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Model Predictive Path Integral Control Framework for Partially
Observable Navigation: A Quadrotor Case Study

Ihab S. Mohamed' and Guillaume Allibert? and Philippe Martinet!

Abstract— Recently, Model Predictive Path Integral (MPPI)
control algorithm has been extensively applied to autonomous
navigation tasks, where the cost map is mostly assumed to be
known and the 2D navigation tasks are only performed. In this
paper, we propose a generic MPPI control framework that can
be used for 2D or 3D autonomous navigation tasks in either fully
or partially observable environments, which are the most preva-
lent in robotics applications. This framework exploits directly
the 3D-voxel grid acquired from an on-board sensing system for
performing collision-free navigation. We test the framework, in
realistic RotorS-based simulation, on goal-oriented quadrotor
navigation tasks in a cluttered environment, for both fully and
partially observable scenarios. Preliminary results demonstrate
that the proposed framework works perfectly, under partial
observability, in 2D and 3D cluttered environments.

MULTIMEDIA MATERIAL

The supplementary video attached to this work is available
at: https://bit.ly/2PAbESO

I. INTRODUCTION

Having a safe and reliable system for autonomous naviga-
tion of robotic systems such as Unmanned Aerial Vehicles
(UAV5s) is a highly challenging and partially-solved problem
for robotics communities, especially for cluttered and GPS-
denied environments such as dense forests, crowded offices,
corridors, and warehouses. Such a problem is very important
for solving many complex applications, such as surveillance,
search-and-rescue, and environmental mapping. To do so,
UAVs should be able to navigate with complete autonomy
while avoiding all kinds of obstacles in real-time. To this
end, they must be able to (i) perceive their environment,
(i1) understand the situation they are in, and (iii) react
appropriately.

Obviously enough, this problem has been already ad-
dressed in the literature, particularly those works related to
dynamics and control, motion planning, and trajectory gen-
eration in unstructured environments with obstacles [1], [2],
[31, [4], [S]. Moreover, the applications of the path-integral
control theory have recently become more prevalent. One
of the most noteworthy works is Williams’s iterative path
integral method, namely MPPI control framework [6]. In this
method, the control sequence is iteratively updated to obtain
the optimal solution on the basis of importance sampling
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of trajectories. In [7], authors derived a different iterative
method in which the control- and noise-affine dynamics
constraints, on the original MPPI framework, are eliminated.
This framework is mainly based on the information-theoretic
interpretation of optimal control using KL-divergence and
free energy, while it was previously based on the linearization
of Hamilton-Jacob Bellman (HJB) equation and application
of Feynman-Kac lemma. Although different methods are
adopted to derive the MPPI framework, they are practi-
cally equivalent and theoretically related'. An extension to
Williams’s information-theoretic-based approach is presented
in [8], where a learned model is used to generate informed
sampling distributions.

The attractive features of MPPI controller, over alterna-
tive methods, can be summarized as: (i) a derivative-free
optimization method, i.e. no need for derivative information
to find the optimal solution; (ii) no need for approximating
the system dynamics and cost functions with linear and
quadratic forms, i.e., non-linear and non-convex functions
can be naturally employed, even that dynamics and cost
models can be easily represented using neural networks; (iii)
planning and execution steps are combined into a single
step, providing an elegant control framework for autonomous
vehicles. However, one drawback of MPPI is that its conver-
gence rate is empirically slow, which has been addressed in
[9].

In the context of autonomous navigation, it is observed
that the MPPI controller has been mainly applied to the tasks
of aggressive driving and UAVs navigation in 2D cluttered
environments. To do so, MPPI requires a cost map, as an
environment representation, to drive the autonomous vehicle.
Concerning autonomous driving, the cost map is obtained
either off-line [7] or from an on-board monocular camera
using deep learning approaches [10], [11]. Regarding UAV
navigation in cluttered environments, the obstacle (i.e., cost)
map is assumed to be available, and only static 2D floor-
maps are used. Conversely, in practice, the real environ-
ments are often partially observable, with dynamic obstacles.
Moreover, it is noteworthy that only 2D navigation tasks are
performed so far, which limits the applicability of the control
framework. For this reason, this paper focuses on MPPI
for 2D and 3D navigation tasks in a previously unseen and
dynamic environment. In particular, the main contributions
of our work can be summarized as follows:

'In the sense that the method in [7] can exactly recover that in [6] if
dynamics is considered to be affine in control. In other words, the iterative
method in [7] can be seen as the generalization of the latter method.



1) We propose a generic MPPI framework for au-
tonomous navigation in cluttered 2D and 3D envi-
ronments, which are inherently uncertain and partially
observable. To the best of our knowledge, this point
has not been reported in the literature, which opens up
new directions for research.

2) We demonstrate this framework on a set of simulated
quadrotor navigation tasks using RotorS simulator and
Gazebo [12], assuming that: (i) there is a priori knowl-
edge about the environment (namely, fully observable
case); (ii) there is no a priori information (namely,
partially observable case). In this case, the robot is
building and updating the map, which represents the
environment, online as it goes along. This allows the
opportunity to navigate in dynamic environments.

3) To ensure a realistic simulation, our proposed frame-
work is evaluated taking into account the modelling
errors, noisy sensors, and windy environments.

This paper is organized as follows. Section II describes
the quadrotor dynamics model which represents our case
study for the framework validation, whereas in Section III the
real-time MPPI control strategy is explained. Our proposed
framework is then described in Section IV and evaluated
in Section V. Finally, concluding remarks are provided in
Section VI.

II. QUADROTOR DYNAMICS MODEL

Considering a quadrotor vehicle model illustrated in Fig. 1,
the dynamics model can be defined by assigning a fixed
inertial frame )V and body frame B attached to the vehicle.
The origin of the body frame, B, is located at the center of
mass of the quadrotor, where x5 and yp lie in the quadrotor
plane defined by the centers of the four rotors, and zp is
perpendicular to this plane and points upward. The inertial
reference frame, W, is defined by xw, yw, and zy, with 2y
pointing upward. We assume that the first rotor (i.e., along
the +xzp axis) and the third rotor rotate counter clockwise
(namely, +1), whilst the second (i.e., along the +yp axis)
and fourth rotors rotate clockwise (namely, —1). Here, the
vehicle is only subject to: (i) a gravitational acceleration g
in —zy direction; (ii) the sum of the forces generated by
each rotor, F' = 2?21 F;, acts along the +zp direction.
Furthermore, the Euler angles, with ZXY transformation
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Fig. 1. Schematic of the considered quadrotor model in conjunction with
the coordinate systems and forces acting on a vehicle frame.
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sequence, are used to model the rotation of the quadrotor
in frame W, where the roll ¢, pitch 6, and yaw 1 angles
refer to a rotation about xp, yp, and zp axis, respectively.
The rotation matrix from B to W is accordingly expressed
as

CypSe + CoSpSy
SypSe — CypChS¢ y
CypCh

CypCo — SpSySe  —CopSy
CoSy + CySySe CyCyp

—CpSe S¢
where s, = sin(z) and ¢, = cos(z) V z € {¢,0,¢}. The
transformation matrix from Euler angular velocities, <i>, to
body frame angular velocity, {2, is given by

WRB —

Co 0 —CpSe
T=1]0 1 s
so 0 cpeo

Given all considerations above and according to the well-
described models in [1] and [13], the dynamics of the
position &, linear velocity v, orientation locally defined by
Euler angles @, and body angular rates {2 can be written as

£=v,
d=T710, JQ=T-QxJQ,

mu = —mges +W RpFes,

(D

where m is the mass of the quadrotor and J its inertia
matrix expressed in the body frame B, ¢ = [z,v,2]T,
v = [’Uzavyavz]T’ o = [¢a0a¢]T’ Q= [p,q,T]T, €3 =
[0,0,1]7 € R3, F € R* is the accumulated force (i.e.,
thrust) generated by all rotors and constitutes the first control
input to the system, I' = [, 7, 2|7 = [L(Fy—Fy), L(F3—
Fy),(My — My + M3 — My)]" € R3 is the total torque
applied to the vehicle with its components expressed in 5
which represents the second control input, and L € R™ is the
distance from the center of the vehicle to the axis of rotation
of each rotor. In this paper, the state of the system is defined
as x = [2,9, 2,0, 0,0, vz, vy, v, p,q,7]T € R*2. Each rotor
produces a vertical force, F;, and moment, M;, according
to F; = kpw? and M; = kpw?, where w; is the angular
velocity of the it" rotor, kp is the rotor force constant, and
ks is the rotor moment constant. Accordingly, the mapping
between the control inputs, namely F' and I', and the system’s
input, i.e., w;, in order to control the quadrotor, can be
expressed as

F kJF k’F kF k‘F w%
Tx o 0 k‘FL 0 —k‘FL w%
Ty - —k'FL 0 kFL 0 w§
T2 kv —km kv —kum w?

(2)
III. MPPI CONTROL STRATEGY

The MPPI controller is a stochastic Model Predictive
Control (MPC) method, which can be applied to non-
linear dynamics and non-convex cost objectives. So, it is a
sampling-based and derivative-free approach. The key idea of
MPPI is to sample thousands of trajectories, based on Monte-
Carlo simulation, in real-time from the system dynamics.
Each trajectory is then evaluated according to a predefined
cost function. Consequently, the optimal control sequence is



updated over all trajectories. This can be easily done, in real-
time, by taking advantage of the parallel nature of sampling
and using a Graphics Processing Unit (GPU).

Let assume that the discrete-time stochastic dynamical
system has a form of

f (Xt7 u; + 6Ut) ’ (3)

where x; € R” is the state vector of the system at time ¢,
u; € R™ denotes a control input for the system, and du; is a
zero-mean Gaussian noise vector with a variance of ¥, i.e.,
duy ~ N (0, X,,), which represents the control input updates.
Given a finite time-horizon t € {0,1,2,---,T — 1}, the
objective of the stochastic optimal control problem is to find
a control sequence, u = (ug, uy,...up_;1) € R™*T which
minimizes the expectations over all generated trajectories
taken with respect to (3), i.e., J = miny E[S (7)], where
S(7) € R is the state-dependent cost-to-go of a trajectory
T = {x0,u0,X1," - ,ur_1,X7}. Accordingly, the optimal
problem can be formulated as

¢ (xr +Z< q(x¢) + utRut>

where ¢ (x7), ¢ (x¢), and R € R™*™ are a final terminal
cost, a state-dependent running cost, and a positive definite
control weight matrix, respectively. To solve this optimiza-
tion problem, we consider the iterative update law derived in
[6], in which MPPI algorithm updates the control sequence,
from ¢ onward, as

Xt41 =

J =minE , @

Sy exp (—(1/0)8 (7)) G
S e (~(1/NS ()

where K is the number of random samples (namely, roll-
outs), A € RT is a hyper-parameter so- called the inverse
temperature, and S (71.1) = & (x7) + Zt 0 ' (e, ug, Suy)
is the modified cost-to-go of the k' rollout from time ¢
onward.

In this work, the modified running cost §(x,u,du) is
defined as

&)

u; < uy +

-1
sul Réu +u” Réu, (6)

- 1 1-
G=q(x)+ guTRu +

where v € RT refers to the exploration noise which
determines how aggressively the state-space is explored. It
is noteworthy that the low values of v result in the rejection
of many sampled trajectories because their cost is too high,
while too large values result in that the controller produces
control inputs with significant chatter.

The real-time control cycle of MPPI algorithm is described
in Algorithm 1 with more detail. At each time-step At, the
system current state is estimated, and a K X T random
control variations are generated on a GPU using CUDA’s
random number generation library (lines 2 : 3). Then, based
on the parallel nature of sampling, all trajectory samples
are executed individually in parallel. For each trajectory,
the dynamics are predicted forward and its expected cost is
computed (lines 5 : 12), bearing in mind that the cost of each

Algorithm 1 Real-Time MPPI Control Scheme [6]
Given:
K, T: Number of rollouts (samples) & timesteps
(ug,uy,...,ur—1) = u: Initial control sequence
f, At: Dynamics & time-step size
0, q, \, v, Xy, R: Cost functions/hyper-parameters
SGF: Savitzky-Galoy (SG) convolutional filter

1: while task not completed do

2 Xo < StateEstimator(), xo € R"

3 du < RandomNoiseGenerator(), u € RE*T

4: S (13) + TrajectoryCostlnitializer(), S (13,) € R¥
5: for k< 0to K —1do

6 X < Xo

7 fort<0to7T —1do

8 Xit1 <—xt+[(xt,ut+5ut,k) At

9: S(Ter1k) < S (Tek) + 4

10: end for

11: S(Tk)(*S(Tt_klyk)‘i»(ﬁ(XT),Vt:T*l
12: e~nd for R
13: Shin  ming[S (74)]

14: fort+ 0to1T —1do ) )
POy CXP(Tl[S(Tt,,k)*smin])tsm,,k

15: u; < uy + ZkK:Ol GXP(Tl[g(Tt‘k)*gmin])
16: end for

17: u < SGF(u)

18: ugy < SendToActuators(u)

19: fort< 1to7T —1do

20: U1 < Uy

21: end for

22: ur_; < ControlSequencelnitializer(up_1)
23: Check for task completion

24: end while

trajectory is zero-initialized (line 4). The control sequence
is then updated (lines 14 : 16), taking into account the
minimum sampled cost S'min (line 13). Due to the stochastic
nature of the sampling procedure which leads to significant
chattering in the resulting control, the control sequence is
then smoothed using a Savitzky-Galoy (SG) filter (line 17).
Finally, the first control is executed (line 18), while the
remaining sequence of length 7" — 1 is slid down to be used
at next time-step At (lines 19 : 22).

IV. GENERIC MPPI FRAMEWORK

In this section, we present a generic and elegant MPPI
framework, as illustrated in Fig. 2, in order to not only
navigate autonomously in previously unseen 2D or 3D
environments while avoiding collisions with obstacles but
also to explore and map them. Moreover, we describe how
the environment is represented to be used by MPPI for
partially and fully observable navigation tasks. In Fig. 2, we
present the block diagram of our proposed control framework
integrated into the Robot Operating System (ROS). The
individual components of our framework are described in
detail in the following sections.
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Fig. 2. The global architecture of our proposed framework.

A. Environment Representation

To clarify how MPPI can be used for 2D or 3D navigation
in unseen environments, we assume that the environment is
discretized into a 2D or 3D grid M, (see Fig. 2), where
each cell is labeled as free, occupied, or unknown, i.e.,
My = Miree U Moee U Mypk. In practice, this labeling
can be acquired from depth sensors using OctoMap [14]. As
the 3D grid is a grid of cubic volumes of equal size called
voxels, we can represent the environment by a set of layers
£y along zy, direction, where £y = (%), /£, refers to the real
environment’s height, and r is the voxel size. Accordingly,
each layer represents a 2D occupancy grid, producing in-
total £y 2D grids for a given environment, as illustrated in
Fig. 3. Since this work is mainly concerned with the control
framework, the perception problem is not presently covered.
Thus, the perception is here imitated by the so-called 2D
or 3D mask Fy,,, which represents the sensor’s field of
view (FoV) as the robot cannot normally perceive the entire
environment. For the sake of simplicity, we assume that the

3D Fjou, Dim: (3 x 3 x 3),
where robot is placed in /3,
and /5 : ¢4 are updated.
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Fig. 3. 3D environment representation of a generic MPPIL.

3D Ffo, has dimensions f; x f, x f. and an orientation fj,
where f, and f, represent the number of cells in the 2D grid
along zw and yyw axes. While f, represents the number of
layers along zy, assuming that the robot’s vertical FoV fy
is between [(int( _éfz Y+ (mt(%) +/,,)] where the robot

is located in layer /,, (see Fig. 3). Note that the 3D F,, is
equivalent to fn 2D Froy.

B. Fully/Partially Observable 2D/3D Navigation Tasks

Let assume that M, represents the global map represen-
tation of a given environment. This map is initialized using a
priori knowledge about the environment. Let M,,,,; be the
local map of MPPI, which has the same size as M and each
cell is initialized with —1 referring to unknown cells. This
local map is continuously updated using an onboard sensing
system, as depicted in Fig. 2.

1) Fully Observable Case: In a fully observable case,
MPPI is directly provided with a global map M, to compute
the trajectories’ cost for avoiding obstacles, taking into
account the current robot position obtained from a state
estimator. For a 2D navigation task, a 2D floor grid is
sufficient; only the first layer, /1, of 3D voxel-grid will be
accessed by MPPI. While, for the 3D case, the 3D voxel-grid
is required for performing collision-free navigation. Clearly,
given the robot’s position, particularly its z-component, the
corresponding layer, ¢,, to z-component is used for evalu-
ating the cost-to-go of each sampled trajectory (see Fig. 3).
At the moment, the main limitation of the fully observable
case is that our framework is only able to handle static
environments; this is an important motivation for defining
a partially observable navigation task that is prevalent in
robotics applications.

2) Partially Observable Case: In this case, the robot is
located in a previously unseen and dynamic environment and
must navigate to: (i) a predefined goal, (ii) or explore and
map that area. As the environment is unknown and M, is
not directly accessible by MPPI, the robot must perceive
its environment (in our case, through the predefined mask
Ftov) and react appropriately. Here, the MPPI map M ,,p,p,4,
which is initialized with —1, is fed directly into the control
framework as a local map for avoiding obstacles. This map is
continuously updated as the robot moves around. For the sake
of clarity, let us consider the map in Fig. 3 as M, where
the robot is located in (0,0,¢3) and Fy,, has dimensions
of 3 x 3 x 3. As a consequence, based on the intersection
between M, and Fo,, the layers from o to £y in Moy,pp,
are updated, while other layers have remained constant.

Algorithm 2 Real-Time Generic MPPI Framework
Given:
Mg, Mpppi: Global and local map of MPPI
Frov: Sensor’s FoV and its parameters

1: while task not completed do

2 Xg < StateEstimator(), xg € R”

3: Mppi < MapUpdate(M g N Fyo)
4: ug < MPPIController(M ,,;pi)

5 Check for task completion

6: end while

Generally speaking, the real-time implementation of our
proposed generic MPPI framework for 2D or 3D navigation
in cluttered environments is better described in Algorithm 2,



which employs the MPPI control scheme described above.
At each time-step At, the current state is estimated (line 2).
The local map of MPPI M,,,,,,,; is then updated accordingly,
given the global map M, (line 3). As discussed previously,
My, in conjunction with Fy, is used for updating the
local map M, as the perception modules have not been
considered in the current work. Thus, in practice, the robot
must be equipped with an on-board sensing system, e.g.
depth camera or laser scanner, with a maximum FoV Fy,,.
This currently sensed data is used to obtain a 2D or 3D
occupancy map, which is continuously updated, i.e., M,pp;.
For instance, a quadrotor-based exploration algorithm is
proposed in [15] to build a real-time 3D map. Finally, this
map enables the controller to find the optimal control ugy to
be executed, resulting in collision-free navigation (line 4).

V. SIMULATION DETAILS AND RESULTS

In this section, we describe how we evaluate our approach
in terms of simulation scenarios and performance metrics.
Moreover, we conduct realistic simulations to evaluate and
demonstrate the performance of the proposed framework.

A. Simulation Setup, Scenarios, and Metrics

1) Simulation Setup: In order to evaluate the perfor-
mance of our proposed MPPI framework in a previously
unseen and cluttered environment, simulation studies have
been performed using RotorS simulator and Gazebo [12].
The parameters of the real simulated quadrotor (namely,
Humminbird quadrotor) are tabulated in Table I. To ensure
a realistic RotorS-based simulation, all navigation tasks are
carried out by (i) using noisy sensors such as GPS and IMU,
(ii) adding external disturbances such as continuous wind
with changing speed and direction, as proposed in [16], and
(iii) considering +10% of modelling errors in the real values
of mass m and inertia J of the prediction model given in (1).
The MPPI controller has a time horizon ¢, of 3s, a control
frequency of 50 Hz, and generates 2700 samples each time-
step At. The rest of its hyper-parameters are also listed in
Table I, where the 2.5 value in ¥, represents the noise in
the thrust input F' and R = A\X L For the SG filter, we
set the length of filter window and order of the polynomial
function to 51 and 3, respectively. The real-time execution
of MPPI is performed on a GeForce GTX 1080 Ti, where all
algorithms are written in Python and have been implemented
using ROS.

TABLE I
PARAMETERS OF QUADROTOR AND MPPI

[ Parameter [ Value [[ Parameter | Value |
m [kg] 0.716 tp [5] 3
L [m] 0.17 T 150
g [ms—2] 9.81 K 2700
kr [Nrpm~—2] | 855 x 1076 || X 0.02
kEar INrpm~—2] | 1.6 x 10~2 v 1000
J [kg m?] Diag (7 x 1073,7 x 1073,12 x 1073)
Zu Diag (2.5,5 x 1073,5 x 1073,5 x 1073)
R Diag (8 x 1073,4,4,4)

In our RotorS-based simulations, the full-state information,
x = [z,Y,2,0,0,0, vz, vy, v,,p,q,7]", is directly provided,
using an odometry estimator based on an Extended Kalman
Filter (EKF), as an input to the controller. While, since the
actual control signal of the quadrotor is the angular velocity
of each rotor wj;, the controller outputs F' and I" are directly
converted into w; using (2), to be sent to the quadrotor as
Actuators message. In summary, the closed-loop of MPPI
in ROS, at each At, can be summarized as: (i) MPPI first
receives the odometry message and the updated map M, pp;
obtained from the on-board sensor; (ii) the control action
is then computed and published. As mentioned before, the
whole process of our proposed framework is summarized in
Fig. 2.

Since we are interested in goal-oriented quadrotor naviga-
tion tasks in cluttered environments, the state-dependent cost
function is defined as

q(x) = (x — x%)TQ(x — x%) + 10%C} + 10°Cy,

where:
Ci ={x: (2 <0)or Mpppilz,y,2] =1)},
Cy = {x: (||v]] > vmax)0r (((|cos¢|) or (Jcosf|)) < 0.1)
or(z > 8.5)},
Xdes _ (xdes, ydes’ Zdes7 0, 0, ,l/]des, ZGI"OS(]., 6)),

Q_{Diag(2.5,2.5,5, 1,1,50, zeros(1,6)), Yoma < 1.5%,

" |Diag(5, 5,15, 30, 30, 50, zeros(1, 6)), Otherwise.
The first term C; indicates the collision with ground or
obstacles, while Cy prevents the quadrotor from (i) going
too fast, (ii) using too aggressive roll and pitch angles, or
(iii) colliding with the ceiling, where C; and C5 are boolean
variables. x% refers to the desired position to be reached
and its orientation, while () is a weighing matrix.

2) Simulation Scenarios: Two different scenarios are con-
sidered for evaluating the proposed framework: 2D scenario
and 3D scenario. The 2D scenario refers to a 40 x40 x 8.5 m
windy forest of cylindrical obstacles placed in a 2D grid
pattern, where each cylinder has a radius of 0.16m with
equal spacing of 4m apart. The 3D scenario refers to the
same environment described in the 2D scenario, while we
have added two horizontal layers of cylinders at z = 3m
and 6 m with the same spacing each, as shown in Fig. 4.
The voxel size r is set to 0.2 m, to ensure high accuracy and
to meet the reality when a 3D occupancy grid is involved.
As a result, the 3D voxel grid M, has 43 layers, each layer
represents a 40 x 40 2D grid.> The 3D scenario is used
for performing fully and partially observable 3D navigation
tasks, while the former is used for the 2D tasks. For both
scenarios, two different cases are considered: (i) Fully Ob-
servable Case (FOC), in which an a priori knowledge about
the environment is used to initialize the global map M,; in
FOC, Myppi is exactly Mg; and (ii) Partially Observable
Case (POC), where it is assumed that there is no a priori
information about the environment; for this reason, the local

2The cell size of 2D grid is 1m (i.e., 1:1 scale), since all obstacles, in
our case, are placed in a 2D grid pattern with integer numbers.



map M,y is discovered and built online as the robot moves
around.

Fig. 4. The 3D cluttered environment used for 3D tasks.

3) Performance Metrics: We define two metrics for eval-
uation. First, the performance of MPPI in POC is compared
to its performance in FOC, considering the latter case as a
baseline. To achieve a fair comparison, in all simulations, the
robot navigates to the same specified goals with a maximum
velocity vmax of 1.5ms~!. The predefined goals (in [m])
in order are: G; = (23,38,1.5),Gy = (40,23,4),G3 =
(22,0,8),G4 = (0,22,5), then the UAV will land. While, at
each At, the desired yaw angle 1% is updated, letting the
front camera points towards the next goal. For both cases
(FOC/POC), we use a number of indicators, as a second
metric, to describe the general performance such as the
number of collisions N, task completion percentage tcomp,
average completion time t,,, average flying distance d,,
average flying speed v,,, and average energy consumption
FE,, (for more details, we refer to [16]). In all simulations, the
task is considered to be terminated if the quadrotor reached
the given goals (ie., tecomp = 100%) or crashed into an
obstacle (i.e., N = 1).

B. Simulation Results

The performance of our proposed framework is validated
for both fully and partially observable 2D/3D quadrotor
navigation tasks, considering the predefined goals. In all
partially observable tasks, we set Fyo, t0 5 X 5 x 3 m, while
fo represents the angle between the current and next goal.
To test whether the quadrotor is able to navigate successfully
through the cluttered environment, we performed 5 trials for
both FOC and POC. The reader is invited to watch the whole
simulation results at https://bit.ly/2PAbESO.

1) 2D Navigation Results: Figure 5 shows an example of
a final trajectory generated by MPPI in the case of (i) using
a 2D global map M, for FOC, or (ii) using only a 2D local
map M,,ppi for POC. The 2D-floor M, (with grey circles)
and its updated M,,,,,; (With blue circles, representing the
obstacles within the robot’s F,,), for given goals, are shown
in Fig. 6, including the generated trajectories in both cases
and the robot’s FoV Fj4,. In both 2D FOC and POC, it
can be seen that MPPI is able to safely navigate through the
windy obstacle field, in spite of the presence of modelling
errors and measurements noise.
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Fig. 5. Comparison of 3D trajectories in a 2D scenario.
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Fig. 6. The 40m obstacle field map, i.e., 2D My, and its updated 2D
Mimpp; map using a 5 X 5 2D Fy,,. Two lines represent the trajectories
generated by MPPI in both cases, i.e., FOC and POC.

2) 3D Navigation Results: Another example of success-
fully generated trajectories for fully and partially observable
3D navigation tasks in a 3D scenario environment is depicted
in Fig. 7. In this scenario, since M,,,,; consists of 43 2D
grids, it is very difficult to visualize clearly in this paper the
updates over all layers and insure that the robot performs
collision-free navigation. So, first, we show only the 11"
layer /11, which has been mainly updated while the robot
was moving towards GG; and while it was landing after task
completion, as an example of how the 3D M,,,,,; is updated
(see Fig. 8). Second, it is highly recommended to use the
indicators described previously, especially for 3D cases.
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Fig. 8. The update of the 11" layer £1; in the 3D M nppi» showing the
generated trajectory in POC.

3) Overall Performance: Table II shows the performance
statistics for the five trials in 2D and 3D scenarios, consid-
ering the parameters of the controller tabulated in Table I.
In all trials (i.e., 20 trials in total), we can observe that
the quadrotor navigates autonomously (i.e., N, = 0) while
avoiding obstacles with an average flying speed v,, of about
1.2ms ™!, which is closer to the maximum specified velocity,
ie., Umax = 1.5ms™ 1, regardless of the limited FoV of the
sensor in both 2D and 3D scenarios. Note that these 20 trials
are equivalent to more than 3 km of autonomous navigation.
Moreover, it can be seen that the average execution time of
MPPI per iteration, ¢yppi, in the 3D scenario is approximately
equal to that in the 2D scenario (with very low standard

TABLE I
GENERAL PERFORMANCE OF MPPI IN 2D AND 3D SCENARIOS FOR
BOTH FOC AND POC

2D Scenario 3D Scenario

. FOC | POC FOC | POC
Neot (beomp[])]0 (100%) [0 (100%) |0 (100%) |0 (100%)

tay [5] 1221 £ 121245 £ 3.0(128.2 £ 3.01129.5 & 1.4
e [m] 150.3 £ 081511 L 1.9/[152.9 £ 1.8/153.1 L 0.87
vw [ms 1] 1123 £ 0.02/1.22 £ 0.03/[1.19 £ 0.02/1.18 & 0.01
B [WH]  [16.63 £ 0.076.76 £ 0.16]/6.96 £ 0.16]7.01 £ 0.07
fmpp: [ms] |[18.4 £ 0.51]18.8 £ 0.42|[18.2 £ 0.21[18.8 £ 0.67

deviation values), showing the superiority of the proposed
framework even with 3D-voxel grids and its applicability to
be used for 3D navigation tasks. In fact, this is not surprising
as the 2D- or 3D-voxel grids are stored and directly used by
MPPI on the GPU. For other indicators, we can observe that
the performance of MPPI in POC cases is slightly different
than its performance in FOC cases, although we have set
the same parameters for all simulations. The reason behind
this difference is that the control variations du are generated
randomly, each time-step At, on the GPU. The number of

TABLE III
EFFECT OF CHANGING 71" AND v ON THE BEHAVIOR OF THE PROPOSED
CONTROLLER

Indicators 2D Scenario 3D Scenario
FOC ‘ POC FOC ‘ POC

Tuning Case 1: 1" = 75 (i.e., t, = 1.5s) and v = 1000
Neol (teomp[%D]] 1 (57.4+30)] 1 (57.4+30)[] 1 (40.3£6)[ 1 (36.3+9)
Tuning Case 2: T' = 100 (i.e., t, = 2s) and v = 1000

Neol (tcompl%]) 0 (100%) 0 (100%) 0 (100%) | 0 (100%)
dyy [m] 51.7+0.79 51.7+1.1 51.1+0.16 | 52.14+0.68
Tuning Case 3: T' = 125 (i.e., t, = 2.5s) and v = 1000
Neol (tcompl %)) 0 (100%) 0 (100%) 0 (100%)| 0 (100%)
day [m] 50.4+0.86 | 50.7+0.25 50.24+0.49| 50.54+0.36

Tuning Case 4: 1" = 150 (i.e., t, = 3s) and v = 300

Neol (teompl%]) 0 (100%) 0 (100%) 0 (100%)| 0 (100%)
day [m] 52.440.78 | 52.540.36 52.840.74| 53.0+0.45
Tuning Case 5: 1" = 150 and v = 500
Neol (tcompl%]) 0 (100%) 0 (100%) 0 (100%)| 0 (100%)
dyy [m] 51.940.59 | 51.540.85 52.1+£0.25| 52.640.36
Tuning Case 6: ' = 150 and v = 800
Neol (teompl%]) 0 (100%) 0 (100%) 0 (100%)| 0 (100%)
day [m] 50.9+0.25 | 51.0+0.46 51.5+0.93| 51.9+0.33

timesteps 7' (which is related to the time horizon ¢, and
control frequency) and the exploration variance v (which is
related to the number of sampled trajectories K) play an im-
portant role in determining the behavior of MPPI. Therefore,
we tested six different tuning cases, where different values of
T and v have been considered, as shown in Table III. In the
first three tuning cases, we study the influence of changing T’
where v remains constant (i.e., ¥ = 1000 as defined before
in Table I). While the effect of changing v is studied in the



last three cases, where v was varied between 300 and 800.
For the sake of simplicity, each tuning case was tested by
letting the quadrotor navigates only to G; = (23,38,1.5)
then lands. In each tuning case, we conducted 3 trials. As a
consequence, the total trials for both FOC and POC cases
are 72. For Tuning Case I, where a short time horizon ¢,
is chosen, it can be clearly noticed that the MPPI controller
is unable to complete the trials at a satisfactory rate, where
the success rate fcomp varies from 36.3% to a maximum of
57.4% in both 2D FOC and POC (1/3 successful trials).
For other tuning cases (namely, from case 2 to 6), we can
observe that the controller performs perfectly and is able to
successfully complete all trials while avoiding obstacles. We
can also notice that as 7" and v increase, the performance
of the controller improves. Clearly, for Tuning Case 3 and 6
where high values of T" and v are chosen, we can see that the
average flying distance d,, (for both 2D and 3D scenarios)
is the shortest (compared to other successful cases) with low
standard deviation values, which means that the quadrotor
is taking a more direct route leading to the goal. However,
having too long time horizons increase the computational
effort dramatically because each trajectory takes more time
to simulate. While, if the exploration variance v is too
large, the controller produces control inputs with significant
chatter. We also notice during our simulations that higher
values of control weight matrix R leads to empirically slow
convergence of MPPI towards the goal and fluctuated motion.
For this reason, in all experiments, we set 7', v, and R
to the values given in Table I, where MPPI performs very
consistently for all given goals.

VI. CONCLUSIONS AND FUTURE WORK

Within this work, we proposed an extension to the clas-
sical MPPI framework that enables the robot to navigate
autonomously in 2D or 3D environments while avoiding
collisions with obstacles. The key point of our proposed
framework is to provide MPPI with a 2D or 3D grid rep-
resenting the real world to perform collision-free navigation.
This framework has been successfully tested on realistic
simulations using quadrotor, considering both fully and par-
tially observable cases. The current simulations illustrate the
efficiency and robustness of the proposed controller for 2D
and 3D navigation tasks. Although the theoretical stability of
MPPI has not been addressed and proofed in the literature,
its practical stability can be achieved by setting the MPPI
parameters carefully as we described previously. We will
explore the possible methods that may allow in the future
to study the theoretical stability of MPPIL. Our future work
will also include the implementation of the framework in
practical applications.
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