(g) + 2]

+Dg − [1− α(m)]

which completes the proof.

Lemma 11 If task g satisfies (7) and jl(g)+1 exists, then

Cg(σ̄)− Cjl(g)+1
(σ̄) ≤ [1− α(m)][l(g) + 1] + Dg −min[Cjl(g)+1

(σ̄), Djl(g)+1
].

Proof

According to the decomposition procedure Dji ≤ Dji−1 − 1 for all 1 ≤ i ≤

l(g) + 1. Adding all these inequalities, we have

Djl(g)+1
≤ Dj0 − l(g)− 1,

which gives

Dg −min[Cjl(g)+1
(σ̄), Djl(g)+1

] ≥ Dg −Djl(g)+1
≥ l(g) + 1. (11)

Because the ∆∗-modified due dates are consistent, rjl(g)+1
< Djl(g)+1

. Let

d = Dg and s = min[Cjl(g)+1
(σ̄), Djl(g)+1

], then

rjl(g)+1
< s ≤ Djl(g)+1

< d.

By Lemma 5 and the decomposition procedure, for any j ∈ ∪l(g)
i=0M

i

either rj ≥ Cjl(g)+1
≥ s or jl(g)+1 → j. Moreover, by the decomposition

procedure, Dj ≤ Dg = d for all j ∈ ∪l(g)
i=0M

i. Hence

∪l(g)
i=0M

i ⊆ S(jl(g)+1, s, d).

17

On the other hand, each time slot Cji(σ̄), where 1 ≤ i ≤ l(g), contains

at least two tasks from M i, and any other time slot t, satisfying the in-

equalities Cjl(g)+1
(σ̄) < t < Cg(σ̄), contains exactly m tasks from ∪l(g)

i=0M
i.

Consequently,

|S(jl(g)+1, s, d)| ≥ m[Cg(σ̄)− Cjl(g)+1
(σ̄)− l(g)− 1] + 2l(g) + 1. (12)

If |S(jl(g)+1, s, d)| < m(d− s), then taking into account that d and s are

integers, we have⌈
|S(jl(g)+1, s, d)|

m

⌉
≤ d− s = Dg −min[Cjl(g)+1

(σ̄), Djl(g)+1
].

If |S(jl(g)+1, s, d)| = m(d− s), then

min[Cjl(g)+1
(σ̄), Djl(g)+1

] = s = d−
⌈
|S(jl(g)+1, s, d)|

m

⌉
= Dg−

⌈
|S(jl(g)+1, s, d)|

m

⌉
.

Therefore in both cases

Dg −min[Cjl(g)+1
(σ̄), Djl(g)+1

] ≥
⌈
|S(jl(g)+1, s, d)|

m

⌉

and using (12) and Lemma 9

≥ Cg(σ̄)− Cjl(g)+1
(σ̄)− l(g)− 1 +

⌈
2l(g) + 1

m

⌉
= Cg(σ̄)− Cjl(g)+1

(σ̄)

−l(g)− 1 +
⌈
2[l(g) + 1]− 1

m

⌉
≥ Cg(σ̄)− Cjl(g)+1

(σ̄)− [1− α(m)][l(g) + 1].

Hence

Cg(σ̄)− Cjl(g)+1
(σ̄) ≤ [1− α(m)][l(g) + 1] + Dg −min[Cjl(g)+1

(σ̄), Djl(g)+1
].

which completes the proof.

18

6 Performance guarantees

Suppose that Lmax(σ̄) > Lmax(σ∗). For any task g, satisfying (7), it is

convenient to denote jl(g)+1 by a(g). Let q be any task satisfying the equality

Cq(σ̄)− dq = Lmax(σ̄). (13)

By the definition of ∆∗-modified due dates and Lemma 4

Lmax(σ̄) = Cq(σ̄)− dq ≤ Cq(σ̄)− (Dq −∆∗) ≤ Cq(σ̄)−Dq + Lmax(σ∗),

which implies Cq(σ̄) − Dq > 0. Using the decomposition procedure and

starting with q we can construct a sequences of tasks as follows. If a(q)

(previously denoted by jl(q)+1) does not exist, then this sequence contains

only one task q0 = q. If a(q) exists, then repeatedly applying the decom-

position procedure, we can construct a sequence of tasks q0 = q, . . . , qk

such that Cqi(σ̄) − Dqi > 0 and qi+1 = a(qi) for all 0 ≤ i < k, and either

Cqk
(σ̄)−Dqk

≤ 0 or Cqk
(σ̄)−Dqk

> 0 but a(qk) does not exist.

Theorem 1 For any m ≥ 2

Lmax(σ̄)− Lmax(σ∗) ≤ [1− α(m)][1 + max
v∈N

rv]. (14)

Proof

Suppose that a(q) does not exist. Then taking into account Lemma 10,

Lemma 7 and Lemma 4,

Cq(σ̄) ≤ [1− α(m)][l(q) + 1] + Dq ≤ [1− α(m)][rq + 1] + dq + ∆∗

≤ [1− α(m)][1 + max
v∈N

rv] + dq + Lmax(σ∗)

which by virtue of (13) implies (14).

19

Suppose that k ≥ 1, Cqk
(σ̄) −Dqk

> 0 and a(qk) does not exist. Then

by Lemma 11 and Lemma 7, for all 0 ≤ i ≤ k − 1,

Cqi(σ̄)− Cqi+1(σ̄) ≤ [1− α(m)][l(qi) + 1] + Dqi −min[Cqi+1(σ̄), Dqi+1]

= [1−α(m)][l(qi) + 1] + Dqi −Dqi+1 ≤ [1−α(m)][rqi − rqi+1] + Dqi −Dqi+1 .

Adding inequalities

Cqi(σ̄)− Cqi+1(σ̄) ≤ [1− α(m)][rqi − rqi+1] + Dqi −Dqi+1 (15)

for all 0 ≤ i ≤ k − 1 and taking into account that q0 = q, we have

Cq(σ̄)− Cqk
(σ̄) ≤ [1− α(m)][rq − rqk

] + Dq −Dqk
. (16)

On the other hand, by Lemma 10 and Lemma 7

Cqk
(σ̄) ≤ [1− α(m)][l(qk) + 1] + Dqk

≤ [1− α(m)][rqk
+ 1] + Dqk

.

This together with (16) and Lemma 4 gives

Cq(σ̄) ≤ [1− α(m)][rq + 1] + Dq ≤ [1− α(m)][1 + max
v∈N

rv] + dq + ∆∗

≤ [1− α(m)][1 + max
v∈N

rv] + dq + Lmax(σ∗)

which implies (14).

Suppose that k ≥ 1, Cqk
(σ̄) − Dqk

≤ 0. If k ≥ 2, then by adding

inequalities (15) for all 0 ≤ i ≤ k − 2, we obtain

Cq(σ̄)− Cqk−1
(σ̄) ≤ [1− α(m)][rq − rqk−1

] + Dq −Dqk−1
. (17)

It is easy to see that (17) also holds when k = 1. On the other hand, by

Lemma 11, the fact that Cqk
(σ̄)−Dqk

≤ 0 and Lemma 7,

Cqk−1
(σ̄)− Cqk

(σ̄) ≤ [1− α(m)][l(qk−1) + 1] + Dqk−1
−min[Cqk

(σ̄), Dqk
]

20

≤ [1− α(m)][rqk−1
− rqk

] + Dqk−1
− Cqk

(σ̄)

which together with (17) and Lemma 4 gives

Cq(σ̄) ≤ [1− α(m)][rq − rqk
] + Dq ≤ [1− α(m)][1 + max

v∈N
rv] + dq + ∆∗

≤ [1− α(m)][1 + max
v∈N

rv] + dq + Lmax(σ∗)

which implies (14).

Theorem 2 For any m ≥ 2

Lmax(σ̄) ≤ [2− α(m)]Lmax(σ∗) + [1− α(m)]max
v∈N

dv − [1− α(m)]. (18)

Proof

Let j be an arbitrary task. Since rj ≥ 0 and therefore Cj(σ∗) ≥ 1,

Lmax(σ∗) ≥ Cj(σ∗)− dj ≥ 1−max
v∈N

dv.

Hence, Lmax(σ∗) + maxv∈N dv ≥ 1, and by virtue of 1− α(m) ≥ 0

[1− α(m)][Lmax(σ∗) + max
v∈N

dv]− [1− α(m)] ≥ 0.

Hence, if Lmax(σ̄) = Lmax(σ∗), then (18) holds.

Suppose that Lmax(σ̄) > Lmax(σ∗). Let q be a task, satisfying the

equality

Cq(σ̄)− dq = Lmax(σ̄),

and let q0 = q, . . . , qk be the sequence of tasks such that Cqi(σ̄)−Dqi > 0 and

qi+1 = a(qi) for all 0 ≤ i < k, and either Cqk
(σ̄)−Dqk

≤ 0 or Cqk
(σ̄)−Dqk

> 0

but a(qk) does not exist.

If Cqk
(σ̄) − Dqk

≤ 0, then k ≥ 1. For all 0 ≤ i ≤ k − 1, by Lemma 11

and Lemma 8

Cqi(σ̄)− Cqi+1(σ̄) ≤ [1− α(m)][l(qi) + 1] + Dqi −min[Cqi+1(σ̄), Dqi+1]

21

≤ [1− α(m)][Dqi −Dqi+1] + Dqi −min[Cqi+1(σ̄), Dqi+1]

= [2− α(m)]Dqi − [1− α(m)]Dqi+1 −min[Cqi+1(σ̄), Dqi+1]

≤ [2− α(m)]{Dqi −min[Cqi+1(σ̄), Dqi+1]}.

Adding all these inequalities and taking into account that Cqk
(σ̄) ≤ Dqk

and

Cqi+1(σ̄) > Dqi+1 if i + 1 < k, we have

Cq(σ̄)− Cqk
(σ̄) ≤ [2− α(m)]{Dq − Cqk

(σ̄)},

and since Cqk
(σ̄) ≥ 1,

Cq(σ̄) ≤ [2− α(m)]Dq − [1− α(m)]. (19)

Suppose that Cqk
(σ̄) −Dqk

> 0, then a(qk) does not exist. By Lemma

10 and Lemma 8

Cqk
(σ̄) ≤ [2− α(m)]Dqk

− [1− α(m)]. (20)

If k = 0, then (20) coincides with (19). Let k ≥ 1. For all 0 ≤ i ≤ k − 1, by

Lemma 11 and the fact that Cqi+1(σ̄) > Dqi+1

Cqi(σ̄)− Cqi+1(σ̄) ≤ [2− α(m)]{Dqi −Dqi+1},

Adding all these inequalities, we have

Cq(σ̄)− Cqk
(σ̄) ≤ [2− α(m)]{Dq −Dqk

},

which together with (20) gives (19).

Using (19),

Lmax(σ̄) = Cq(σ̄)− dq ≤ [2− α(m)]Dq − [1− α(m)]− dq

22

and by the definition of ∆∗-modified due dates and Lemma 4

≤ [2− α(m)](dq + ∆∗)− [1− α(m)]− dq

≤ [2− α(m)]Lmax(σ∗) + [1− α(m)]max
v∈N

dv − [1− α(m)]

which completes the proof.

In order to show that, for any m ≥ 5, (14) and (18) are asymptotically

tight, we will consider graphs Gx,m, each comprising m · x · um nodes which

form x · um rows, where x is a positive integer and

um =


m + 1

2
if m is odd

m

2
if m is even

. (21)

23

each task j in this row

has rj = 0 and dj = 3
row 0 −→

each task j in this row

has rj = 1 and dj = 4
←− row 1

each task j in this row

has rj = 2 and dj = 5
row 2 −→

each task j in this row

has rj = 3 and dj = 6
←− row 3

each task j in this row

has rj = 4 and dj = 7
row 4 −→

each task j in this row

has rj = 5 and dj = 8
←− row 5

each task j in this row

has rj = 6 and dj = 9
row 6 −→

each task j in this row

has rj = 7 and dj = 10
←− row 7

each task j in this row

has rj = 4(x− 1) and

dj = 4(x− 1) + 3

row 4(x− 1) −→

each task j in this row

has rj = 4(x− 1) + 1

and dj = 4(x− 1) + 4

←− row 4(x− 1) + 1

each task j in this row

has rj = 4(x− 1) + 2

and dj = 4(x− 1) + 5

row 4(x− 1) + 2 −→

each task j in this row

has rj = 4(x− 1) + 3

and dj = 4(x− 1) + 6

←− row 4(x− 1) + 3

24

Figure 1. Graph Gx,m for m = 7.

The rows of nodes are numbered from 0 to x ·um− 1 (see Figure 1), and

[the number of nodes in row i] =


m + 2 if imodum ≤ um − 3

m + 1 if imodum = um − 2

2 if imodum = um − 1

.

It is easy to see that the total number of nodes

in any um consecutive rows

 = m · um (22)

and that the total number of nodes

in any k consecutive rows

 ≤
 m · um − 2 if k = um − 1

k · (m + 2) if k ≤ um − 2
. (23)

Each graph Gx,m represents a partially ordered set of tasks, where each

node represents a task and the arcs represent precedence constraints. All

tasks corresponding to row i have the same release time equals i and the

same due-date equals di = i + 3. We will use the following notation:

• If imodum ≤ um− 3 then the m+2 nodes, constituting row i, will be

denoted by a1
i , a

2
i , b

1
i , . . . , b

m
i .

• If imodum = um − 2 then the m + 1 nodes of row i will be denoted

by a1
i , b

1
i , . . . , b

m
i .

• If imodum = um − 1 then the two nodes, constituting row i, will be

denoted by a1
i and a2

i .

In Figure 1, nodes a1
i and a2

i are shaded. Only nodes a1
i and a2

i have suc-

cessors (see Figure 1):

25

• If m ≥ 7 and imodum < um − 3, then a1
i precedes a1

i+1, b
1
i+1, . . . , b

um
i+1

and a2
i precedes a2

i+1, b
um+1
i+1 , . . . , bm

i+1.

• If imodum = um − 3, then a1
i precedes a1

i+1, b
1
i+1, . . . , b

um
i+1 and a2

i

precedes bum+1
i+1 , . . . , bm

i+1.

• If imodum = um − 2, then a1
i precedes a1

i+1 and a2
i+1.

• If imodum = um−1 and i < k·um−1, then a1
i precedes a1

i+1, b
1
i+1, . . . , b

um
i+1,

and a2
i precedes a2

i+1, b
um+1
i+1 , . . . , bm

i+1.

Although the graph presented in [11] and Gx,5 have the same structure,

the example in [11] was developed for a different algorithm and the GJ-

algorithm constructs for this example an optimal schedule. The distinct

feature of the example presented in this paper is the assignment of release

times and due dates in such a way that ensures the consistence of these due

dates.

Lemma 12 For any m ≥ 5 and any x, the due dates corresponding to Gx,m

are consistent.

Proof

In order to prove this lemma, we must study the sets S(j, s, d). Since all

tasks in a row have the same due-dates and the same release times and since

none of b nodes has a successor, we can check consistence for a nodes only.

Moreover, as in any row the number of successors of a1
i is greater than or

equal to the number of successors of the corresponding a2
i , we will check

consistence for nodes a1
i only.

Consider i, s, d such that i ≤ s ≤ i+3 ≤ d. Assume that d ≥ s+3+um.

Then S(a1
i , s, d) is a union of all nodes constituting rows d−3−um+1, . . . , d−

26

3 and the set S(a1
i , s, d− um). Using (22), we have

|S(a1
i , s, d)| = |S(a1

i , s, d− um)|+ m · um.

Hence |S(a1
i , s, d)| ≤ m(d− s) if and only if

|S(a1
i , s, d− um)| ≤ m(d− um − s),

and we need to consider only sets S(a1
i , s, d) for which

d− s− 2 ≤ um. (24)

Consider the following cases.

Case s = i.

In this case S(a1
i , s, d) comprises all nodes of rows s to d − 3, except node

a1
i itself. The total number of these rows is d− 2− s, and by (24), we need

to consider only situations where this number is less than or equal to um. If

d− 2− s = um, then by (22)

|S(a1
i , s, d)| = m · um − 1 < m(um + 2) = m(d− s).

If d− 2− s = um − 1, then by (23)

|S(a1
i , s, d)| ≤ m · um − 2− 1 < m(um + 1) = m(d− s).

If d− 2− s ≤ um − 2, then taking into account (23),

|S(a1
i , s, d)| ≤ (d− 2− s)(m + 2)− 1 < m(d− s)− 2m + 2(d− 2− s)

≤ m(d− s)− 2m + 2(um − 2) < m(d− s).

Case s = i + 1.

If d = i+3, then S(a1
i , s, d) = ∅, and hence, |S(a1

i , s, d)| < m(d−s). Suppose

27

that d ≥ i + 4, then S(a1
i , s, d) contains all nodes of rows i + 1 to d− 3. The

number of these rows is

d− 3− i = d− 2− s.

and by (24), we need to consider only values of d satisfying the inequality

d− 2− s ≤ um. If d− 2− s = um, then by (22)

|S(a1
i , s, d)| = m · um < m(um + 2) = m(d− s).

If d− 2− s = um − 1, then by (23)

|S(a1
i , s, d)| ≤ m · um − 2 < m(um + 1) = m(d− s).

If d− 2− s ≤ um − 2, then by (23)

|S(a1
i , s, d)| ≤ (d− 2− s)(m + 2) = m(d− s)− 2m + 2(d− 2− s)

≤ m(d− s)− 2m + 2(um − 2) < m(d− s).

Case s = i + 2.

If d = i + 3, then S(a1
i , s, d) = ∅, and hence, |S(a1

i , s, d)| < m(d − s). If

d = i+4, then S(a1
i , s, d) is comprised of successors of a1

i in row i+1. Since

there are at most um + 1 such successors,

|S(a1
i , s, d)| ≤ um + 1 < 2m = m(d− s).

Suppose that d ≥ i + 5, then S(a1
i , s, d) is comprised of all successors of

a1
i in row i+1 and all nodes of rows s to d− 3. The number of these rows is

d− 2− s. By (24), this number either is equal to um, or is equal to um − 1,

or is less than or equal to um − 2. If d− 2− s = um, then by (22)

|S(a1
i , s, d)| ≤ m · um + um + 1 < m(um + 2) = m(d− s).

28

If d− 2− s = um − 1, then by (23)

|S(a1
i , s, d)| ≤ m · um − 2 + um + 1 < m(um + 1) = m(d− s).

If d− 2− s ≤ um − 2, then by (23)

|S(a1
i , s, d)| ≤ (m + 2)(d− 2− s) + um + 1 = m(d− s)− 2m + 2(d− 2− s)

+um + 1 ≤ m(d− s)− 2m + 3um − 3 < m(d− s).

Case s = i + 3.

If d = i + 3, then S(a1
i , s, d) = ∅ and therefore |S(a1

i , s, d)| = m(d − s).

Moreover, da1
i

= s as is required for consistency. If d = i+4, then S(a1
i , s, d)

is comprised of successors of a1
i in row i+1, number of which cannot exceed

um + 1, and

|S(a1
i , s, d)| ≤ um + 1 < m = m(d− s).

Suppose that d = i + 5, then S(a1
i , s, d) is comprised of all successors

of a1
i in rows i + 1 and i + 2. If imodum = um − 2, then the number of

these successors is m + 4. If imodum 6= um − 2, then the number of these

successors does not exceed 2um + 2 < m + 4. Consequently,

|S(a1
i , s, d)| ≤ m + 4 < 2m = m(d− s).

Suppose that d ≥ i + 6. Then S(a1
i , s, d) is comprised of all successors

of a1
i in rows i + 1 and i + 2 and all nodes of rows s to d − 3. There are

d− s− 2 such rows, and by (24), only situations where the number of these

rows does not exceed um are to be considered. If d − 2 − s = um, then by

(22)

|S(a1
i , s, d)| ≤ m · um + m + 4 < m(um + 2) = m(d− s).

29

If that d − 2 − s = um − 1, then, by (22), um consecutive rows, comprised

of row i + 2 and d − 2 − s subsequent rows, contain exactly m · um nodes.

Since the number of successors of a1
i in row i + 1 cannot exceed um + 1,

|S(a1
i , s, d)| ≤ m · um + um + 1 < m(um + 1) = m(d− s).

If d−2−s = um−2, then S(a1
i , s, d) is formed by nodes from um consecutive

rows i + 1, i + 2, . . . , i + d− s. Hence by (22)

|S(a1
i , s, d)| ≤ m · um = m(d− s).

Observe that da1
i

= s as is required for consistency in situation when |S(a1
i , s, d)| =

m(d− s). If d− 2− s ≤ um − 3, then by (23)

|S(a1
i , s, d)| ≤ (m+2)(d−2−s)+m+4 = m(d−s)−2m+2(d−2−s)+m+4

≤ m(d− s)− 2m + 2(um − 3) + m + 4 < m(d− s).

Hence for any i, s and d such that i ≤ s ≤ i + 3 ≤ d,

|S(a1
i , s, d)| ≤ m(d− s)

and if |S(a1
i , s, d)| = m(d − s), then da1

i
= s. Therefore, the due dates are

consistent.

For any Gx,m, consider a list where tasks are arrange in a nondecreasing

order of due dates and for each i, where imodum 6= um − 2, all b tasks

of this row are listed before the a tasks of the same row. Let σx,m be

the corresponding list schedule and let σ∗x,m be an optimal schedule for the

maximum lateness problem specified by the graph Gx,m. It is easy to see

that

max
j∈N

dj = umx + 2, Lmax(σ∗x,m) = −1, max
j∈N

rj = umx− 1

30

and

Lmax(σx,m) = (2um − 1)x− umx− 2 = umx− x− 2.

Taking into account that α(m) =
1

um
,

lim
x→+∞

Lmax(σx,m)− Lmax(σ∗x,m)
maxj∈N rj + 1

= lim
x→+∞

umx− x− 2 + 1
umx− 1 + 1

= lim
x→+∞

umx− umα(m)x
umx

= 1− α(m),

and (14) is asymptotically tight. Analogously,

lim
x→+∞

[2− α(m)]Lmax(σ∗x,m) + [1− α(m)]maxj∈N dj − [1− α(m)]
Lmax(σx,m)

= lim
x→+∞

[2− α(m)](−1) + [1− α(m)](umx + 2)− [1− α(m)]
umx− x− 2

= lim
x→+∞

[1− α(m)](umx + 2)
umx− x

= lim
x→+∞

umx− x + 2[1− α(m)]
umx− x

= 1,

and (18) is asymptotically tight.

For m = 3 and m = 4 the proof of asymptotical tightness is similar to

that for m ≥ 5 and is based on the following graphs Hx,m. Each graph Hx,m

has x ·um rows of nodes, numbered from 0 to x ·um−1, where um is specified

by (21) and

[number of nodes in row i] =

 m + 1 if imodum = 0

2 if imodum = 1
.

For arbitrary Hx,m, let a1
i , b

1
i , . . . , b

m
i be nodes constituting row i such that

imod um = 0, and let a1
i+1 and a2

i+1 be the only nodes of row i such that

imod um = 1. For any row i,

• if imodum = 0, then a1
i precedes both a1

i+1 and a2
i+1;

31

• if imod m = 1 and i ≤ umx − 3, then a1
i precedes a1

i+1, b
1
i+1, . . . , b

um
i+1

and a2
i precedes bum+1

i+1 , . . . , bm
i+1.

All tasks corresponding to row i have the same release time equals i and the

same due-date equals di = i + 2.

7 Conclusion

In this paper we generalized the Garey-Johnson algorithm, orginally de-

signed to solve optimally P2|prec, pj = 1, rj |Lmax to find solutions of the

problem P |prec, pj = 1, rj |Lmax. We analysed its worst case behavior and

provided a tight bound on the performance ratio which is competitive with

the best known ratio for this problem. The ideas behind Garey-Johnson

algorithm are commonly used to solve or find bounds for very different

scheduling problems like RCPSP, with so called energy bounds, preemp-

tive scheduling, scheduling with communication delays, scheduling on uni-

form processors. The structure of the analysis presented in this paper could

probably be used in these cases for algorithms based on the same ideas and

to derive tight bounds on their worst case performance ratio.

Preemption deserves a particular attention since not much tight bounds

have been proven for the worst case performance of scheduling algorithms

when preemption is allowed, and since Garey and Johnson derived an algo-

rithm that solves optimally P2|prec, pmtn|Lmax.

Existing approximation algorithm for P |prec, pj = 1, ri|Lmax all have a

worst case ratio that tends to 2 when the number of processors grows to

infinity. Hence it is a real challenge to design a polynomial algorithm that

passes under this threshold. We proved that Garey-Johnson algorithm is

not the one, however, its analysis could help the design of new algorithms.

32

References

[1] B. Braschi and D. Trystram, A new insight into the Coffman-Graham

algorithm, SIAM Journal on Computing 23 (1994) 662–669.

[2] P. Brucker, Scheduling algorithms, third edition, Springer, 2001.

[3] P. Brucker, M.R. Garey and D.S. Johnson, Scheduling equal-length

tasks under tree-like precedence constraints to minimise maximum late-

ness, Mathathematics of Opererations Research, 2 (1977) 275–284.

[4] M. R. Garey and D. S. Johnson, Two-processor scheduling with start-

time and deadlines, SIAM Journal on Computing 6 (1977) 416-426.

[5] J.K. Lenstra and A.H.G. Rinnooy Kan (1978), Complexity of scheduling

under precedence constraints, Operations Research, 26 (1978) 22–35.

[6] J.D. Ullman, NP-complete scheduling problems, Journal Comput. Sys-

tem Sci. 10 (1975) 384–393.

[7] G. Singh and Y. Zinder, Worst-case performance of two critical path

type algorithms, Asia Pacific Journal of Operational Research 17 (2000)

101–122.

[8] Y. Zinder, An Iterative Algorithm for Scheduling UET Tasks with Due

Dates and Release Times, European Journal of Operational Research

149 (2003) 404–416

[9] Y.Zinder and D. Roper, A minimax combinatorial optimisation problem

on an acyclic directed graph: polynomial-time algorithms and complex-

ity, in: Proceedings of the A.C. Aitken Centenary Conference, Dunedin,

(1995) 391–400.

33

[10] Y. Zinder and D. Roper, An iterative algorithm for scheduling unit-

time operations with precedence constraints to minimise the maximum

lateness, Annals of Operations Research 81 (1998) 321–340.

[11] Y. Zinder and G. Singh, Preemptive scheduling on parallel processors

with due dates, Asia Pacific Journal of Operational Research 22 (2005)

445–462.

34

