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SUMMARY

Using a fully non-linear Bayesian approach and a granular flow model we invert for land-

slide parameters (volume, release geometry, and rheology) from different kinds of obser-

vations. Synthetic tests show that the runout distance and the deposit area by themselves

do not constrain landslide parameters. In contrast, the thickness distribution of landslide

deposits provides better constraints on landslide parameters. The same is true for the force

history applied by the landslide to the ground and which contains information on the

landslide dynamics. Therefore, inverting force histories calculated from seismic broad-

band records is an important alternative to inverting thickness distributions of landslide

deposits, which are usually difficult to obtain. We test the method on the 1997 Boxing

Day debris avalanche on Montserrat Island, which involved 40− 50 Mm3. The Bayesian

inversion and granular flow model provide good estimates for volume, release geome-

try and effective friction coefficient. This study thus underlines the value of broadband
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seismic records as observations to monitor landslides and validate their numerical flow

models.

1 INTRODUCTION

Landslides and avalanches are key erosion processes and represent major natural hazards. Despite

important research efforts, the mechanisms that govern flow dynamics and deposition in a natural

environment are still unclear. Key questions remain unanswered, such as the origin of the high mobility

of some natural flows (e.g., Legros, 2002; Iverson et al., 2011; Lucas et al., 2014).

Numerical granular flow models are an important tool to investigate landslides and avalanches

(Delannay et al., 2017). However, poor availability of field measurements of flow dynamics makes it

difficult to validate these models. Therefore, a common “inverse approach” is to fit model output to

observed landslide characteristics like volume and shape of the released mass, deposit area and runout

distance to constrain effective friction, a key underlying rheological parameter (Lucas et al., 2011;

Kelfoun, 2005; Pirulli et al., 2015).

A problem with the inverse approach is that the thickness distributions of landslide deposits are

rarely available as they require Digital Elevation Models (DEM’s) immediately before and after the

event. Unfortunately, landslide deposits are generally modified by secondary flows or post-event ero-

sion and for landslides terminating in water bodies, deposition DEM’s may be nearly impossible to

come by. Furthermore, during the stopping phase of granular flows, local surface rearrangements mod-

ify the final shape of the deposit, as shown in laboratory experiments (e.g., Farin et al., 2014). This

rearrangement is difficult to take into account in landslide models. As a result, observed deposits may

incorrectly constrain landslide dynamics and rheology. Another key issue is that landslide models

may well reproduce the deposit even though the simulated dynamics are not correct (e.g., Mangeney-

Castelnau et al., 2005; Ionescu et al., 2015). Therefore, more easily obtainable observations, such as

deposit area and runout distance may not be appropriate either.

A range of studies suggests that long-period seismic signals reflecting the history of the force

exerted by the landslide mass movement onto the ground may be a better constraint of landslide dy-

namics (e.g., Kanamori et al., 1984; Kawakatsu, 1989; Brodsky et al., 2003; Favreau et al., 2010; Lin

et al., 2010; Moretti et al., 2012; Allstadt et al., 2013; Ekström and Stark, 2013; Yamada et al., 2018)).

In contrast to static observations of before/after landscapes, comparing this seismically observed force

history with the force simulated by landslide models provides a diagnostic of landslide dynamics. In

this way, seismic records can constrain the landslide volume, the number of sub-events, the effect of

unusual ground properties, such as glacier ice and erosion processes (Favreau et al., 2010; Moretti et
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al., 2012, 2015). Given this perspective, two questions have to be answered: First, how does the inver-

sion of seismically-derived force history compare with the inversion of deposit data (runout distance,

area of the deposit, spatial distribution of the thickness of the deposit)? Second, what level of con-

straint can be achieved on landslide parameters (volume, shape of the landslide mass before release,

effective friction coefficient, etc.) from inversion of seismic data?

To address these questions we use a Bayesian inversion of synthetic and real data to constrain

landslide parameters (volume, 3D shape of the released mass, effective friction coefficient). We show

that runout distance or the deposit area alone cannot constrain these parameters, whereas the force

history obtained from seismic data strongly constrains the landslides parameters, nearly as well as

the spatial distribution of deposit thickness. Our study thus demonstrates that seismic measurements,

which are easy to obtain compared to accurate deposition DEMS’s, offer a valuable monitoring tool

and important insights into landslide dynamics.

2 BAYESIAN INVERSION

We formulate our inversion for landslide parameters in a Bayesian framework (e.g., Sivia and Skilling,

2006) where the solution is the expression for the posterior probability density function (PDF) p(m|d)

of our landslide model parameters m conditioned on observed data d:

p(m|d) = p(d|m)× p(m)

p(d)
(1)

p(d) is the prior PDF reflecting any knowledge about landslide parameters independent of our

observations d and p(d|m) is the likelihood function, i.e. the probability of making observations d

conditioned by a model m. The PDF of observations p(d) (sometimes referred to as “evidence”) does

not depend on model parameters m and can be determined via normalization of the posterior PDF.

To sample the posterior PDF in Equation (1), we employ the Markov-Chain-Monte-Carlo (MCMC)

algorithm (Sambridge and Mosegaard, 2002; Gallagher et al., 2009). We approximate the likelihood

function by a multivariate Gaussian PDF:

p(d|m) =
1

(2π)1/2|V|N/2
e−

1
2
((d−g(m))tV−1(d−g(m))) (2)

where V is the covariance matrix of data errors, g(m) is the forward model prediction for the

parameter set m andN is the number of data points. At each iteration the MCMC algorithm randomly

chooses a new model parameter set m′ as a perturbation of the current parameter set m and calculates

an acceptance probability α = min(1, p(d|m′)/p(d|m)). The proposed model m′ is accepted with
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probability α. If α = 1 (m′ gives an equal or higher probability than m), m′ is accepted and becomes

the new best parameter set m. Otherwise, a random number u between 0 and 1 is chosen, if u < α, the

parameter set m′ is accepted, otherwise it is rejected. The MCMC algorithm is designed to generate

an ensemble of parameter sets that are distributed according to the posterior distribution. In this way,

the posterior PDF can be approximated by a histogram of all the accepted parameter sets. The more

iterations we perform the better the approximation to the true posterior PDF p(m|d) of each parameter.

3 LANDSLIDE MODEL AND PARAMETER SET

To produce model predictions of our landslide parameters, we use the numerical code SHALTOP

that simulates landslides over a 3D topography (Bouchut et al., 2003; Bouchut and Westdickenberg,

2004; Mangeney et al., 2007). SHALTOP is a continuum model based on the depth-averaged thin

layer approximation and describes granular flows by taking into account a Coulomb type friction law

involving an effective friction coefficient µ = tan δ, where δ is the friction angle. Given a parameter

set m describing the released mass and the frictional properties, SHALTOP calculates the flow thick-

ness h(x, t) (where x is the position vector and t the time), the depth-averaged velocity u(x, t) of the

granular media and the force F(t) applied by the landslide to the bed surface (see equation (4) and (5)

in Moretti et al., 2015). SHALTOP reliably reproduces laboratory granular flow experiments and real

landslides as well as the history of the force inverted from seismic data (Mangeney-Castelnau et al.,

2005; Lucas et al., 2011, 2014; Favreau et al., 2010; Hibert et al., 2011; Moretti et al., 2012, 2015;

Yamada et al., 2018).

As the main unknowns of the problem, we choose the landslide parameter set m = [δ, h0, l0, w0],

where δ is the friction angle, h0, l0 and w0, are the thickness, length and width of the initial released

mass, respectively (Figure 1a). In the following, 4 independent and separate inversions will be carried

out to constrain the landslide parameter set. In each case, different data types will be inverted: (1) the

runout distance rf , (2) the area of the depositAf , (3) the shape of the deposit hf (x), and (4) the force

inverted from seismic data F(t). The goal is to calculate the a posteriori PDF of the parameters and

thus to assess which data type best constraint the landslide parameters.

4 INVERSION OF THE CHARACTERISTICS OF A SYNTHETIC GRANULAR FLOW

We first apply the Bayesian approach to synthetic data obtained by simulating a simple granular flow

over an inclined plane of inclination angle 10◦. A parabolic-shaped mass of thickness h0 = 30 m,

length l0 = 200 m and width w0 = 200 m is released from rest at t = 0 s and spreads down the slope

until it comes to rest (Figure 1a-c). Simulation of the flow and of the generated force F(t) is performed
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Table 1. Uncertainties for synthetic landslide parameters.

Parameter Symbol Uncertainty

Runout distance rf 60m

Deposit area Af 4 ∗ 103m2

Force history F(t) 1.6 ∗ 104 kN

Deposit thickness hf (x) 5m

using SHALTOP with a friction angle δ = 17◦. At each time step the equivalent point source force

F(t) is calculated from the spatial integral of the force field F(x, t) applied by the granular mass on

the underlying ground.

The simulated force in both the downslope and vertical directions reflects the acceleration and

deceleration phases of the landslide (e.g., Brodsky et al., 2003). As a result of the parabolic mass

shape, the force in the transverse direction is symmetric over the longitudinal axis through the mass’s

center and thus integrates to zero. Consequently, the transverse spreading is poorly constrained by

the equivalent point source force F(t). The presence of a more complex topography would provide a

non-zero transverse force that would contain information on the transverse spreading dynamics (e.g.,

Moretti et al., 2015).

We assign a flat PDF to the prior p(m), which means that we do not consider prior information

on δ, h0, l0, and w0 other than their possible ranges shown in Figure 1(d-g). We furthermore assume

a diagonal covariance matrix for data errors, which means that the multiple data points of the deposit

distribution and force history are not correlated. The assumed measurement uncertainties are typical

values for deposit and runout mapping, digital elevation models and inverted forces (Table 1).

4.1 Inversion from deposits data

First, we take the runout distance as the data of the Bayesian inversion, i.e. d = rf , and perform

8000 MCMC iterations, after which the algorithm is expected to provide an ensemble of models

representing well enough the posterior distribution. Figure 1d shows that the runout distance is unable

to constrain the parameter set: the PDF of all parameters are wide and do not exhibit clear maxima.

While the poorly defined maxima of the PDF of h0 and l0 roughly correspond to their real values

(vertical dotted lines in Figure 1), the values of w0 and of the friction coefficient δ are not recovered

at all.

Using the deposit area as data, i.e. d = Af , does not improve the results (Figure 1e) but results in

worse determination of the initial thickness h0 and length l0. Compared to the inversion of the runout

distance rf , the somewhat better estimate of w0 is expected as the transverse extent of the deposit



6 L. MORETTI

Figure 1. (a) Initial and (b) final shape of the granular mass simulated using SHALTOP and used as synthetic

data for the MCMC inversion (the colors indicate the mass thickness from thin (blue) to 40 m thick (red),

(c) corresponding simulated force applied to the ground surface in the vertical (red), downslope (green) and

transverse (blue) direction. (d-g) Probability functions of the four parameters δ, h0, l0, and w0 inverted using

different data: (d) runout distance rf , (e) deposit area Af , (f) deposit shape hf (x), and (g) force F(t). The

vertical axis of the plots represents the number of accepted parameter sets. The actual values of the parameters

(i.e. the input parameters used to simulate the synthetic data) are represented with vertical dotted lines on each

plot.

affects deposit area, which we use as data Af . The highest number of accepted models are obtained

for friction angles closer to the real value of δ but with a rather flat histogram shape and the PDF

maximum does not correspond to δ = 17◦.

In contrast to using runout distance and deposit area as data, the thickness distribution of the
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deposit, i.e. d = hf (x), strongly constrains the parameters set. The better performance does not come

as a surprise, because the thickness distribution provides more multiple points compared to the single

data point of runout and deposit area. All landslide parameters exhibit peaked PDF’s (Figure 1f).

These maxima correspond to the real parameter values with an error of less than 3%. Indeed, after

8000 iterations, the inversion gives δ = 17.44◦ ± 1.11◦, h0 = 30.61 m ±4.35 m, l0 = 198.76 m

±14.98 m, w0 = 198.12 m ± 18.24 m.

4.2 Inversion from the force applied to the ground

In the next synthetic test, we used the force simulated by the SHALTOP model as data, i.e. d = F(t)

(Figure 1c). This force is obtained from inversion of seismic data (see next section) and is usually more

easily available than deposit DEM’s. To be more realistic, we added random noise with amplitudes up

to the expected uncertainty (Table 1), still performing 8000 iterations. Figure 1g shows that three

parameters are well constrained: h0, l0 and δ. The mass width w0 is less well constrained, exhibiting

two maxima. This was expected from the vanishing transverse force as discussed above. Nevertheless,

the maxima of all the parameters correspond to their real values with an error calculated from the

probability functions smaller than 7%. The inversion gives δ = 17.10 ± 1.50, h0 = 28.9 m ±3.6 m,

l0 = 196.0 m ±67.1 m and w0 = 205.4 m ±49.0 m.

These results show that the force history F(t) constitutes an observation time series, which is

much easier to obtain than the detailed thickness distribution of the deposit hf (x) but still makes it

possible to constrain the landslide parameters. In real cases, where the topography is irregular, the

transverse force no longer vanishes and therefore will provide more information on the transverse

mass spreading (e.g., Moretti et al., 2012, 2015).

5 REAL LANDSLIDE CASE: THE 1997 BOXING DAY EVENT, MONTSERRAT

We now apply the Bayesian inversion to the Boxing Day debris avalanche that occurred on Montserrat

Island on 26th December 1997. In this event, the southern flank collapse of the Soufriere Hills Volcano

(18.11◦N, 66.15◦W) generated a debris avalanche with a volume of 40 − 50 Mm3 (Heinrich et al.,

2001; Zhao et al., 2014) (Figure 2). We selected this event because (i) it has a simple dynamic history

without substantial erosion, motion over a glacier modifying basal fiction (Favreau et al., 2010) or

multiple sub-events, (ii) source area outline and topography before the event are available (Sparks

et al., 2002).

For the Boxing Day debris avalanche the three components of F(t) (Figure 2c) were obtained

by deconvolving the Green’s functions from the record at SJG broadband seismic station (16.71◦N,
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Figure 2. (a) Map of Montserrat island where the gray area represents the deposits of the Boxing Day debris

avalanche within the White River Valley. (b) Inset map of Montserrat Island in Caribbean Sea. (c) Force history

obtained by waveform inversion of the SJG seismic data (red) and by numerical modelling of the avalanche

using the parameters deduced from the Bayesian inversion (green). The gray area represents the 66% confidence

interval for the ensemble of parameter sets representing the posterior solution. The forces are filtered in the

period range 25-40 s.
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Figure 3. (a) Initial and (b) final state of the simulation using h0 = 184 m, l0 = 785.2 m, w0 = 665.6 m and

δ = 14.2◦. A posteriori density probability of (c) δ, (d) h0, (e) w0 and (f) l0.

62.18◦W) located about 448 km away from the Soufriere Hills (Figure 2a) (Zhao et al., 2014). In

order to optimize the signal-to-noise ratio, the force was inverted in a rather narrow period range T

∈ [25 − 40] s (for details see Zhao et al., 2014). Given this frequency range and a landslide motion,

which is small compared to the source-station distance of 448 km, the inverted force corresponds to

the spatial integral F(t) calculated with SHALTOP. Finally, Green’s functions were calculated using

normal modes summation with the 1D PREM Earth model (Dziewonski and Anderson, 1981) and

it should be noted that Moretti et al. (2015) have previously shown that such one-station inversions

provide a sufficient constraint of the landslide force history.

As with the synthetic tests we approximate the initial collapsing mass by parabolic shape, defined

by 3 parameters: its height h0, length l0 and width w0 (Figure 3a). Although this is a simplification for
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Figure 4. Deposits of the Boxing Day avalanche simulated using the parameters h0 = 184 m, l0 = 785.2 m,

w0 = 665.6 m deduced from the Bayesian inversion, with a (a) constant friction coefficient (δ = 14.2◦), (c)

variable friction coefficient (see equation (3), Lucas et al., 2014), and (b) deposit observed on the field extracted

from (Heinrich et al., 2001). (d) Friction coefficient as a function of time for the simulation using the friction

law (3).

a landslide scar, it allows for an efficient Bayesian inversion and at the same time provides an estimate

of volume and surface area covered by the released mass. As previously, we use the force history as

data (i.e. d = F(t)) and invert for the landslide parameter set m = [δ, h0, l0, w0] and performed 8000

iterations. Note that the seismic signal generated by the force calculated with the best fitting model

matches the recorded seismic signal well (Figure 5).

Figure 3(c-f) shows that the shape parameters of the collapsing mass h0, l0 and w0 are well

constrained as the PDF’s exhibit clear maxima. The MCMC algorithm converges toward the values

h0 = 184 m ±25.8 m, l0 = 785.2 m ±57.3 m, and w0 = 665.6 m ±52.8 m, leading to a volume

V ∈ [32.7, 58.9] Mm3 with a central value of V = 45.8 Mm3. This is consistent with field observa-

tion, which report a volume of 40− 50 Mm3 and a 400 m wide and 400-500 m long source area with

a 100 m high head scarp (Sparks et al., 2002; Voight et al., 2002). The slightly larger dimensions from

our inversion likely reflect the parabolic approximation of the source geometry.

The friction coefficient is not so well constrained and the inversion does not provide a single and
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Figure 5. Ground velocity (i. e. seismic signal) calculated by convolution of the force calculated by the best

model (i. e. best parameter set) and the Earth Green’s functions (black lines), and recorded at SJG seismic station

(red lines) in the radial, transverse and vertical directions. The signals are filtered between 25 s and 40 s.

well defined solution. Specifically, the PDF exhibits two maxima at δ1 = 14.2◦ ± 0.9◦ and δ2 =

16.6◦ ± 1.4◦ (Figure 3c). Using δ1 underestimates the observed runout distance by only about 150

m while using δ2 leads to an underestimate by about 800 m. The friction angle δ1 = 14.2◦ is close

to the friction angle calibrated by Heinrich et al. (2001) to fit the runout distance when using pre-

defined field estimates of the dimensions of the collapsing mass. It is also very close to the friction

angle deduced from the empirical relation proposed by Lucas et al. (2014), which scales the friction

coefficient µ = 1/V 0.0774 against the landslide volume V given in m3. Indeed, this relation predicts

µ = 0.26 = tan(14.34◦).

Variable friction is a possible explanation for the poor constraint on the effective friction coef-

ficient (Jop et al., 2006; Lucas et al., 2014; Yamada et al., 2018). With the best estimates obtained

from the inversion for h0, l0, and w0 (the maxima of the PDF’s), we simulated the Boxing Day debris

avalanche using (i) a constant friction coefficient µ = tan 14.2◦ and (2) the variable friction coefficient

proposed by Lucas et al. (2014) following Rice (2006):

µ(u) = µw +
µ0 − µw

1 + ||u||/Uw
(3)

where µw = tan 12◦, µ0 = tan 18◦ and Uw = 4 m.s−1. The friction angles 12◦ and 18◦ are

chosen to represent the variation range of the friction angle around the maxima of the PDF p(δ|d)
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(Figure 4c). Slight changes of these values do not significantly affect the results. The space averaged

friction coefficient is high during the first instants and then decreases towards smaller values (Figure

4d), as observed in Yamada et al. (2018). The simulations for the constant and the variable friction law

give comparable deposits (Figure 4a-b). However, some details do improve when taking the variable

friction law (3): the runout distance is approximately 200 m longer and thus closer to that observed

in the field (Figure 4b-c). Moreover, some details of the thickness distribution hf (x) such as small

bumps before the valley turn near 1500 m North (Figure 4) are better reproduced with the variable

friction coefficient.

6 CONCLUSION

Based on synthetic and real data, we showed that the force history F(t) that landslides apply to the

ground, provides a solid constraint for landslide models. Contrary to deposit data, the force history

represents a dynamic measurement of the flow, comparable to the velocity field for which observations

practically never exist.

We showed that the force history obtained from broad band seismic records can be inverted using

a numerical granular flow model. A fully non-linear Bayesian inversion makes it possible to recover

the initial shape and volume of the released mass together with the effective friction coefficient charac-

terizing the flow. Even though the force history results from a complex mixing of effects related to the

initial mass, its shape, landslide trajectory and frictional processes, the granular flow model manages

to unravel these effects to provide reliable estimates on landslide parameters. The employed MCMC

algorithm gives the posterior PDF and allows us to quantify error estimates of the inverted landslide

parameters. Results show that these parameters are quite well constrained.

On the contrary, using the runout distance or the deposit area as data does not allow recovering

the initial mass shape and the effective friction. In that case, the PDF’s of these parameters are wide

and lack clear maxima. While synthetic tests show that the spatial distribution of the deposit thickness

strongly constrains the Bayesian inversion, such data are often unavailable for natural landslides.

For a real landslide, our Bayesian inversion provides a poorer constraint of the effective friction

coefficient compared to the shape and volume of the initial mass. In this case, the PDF of the friction

coefficient is wider and exhibits more than one maximum. This likely results from the fact that the

effective friction coefficient is not constant during the flow as suggested by granular flow experiments

(Jop et al., 2006) and by observation of real landslides (Lucas et al., 2014). Inversion of other land-

slides and analysis of high frequency seismic signals from rockfalls also suggests the signature of

variable friction processes in seismic data (Yamada et al., 2018; Levy et al., 2014).

In conclusion, combining the force history, easily obtained from seismic waveform inversion,
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with our granular flow model provides a unique tool to back-analyze landslide events. For future

applications, the proposed Bayesian approach can leverage this tool to build up a data base of landslide

characteristics, including rheological properties.
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