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The Garey-Johnson algorithm is a well known polynomial-time algorithm constructing an optimal schedule for the maximum lateness problem with unit execution time tasks, two parallel identical processors, precedence constraints and release times. The paper is concerned with the worst-case analysis of a generalisation of the Garey-Johnson algorithm to the case of arbitrary number of processors. In contrast to other algorithms for the maximum lateness problem, the tight performance guarantee for the even number of processors differs from the tight performance guarantee for the odd number of processors.

Introduction

In this paper we consider the problem of scheduling a set N ={1,2,. . . ,n} of n tasks (jobs, operations) on m > 1 parallel identical processors (machines) subject to precedence constraints in the form of an anti-reflexive, anti-symmetric and transitive relation on N . If task i precedes task j, denoted i → j, then the processing of task i must be completed before the processing of task j begins. Each processor can process only one task at a time, and each task can be processed by any processor. Once a processor begins executing a task, it processes this task until its completion (i.e. no preemptions are allowed). Each task j requires one unit of processor's time and its processing can commence only after the specified non-negative integer release time r j .

Since no preemptions are allowed and all processors are identical, any schedule σ can be determined by specifying for each task j its completion time C j (σ) in such a way that • C j (σ) ≥ r j + 1, for all j ∈ N ;

• not more than m tasks are assigned the same completion time;

• if i → j, then C j (σ) ≥ C i (σ) + 1.
The goal is to find a schedule that minimizes the criterion of maximum lateness

L max (σ) = max j∈N [C j (σ) -d j ], (1) 
where d j is an integer due date associated with task j.

In the three-field notation (see for example [START_REF] Brucker | Scheduling algorithms[END_REF]), the above problem is denoted by P |prec, p j = 1, r j |L max , where the terms prec and r j indicate the presence of precedence constraints and release times, and p j = 1 reflects the fact that all processing times are equal to one unit of time. If the partially ordered set of tasks is an in-tree, then the term prec is replaced by in -tree.

Analogously, the term out -tree indicates that the partially ordered set of tasks is an out-tree. If all due dates are equal to zero, the maximum lateness problem becomes the makespan problem P |prec, p j = 1, r j |C max with the criterion

C max (σ) = max j∈N C j (σ).
If the term r j is omitted, then all tasks have the same release time of zero.

It is well known that even P |prec, p j = 1|C max is NP-hard in the strong sense [START_REF] Ullman | NP-complete scheduling problems[END_REF], [START_REF] Lenstra | Complexity of scheduling under precedence constraints[END_REF]. Moreover, as has been shown in [START_REF] Zinder | A minimax combinatorial optimisation problem on an acyclic directed graph: polynomial-time algorithms and complexity[END_REF], the P |prec, p j = 1|C max problem remains NP-hard in the strong sense even if the partially ordered set of tasks is a bipartite graph. As far as the maximum lateness problem is concerned, P |out -tree, p j = 1|L max is also NP-hard in the strong sense [START_REF] Brucker | Scheduling equal-length tasks under tree-like precedence constraints to minimise maximum lateness[END_REF]. This implies the NP-hardness in the strong sense of P |in -tree, p j = 1, r j |C max . These NP-hardness results boost the interest in the worst-case performance of various approximation algorithms [START_REF] Braschi | A new insight into the Coffman-Graham algorithm[END_REF], [START_REF] Singh | Worst-case performance of two critical path type algorithms[END_REF], [START_REF] Zinder | An Iterative Algorithm for Scheduling UET Tasks with Due Dates and Release Times[END_REF], [START_REF] Zinder | An iterative algorithm for scheduling unittime operations with precedence constraints to minimise the maximum lateness[END_REF].

This paper is concerned with the Garey-Johnson algorithm [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF]. Although the Garey-Johnson algorithm was originally developed for the P 2|prec, p j = 1, r j |L max problem, i.e. the problem with only two processors, it can be generalized to the case of arbitrary number of processors. We will refer to this generalization by GJ-algorithm. Although the Garey-Johnson algorithm is among the most popular scheduling algorithms, its worst-case performance in the case of arbitrary number of processors has remained unknown for almost three decades. In what follows we analyze the worst-case performance of the GJ-algorithm.

∆-modified due dates

If i → j and r i ≥ r j , then the replacement of r j by r i + 1 does not affect the feasibility of any schedule. Since one can recalculate all release times in O(n 2 ) operations, without loss of generality we will assume that i → j implies the inequality r i + 1 ≤ r j . Without loss of generality we will also assume that min j∈N r j = 0.

Let D 1 , ..., D n be arbitrary nonnegative integers, then for any task i and any two numbers s and d such that

r i ≤ s ≤ D i ≤ d, (2) 
S(i, s, d) will denote the set of all tasks j such that j = i, D j ≤ d, and either i → j or r j ≥ s. We will say that integers D 1 , . . . , D n are consistent if for every task j

r j ≤ D j -1, (3) 
and for any task i and any two integers s and d satisfying (2), either

D i = s and |S(i, s, d)| = m(d -s), or |S(i, s, d)| < m(d -s).
It is easy to see that this definition is equivalent to the definition of consistency given in [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF].

Indeed, according to [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF], integers D 1 , . . . , D n are consistent if the inequality

(3) holds for every j ∈ N , and for any task i and any two integers s and d satisfying (2), the inequality

|S(i, s, d)| ≥ m(d -s) (4) 
implies

D i ≤ d - |S(i, s, d)| m . (5) 
The equivalence of both definitions follows from the fact that the inequal- Let ∆ be an arbitrary integer. We will say that integers D 1 , ..., D n are ∆-modified due dates if they are consistent and

D i ≤ d i + ∆ for all i ∈ N .
As has been shown in [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF], there exists an algorithm which for any given ∆ in O(n 3 ) operations either calculates ∆-modified due dates or establishes that such due dates do not exist at all. The idea of this algorithm is based on the definition of consistency in [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF] and can be outlined as follows. In order to compute for a given ∆ a set of ∆-modified due dates we first set D j = d j +∆ for all j ∈ N . If (3) holds for all j ∈ N and the inequality (5) holds for all triples (i, s, d) satisfying ( 2) and (4), integers D 1 , ..., D n themselves are ∆-modified due dates. If some j does not satisfy (3), the desired set of ∆modified due dates does not exist at all. Suppose that D j ≥ r j + 1 for all j ∈ N , but for some triple (i, s, d) satisfying ( 2) and ( 4)

D i > d - |S(i, s, d)| m . (6) 
It is easy to see that if ∆-modified due dates exist, then the due date associated with i is not greater than the right-hand side of the inequality (6).

Hence we set

D i = d - |S(i, s, d)| m
and again check (3) and the inequality (5) for all triples (i, s, d) satisfying

(2) and [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF]. At each such iteration we either conclude that the desired set of ∆-modified due dates does not exist, or establish that the current integers 

C j (σ) ≤ d - |S(i, s, d)| m + 1.
Since for this task C j (σ) ≤ s, r j < s, and by the definition of S(i, s, d), i → j. Hence, D i = C i (σ) < s, which contradicts (2).

We will say that schedule σ is active if there is no schedule σ such that C j (σ ) ≤ C j (σ) for all j ∈ N and at least one of these inequalities is strict.

In what follows, for any integer t, we will refer to the time interval [t -1, t] also as a time slot t.

Lemma 3 If a schedule σ is active, then C j (σ) -r j ≤ n for all j ∈ N .

Proof

Suppose that there exists a task j such that C j (σ) -r j > n. Then all m processors are idle in at least one time slot t satisfying the inequalities r j < t < C j (σ). Because σ is active, this implies the existence of a task g such that g → j and t < C g (σ) < C j (σ). Among all these tasks g select a task with the smallest completion time. Let it be task i. Since i → j, r i < r j < t and task i can be processed in the time slot t without changing completion times of all other tasks which contradicts the fact that σ is active.

The following lemma establishes upper and lower bounds on the optimal value of the criterion.

Lemma 4 Let σ * be an optimal schedule and ∆ * be the minimal ∆ allowing ∆-modified due dates. Then

max v∈N (r v -d v ) < ∆ * ≤ L max (σ * ) ≤ n + max v∈N (r v -d v ).

Proof

If ∆ = r j -d j for some j ∈ N , then ∆-modified due dates D 1 , . . . , D n do not exist, because in this case

D j ≤ d j + ∆ = r j ,
which contradicts the inequalities D j ≥ r j + 1. Hence,

max v∈N (r v -d v ) < ∆ * .
Without loss of generality we assume that σ * is active, because otherwise σ * can be replace by an active schedule σ such that C j (σ ) ≤ C j (σ * ), for all j ∈ N , and hence also optimal. Consider any task j satisfying the equality

C j (σ * ) -d j = L max (σ *
). Then using Lemma 3 we have

L max (σ * ) = C j (σ * ) -r j + r j -d j ≤ n + r j -d j ≤ n + max v∈N (r v -d v ).
To complete the proof, we observe that C j (σ * ) ≤ d j + L max (σ * ), for all j ∈ N , and therefore by Lemma 2 the integers

C 1 (σ * ), C 2 (σ * ), ..., C n (σ * )
are L max (σ * )-modified due dates. Hence, ∆ * ≤ L max (σ * ).

GJ-algorithm for an arbitrary number of processors

The algorithm considered in this paper is a straightforward generalization of that presented in [START_REF] Garey | Two-processor scheduling with starttime and deadlines[END_REF] for the two-processor case. Both algorithms use as a subroutine the so called list algorithm. The list algorithm assumes that the tasks are arranged in a list. In the description of this algorithm, L will denote a list of tasks and σ L will denote the corresponding schedule. We will say that an unscheduled task j is available for processing in schedule

σ L in time slot t if r j < t and C i (σ L ) < t for all i such that i → j.
List Algorithm

1. Set t = min j∈L r j + 1, π = 1 and L = L.
2. Scan L from left to right starting from the πth element of this list and find the first task g available for processing in σ L in time slot t. If g does not exist, then go to step 4.

3. Set C g (σ L ) = t. Let g be the kth element in L . Set π = k and eliminate g from the list L . If the number of elements in L is not less than π and the number of tasks with completion time equals t is less than m, then go to step 2.

4. If L is empty, then stop. Otherwise set t = max[t + 1, min j∈L r j + 1] and π = 1, and go to step 2.

As in Lemma 4, let ∆ * be the minimal ∆ allowing ∆-modified due dates.

GJ-algorithm

1. Set ∆ L = max v∈N (r v -d v ) and ∆ U = n + max v∈N (r v -d v ).
Using the binary search, compute ∆ * and ∆ * -modified due dates.

2. Construct a list schedule for a list where tasks are arranged in the non-decreasing order of there ∆ * -modified due dates.

Recall that, for a given ∆, the number of operations needed to compute ∆-modified due dates or to determine that these due dates do not exist is O(n 3 ). The selection of ∆ U and ∆ L is justified by Lemma 4. So, the calculation of ∆ * and the corresponding ∆ * -modified due dates can be

accomplished in O(n 3 log 2 n) operations.
In what follows, σ * will denote a schedule minimizing the maximum lateness, D 1 , ..., D n will denote ∆ * -modified due dates calculated in accord with the first step of the GJ-algorithm, and σ will denote a schedule constructed by this algorithm.

Decomposition procedure

For any integers t and D, denote by δ(t, D) the set of all tasks v such that

C v (σ) = t and D v ≤ D.
Lemma 5 For any task q and any integers D and t, satisfying

D q ≤ D, r q < t < C q (σ) and |δ(t, D)| < m,
there exists a task h ∈ δ(t, D -1) such that h → q.

Proof

Since the schedule σ is constructed in accord with the list algorithm and since |δ(t, D)| < m and r q < t, there exists a task b such that C b (σ) ≥ t and b → q. Among all such tasks b select a task with the smallest completion time. Let it be task h. Lemma 1 implies that

D h ≤ D q -1 ≤ D -1. Hence the lemma holds if C h (σ) = t.
In order to prove this equality, assume that

C h (σ) > t.
The relation h → q implies r h < r q , and since the schedule σ was constructed in accord with the list algorithm, there exists a task f such that C f (σ) ≥ t and f → h. Then by transitivity f → q, which contradicts the selection of h.

Further exploring the structure of σ, we observe that

max v∈N [C v (σ) -D v ] ≥ max v∈N [C v (σ) -(d v + ∆ * )] = L max (σ) -∆ *
and by Lemma 4,

≥ L max (σ) -L max (σ * ) ≥ 0. Hence, if max v∈N [C v (σ) -D v ] = 0,
then σ is an optimal schedule for the original problem. Since our goal is the worst-case analysis of the GJ-algorithm, we will assume that there exists a task g such that

C g (σ) -D g > 0. (7) 
The following procedure, which will be referred to as a decomposition procedure, constructs for any task g, satisfying (7), a sequence of tasks j 0 = g, ..., j l(g) and the sequence of corresponding sets of tasks M 0 , ..., M l(g) . Suppose that the sequence j 0 , ..., j i and the corresponding sequence of sets M 0 , ..., M i-1 have been already constructed. Obviously, if i = 0, no sets have been constructed yet. Let t be an integer such that t < C j i (σ) and

|δ(t, D j i )| < m.
Observe that both inequalities hold for example for t = 0.

Among all such t select the largest one and denote it by τ . Then

M i = ∪ τ <t≤C j i (σ) δ(t, D j i ).
If r q ≥ τ for all q ∈ M i , then the procedure terminates with l(g) = i. If r q < τ for at least one q ∈ M i , then according to Lemma 5 δ(τ, D j i -1) = ∅.

If |δ(τ, D j i -1)| = 1, then the procedure terminates with l(g) = i. In this case, the task constituting the set δ(τ, D j i -1) will be denoted by j l(g)+1 . If |δ(τ, D j i -1)| ≥ 2, then choose as j i+1 any task q satisfying

D q = max v∈δ(τ,D j i -1) D v
and start a new iteration by constructing the set M i+1 .

Lemma 6 If task g satisfies ( 7) and the decomposition procedure cannot determine j l(g)+1 , then

min v∈∪ l(g) i=0 M i r v = min v∈M l(g) C v (σ) -1.

Proof

Since j l(g)+1 does not exist, according to the decomposition procedure min v∈M l(g)

r v = min v∈M l(g) C v (σ) -1. (8) 
Suppose that for some k < l(g) there exists j ∈ M k such that

r j < min v∈M l(g) C v (σ) -1.
Then by Lemma 5 there exists task h ∈ M l(g) such that h → j. Since h → j implies r h < r j ,

r h < min v∈M l(g) C v (σ) -1,
which contradicts [START_REF] Zinder | An Iterative Algorithm for Scheduling UET Tasks with Due Dates and Release Times[END_REF].

Lemma 7 Let g satisfy ( 7) and let, in the corresponding decomposition,

j ∈ M k , then r j ≥      r j l(g)+1 + l(g) -k + 1 if j l(g)+1 exists l(g) -k if j l(g)+1 does not exist . ( 9 
)
Proof Suppose that j l(g)+1 exists and k = l(g). If

r j < min v∈M l(g) C v (σ) -1,
then according to the decomposition procedure and Lemma 5, j l(g)+1 → j.

Hence, r j ≥ r j l(g)+1 + 1 and the lemma holds. If

r j ≥ min v∈M l(g) C v (σ) -1,
then the same result follows from the observation that min

v∈M l(g) C v (σ) -1 = C j l(g)+1 (σ) ≥ r j l(g)+1 + 1.
Since min u∈N r u = 0, the lemma also holds if j l(g)+1 does not exist.

Suppose that the lemma holds for any k > w for some nonnegative integer w < l(g). Let k = w, then by the assumption, for any u ∈

δ(C j k+1 (σ), D j k -1)
r u ≥      r j l(g)+1 + l(g) -(k + 1) + 1 if j l(g)+1 exists l(g) -(k + 1)
if j l(g)+1 does not exist .

If r j < C j k+1 (σ), then by Lemma 5 there exists h ∈ δ(C j k+1 (σ),

D j k -1)
such that h → j and therefore

r j ≥ C h (σ) ≥ r h + 1 ≥      r j l(g)+1 + l(g) -k + 1 if j l(g)+1 exists l(g) -k if j l(g)+1 does not exist . If r j ≥ C j k+1 (σ), then (9) 
follows from r j ≥ C j k+1 (σ) ≥ r j k+1 + 1. Hence, the lemma holds for any k.

Lemma 8 If task g satisfies ( 7), then

D g ≥      D j l(g)+1 + l(g) + 1 if j l(g)+1 exists l(g) + 2 if j l(g)+1 does not exist
.

Proof

If j l(g)+1 exists, then the inequality

D g ≥ D j l(g)+1 + l(g) + 1
follows from the fact that according to the decomposition procedure

D j i ≥ D j i+1 + 1 for all 0 ≤ i ≤ l(g).
Suppose that j l(g)+1 does not exist, then by Lemma 7 and the condition

(3) of consistency, D g ≥ l(g) + 1. Suppose that the lemma does not hold, i.e. suppose that D g = l(g) + 1. Then, taking into account that according to the decomposition procedure

D j i ≥ D j i+1 + 1 for all 0 ≤ i ≤ l(g), D j l(g) = 1
and r j l(g) = 0. If |M i | ≤ m for all 0 ≤ i ≤ l(g), then all tasks constituting each M i are processed in the same time slot, and therefore C g (σ) = l(g) + 1

which contradicts [START_REF] Singh | Worst-case performance of two critical path type algorithms[END_REF].

Let k be the largest i among all i satisfying |M i | > m. In order to show that k = l(g), assume that k < l(g) . Then, for each k < i ≤ l(g), all tasks constituting M i are processed in the same time slot

C j i (σ) = l(g) -i + 1.
Hence,

min q∈M k C q (σ) -1 = C j k+1 (σ) = l(g) -k.
This by virtue of Lemma 7 implies that for any j ∈ M k r j ≥ min

q∈M k C q (σ) -1,
which contradicts the decomposition procedure which should terminate after the construction of set M k . Hence, k = l(g). Let s = 0 = r j l(g) and

d = 1 = D j l(g) . Then, since |δ(C j l(g) (σ), D j l(g) )| ≥ 2, |S(j l(g) , s, d)| ≥ |M l(g) -{j l(g) }| > m(d -s)
which contradicts the fact that the ∆ * -modified due dates are consistent.

5 Completion times in σ and ∆ * -modified due dates

It is convenient to introduce the following notation:

α(m) =      2 m + 1 if m is odd 2 m if m is even . Lemma 9 For any positive integer p 2p -1 m ≥ α(m)p.

Proof

Let m be even. Since 2p -1 is odd, 2p-1 m cannot be integer, and therefore

2p -1 m = 2p -1 m + 1 m ≥ 2p m = α(m)p. If m is odd and 2p-1 m < 1, then 2p-1 m + 1 m < 1, and therefore 2p -1 m = 2p -1 m + 1 m > 2p m > α(m)p.
Finally, let m be odd and 2p-1 m ≥ 1, then 2p-1 m ≥ 2p m+1 , and therefore

2p -1 m ≥ 2p m + 1 ≥ 2p m + 1 = α(m)p
which completes the proof.

Lemma 10 If task g satisfies ( 7) and j l(g)+1 does not exist, then

C g (σ) ≤ [1 -α(m)][l(g) + 2] + D g -[1 -α(m)].

Proof

From the construction of M l(g) , there exists a task q ∈ M l(g) such that

r q = min v∈M l(g) C v (σ) -1.
Let s = r q and d = D g , then by Lemma 6 and the fact that D j ≤ D g , for

all j ∈ ∪ l(g) i=0 M i , r q = s < D q ≤ d and (∪ l(g) i=0 M i -{q}) ⊆ S(q, s, d).
If |S(q, s, d)| = m(d -s), then by the consistency of the ∆ * -modified due dates D q = s, which contradicts the inequality s < D q . Therefore |S(q, s, d)| < m(d -s). On the other hand, each time slot C j i (σ), where 1 ≤ i ≤ l(g), contains at least two tasks from M i , and any other time slot t, satisfying the inequalities r q < t < C g (σ), contains exactly m tasks from

∪ l(g) i=0 M i . Consequently, m[C g (σ) -r q -l(g) -1] + 2l(g) ≤ |S(q, s, d)| < m(d -s) = m(D g -r q ).
Hence

C g (σ) < l(g) + 1 - 2l(g) m + D g . (10) 
If m is even, then since 2l(g) is also even and ( 10) is a strict inequality,

C g (σ) ≤ l(g) + 1 - 2l(g) m + D g - 2 m .
Consequently,

C g (σ) ≤ l(g)+2- 2[l(g) + 2] m +D g -1+ 2 m = [1-α(m)][l(g)+2]+D g -[1-α(m)].
If m is odd, then from (10)

C g (σ) < l(g) + 1 - 2l(g) m + 1 + D g ,
and because both 2l(g) and m + 1 are even

C g (σ) ≤ l(g) + 1 - 2l(g) m + 1 + D g - 2 m + 1 . Hence C g (σ) ≤ l(g) + 2 - 2[l(g) + 2] m + 1 + D g -1 + 2 m + 1 = [1 -α(m)][l(g) + 2] +D g -[1 -α(m)]
which completes the proof.

Lemma 11 If task g satisfies ( 7) and j l(g)+1 exists, then

C g (σ) -C j l(g)+1 (σ) ≤ [1 -α(m)][l(g) + 1] + D g -min[C j l(g)+1 (σ), D j l(g)+1 ].

Proof

According to the decomposition procedure

D j i ≤ D j i-1 -1 for all 1 ≤ i ≤ l(g) + 1
. Adding all these inequalities, we have

D j l(g)+1 ≤ D j 0 -l(g) -1,
which gives

D g -min[C j l(g)+1 (σ), D j l(g)+1 ] ≥ D g -D j l(g)+1 ≥ l(g) + 1. ( 11 
)
Because the ∆ * -modified due dates are consistent, r j l(g)+1 < D j l(g)+1 . Let d = D g and s = min[C j l(g)+1 (σ), D j l(g)+1 ], then

r j l(g)+1 < s ≤ D j l(g)+1 < d.
By Lemma 5 and the decomposition procedure, for any j ∈ ∪ l(g) i=0 M i either r j ≥ C j l(g)+1 ≥ s or j l(g)+1 → j. Moreover, by the decomposition procedure,

D j ≤ D g = d for all j ∈ ∪ l(g) i=0 M i . Hence ∪ l(g) i=0 M i ⊆ S(j l(g)+1 , s, d).
On the other hand, each time slot C j i (σ), where 1 ≤ i ≤ l(g), contains at least two tasks from M i , and any other time slot t, satisfying the inequalities C j l(g)+1 (σ) < t < C g (σ), contains exactly m tasks from ∪ l(g) i=0 M i . Consequently,

|S(j l(g)+1 , s, d)| ≥ m[C g (σ) -C j l(g)+1 (σ) -l(g) -1] + 2l(g) + 1. ( 12 
)
If |S(j l(g)+1 , s, d)| < m(d -s), then taking into account that d and s are integers, we have

|S(j l(g)+1 , s, d)| m ≤ d -s = D g -min[C j l(g)+1 (σ), D j l(g)+1 ]. If |S(j l(g)+1 , s, d)| = m(d -s), then min[C j l(g)+1 (σ), D j l(g)+1 ] = s = d- |S(j l(g)+1 , s, d)| m = D g - |S(j l(g)+1 , s, d)| m .
Therefore in both cases D g -min[C j l(g)+1 (σ), D j l(g)+1 ] ≥ |S(j l(g)+1 , s, d)| m and using (12) and Lemma 9

≥ C g (σ) -C j l(g)+1 (σ) -l(g) -1 + 2l(g) + 1 m = C g (σ) -C j l(g)+1 (σ) -l(g) -1 + 2[l(g) + 1] -1 m ≥ C g (σ) -C j l(g)+1 (σ) -[1 -α(m)][l(g) + 1]. Hence C g (σ) -C j l(g)+1 (σ) ≤ [1 -α(m)][l(g) + 1] + D g -min[C j l(g)+1 (σ), D j l(g)+1 ].
which completes the proof.

Performance guarantees

Suppose that L max (σ) > L max (σ * ). For any task g, satisfying [START_REF] Singh | Worst-case performance of two critical path type algorithms[END_REF], it is convenient to denote j l(g)+1 by a(g). Let q be any task satisfying the equality

C q (σ) -d q = L max (σ). ( 13 
)
By the definition of ∆ * -modified due dates and Lemma 4

L max (σ) = C q (σ) -d q ≤ C q (σ) -(D q -∆ * ) ≤ C q (σ) -D q + L max (σ * ),
which implies C q (σ) -D q > 0. Using the decomposition procedure and starting with q we can construct a sequences of tasks as follows. If a(q)

(previously denoted by j l(q)+1 ) does not exist, then this sequence contains only one task q 0 = q. If a(q) exists, then repeatedly applying the decomposition procedure, we can construct a sequence of tasks q 0 = q, . . . , q k such that C q i (σ) -D q i > 0 and q i+1 = a(q i ) for all 0 ≤ i < k, and either

C q k (σ) -D q k ≤ 0 or C q k (σ) -D q k > 0 but a(q k ) does not exist.
Theorem 1 For any m ≥ 2

L max (σ) -L max (σ * ) ≤ [1 -α(m)][1 + max v∈N r v ]. ( 14 
)

Proof

Suppose that a(q) does not exist. Then taking into account Lemma 10, Lemma 7 and Lemma 4,

C q (σ) ≤ [1 -α(m)][l(q) + 1] + D q ≤ [1 -α(m)][r q + 1] + d q + ∆ * ≤ [1 -α(m)][1 + max v∈N r v ] + d q + L max (σ * )
which by virtue of (13) implies ( 14).

Suppose that k ≥ 1, C q k (σ) -D q k > 0 and a(q k ) does not exist. Then by Lemma 11 and Lemma 7, for all 0 ≤ i ≤ k -1,

C q i (σ) -C q i+1 (σ) ≤ [1 -α(m)][l(q i ) + 1] + D q i -min[C q i+1 (σ), D q i+1 ] = [1 -α(m)][l(q i ) + 1] + D q i -D q i+1 ≤ [1 -α(m)][r q i -r q i+1 ] + D q i -D q i+1 .
Adding inequalities

C q i (σ) -C q i+1 (σ) ≤ [1 -α(m)][r q i -r q i+1 ] + D q i -D q i+1 ( 15 
)
for all 0 ≤ i ≤ k -1 and taking into account that q 0 = q, we have

C q (σ) -C q k (σ) ≤ [1 -α(m)][r q -r q k ] + D q -D q k . ( 16 
)
On the other hand, by Lemma 10 and Lemma 7

C q k (σ) ≤ [1 -α(m)][l(q k ) + 1] + D q k ≤ [1 -α(m)][r q k + 1] + D q k .
This together with (16) and Lemma 4 gives

C q (σ) ≤ [1 -α(m)][r q + 1] + D q ≤ [1 -α(m)][1 + max v∈N r v ] + d q + ∆ * ≤ [1 -α(m)][1 + max v∈N r v ] + d q + L max (σ * )
which implies (14).

Suppose that k ≥ 1, C q k (σ) -D q k ≤ 0. If k ≥ 2, then by adding inequalities (15) for all 0 ≤ i ≤ k -2, we obtain

C q (σ) -C q k-1 (σ) ≤ [1 -α(m)][r q -r q k-1 ] + D q -D q k-1 . ( 17 
)
It is easy to see that (17) also holds when k = 1. On the other hand, by Lemma 11, the fact that C q k (σ) -D q k ≤ 0 and Lemma 7,

C q k-1 (σ) -C q k (σ) ≤ [1 -α(m)][l(q k-1 ) + 1] + D q k-1 -min[C q k (σ), D q k ] ≤ [1 -α(m)][r q k-1 -r q k ] + D q k-1 -C q k (σ)
which together with (17) and Lemma 4 gives

C q (σ) ≤ [1 -α(m)][r q -r q k ] + D q ≤ [1 -α(m)][1 + max v∈N r v ] + d q + ∆ * ≤ [1 -α(m)][1 + max v∈N r v ] + d q + L max (σ * )
which implies (14).

Theorem 2 For any m ≥ 2

L max (σ) ≤ [2 -α(m)]L max (σ * ) + [1 -α(m)] max v∈N d v -[1 -α(m)]. ( 18 
)

Proof

Let j be an arbitrary task. Since r j ≥ 0 and therefore C j (σ * ) ≥ 1,

L max (σ * ) ≥ C j (σ * ) -d j ≥ 1 -max v∈N d v .
Hence, L max (σ * ) + max v∈N d v ≥ 1, and by virtue of

1 -α(m) ≥ 0 [1 -α(m)][L max (σ * ) + max v∈N d v ] -[1 -α(m)] ≥ 0.
Hence, if L max (σ) = L max (σ * ), then (18) holds.

Suppose that L max (σ) > L max (σ * ). Let q be a task, satisfying the equality

C q (σ) -d q = L max (σ),
and let q 0 = q, . . . , q k be the sequence of tasks such that C q i (σ)-D q i > 0 and q i+1 = a(q i ) for all 0 ≤ i < k, and either Lemma 11 and Lemma 8

C q k (σ)-D q k ≤ 0 or C q k (σ)-D q k > 0 but a(q k ) does not exist. If C q k (σ) -D q k ≤ 0, then k ≥ 1. For all 0 ≤ i ≤ k -1, by
C q i (σ) -C q i+1 (σ) ≤ [1 -α(m)][l(q i ) + 1] + D q i -min[C q i+1 (σ), D q i+1 ] ≤ [1 -α(m)][D q i -D q i+1 ] + D q i -min[C q i+1 (σ), D q i+1 ] = [2 -α(m)]D q i -[1 -α(m)]D q i+1 -min[C q i+1 (σ), D q i+1 ] ≤ [2 -α(m)]{D q i -min[C q i+1 (σ), D q i+1 ]}.
Adding all these inequalities and taking into account that

C q k (σ) ≤ D q k and C q i+1 (σ) > D q i+1 if i + 1 < k, we have C q (σ) -C q k (σ) ≤ [2 -α(m)]{D q -C q k (σ)},
and since

C q k (σ) ≥ 1, C q (σ) ≤ [2 -α(m)]D q -[1 -α(m)]. (19) 
Suppose that C q k (σ) -D q k > 0, then a(q k ) does not exist. By Lemma 10 and Lemma 8

C q k (σ) ≤ [2 -α(m)]D q k -[1 -α(m)]. (20) 
If k = 0, then (20) coincides with (19). Let k ≥ 1. For all 0 ≤ i ≤ k -1, by Lemma 11 and the fact that

C q i+1 (σ) > D q i+1 C q i (σ) -C q i+1 (σ) ≤ [2 -α(m)]{D q i -D q i+1 },
Adding all these inequalities, we have

C q (σ) -C q k (σ) ≤ [2 -α(m)]{D q -D q k },
which together with (20) gives (19).

Using (19),

L max (σ) = C q (σ) -d q ≤ [2 -α(m)]D q -[1 -α(m)] -d q
and by the definition of ∆ * -modified due dates and Lemma 4

≤ [2 -α(m)](d q + ∆ * ) -[1 -α(m)] -d q ≤ [2 -α(m)]L max (σ * ) + [1 -α(m)] max v∈N d v -[1 -α(m)]
which completes the proof.

In order to show that, for any m ≥ 5, ( 14) and ( 18) are asymptotically tight, we will consider graphs G x,m , each comprising m • x • u m nodes which form x • u m rows, where x is a positive integer and The rows of nodes are numbered from 0 to x • u m -1 (see Figure 1), and

u m =      m + 1 2 if m is odd m 2 if m is even . (21) 
[the number of nodes in row i] =            m + 2 if i mod u m ≤ u m -3 m + 1 if i mod u m = u m -2 2 if i mod u m = u m -1 .
It is easy to see that

  
the total number of nodes in any u m consecutive rows

   = m • u m (22) 
and that

  
the total number of nodes in any k consecutive rows

   ≤      m • u m -2 if k = u m -1 k • (m + 2) if k ≤ u m -2 . (23) 
Each graph G x,m represents a partially ordered set of tasks, where each node represents a task and the arcs represent precedence constraints. All tasks corresponding to row i have the same release time equals i and the same due-date equals d i = i + 3. We will use the following notation:

• If i mod u m ≤ u m -3 then the m + 2 nodes, constituting row i, will be denoted by a 1 i , a 2 i , b 1 i , . . . , b m i .

• If i mod u m = u m -2 then the m + 1 nodes of row i will be denoted by a 1 i , b 1 i , . . . , b m i .

• If i mod u m = u m -1 then the two nodes, constituting row i, will be denoted by a 1 i and a 2 i .

In Figure 1, nodes a 1 i and a 2 i are shaded. Only nodes a 1 i and a 2 i have successors (see Figure 1 • If i mod u m = u m -2, then a 1 i precedes a 1 i+1 and a 2 i+1 . Although the graph presented in [START_REF] Zinder | Preemptive scheduling on parallel processors with due dates[END_REF] and G x,5 have the same structure, the example in [START_REF] Zinder | Preemptive scheduling on parallel processors with due dates[END_REF] was developed for a different algorithm and the GJalgorithm constructs for this example an optimal schedule. The distinct feature of the example presented in this paper is the assignment of release times and due dates in such a way that ensures the consistence of these due dates.

• If i mod u m = u m -1 and i < k•u m -1, then a 1 i precedes a 1 i+1 , b
Lemma 12 For any m ≥ 5 and any x, the due dates corresponding to G x,m are consistent.

Proof

In order to prove this lemma, we must study the sets S(j, s, d). Since all tasks in a row have the same due-dates and the same release times and since none of b nodes has a successor, we can check consistence for a nodes only.

Moreover, as in any row the number of successors of a 1 i is greater than or equal to the number of successors of the corresponding a 2 i , we will check consistence for nodes a 1 i only. 

|S(a 1 i , s, d -u m )| ≤ m(d -u m -s),
and we need to consider only sets S(a 1 i , s, d) for which

d -s -2 ≤ u m . (24) 
Consider the following cases.

Case s = i.

In this case S(a 1 i , s, d) comprises all nodes of rows s to d -3, except node a 1 i itself. The total number of these rows is d -2 -s, and by (24), we need to consider only situations where this number is less than or equal to u m . If

d -2 -s = u m , then by (22) |S(a 1 i , s, d)| = m • u m -1 < m(u m + 2) = m(d -s). If d -2 -s = u m -1, then by (23) |S(a 1 i , s, d)| ≤ m • u m -2 -1 < m(u m + 1) = m(d -s). If d -2 -s ≤ u m -2, then taking into account (23), |S(a 1 i , s, d)| ≤ (d -2 -s)(m + 2) -1 < m(d -s) -2m + 2(d -2 -s) ≤ m(d -s) -2m + 2(u m -2) < m(d -s).
Case s = i + 1.

If d = i+3, then S(a 1 i , s, d) = ∅, and hence, |S(a 1 i , s, d)| < m(d-s). Suppose that d ≥ i + 4, then S(a 1 i , s, d) contains all nodes of rows i + 1 to d -3. The number of these rows is

d -3 -i = d -2 -s.
and by (24), we need to consider only values of d satisfying the inequality

d -2 -s ≤ u m . If d -2 -s = u m , then by (22) |S(a 1 i , s, d)| = m • u m < m(u m + 2) = m(d -s). If d -2 -s = u m -1, then by (23) |S(a 1 i , s, d)| ≤ m • u m -2 < m(u m + 1) = m(d -s). If d -2 -s ≤ u m -2, then by (23) |S(a 1 i , s, d)| ≤ (d -2 -s)(m + 2) = m(d -s) -2m + 2(d -2 -s) ≤ m(d -s) -2m + 2(u m -2) < m(d -s).
Case s = i + 2.

If d = i + 3, then S(a 

|S(a 1 i , s, d)| ≤ u m + 1 < 2m = m(d -s).
Suppose that d ≥ i + 5, then S(a 1 i , s, d) is comprised of all successors of a 1 i in row i + 1 and all nodes of rows s to d -3. The number of these rows is d -2 -s. By (24), this number either is equal to u m , or is equal to u m -1, or is less than or equal to u

m -2. If d -2 -s = u m , then by (22) |S(a 1 i , s, d)| ≤ m • u m + u m + 1 < m(u m + 2) = m(d -s). If d -2 -s = u m -1, then by (23) |S(a 1 i , s, d)| ≤ m • u m -2 + u m + 1 < m(u m + 1) = m(d -s). If d -2 -s ≤ u m -2, then by (23) |S(a 1 i , s, d)| ≤ (m + 2)(d -2 -s) + u m + 1 = m(d -s) -2m + 2(d -2 -s) +u m + 1 ≤ m(d -s) -2m + 3u m -3 < m(d -s).
Case s = i + 3.

If d = i + 3, then S(a 1 i , s, d) = ∅ and therefore |S(a 1 i , s, d)| = m(d -s). Moreover, d a 1 i = s as is required for consistency. If d = i + 4, then S(a 1 i , s, d) is comprised of successors of a 1 i in row i + 1, number of which cannot exceed u m + 1, and |S(a 1 i , s, d)| ≤ u m + 1 < m = m(d -s).
Suppose that d = i + 5, then S(a 1 i , s, d) is comprised of all successors of a 1 i in rows i + 1 and i + 2. If i mod u m = u m -2, then the number of these successors is m + 4. If i mod u m = u m -2, then the number of these successors does not exceed 2u m + 2 < m + 4. Consequently,

|S(a 1 i , s, d)| ≤ m + 4 < 2m = m(d -s).
Suppose that d ≥ i + 6. Then S(a 1 i , s, d) is comprised of all successors of a 1 i in rows i + 1 and i + 2 and all nodes of rows s to d -3. There are d -s -2 such rows, and by (24), only situations where the number of these rows does not exceed u m are to be considered.

If d -2 -s = u m , then by (22) |S(a 1 i , s, d)| ≤ m • u m + m + 4 < m(u m + 2) = m(d -s).
If that d -2 -s = u m -1, then, by ( 22), u m consecutive rows, comprised of row i + 2 and d -2 -s subsequent rows, contain exactly m • u m nodes.

Since the number of successors of a 1 i in row i + 1 cannot exceed u m + 1,

|S(a 1 i , s, d)| ≤ m • u m + u m + 1 < m(u m + 1) = m(d -s). If d-2-s = u m -2, then S(a 1 i , s, d) is formed by nodes from u m consecutive rows i + 1, i + 2, . . . , i + d -s. Hence by (22) |S(a 1 i , s, d)| ≤ m • u m = m(d -s).
Observe that d a 1 i = s as is required for consistency in situation when |S(a For arbitrary H x,m , let a 1 i , b 1 i , . . . , b m i be nodes constituting row i such that i mod u m = 0, and let a 1 i+1 and a 2 i+1 be the only nodes of row i such that i mod u m = 1. For any row i,

1 i , s, d)| = m(d -s). If d -2 -s ≤ u m -3, then by (23) |S(a 1 i , s, d)| ≤ (m+2)(d-2-s)+m+4 = m(d-s)-2m+2(d-2-s)+m+4 ≤ m(d -s) -2m + 2(u m -3) + m + 4 < m(d -s).
• if i mod u m = 0, then a 1 i precedes both a 1 i+1 and a 2 i+1 ;

• if i mod m = 1 and i ≤ u m x -3, then a 1 i precedes a All tasks corresponding to row i have the same release time equals i and the same due-date equals d i = i + 2.

Conclusion

In this paper we generalized the Garey-Johnson algorithm, orginally designed to solve optimally P 2|prec, p j = 1, r j |L max to find solutions of the problem P |prec, p j = 1, r j |L max . We analysed its worst case behavior and provided a tight bound on the performance ratio which is competitive with the best known ratio for this problem. The ideas behind Garey-Johnson algorithm are commonly used to solve or find bounds for very different scheduling problems like RCPSP, with so called energy bounds, preemptive scheduling, scheduling with communication delays, scheduling on uniform processors. The structure of the analysis presented in this paper could probably be used in these cases for algorithms based on the same ideas and to derive tight bounds on their worst case performance ratio.

Preemption deserves a particular attention since not much tight bounds have been proven for the worst case performance of scheduling algorithms when preemption is allowed, and since Garey and Johnson derived an algorithm that solves optimally P 2|prec, pmtn|L max .

Existing approximation algorithm for P |prec, p j = 1, r i |L max all have a worst case ratio that tends to 2 when the number of processors grows to infinity. Hence it is a real challenge to design a polynomial algorithm that passes under this threshold. We proved that Garey-Johnson algorithm is not the one, however, its analysis could help the design of new algorithms.

Lemma 1

 1 ities |S(i, s, d)| > m(d -s) and (5) contradict (2), and that the equality |S(i, s, d)| = m(d -s) together with (5) and (2) implies D i = s. If integers D 1 , ..., D n are consistent and i → j, then D i ≤ D j -1. Proof Suppose that i → j and D i ≥ D j . Since D 1 , ..., D n are consistent, r i < D i , and analogously to [4], s = d = D i satisfy (2). For these s and d, j ∈ S(i, s, d) and hence |S(i, s, d)| > m(d -s), which contradicts the definition of consistency.

each task j in this row has r j = 0 and d j = 3 row 0 -→ each task j in this row has r j = 1 and d j = 4 ←-row 1 each task j in this row has r j = 2 and d j = 5 row 2 8 ←-row 5 each task j in this row has r j = 6 and d j = 9 row 6 -→ each task j in this row has r j = 7 and d j = 10 ←-row 7 each 6 ←-row 4 (x - 1 ) + 3 Figure 1 .

 34152859610764131 Figure 1. Graph G x,m for m = 7.

••and a 2 i

 2 ): If m ≥ 7 and i mod u m < u m -3, then a 1 i precedes a 1 i+1 , b 1 i+1 , . . . , b um i+1 and a 2 i precedes a 2 i+1 , b um+1 i+1 , . . . , b m i+1 . If i mod u m = u m -3, then a 1 i precedes a 1 i+1 , b 1 i+1 , . . . , b um i+1 precedes b um+1 i+1 , . . . , b m i+1 .

  Consider i, s, d such that i ≤ s ≤ i + 3 ≤ d. Assume that d ≥ s + 3 + u m . Then S(a 1 i , s, d) is a union of all nodes constituting rows d-3-u m +1, . . . , d-3 and the set S(a 1 i , s, d -u m ). Using (22), we have |S(a 1 i , s, d)| = |S(a 1 i , s, d -u m )| + m • u m . Hence |S(a 1 i , s, d)| ≤ m(d -s) if and only if

  Hence for any i, s and d such that i ≤ s ≤ i + 3 ≤ d, |S(a 1 i , s, d)| ≤ m(d -s) and if |S(a 1 i , s, d)| = m(d -s), then d a 1 i = s. Therefore, the due dates are consistent.For any G x,m , consider a list where tasks are arrange in a nondecreasing order of due dates and for each i, where i mod u m = u m -2, all b tasks of this row are listed before the a tasks of the same row. Let σ x,m be the corresponding list schedule and let σ * x,m be an optimal schedule for the maximum lateness problem specified by the graph G x,m . It is easy to see that maxj∈N d j = u m x + 2, L max (σ * x,m ) = -1, max j∈N r j = u m x -1 and L max (σ x,m ) = (2u m -1)x -u m x -2 = u m x -x -2.Taking into account that α(m) = 1 u m , lim x→+∞ L max (σ x,m ) -L max (σ * x,m ) max j∈N r j + 1 = lim x→+∞ u m x -x -2 + 1 u m x -1 + 1 = lim x→+∞ u m x -u m α(m)x u m x = 1 -α(m),and (14) is asymptotically tight. Analogously,lim x→+∞ [2 -α(m)]L max (σ * x,m ) + [1 -α(m)] max j∈N d j -[1 -α(m)] L max (σ x,m ) = lim x→+∞ [2 -α(m)](-1) + [1 -α(m)](u m x + 2) -[1 -α(m)] u m x -x -2 = lim x→+∞ [1 -α(m)](u m x + 2) u m x -x = lim x→+∞ u m x -x + 2[1 -α(m)] u m x -x = 1,and (18) is asymptotically tight. For m = 3 and m = 4 the proof of asymptotical tightness is similar to that for m ≥ 5 and is based on the following graphs H x,m . Each graph H x,m has x•u m rows of nodes, numbered from 0 to x•u m -1, where u m is specified by (21) and [number of nodes in row i] = i mod u m = 0 2 if i mod u m = 1 .

1 i+1 , b 1

 1 i+1 , . . . , b um i+1 and a 2 i precedes b um+1 i+1 , . . . , b m i+1 .

  D 1 , ..., D n are ∆-modified due dates, or reduce value of some D i . The Let σ be an arbitrary schedule and D j = C j (σ), for all j ∈ N , then D 1 , ..., D n are consistent.

	and since s and d are integers,		
		d -	|S(i, s, d)| m	+ 1 ≤ s.
	result that this procedure terminates in O(n 3 ) operations is based on three Because at least |S(i, s, d)| time units are required to complete |S(i, s, d)| m observations. First, that it suffices to consider only values of d coinciding tasks, there exists a task j ∈ S(i, s, d) such that
	with one of the current integers D i . Second, that for a given d it suffices
	to consider only values of s coinciding with one of release times or d itself.
	Third, that if the procedure is structured as three nested loops, where the
	outer loop selects d in decreasing order, the next loop selects i, and for fixed
	d and i the inner loop selects s in increasing order, each triple cannot appear
	in more than one iteration.			
	The following lemma shows that the existence of a schedule that meets
	due dates d 1 + ∆, ..., d n + ∆ implies the existence of ∆-modified due dates.
	Lemma 2 Proof				
	Since σ is a feasible schedule, r i ≤ C i (σ) -1 = D i -1 for all i ∈ N .
	Suppose that some triple (i, s, d) satisfies (2) and the equality |S(i, s, d)| =
	m(d -s). Then at least (d -s) + 1 time units are required to complete
	all tasks constituting the set S(i, s, d) ∪ {i}. Since C j (σ) = D j ≤ d for
	each j ∈ S(i, s, d) ∪ {i}, there exists a task j ∈ S(i, s, d) ∪ {i} such that
	C j (σ) ≤ s. From the definition of S(i, s, d), either i = j or i → j. Therefore
	D i = C i (σ) ≤ s, and by (2), D i = s.	
	Now suppose that some triple (i, s, d) satisfies (2) and the inequality
	|S(i, s, d)| > m(d -s). Then			
	d -	|S(i, s, d)| m	≤ d -	|S(i, s, d)| m	< s,