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Abstract 

Direct Numerical Simulations of laminar two-phase flows in a vertical channel are 

investigated. An Eulerian-Lagrangian approach allows tracking each bubble position with a four-

way coupling strategy, i.e. taking into account bubblefluid and bubble-bubble interactions. 

The flow configuration has been chosen to highlight the buoyancy effects due to significant 

values of void fraction (high numbers of bubbles); hence the bubbles collisions and wall effects 

are the critical parameters to ensure the dispersion of the bubble plume. The DNS approach is 

self-consistent and does not rely on empirical correlations for the bubbles collective dynamic or 

closure relations. It is found that the DNS predicts well the behavior of the bubble plume and its 

back effect on the liquid phase when compared with a mixture model and experimental data. 

The elastic nature of collisions, the sensitivity of the mean and RMS values of velocities and of 

the void fraction to the mesh quality together with the evolution of wall shear-rate are 

explored. All simulations are run on a standard workstation by means of an effective numerical 

parallelization. 



1– Introduction 

Accurate simulations of two-phase flows require sophisticated numerical techniques 

such as the Direct Numerical Simulations (DNS). DNS have originally been developed for 

investigating turbulent flows by reproducing and solving all the interactions between the 

motion scales with no regards to time averaged or space averaged operations, hence without 

having the need of closure models (such as the model RANS, k-ε, etc.). Huge quantitative 

information are obtained through DNS that can legitimately be classified as numerical 

experiments (Jiménez, 2003). There is a strong analogy between turbulent and dispersed two-

phase flows of moderately dense suspensions (i.e. void fraction greater than 0.01), at least from 

a numerical simulation point of view. Both are three dimensional time-evolving flows and 

exhibit similar nonlinear complexity arising from the advection terms of the Navier-Stokes 

equations. In addition, perturbations of the carrier phase can be generated by the back effect of 

the transported dispersed phase, which could be combined (or not) with the local instability of 

the flow itself in the case of turbulence. The carrier phase induced perturbations can be 

identified and analyzed in a way similar to fluctuations occurring in a single-phase turbulent 

flow and analogous statistical post-treatment can be applied to the large data generated by DNS 

of multiphase flows. It is without saying that additional numerical and modeling complexities 

arise in multiphase flows coming from the interaction between phases and the choice of an 

appropriate coupling strategy is therefore crucial.  

Various strategies for modeling two-fluid flows can be found in the literature and 

correspond to different levels of complexity and accuracy (e.g. Ishii, 1987; Zhang and 

Prosperetti, 1994). Yet, attempts to resolve dispersed flows by DNS arose quite recently.  At this 

point, it is worth noting that the two-phase flow equations can be resolved in two different 

ways. In the first case each particle trajectory is individually monitored and calculated by means 

of the Newton’s second law, and the carrier fluid represented by the Navier–Stokes equations is 

treated as a continuous phase (i.e. a Lagrangian–Eulerian approach, e.g. Boivin et al., 1998). In 

the second case, the two-phase flow system equations is expressed as the interaction between 

two continuous fluid: the dispersed and continuous phase (called two-fluid or Eulerian-Eulerian 

model) (Delnoij et al., 1997; Esmaeeli and Tryggvason, 1999). The two fluids model provides 



certainly the most detailed picture of the particles behavior and, since each particle geometry is 

fully resolved, allows a fine description of the interactions between the particles and the 

particles with the continuous phase. Hence, this approach could be used to catch the surface 

deformation of bubbles, the induced perturbation of the flow field, the effect of surface tension, 

and/or clarify the coalescence phenomena, etc. However, tracking the interface requires a 

dynamic meshing around moving boundaries (Lu et al., 2006; Tryggvason et al., 2001) and since 

only a moderate amount of inclusions (classically a few hundred) can be computed, it cannot be 

yet representative of a typical industrial process. For the case of the Eulerian-Lagrangian 

approach, each element composing the discrete phase is treated as point-like (Laıń et al., 2002; 

Nierhaus et al., 2007), in the sense that their geometrical properties (shapes, size) are implicitly 

taken into account in the formulation of the interfacial forces. During the last two decades, 

these models have widely been used to investigate the effects of particle transport on the 

turbulent field characteristics (e.g. Berg et al., 2006; Mazzitelli et al., 2003). Among those works, 

one can distinguish between studies neglecting the discrete phase effects on the flow (i.e. one-

way coupling), and approaches taking into account their back reactions via a dedicated term 

expressed in the momentum equation of the continuous phase (i.e. two way coupling strategy) 

(Druzhinin and Elghobashi, 2001; Squires and Eaton, 1990). 

The applications are numerous and become more and more crucial for our industrial 

partners since bubbly flows are found in several transformation processes (bubble columns for 

phase extractions, electrolysis processes for hydrogen production, etc.). So they turned to be a 

classical subject for various academic studies in the chemical engineering domain (e.g. Akita and 

Yoshida, 1974; Lapin and Lübbert, 1994). In the singular case of electrochemical conversion 

which is mainly employed in metal production such as aluminum production or to gas 

production such as chlorine production, bubbly flows have severed effects on the operation of 

electrochemical cell. It is well known that the efficiency of the classical electrolysis processes 

depends strongly on the mass transfer at the electrode surface.  

Additionally, a flow can be induced by the electrochemical bubble production and it has 

for instance been shown that the electrochemical reactions can be enhanced by pumped 

electrolyte flow (Schillings et al., 2015). Hence, whatever the modeling strategy is and since 



performing generic DNS is still beyond our capabilities, it is clear that the most challenging point 

is now to identify a way to predict adequately the collective effects of bubbles. Indeed, to the 

authors knowledge, only closure terms derived from a few and dedicated experimental data can 

be found in the literature (e.g. Leighton and Acrivos, 1987; Nicolai et al., 1995). Without any 

reliable stand-alone formulation for the collective effect modeling, only qualitative results can 

be gained from two-phase flows numerical approaches, as can be found for example in 

Schillings et al. (2015) or Dahlkild (2001). Therefore, a finite difference code developed by our 

team for turbulent simulation (Bauer et al., 2015) is the keystone to the present DNS of two-

phase flows with four-way coupling.  

In the present paper, we report the study of a bubbly flow in a vertical channel as it can 

be found in a typical electrolysis cell for hydrogen production. The two-phase flow resolution 

and its coupling methodology are then detailed and applied to a vertical channel where the 

amount of gaseous product leads to a significant effect on the continuous phase velocity. We 

investigate an Eulerian–Lagrangian model in order to simulate the dispersed two-phase flow in a 

regime that would be laminar without the presence of the discrete phase. The main objective of 

the paper is to take into account the four-way coupling which is essential in such configuration 

because no wall normal bubble plume dispersion can occur without bubble-bubble interactions. 

2– Numerical model 

In this paper, the dynamic of an electrochemically generated two-phase flow is investigated 

through a straight Eulerian-Lagrangian formulation. The choice of illustrating the four-way 

coupling strategy in a typical electrolysis cell is motivated by the fact that it combines not only 

experimental data and modeling works in the literature but also fits totally to a practical (i.e. 

industrial) application for which the DNS approach can be fully justified. 

The electrolyte motion is described by the well-known time dependent and three-

dimensional Navier-Stokes equations under assumptions of a Newtonian and incompressible 

liquid as the continuous phase. The isothermal condition is also assumed since it can be shown 

that the temperature rise due to the electrochemical reactions is negligible against the two-



phase buoyancy effect in our operating conditions. Gas bubbles trajectories are calculated by 

resolving the Newton's second law for each of them. As stated before, the resolution is 

performed with a four-way coupling (i.e. accounting bubble-bubble and bubbleliquid 

interactions), including the effect of the wall on the bubbles trajectories. The configuration used 

throughout this work is depicted in Fig. 1. Both electrodes constituting the lateral channel walls 

are set vertically in order to generate buoyancy forces in the streamwise direction, 𝒙. The two 

electrodes are located at  𝑦 =  0 and 𝑦 =  2ℎ, start at  𝑥 =  0 and end at 𝑥 = 𝐿𝑥. Their size 

along the 𝒛 direction is infinite in order to simulate pseudo-2D cases. In this work, the liquid 

phase is restricted to the laminar regime. 

 

Fig. 1: Scheme of the electrodes and flow configuration. 

Numerical simulations are performed with a validated finite difference code developed 

by our team (Bauer et al., 2015; Doche et al., 2013, 2012). This code, optimized for turbulent 

simulations, handles massive parallel computing and fits the requirement for strong flow 

couplings with large number of inclusions.  

The DNS data are compared to the simulations of a homogenous (also called mixture) 

model here. This model considers the gas-liquid mixture as a unique continuous Newtonian fluid 

ruled by a momentum conservation equation and a volume conservation equation. Both 



equations depend on the void fraction which is a scalar variable representing the local 

proportion of dispersed phase in the mixture volume. The evolution of the void fraction is 

resolved by means of the relative flux, a phenomenological closure term extracted from 

theoretical and empirical studies that specifies the superficial velocity of the dispersed phase 

relatively to the mixture motion. The complete  mixture model formulation can be found in our 

previous work (Schillings et al., 2015). 

The following subsections detail the numerical models resolved for each phase and their 

interactions. 

2.1 – Continuous phase 

The continuous phase is resolved by Direct Numerical Simulation (DNS) of the Navier-

Stokes equations in the following form: 

 𝛁 ∙ 𝒖 =  0 (1)   

 𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 +

1

𝜌𝐶
𝛁𝑝 − 𝜈𝐶∇

2𝒖 =
1

𝜌𝐶
𝒇𝑒𝑥𝑡  

(2)   

Here, 𝜌𝐶  and 𝜈𝐶  are the constant density and kinematic viscosity, 𝒖 is the velocity field and 𝑝 

the pressure of the continuous phase. 𝒇𝑒𝑥𝑡  is the force field traducing the action of the bubbles 

on the liquid. The boundary conditions applied in the entire work are as follow: a no-slip 

condition is applied at 𝑦 = 0 and 𝑦 = 2ℎ = 𝐿𝑦 and periodicity applies at 𝑧 = 0 and 𝑧 = 𝐿𝑍, 

where 𝐿𝑧 is the width of the numerical domain only, as it is recalled that this direction is 

supposedly infinite. A standard Poiseuille profile is imposed at 𝑥 = 0 and the flow leaves the 

domain with radiative open boundary conditions (i.e. without stress) at 𝑥 = 𝐿𝑥. Lengths, 

velocities and times are nondimensionalized respectively by the semi inter-electrode gap ℎ, the 

maximum Poiseuille velocity 𝑢𝐶𝑃 and the characteristic time 
ℎ

𝑢𝐶𝑃
. The variables given in their 

non-dimensional form are noted with the exponent *. The Reynolds number is defined as 

𝑅𝑒ℎ =
𝑢𝐶𝑃ℎ

𝜈𝐶
, which is different from the usual one based on the mean velocity and the hydraulic 

diameter. 



2.2 – Discrete phase 

As stated previously, the study of electrochemically generated two-phase flows is of great 

interest due to the huge impact of bubble plumes on the hydrodynamic, species transport and 

charge transfer. For practical reasons, the referential case studied in this work is the production 

of hydrogen and oxygen by alkaline water electrolysis, which allows some assumptions. In this 

process, bubbles diameter is less than 100 µm so that they can be considered as solid light 

particles without internal circulation and coalescence (Janssen et al., 1984). In addition, a no-slip 

condition holds at bubble surface due to common interface contamination. The bubble 

production rate is directly proportional to a controllable electrolysis current density. The physics 

of bubble growth and detachment are not taken into account here and the particles are added 

directly in the domain in the vicinity of the electrodes with zero velocity. The following section 

details the numerical approach used to compute the bubbles motions, the bubble-bubble 

interactions and the wall collisions. 

2.2.1 – Equation of motion and hydrodynamic force 

The bubble motion is resolved by a Lagrangian tracking through the resolution of the 

Newton’s second law: 

 
𝜌𝐷

𝑑𝒗

𝑑𝑡
= 𝜌𝐷𝒈 + 𝑭𝐶−𝐷 + 𝑭𝑐𝑜𝑙  (3)   

Where 𝜌𝐷 is the density of the dispersed phase, 𝒗 the bubble velocity, 𝒈 the gravitational 

acceleration field, 𝑭𝐶−𝐷 the hydrodynamic volume force and 𝑭𝑐𝑜𝑙  is a sum of forces arising from 

eventual collisions with other bubbles or a wall.  

The hydrodynamic force exerted on a rigid sphere moving in an unsteady Stokes flow has 

been formulated by Maxey and Riley (1983) and Gatignol (1983) and consists in the integration 

of external stresses on a sphere surface. The hydrodynamic force can be expressed as the sum 

of two distinct contributions, 𝑭𝐶−𝐷,𝑎 and 𝑭𝐶−𝐷,𝑏. The first one includes the pressure and viscous 

stress effects on the undisturbed flow that would occupy the volume of the sphere:  



 
𝑭𝐶−𝐷,𝑎 = −𝜌𝐶𝒈 + 𝜌𝐶

𝐷𝒖

𝐷𝑡
 

(4)   

Secondly, the force 𝑭𝐶−𝐷,𝑏 arises from flow perturbations caused by the presence of the 

inclusion itself and is commonly expressed as the sum of various terms known as the added 

mass, the drag and the history (also called Basset) terms. The Maxey-Riley/Gatignol relation is 

now the reference formulation; however it should be adapted for our studying case. Primarily, 

the Faxen terms – i.e. second-order correction terms depending on ∇2𝒖 – can be neglected 

because of the small bubble size compared to the characteristic flow length, and the Basset 

history term is of little influence in bubbly flows while necessitating additional computational 

efforts (Domgin et al., 1998). In addition, the Maxey-Riley/Gatignol formulation is obtained only 

for creeping flow conditions. Effects from small but finite particle Reynolds number 𝑅𝑒𝐷 =

2𝑟‖𝑽𝒓‖

𝜈𝐶
 must be taken into account, with 𝑟 the radius of the sphere and 𝑽𝒓 = 𝒗 − 𝒖 its relative 

velocity. Those are principally the drag and lift corrections. Finally, the near-wall effects on the 

drag and lift terms are included. Equation (5) summarizes the different terms of the 

hydrodynamic force due to the disturbance flow: 

 𝑭𝐶−𝐷,𝑏 = 𝑭𝑎𝑑𝑑 + 𝑭𝑑𝑟𝑎𝑔 + 𝑭𝑙𝑖𝑓𝑡  (5)   

Each term is detailed in the next subsections. 

2.2.2 – The virtual, or added, mass term  

  Boussinesq (1885) introduced an expression for the transient hydrodynamic force in 

which appeared for the first time the virtual mass, expressed in its Lagrangian form in Eq. (6): 

 
𝑭𝑎𝑑𝑑 =

1

2
𝜌𝐶 (

𝑑𝒗

𝑑𝑡
−

𝐷𝒖

𝐷𝑡
) 

(6)   

This term is due to the acceleration of a volume of the surrounding fluid along with the 

sphere, which was found to be equivalent to half the volume of the sphere. 

2.2.3 – The drag effects 

As stated by Arcen et al. (2006), many expressions of the drag force can be found and the 

better choice depends on the type of application aimed by the model. In the case of an 



electrochemical gas production – which is a surface bubble generation similar to nucleation –

the wall proximity should play a role on the hydrodynamic force. 

 
𝑭𝑑𝑟𝑎𝑔 = −

3𝐶𝑑

8𝑟
𝜌𝐶𝒞∥,⊥‖𝑽𝒓‖𝑽𝒓 

(7)   

Here, 𝐶𝑑 =
24

𝑅𝑒𝐷
(1 +

3

16
𝑅𝑒𝐷) is the drag coefficient as proposed by Oseen (1910), which 

is less restrictive than the Stokes drag coefficient. Oseen derived this coefficient theoretically for 

small but finite values of the particle Reynolds number while the Stokes coefficient is correct for 

vanishing 𝑅𝑒𝐷. The Oseen correction shows very good precision for 𝑅𝑒𝐷 ≤ 0.4 and an error of 

only 7.5% at 𝑅𝑒𝐷 = 1. This is therefore valid in many applications including the present bubbly 

flows with gas inclusions smaller than 100𝜇𝑚. Simulations performed in typical electrolysis 

cases show that only 1~2% of the bubbles are associated to a Reynolds number larger than 0.4, 

with an average value of 0.55. Other attempts to develop theoretical results at higher Reynolds 

numbers exist, but they diverge rapidly when used out of their range of application. To cover 

larger ranges of 𝑅𝑒𝐷, one can also use empirical relations such as that of Schiller and Naumann 

(1935), which fits experimental data for 𝑅𝑒𝐷 < 105. In this work, the Oseen’s formula is 

preferred because of its analytical nature.  

𝒞∥,⊥ = (

𝐶∥

𝐶⊥

𝐶∥

) is a correction of the drag coefficient which includes the presence 

of the wall in the flow perturbation. 

 
𝐶∥ = (1 −

9

16
𝜅 +

1

8
𝜅3 −

45

256
𝜅4 −

1

16
𝜅5)

−1

 
(8)   

 
𝐶⊥ = (1 −

9

8
𝜅 +

1

2
𝜅3)

−1

 
(9)   

where 𝜅 =
𝑟

𝑙
 and 𝑙 is the distance of the sphere center to the nearest wall. The first correction 

(8) is extracted from the work of Faxén (1923) and is found to be very close to the analytical 

result for 
𝑟

𝑙
< 0.76. Eq. (9) can be found in the work of Wakiya (1960). It is an approximation 

precise to 𝑂( 𝜔3) of the exact expression developed in infinite series by Brenner (1961). 



2.2.4 – The lift force 

In a wall-bounded flow, bubbles dynamics are affected by the shear of the base flow. The 

shear rate near the wall can be significantly higher than that of a classical Poiseuille flow, if the 

buoyancy induced by the discrete phase is strong. Saffman (1965) showed that particles 

translating and rotating with respect to a uniform shear flow are subjected to a lift force 

perpendicular to the flow direction. The Saffman lift force holds for unbounded flows, small 

values of 𝑅𝑒𝐷 and 𝑅𝑒𝛾 =
4𝑟2|�̇�|

𝜈𝐶
 and for 𝑅𝑒𝐷 ≪ 𝑅𝑒𝛾

2 where 𝑅𝑒𝛾 is the Reynolds number based 

on the shear and  �̇� =
𝜕𝑢𝑥

𝜕𝑦
 is the main shear rate of the flow.  

In the present work, we use the optimum lift force of Wang et al. (1997) that combines 

many results found in the literature (Cox and Hsu, 1977; Vasseur and Cox, 1977; McLaughlin, 

1991, 1993; Cherukat and Mclaughlin, 1994). It is the most complete formulation of the lift force 

and can be applied in every flow region. The expression is highly dependent on characteristic 

non-dimensional parameters such as the Stokes lengthscale 𝐿𝑆 =
𝜈𝐶

|𝑉𝑟,𝑥|
, the Saffman lengthscale 

𝐿𝛾 = √
𝜈𝐶

|�̇�|
 , the ratio 𝜖 = 𝑠𝑖𝑔𝑛(�̇�𝑉𝑟,𝑥)

𝐿𝑆

𝐿𝛾
 and the dimensionless distance from the wall 𝑙𝛾 =

𝑙

𝐿𝛾
. 

The complete formulation of the optimum lift force is detailed in Annexe 1.  

2.2.5 – Collisions, elasticity and lubrication models 

Hoomans et al. (1996) presented a discrete particle model developed for two-

dimensional simulations of fluidized-bed. They implemented a sequence to simulate the 

collisions of particles, which will be shortly presented in §3.2.3. They used a hard sphere model 

for the collisions, which assumes impulsive (i.e. instantaneous point forces) collisions and the 

conservation of the spherical shape after collision. The particles are in contact at the moment of 

collision, but dissipation occurs so that the kinetic energy of the particles is not completely 

conserved during the impact. Following this work, Delnoij et al. (1997) simulated dispersed gas-

liquid flows with the same collision sequence and a hard sphere model. However, a thin liquid 

film resists the approach of two bubbles and hence the repelling occurs without direct contact 

between the spheres. They approximated the bubbles radius of influence by 𝑟√1 + 𝐶𝑎𝑑𝑑
3  where 



𝐶𝑎𝑑𝑑 = 0,5 is the added mass coefficient. In addition, they considered elastic collisions, i.e. a 

total restitution of the bubbles kinetic energy after rebound.  

In order to understand the choices made in the present work, some clarifications about 

collisions and lubrication are needed. 

 Different cases potentially occur when two spheres approach each other (all the 

observations detailed here are valid for a sphere approaching a wall). A direct contact occurs if 

the fluid resistance is negligible, i.e. if the viscous stress growing inside the fluid when escaping 

the narrowing gap is small compared to the inertia of the sphere. During contact, strain energy 

can be stored in the spheres in the form of very small elastic deformations, and this is the 

release of this energy that causes the impulse of rebound and a quick return to a spherical 

shape: this is called an elastic collision. Yet, various losses such as plastic deformations, internal 

viscous dissipation or remaining vibrations might occur, depending on the nature of the 

continuous and the dispersed phases. The collision is thus inelastic and the kinetic energy of the 

spheres before impact is not fully restored. In that case, a restitution coefficient is defined as 

0 ≤ 휀𝑟 = −
𝒗𝑟𝑒𝑏

𝒗𝑎𝑝𝑝
≤ 1 where 𝒗𝑎𝑝𝑝 is the approach velocity, i.e. the relative velocity of the 

spheres along the line defined by the centers of masses, and 𝒗𝑟𝑒𝑏 the velocity after rebound. 

One might notice that this formulation of 휀𝑟  is a simplification for identical spheres.   

In the case of an important fluid resistance, the pressure that builds up in the thin 

volume of fluid during the gap diminution generates a reaction force on the spheres. This force 

can be calculated by the lubrication theory (Hocking, 1973) which holds for 
ℎ𝑙

2𝑟
≪ 1 and 

𝑅𝑒𝑎𝑝𝑝
ℎ𝑙

2𝑟
≪ 1, where ℎ𝑙  is the distance between the surfaces of the spheres and 𝑅𝑒𝑎𝑝𝑝 =

‖𝒗𝑎𝑝𝑝‖2𝑟

𝜈𝐶
 is the Reynolds number based of the approach velocity. The reaction force, equal in 

magnitude but opposite in sign for the two spheres, being inversely proportional to the 

interspace height and proportional to the approach velocity makes the direct contact 

impossible. Davis et al. (1986) claimed that the pertinent characteristic number in 

elastohydrodynamic collisions is the Stokes number 𝑆𝑡 =
1

9

𝜌𝐷

𝜌𝐶
𝑅𝑒𝑎𝑝𝑝 which is a ratio of the 



particle inertia on the fluid viscous forces. For very small values of the Stokes number, the 

inertia of the particles is not sufficient to induce a high pressure increase in the fluid layer and 

their kinetic energy is dissipated by viscosity. For high inertia particles, two cases are likely: 

completely rigid spheres do not rebound and the kinetic energy is dissipated in the fluid, while 

elastic spheres eventually rebound. The same definition of the restitution coefficient holds to 

take into account inelastic deformations, internal viscous dissipation, remaining vibrations or 

dissipation in the fluid (Gondret et al., 2002). 

The important fluid resistance and inelastic collisions hypotheses hold here for the 

bubbly flows of interest.  Collisions are thus instantaneous and occur at a distance 
ℎ𝑙

𝑟
= 0.1 due 

to lubrication with a zero restitution coefficient, both for bubble-bubble and wall-bubble 

collisions. The collision force 𝑭𝑐𝑜𝑙  from Eq. (3) is not explicitly calculated but instead the bubble 

velocity is directly corrected after a collision (see 3.2.3). 

3- Numerical details 

3.1 – Continuous phase 

3.1.1 – Time advancement procedure 

The solution at the next time iteration 𝑘 + 1 is obtained by integrating the Eq. (2) over 

the 𝑡 to 𝑡 + ∆𝑡 interval. This equation is solved in several steps according to the well-known 

fractional step approach which ensures the divergence-free condition (Eq. (1)) of the velocity 

field at each time iteration. The temporal integration of Eq. (2) is written as: 

∫
𝜕𝒖

𝜕𝑡

𝑡+∆𝑡

𝑡

𝑑𝑡 = −
1

𝜌𝐶

∫ 𝛁𝑃𝑑𝑡
𝑡+∆𝑡

𝑡

−
1

𝜌𝐶

∫ 𝛁𝑝′𝑑𝑡
𝑡+∆𝑡

𝑡

− ∫ (𝒖 ∙ 𝛁)𝒖𝑑𝑡
𝑡+∆𝑡

𝑡

+ 𝜈𝐶 ∫ ∇2𝒖𝑑𝑡
𝑡+∆𝑡

𝑡

−
1

𝜌𝐶

∫ 𝒇𝑒𝑥𝑡𝑑𝑡
𝑡+∆𝑡

𝒕

 (10)   

where 𝛁𝑃 is the mean spatial pressure gradient, 𝛁𝑝′ is the pressure gradient fluctuation. Thus, 

by defining 𝒖𝑘 and 𝒖𝑘+1 the velocity fields at a time 𝑡 and 𝑡 + ∆𝑡, the temporal advancement 

Eq. (10) can be expressed as: 

 𝒖𝑘+1 =  𝒖𝑘 + 𝑻𝑝𝑚𝑒𝑎𝑛 + 𝑻𝑝𝑓𝑙𝑢𝑐 + 𝑻𝑎𝑑𝑣 + 𝑻𝑑𝑖𝑓𝑓 + 𝑻𝑓𝑒𝑥𝑡 (11)   



with: 

 

𝑻𝑝𝑚𝑒𝑎𝑛 = −
1

𝜌
𝐶

∫ 𝛁𝑃𝑑𝑡

𝑡+∆𝑡

𝑡

 

𝑻𝑝𝑓𝑙𝑢𝑐 = −
1

𝜌
𝐶

∫ 𝛁𝑝′𝑑𝑡

𝑡+∆𝑡

𝑡

 

𝑻𝑎𝑑𝑣 = − ∫ (𝒖 ∙ 𝛁)𝒖𝑑𝑡

𝑡+∆𝑡

𝑡

 

𝑻𝑑𝑖𝑓𝑓 = 𝜈𝐶 ∫ ∇2𝒖𝑑𝑡

𝑡+∆𝑡

𝑡

 

𝑻𝑓𝑒𝑥𝑡 = −
1

𝜌
𝐶

∫ 𝒇
𝑒𝑥𝑡

𝑑𝑡

𝑡+∆𝑡

𝑡

 

(12) (a-e)  

Without external force term the mean pressure gradient term 𝑻𝑝𝑚𝑒𝑎𝑛 is evaluated with 

an Euler method (first order), and is calculated by applying the flow conservation constraint on 

the whole domain at the current time iteration. The coupling strategy will be further discussed 

in section 3.3. Advection and diffusion terms, respectively 𝑻𝑎𝑑𝑣  and 𝑻𝑑𝑖𝑓𝑓  are estimated 

explicitly from velocity fields obtained from the previous 𝑘 − 1 and current time step 𝑘. It is 

worth noting the possibility of using implicit schemes to improve the stability of the diffusion 

terms, but at the cost of expensive multiband matrix inversions and a loss of genericity. The 

term 𝑻𝑝𝑓𝑙𝑢𝑐 is the fluctuating pressure gradient evaluated from the pressure at 𝑘 + 1 for sake of 

stability (Bauer et al., 2015). Eq. (11) can be reformulated as: 

 𝒖𝑘+1 = �̃�𝑘+1 −
∆𝑡

𝜌𝐶
𝛁𝑝′𝑘+1 (13)   

where �̃�𝑘+1 = 𝒖𝑘 + 𝑻𝑝𝑚𝑒𝑎𝑛 + 𝑻𝑎𝑑𝑣 + 𝑻𝑑𝑖𝑓𝑓 is a first estimation of the velocity fields, based on 

terms known at the current time iteration. 𝑝′𝑘+1 is then calculated by applying the divergence 

free operator to Eq. (13) and  by solving the Poisson equation: 



 ∇2𝑝′𝑘+1
= 

𝜌𝐶

∆𝑡
𝛁 ∙ �̃�𝑘+1 (14)   

In the present study, all calculations are realized with a third order Runge-Kutta time 

advancement scheme. That does not modify the sequence of resolution but divides the main 

time step into three substeps, each one being expressed with a dedicated set of coefficients. 

3.1.2 – Spatial discretization 

Spatial numerical operators are expressed by using an explicit optimized (EO) finite 

differentiation scheme at the fourth order (Bauer et al., 2015). EO schemes are derived from the 

dispersion-relation-preserving (DRP) schemes developed by Tam and Webb (1993). Unlike 

compact schemes, explicit schemes use only the values of a function at the neighboring points 

in order to approximate the derivatives. Hence, approximation of the derivatives is direct while 

it necessarily implies a matrix inversion for compact schemes, which is generally a more 

expensive operation from a numerical point of view. It is well known that standard explicit 

schemes require fine grid resolution to ensure a good precision. To compensate, the 

optimization in the EO schemes consists of adding complementary terms to the Taylor 

development of the derivatives in order to minimize the error in the Fourier space, with the 

largest wavenumber range possible.  

The computational domain of size  𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 has an associated mesh of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 

nodes. 

3.2 – Discrete phase 

3.2.1 – Volume distribution 

As underlined previously, the Eulerian-Lagrangian formulation approximates the 

inclusions by point elements and the reaction force exerted by each element is applied at the 

position of its center of mass. This approximation is correct for Eulerian grids much coarser than 

the inclusions size but becomes instable when the computational cell size is comparable to or 

smaller than the inclusions size. This issue is overcome by distributing the volume of bubble and 

the reaction force among the numerical cells it actually occupies. A scheme of the volume 



distribution process is presented in Fig. 2. The illustration shows on the left-hand side the 

affected cells if the bubbles are defined by their center of mass only and with a volume 

distribution strategy on the right-hand side. 

  

Fig. 2 : Scheme of the volume distribution process. 

The void fraction in each cell is defined as the volume of gas divided by the volume of the 

cell. The volume distribution algorithm limits the void fraction values to a maximum of 1 and 

divides the reaction force between the cells, which is necessary for sake of grid size 

independency (see §4.4). This procedure is particularly essential in the present case of narrow 

channels and in the walls vicinity where the grid is preferentially refined. 

3.2.2 – Parallelization 

The DNS code has been parallelized according to the 2D decomposition approach in 

which the computational domain is partitioned in two directions only to keep a complete view 

in the working direction. For the bubbles equation, the computational domain is partitioned 

according to the X configuration (decomposition in 𝑦 and 𝑧 directions) and this configuration is 

maintained during all the resolution in order to simplify the boundary treatment at the 

subdomain interfaces. Each process handles its own set of bubbles, i.e. the bubbles located in its 

subdomain.  When a bubble moves to another subdomain, it is removed from its initial process 

and added to the set of bubbles of its new process. This bubble data transfer between the two 

processes is performed through calls to the MPI library. 



3.2.3 – Collisions sequence 

In the collision strategy proposed by Hoomans et al. (1996), the search for bubble-bubble 

or bubble-wall collisions requires the definition of two different time steps: a main constant 

time step used for time advancement of the Navier-Stokes equations, and a smaller variable 

time step used to displace the particles progressively in order to proceed to only one collision at 

a time.  

 The procedure set up in the present work is different: all bubbles are moved 

simultaneously after calculation of the continuous phase motion. The distance ‖𝑫𝑖𝑗‖ between 

two bubbles is calculated and collision occurs if this distance is smaller than the defined collision 

distance 𝐷𝑐𝑜𝑙 = 𝑟𝑖 + 𝑟𝑗 + ℎ𝑙  equal to the sum of bubbles radii and the lubrication distance 

ℎ𝑙 = 0.05(𝑟𝑖 + 𝑟𝑗). The position of interacting bubbles is corrected afterward considering that 

the collision occurred at a time 𝑡𝑐𝑜𝑙  comprised between the beginning and the end of the time-

step. This strategy does not require substeps for the advancement of the dispersed phase but 

necessitates small displacements of the dispersed phase to avoid bubbles crossing each other. 

This hypothesis is justified by the use of relatively small time-steps. Indeed, the order of 

magnitude of bubble displacement can be estimated by ∆𝑋∗ = 𝑉∗∆𝑡∗, where the bubble 

velocity scale is 𝑉∗~ 1. Hence, time-steps comprised between 0.001 and 0.01 should be 

sufficient to insure displacements smaller than bubbles radii, given that 𝑟∗~ 0.01 − 0.033 in 

this work. Fig. 3 represents schematically the collision process between two bubbles. 

 

Fig. 3 : Scheme of a collision sequence. Collisions are not simulated at the time they occur, instead, bubbles 
positions and velocities are corrected once they already overlap the defined collision distance. 

At time (𝑡 + ∆𝑡)′, the approximated positions 𝒙𝑖
′ and 𝒙𝑗

′, and velocities 𝒗𝑖
′ and 𝒗𝑗

′ are 

calculated respectively for bubble i and j based on hydrodynamic interactions only. The vector 



that links the centers of mass of the two bubbles is 𝑫𝑖𝑗, the approach velocity is 𝒗𝑎𝑝𝑝 =

(𝒗𝑖
′ ∙ 𝑫𝑖𝑗 − 𝒗𝑗

′ ∙ 𝑫𝑖𝑗)
𝑫𝑖𝑗

‖𝑫𝑖𝑗‖
 and the overlap is computed from 𝐷𝑜𝑣𝑙𝑝 = 𝐷𝑐𝑜𝑙 − ‖𝑫𝑖𝑗‖. The 

collision occurs actually at 𝑡 + ∆𝑡 − 𝑡𝑐𝑜𝑙  , where 𝑡𝑐𝑜𝑙 =
𝐷𝑜𝑣𝑙𝑝

‖𝒗𝑎𝑝𝑝‖
, and the post-collision velocities 

are 𝒗𝑖 = 𝒗𝑖
′ − (1 + 휀𝑟)

𝒗𝑎𝑝𝑝

2
 and 𝒗𝑗 = 𝒗𝒋

′ + (1 + 휀𝑟)
𝒗𝑎𝑝𝑝

2
, where 휀𝑟  is the restitution coefficient. 

Thus, the actualized positions at 𝑡 + ∆𝑡 are 𝒙𝑖 = 𝒙𝑖
′ − (1 + 휀𝑟)𝑡𝑐𝑜𝑙

𝒗𝑎𝑝𝑝

2
 and 𝒙𝑗 = 𝒙𝑗

′ + (1 +

휀𝑟)𝑡𝑐𝑜𝑙
𝒗𝑎𝑝𝑝

2
. 

Computational runs show a good agreement between results calculated with ∆𝑡∗ = 0.01 

and ∆𝑡∗ = 0.001 for approximately 12,000 bubbles of size 𝑟∗ = 0.03. The averaged velocity 

profiles are almost identical while the averaged bubbles number and the averaged void fraction 

differences are of 3% only. The mean bubble displacements were also calculated and are 

respectively ∆𝑋∗ = 0.007 and ∆𝑋∗ = 0.0007, significantly lower than bubble size. Finally, the 

computation underdone with ∆𝑡∗ = 0.01 was almost 9 times faster for the same configuration. 



3.3 – Coupling methodology 

3.3.1 – Four-way coupling algorithm  

 

Fig. 4: Scheme of the numerical sequence for time advancement 

Fig. 4 details the numerical procedure for the time advancement procedure with the 

coupling strategy. At time 𝑘, the velocity, pressure and external force field of the continuous 

phase are known, and position and velocities of each bubble as well. First, an intermediate 



velocity �̃�𝑘+1 is calculated by explicit resolution of the advection and diffusion terms (Eqs. (12)) 

by the Runge-Kutta scheme (RK3) and the Euler evaluation of the mean pressure term. The 

force exerted by the bubbles is determined implicitly by the method of Cranck-Nicholson and 

half of the force field calculated based on time step 𝑘 is added to the intermediate velocity, at 

this stage. 

The equation of motion is then resolved for each bubble based on the liquid velocities, 

𝒖𝑘 and �̃�𝑘+1, estimated at the center of the spheres by a trilinear interpolation method. The 

calculation of the velocities 𝒗𝑖
𝑘+1  is done by a Cranck-Nicholson implicit scheme. The external 

force field, applied by the dispersed phase on the continuous phase, is now calculated based on 

the new position and velocities. Each dispersed element applies a reaction force on the liquid 

which can be expressed by a combination of Eqs. (3) and Erreur ! Source du renvoi introuvable.: 

𝑭𝐷−𝐶𝑖
𝑘+1 = −𝑭𝐶−𝐷,𝑏𝑖

𝑘+1 = −(𝜌𝐷
𝑑𝒗

𝑑𝑡
|
𝑖

𝑘+1
2⁄

+ (𝜌𝐶 − 𝜌𝐷)𝒈 − 𝜌𝐶
𝐷𝒖

𝐷𝑡
|
𝑘+1

2⁄
). 

Once all bubbles are moved, the bubble collision sequence is operated. This step could 

be very expensive in CPU time, if not prohibitive, in simulations of high bubbles number. In 

order to spare computing resources, one can decide not to compute the collision sequence at 

every Cranck-Nicholson iteration (see §3.3.2). In that case, bubbles are displaced without 

interacting with each other in the first Cranck-Nicholson iterations and collisions are computed 

in the last 𝑁𝑐𝑜𝑙𝑙  iterations. 

The last step is to resolve the continuity equation in order to calculate the fluctuating 

pressure terms and to update the final velocity 𝒖𝑘+1. The procedure is iterated 𝑁𝐶𝑁 times in 

order to calculate bubbles motion, i.e. the coupling force, based on 𝒖𝑘+1 instead of �̃�𝑘+1.  

3.3.2 – 𝑁𝐶𝑁 and 𝑁𝑐𝑜𝑙𝑙  

 As stated before, two important iteration numbers can be tuned in the simulation: 

𝑁𝐶𝑁 and 𝑁𝑐𝑜𝑙. The sensitivity to these numbers is studied in the range 2 ≤ 𝑁𝐶𝑁 ≤ 10 and  

1 ≤ 𝑁𝑐𝑜𝑙 ≤ 𝑁𝐶𝑁, considering the reference case to be (𝑁𝐶𝑁 = 10,𝑁𝑐𝑜𝑙 = 10). A very good 

precision is obtained for 𝑁𝑐𝑜𝑙 ≥ 2, regardless of 𝑁𝐶𝑁. The CPU time for simulation parameters   

(𝑁𝐶𝑁 = 2, 𝑁𝑐𝑜𝑙 = 2) and (𝑁𝐶𝑁 = 2,𝑁𝑐𝑜𝑙 = 1) is respectively 6 and 10 times smaller than for the 



reference case because of the collision sequence numerical cost for high bubbles number. The 

configuration for the following of this work is set to (𝑁𝐶𝑁 = 2,𝑁𝑐𝑜𝑙 = 2). 

4– Two-phase flow simulations 

4.1 – One-way coupling approach with homogeneous modeling of the 

collective effects  

One major difficulty of multiphase flows modeling resides in describing the dispersed 

phase motion. Many strategies, going from the use of averaged empirical laws to direct 

simulation of the interfacial momentum exchange, were developed to this end. We propose to 

study here the Lagrangian tracking of a single bubble inside a virtual plume with an empirical 

modeling of the collective effects. A 2D-mapping of the void fraction is derived from the 

simulations of one gas-evolving electrode by the mixture model (Schillings et al., 2015) and 

applied to the DNS as a scalar function depending on both 𝑥 and 𝑦 directions. A Poiseuille flow 

is imposed at the entrance of the channel and the motion of a single bubble is calculated by 

means of Eq. (3). The collective effects due to bubble-bubble collisions are modeled by 

evaluating a drift velocity in the wall normal direction: 

 𝑣𝑑𝑟𝑖𝑓𝑡 = −𝑟𝑣𝑆𝑡𝑜𝑘𝑒𝑠𝑓(𝛼)𝐷∇⃗⃗ 𝛼 − 𝑟2|�̇�|𝛽(𝛼)∇⃗⃗ 𝛼 − 𝑟2|�̇�|
𝜔(𝛼)

𝜏
∇⃗⃗ 𝜏 (15)   

where 𝑣𝑆𝑡𝑜𝑘𝑒𝑠 =
2𝑔𝑟2

9𝜈𝐶
 is the settling velocity of a sphere in a quiescent liquid, 𝑓(𝛼) = (1 − 𝛼)5 is 

a hindering function depending on the void fraction, 𝐷 is the hydrodynamic diffusion coefficient 

(~1 in the wall-normal direction), �̇� =
𝜕𝑢𝑥

𝜕𝑦
 and 𝜏 = 𝜇𝐶

𝜕𝑢𝑥

𝜕𝑦
 are the main shear-rate and shear-

stress, and 𝛽(𝛼) =  
1

3
𝛼2(1 + 0.5𝑒8.8𝛼) and 𝜔(𝛼) = 0.6𝛼2 are non-dimensional empirical 

coefficients depending on the void fraction. 

 Eq. (15) is based on the relative flux as defined in the previous work of Schillings et al. 

(2015) and is composed of the hydrodynamic self-diffusion, the shear-induced diffusion and the 

shear-induced migration. Hence, the drift velocity is a function of the continuous phase flow 



solved through DNS and the void fraction map obtained from the homogeneous model. The 

approximated velocity is thus 𝑣𝑦 + 𝑣𝑑𝑟𝑖𝑓𝑡 in 𝒚 direction. The bubble is generated at the lowest 

point of the electrode and is then supposedly representative of the external bubble population 

of the plume. The bubble trajectory is thus compared to the evolution of the bubble plume 

thickness 𝛿𝛼 computed with the homogeneous model along the electrode height. 𝛿𝛼 is defined 

as a boundary layer thickness, i.e. the distance from the wall at which the void fraction recovers 

asymptotically (in our case 1% of the maximum value) its bulk value.  

The numerical parameters of the DNS are listed in Table 1. 

Table 1 : Numerical set-up of the DNS code for the Lagrangian tracking in a virtual plume 

∆𝒕∗ 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 𝑳𝒙
∗ × 𝑳𝒚

∗ × 𝑳𝒛
∗  𝒓∗ 𝑹𝒆𝒉 

0.001 83 × 65 × 33 40 × 2 × 1 0.025 50, 108, 200 

 

Fig. 5 shows the evolutions of plume thickness and bubble position in a channel with one 

gas-evolving electrode for different values of bubble production rates and the continuous phase 

Reynolds number. Symbols represent plume thicknesses obtained from the mixture model while 

the lines describe the outer bubble trajectories computed by DNS. Three cases are represented: 

𝑖 = 62𝐴 ∙ 𝑚−2, 𝑅𝑒ℎ = 108 (dash line & triangles), 𝑖 = 250𝐴 ∙ 𝑚−2, 𝑅𝑒ℎ = 50 (dot line & circles),  

and 𝑖 = 250𝐴 ∙ 𝑚−2, 𝑅𝑒ℎ = 200 (dash-dot line & squares). The main objective of this study is to 

determine the sensitivity of the bubble plume thickness to the flow parameters. It can be 

observed in Fig. 5 that the bubble trajectory (DNS) is consistent with the boundary layer 

thickness evolution (homogeneous model). Both decrease with the Reynolds number in 

agreement with Schillings et al. (2015). 

 
 
 



  

Fig. 5 : Comparison of bubble trajectory and plume thickness, at different values of bubble current density and 
Reynolds number. The squares, circles, cross and triangles correspond to boundary layer thickness, and the 

different lines are bubble trajectories. Distances are exceptionally scaled with the electrode length L.  𝑖 = 62𝐴 ∙
𝑚−2, 𝑅𝑒ℎ = 108 (dash line & triangles), 𝑖 = 250𝐴 ∙ 𝑚−2, 𝑅𝑒ℎ = 50 (dot line & circles), and 𝑖 = 250𝐴 ∙

𝑚−2, 𝑅𝑒ℎ = 200 (dash − dot line & squares). 

This hybrid approach using DNS to resolve the base flow and a closure term to model 

collective effects based on a void fraction is presented as a first application. It shows that the 

dispersion of bubbles can be evaluated qualitatively without taking into account collisions and 

that the general trend is respected between the DNS and the homogeneous model. This 

approach is still unideal because of its lack of genericity due to the empirical closure term and 

because it does not provide predictive results. Hence, complete resolutions of two-phase flows 

through DNS of the Eulerian-Lagrangian model and the wall-particles and inter-particles 

interactions are presented hereafter. 

4.2 – Four-way coupled simulation of a practical case: the vertical 

electrolysis cell 

Results obtained by a DNS of the two-phase flow evolving between vertical plates are 

presented in this section. The former are confronted to the homogeneous model (Schillings et 

al., 2015) and experiments (Boissonneau and Byrne, 2000). The reference case is a water 

electrolysis operated at 2000𝐴/𝑚².  



The simulation parameters are given in Table 2. The number of bubble generated at each 

∆𝑡∗, 𝑁�̇�,  is 2 times larger at the hydrogen (𝑦∗ = 0) than at the oxygen (𝑦∗ = 2) production 

sides, due to the nature of the electrochemical reactions. 

 

Table 2 : Numerical set-up of the vertical water electrolysis simulation, based on (Boissonneau and Byrne, 
2000). 

∆𝒕∗ 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 𝑳𝒙
∗ × 𝑳𝒚

∗ × 𝑳𝒛
∗  𝒓∗ 𝑹𝒆𝒉 𝑵�̇�𝒚∗=𝟎 𝑵�̇�𝒚∗=𝟐 

0.01 65 × 33 × 17 26.7 × 2 × 0.93 0.023 108 1 0.5 

 

4.2.1 – Instantaneous flow 

 

Fig. 6 : Representation of the DNS results at time 𝑡∗ = 80. On top is a view of electrodes and bubbles for a sample 
of the domain (approx. one third in 𝑧 direction). The grayscale surface represents the instantaneous streamwise 

velocity averaged along 𝑧. 

Fig. 6 is a snapshot of the flow state and bubble organization at time 𝑡∗ = 80 

(corresponding to 1s) for which the averaged statistics of the two-phase flow are stationary. The 

sample is shown on the whole 𝒙 and 𝒚 directions while its depth is 0.35 along 𝒛. A 3D view of 

the electrodes and the bubble plume can be seen at the top of Fig. 6. The corresponding 



spanwise-averaged velocity of the continuous phase is presented at the bottom of Fig. 6. 

Velocity profiles are presented in Fig. 7 for three sections of the channel. 

The reader might refer to the video (link) for a 3D time evolving visualization of the 

computed flow. 

 

Fig. 7 : Evolution of the velocity field at three channel positions. (a) top-left: inlet, (b) top-right: half-height, (c) 
bottom: outlet 

 The flow enters the channel at the inlet (Fig. 7a) with a standard Poiseuille profile. It 

accelerates progressively near the walls (Fig. 7b) due to the buoyancy forces until reaching a 

maximum velocity at the outlet (Fig. 7c) of 𝑢𝑥 = 1.0 on the hydrogen side (𝑦∗ ≈ 0.3) and 

𝑢𝑥 = 0.64 on the oxygen side (𝑦∗ ≈ 1.8). The dissymmetry of the profiles is caused by the 

differences in bubbles production rates. Since the flow rate is conserved in the computational 

domain, the velocity decreases at the center until a minimum of 𝑢𝑥 = 0.60 at the end of the 

electrode.  



Slight velocity oscillations along the 𝑦-axis are observed in the 3D time-evolving 

visualizations and they are found to coincide with the apparition of wavelets in the bubble 

plumes. This phenomenon can be explained by the non-uniformity of the collision effects due to 

local variations of bubbles population. As a consequence, the bubble curtain thickness cannot 

grow homogeneously along the 𝑥-direction and experiences small spatio-temporal oscillations. 

Slight time fluctuations are for instance seen in Fig. 8 that shows the total number of 

bubbles contained in the computational box versus the non-dimensional time. 

 

Fig. 8 : Evolution of the bubble number versus the non-dimensional time.  

From Fig. 8 it can be seen that the number of bubble increases until reaching a stationary 

state at 𝑡𝑠𝑡𝑎𝑡
∗ = 40. The flow is considered steady beyond that point and the number of bubbles 

oscillates slightly around 44.884 bubbles with a maximum variation of about +-2%. The data is 

space and time averaged in 𝑧 direction for a period 𝑇𝑠𝑡𝑎𝑡
∗ , starting from 𝑡𝑠𝑡𝑎𝑡

∗ + 10 and sampling 

every ∆𝑡𝑠𝑡𝑎𝑡
∗ . Here the minimum values are set to 𝑇𝑠𝑡𝑎𝑡

∗ = 50 and ∆𝑡𝑠𝑡𝑎𝑡
∗ = 2 but it can vary 

depending on the oscillations. The Root Mean Square (RMS) deviation is also calculated in order 

to quantify temporal variations of the flow fields, i.e. the effects of the inclusions on the 



continuous phase. The notations for the average and RMS of a variable are respectively 

𝑣𝑎𝑟̅̅ ̅̅ ̅𝑡,𝑧 =
∑ [

∑ 𝑣𝑎𝑟∗∆𝑧𝑧
𝐿𝑧

]∆𝑡𝑠𝑡𝑎𝑡𝑡

𝑇𝑠𝑡𝑎𝑡
 and 𝑣𝑎𝑟𝑅𝑀𝑆 =

∑ [
∑ |𝑣𝑎𝑟∗−𝑣𝑎𝑟̅̅ ̅̅ ̅̅ 𝑡,𝑧|∆𝑧𝑧

𝐿𝑧
]∆𝑡𝑠𝑡𝑎𝑡𝑡

𝑇𝑠𝑡𝑎𝑡
. 

Fig. 9 shows a magnified view part of the channel, corresponding to the window region 

depicted in Fig. 6. The small dark points indicate each bubble center in the (𝑥, 𝑦) plane. Fig. 9a 

displays 
𝑓𝑒𝑥𝑡,𝑥

𝜌𝐶𝑢𝐶𝑃
21

ℎ

 while Fig. 9b displays 𝑢𝑥
∗ . It is obvious that the force exerted by the bubbles is 

proportional to the bubble concentration. However the maximum velocity is found at an 

intermediate location (between the wall and the core flow) in a way similar to classical free 

convection.  

           

Fig. 9 : Front visualization of the channel at the height defined by the window drawn of Fig. 6. The centers of 
bubbles are represented by points. The grayscale displays (a) left : the non-dimensional force exerted on the liquid 

by the bubbles and (b) right : the non-dimensional streamwise liquid velocity. 

4.2.2 – Time-averaged profiles 

The streamwise velocity profiles obtained by DNS at the outlet of the electrodes are 

compared to the Laser Doppler Velocimetry measurements of Boissonneau and Byrne (2000) 

and to the 2D homogeneous model simulation of Schillings et al. (2015) in Fig. 10. The inlet 

Poiseuille profile common to the three cases is also depicted in complement. 



 

Fig. 10: Experimentally measured and simulated liquid velocity profiles. Measurements (crosses), stationary 
simulation from the homogeneous model (full line) and time- and z-averaged data from DNS (circles) are plotted at 

electrode outlet. The inlet Poiseuille profile is represented by the dash-dot line. 

As stated by Schillings et al. (2015), the measurements performed by Boissonneau and 

Byrne (2000) do not respect the flow rate conservation. Hence, their results cannot be used 

directly as a reliable quantitative reference but rather as an indicator of the global behavior for 

the velocity field. Keeping that in mind, the agreement between simulations and experiments is 

satisfying. Surprisingly, both simulations give similar results despite the simple collision 

algorithm used in the DNS case at this stage. One will also note that those results were obtained 

in 7.5 hs by parallel computation on an Intel® Xeon E5520 (4 cores of 2.27 GHz), which is a very 

reasonable duration for a simulation comprising almost 45.000 bubbles.  

Unfortunately, there is no experimental data combining both velocity and void fraction 

measurements in the literature in the case of an electrolysis cell or a similar process, to the best 

authors’ knowledge. Consequently, the following results compare simultaneously the void 

fraction and velocity distributions stemming from DNS to the data from the mixture model only. 



4.3 – Bubble dispersion  

4.3.1 – Comparison with the mixture model 

The evolution of bubble curtains is compared between the mixture model simulations 

(Schillings et al., 2015) and the DNS. Two simulations of one gas-evolving electrode referred to 

as the high current density (HCD) and the low current density (LCD) cases are presented. There 

is actually no absolute “high” or “low” value of current densities because of many parameters 

(bubble size, liquid flow, electrode length and interspace) that enter in the two-phase flow 

development process. However, Schillings et al. (2015) noticed by means of their homogeneous 

model two characteristic void fraction evolutions, that we name the “flat” and “diffusive” 

shapes. The different terms involved in the relative void fraction flux (hydrodynamic diffusion, 

shear-induced diffusion and shear-induced migration) do not have the same magnitude 

depending on the two-phase flow conditions, and the resulting shape of the void fraction is 

linked the dominating term. The first case presented in Fig. 11 coincides principally with 

relatively high current densities and small bubbles and is representative of a dominating shear-

induced migration term. The second case presented in Fig. 12 is generated at relatively low 

current densities with large bubbles and holds for a void fraction diffusion led by the 

hydrodynamic self-diffusion term. The numerical set-up of the DNS for both cases is presented 

in Table 3. 

Table 3 : DNS parameters for the HCD case (second line) and the LCD case (third line) 

 ∆𝒕∗ 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 𝑳𝒙
∗ × 𝑳𝒚

∗ × 𝑳𝒛
∗  𝒓∗ 𝑹𝒆𝒉 𝑵�̇�𝒚∗=𝟎 

Fig. 11 0.01 65 × 33 × 17 16 × 2 × 0.94 0.03 100 10 

Fig. 12 0.01 65 × 33 × 17 5.4 × 2 × 6.3 0.033 165 2.5 

 
Two different meshing strategies are also compared for both cases, with the same 

number of nodes. The “fine grid” is refined on the 𝑦 direction near the wall and the smallest cell 

size is 0.5𝑟. The “coarse grid” has a constant size approximately equal to 1.5𝑟. 

 
 



 

 

Fig. 11  : Simulations of the HCD gas-evolving electrode. Results from DNS computed with a fine grid (circles) are 
shown in the top figures and those computed with a coarse grid (diamonds) are in the bottom ones. They are 

compared to the same homogeneous model simulation (full line). (a) top-left : mean void fraction, fine grid; (b) 
top-right : mean streamwise velocity, fine grid; (c) bottom-left : mean void fraction, coarse grid; (d) bottom-right : 

mean streamwise velocity, coarse grid. Results are plotted at the electrode outlet. 

 

 
 
 



 

 
 

Fig. 12 : Simulations of the LCD gas-evolving electrode. Results from DNS computed with a fine grid (circles) are 
shown in the top figures and those computed with a coarse grid (diamonds) are in the bottom ones. They are 

compared to the same homogeneous model simulation (full line). (a) top-left : mean void fraction, fine grid; (b) 
top-right : mean streamwise velocity, fine grid; (c) bottom-left : mean void fraction, coarse grid; (d) bottom-right : 

mean streamwise velocity, coarse grid. Results are plotted at the electrode outlet. 

Fig. 11 and Fig. 12 compare the void fraction and velocities computed by DNS to the 

homogeneous model simulations. In the HCD case (Fig. 11), there is a very good matching 

between the homogenous model simulation results and the DNS results, both in terms of the 

magnitude of the void fraction and the plume thickness (Fig. 11a). The common trend observed 

in the DNS and in the homogeneous model simulation is that the void fraction is elevated for 

𝑦∗ < 0.3 and decreases sharply at the outer limit of the bubble curtain. We call that a “flat” 

profile. The noticeable dissimilarity though is the void fraction peaks values, which arise from 

the difference of bubbles representation between the homogeneous model and the Lagrangian 

formulation. In the former case the dispersed phase is seen as a scalar generated by a flux at the 



wall and transported in the continuous phase. The void fraction is maximum (or close to the 

maximum) at the wall and evolves smoothly away from it. In the latter case however, bubbles 

are spherical objects which implies a non-regular repartition of their volume. Because the 

attachment of bubbles to the wall during their growth is not modelled, the void fraction at 

𝑦 = 0 is necessarily zero. Additionally, the hypothesis of not coalescing bubbles leads to a 

decrease of the void fraction in the interspace between them. The volume distribution 

procedure described in §3.2.1 allows the use of numerical cells smaller than the bubbles and 

thus provides an opportunity for visioning the non-regular repartition of bubble volumes, as 

seen in Fig. 11a. Those results are obtained with cells size of half the bubble radius near the wall 

and are also confirmed by finer meshes. The void fraction peaks situated at intervals of 

approximately one bubble diameter can be leveled by computing the DNS with a coarser grid 

(1.5𝑟) as presented in Fig. 11c. This has the effect of averaging the void fraction which is then 

very close to the homogeneous profile.  

The velocity profiles however are identical for both “fine grid” (Fig. 11b) and “coarse 

grid” (Fig. 11d) cases and thus validate the two different void fraction profiles. The acceleration 

of the liquid near the wall matches well with the homogeneous model. The wall velocity 

gradients are very similar and the maximum velocities calculated by the DNS and the 

homogeneous model show a difference of only 9%. 

The LCD case presents a higher discrepancy between the DNS and the homogeneous 

model simulation, as shown in Fig. 12. Although the matching in terms of velocity (Fig. 12b,d) is 

excellent, the evolution of void fraction (Fig. 12a,c) is quite different. The void fraction 

computed by the homogeneous model is maximal at the wall and decreases progressively along 

𝑦 axis. We call that a “diffusive” behavior due to the similarity with the temperature profile in 

thermal boundary layers. The maximum void fraction computed by the DNS with a fine grid (Fig. 

12a) is more than twice that of the homogeneous simulation and the plume thickness is almost 

2 times smaller. The void fraction peak is leveled by use of the “coarse grid” (Fig. 12ac) and is 

much closer to the homogeneous model value. We do not clearly retrieve the diffusive behavior 

observed in the homogeneous model by DNS which is probably explained by the very different 

dispersed phase models. 



Globally, the results of our study are very encouraging in that they corroborate those 

computed in previous works (Schillings et al., 2015). Additionally, it is seen that the DNS allows a 

local description of the dispersed phase that is, by definition, impossible with the homogeneous 

model. As a consequence, the question arises as to whether the representation by the 

homogeneous model of bubble dispersion as a diffusive process in the LCD case is correct or 

not. The DNS reveals a dispersion process caused only by collisions and the observed void 

fraction peaks at regular intervals, corresponding to bubble diameters, seem to reflect a growth 

of the bubble plume in the form of piling layers. Comparison with reliable measurements of the 

void fraction and a close observation of the plumes will be necessary to confirm these results. 

4.3.2 – Effect of the restitution coefficient 

It is evident so far that the growth of plume thickness is driven by inter-particle collisions, 

but the results shown in Fig. 11 and Erreur ! Source du renvoi introuvable. suggest that those 

collisions do not have a strong dispersive effect and lead instead to the superposition of bubbles 

layers. Recalling the assumption of inelastic collisions that hold for the considered bubbly flows, 

we propose to determine if the dissipation of collisions kinetic energy has a strong impact on 

the void fraction profile. A comparison of the reference case (휀𝑟 = 0) to the opposite fully 

elastic collisions assumption (휀𝑟 = 1) is presented hereafter. The set of parameters previously 

indicated for the HCD case is kept here (see Table 3) and the uniform “coarse grid” is used. Fig. 

13 shows the void fraction profiles computed at the outlet of the electrode. Circles and stars 

correspond to 휀𝑟 = 0 and 휀𝑟 = 1 respectively. 



 

Fig. 13 : Mean void fraction in the HCD case with non-elastic (circles) and fully elastic (stars) collisions. Results are 
plotted at the electrode outlet. 

Surprisingly, there is no major disparity in terms of dispersion along 𝑦 axis between the 

elastic and non-elastic collisions assumptions. This could be explained by the fact that collisions 

occur at low velocities in that direction and the observed dispersion is more representative of 

an obstruction phenomenon than on literally colliding spheres. Still, the void fraction magnitude 

is slightly lower when considering fully elastic collisions. Bubbles streamwise velocity is indeed 

largely higher than the wall normal velocity and elastic collisions along 𝑥 axis are probably much 

more intense. Elastic collisions would thus enhance bubble evacuation and lead to a slight 

reduction of the averaged void fraction. 

4.4 – Mesh sensitivity 

From a numerical point of view, the question of dependency to the grid size naturally 

arises and requires a detailed investigation. The point force approximation necessary to the 

Lagrangian description of the dispersed phase classically requires bubbles being much smaller 

than the numerical cells. However, this restriction should be overcome by means of the volume 

distribution algorithm discussed in §3.2.1. Sensitivity of �̅�𝑡,𝑧, �̅�𝑡,𝑧 and 𝑢𝑅𝑀𝑆 to the mesh 

refinement in the 𝑦 and 𝑧 directions is studied for uniform grids in the range 43 × 17 × 13 to 

43 × 65 × 49 .  The bubble size is chosen so that the bubble radius to cell size ratio varies from 



12 to 3 for the coarser and finer meshes, respectively. Because of the small bubble radius 

studied here and in order to visualize a substantial back force effect on the base flow with a 

limited population of inclusions, the gravitational acceleration is artificially set to 𝑔 = 800 𝑚 ∙

𝑠−2. The global numerical parameters are listed in Table 4. 

Table 4 : Numerical set-up of the mesh sensitivity study. 

 

The first important result of this study is that the averaged velocities and void fraction 

are not dependent on the mesh refinement. It confirms thus the efficiency of the bubble 

volume distribution strategy in extending the genericity of the point force approximation and 

suppressing the restriction on the bubble to mesh sizes ratio. The choice of a particular mesh is 

thus guided by two-phase flow considerations only. Refinement of the grid in the vicinity of the 

walls might turn out to be necessary, e.g. due to elevated velocity gradients induced by the 

buoyancy effects or in order to visualize the void fraction peaks (as evoked in §4.3.1).   

The second aspect evaluated here concerns time depending statistics which are valuable 

because they traduce the bubble-induced fluctuations of the velocity field in a normally laminar 

flow. The RMS of the velocity is an interesting data in mixing problematics for instance and has 

applications by extension to the study of turbulence modulation. The profiles of 𝑢𝑥
𝑅𝑀𝑆, 𝑢𝑦

𝑅𝑀𝑆 and 

𝑢𝑧
𝑅𝑀𝑆 at the outlet of the electrodes are plotted in Fig. 14.  

∆𝒕∗ 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 𝑳𝒙
∗ × 𝑳𝒚

∗ × 𝑳𝒛
∗  𝒓∗ 𝑹𝒆𝒉 𝑵�̇�𝒚∗=𝟎 

0.001 
43 × 17 × 13,   43 × 33 × 25, 

43 × 49 × 37 and   43 × 65 × 49 
16 × 2 × 1.6 0.01 100 0.5 



    

 

Fig. 14 : Mesh sensitivity of the RMS of velocity components versus y-axis, at the outlet of the electrodes. (a) top-
left : 𝑢𝑥

𝑅𝑀𝑆, (b) top-right : 𝑢𝑦
𝑅𝑀𝑆, (c) bottom : 𝑢𝑧

𝑅𝑀𝑆.  Computations are run using four different meshes: (circles) 

42x17x13, (squares) 42x33x25, (triangles) 42x49x37 and (diamonds) 42x65x49.  

The orders of magnitude and the evolution of velocity fluctuations calculated with 

various computational grids agree fairly well, as shown in Fig. 14. Yet local disparities reaching 

almost 40% are observed. There is no evident trend that describes the evolution of the RMS 

with cells size. All RMS decrease in the range 43 × 33 × 25 to 43 × 65 × 49 without stabilizing. 

The highest values are obtained with the mesh 43 × 33 × 25 and drop for 43 × 17 × 13. 

Variations of the RMS, not presented here, are also observed in the HCD case with a bubble 

radius to cell size ratio ranging from 0.7 to 4 with no constant evolution trend neither.  

The global characterization of two-phase flows can reliably be conducted by means of 

averaged quantities, such as the velocity and the void fraction, computed for variables meshes 

without major modification of the results. We would recommend being precautious in the 

analysis of RMS results though due to the difficulty of choosing a numerical grid in multiphase 



flows with finite size dispersed elements. We sense that computational cells should be at least 

various times larger than bubble radius in order to cumulate a significant amount of momentum 

transfer, but limited to avoid the averaging of local effects. 

4.5 – Wall shear-stress statistics 

One of the major advantages of DNS is the fine resolution of the flow in the wall vicinity, 

which is a crucial region for various physical phenomena. The hydrodynamic wall-shear stress is 

one of the interesting statistics in those cases since it can also be related to the Nusselt number 

through the well-known Reynolds analogy. A short study of the evolution of the velocity 

gradient on the wall is conducted for the HCD case and two cases with smaller bubble 

production rate. The set of numerical parameters are summarized in Table 5. 

Table 5 : Numerical set-up for the study of wall shear rate. 

 

The shear evolution presented in Fig. 15 is an illustration of the variety of information 

possibly reached by the DNS. It shows the non-dimensional wall shear-rate �̇�𝑤
∗ =

𝜕𝑢𝑥
∗

𝜕𝑦∗
|
𝑦=0

 versus 

the non-dimensional electrode height, computed for bubble production rates of 𝑁�̇�𝑦∗=0 = 10, 

𝑁�̇�𝑦∗=0 = 5 and 𝑁�̇�𝑦∗=0 = 3.3. Predictably, the magnitude of the shear-rate increases with 

electrode height because of the bubble-induced flow acceleration. All three computed shear-

rates start with the Poiseuille value of �̇�𝑤
∗ = 2, rise rapidly at first and then more steadily until 

reaching the values of 10.2, 8.2 and 7.2 respectively. 

∆𝒕∗ 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 𝑳𝒙
∗ × 𝑳𝒚

∗ × 𝑳𝒛
∗  𝒓∗ 𝑹𝒆𝒉 𝑵�̇�𝒚∗=𝟎 

0.01 65 × 33 × 17 16 × 2 × 0.94 0.03 100 
𝑁�̇�𝑦∗=0 = 10, 𝑁�̇�𝑦∗=0 = 5 and 

𝑁�̇�𝑦∗=0 = 3.3 



 

Fig. 15 : Evolution of the non-dimensional wall shear-rate versus the non-dimensional electrode height. Results are 

presented for (dot line) 𝑁�̇�𝑦∗=0 = 10, (dash-dot line) 𝑁�̇�𝑦∗=0 = 5 and (full line)  𝑁�̇�𝑦∗=0 = 3.3. 

 

Conclusion 

This work is dedicated to the Eulerian-Lagrangian simulation of a laminar two-phase flow 

in a vertical channel. Bubbles dynamics and their interactions with the walls and the liquid are 

fully resolved through a four-way coupling strategy (i.e. taking into account bubble-fluid and 

bubble-bubble interactions). Configurations composed of one and two gas-evolving electrodes 

are treated with typical parameters found in classical electrochemically generated flows. Since 

void fraction takes significant values in the near wall region, simulations involve a very large 

amount of bubbles and may require up to 45.000 interacting bubbles in the computational 

domain for the two gas-evolving electrodes. However, due to the spanwise direction reduction 

and the bubbles collision algorithm simplification, the computational requirement is not 

prohibitive and all runs could be easily performed on a standard workstation via an OpenMp 

parallel strategy or even on a single processor in a moderate time.  

DNS results are consistent with the existing experimental data and the numerical mixture 

model (Schillings et al., 2015). At this point, more experimental work is necessary to 



discriminate what kind of numerical model is closer to the reality, but the DNS strategy gives 

access to a fine evaluation of the flow in the wall vicinity that is inaccessible in mixture models. 

The mesh sensitivity has been investigated for cell sizes ranging between 0.7 and 12 bubble radii 

and results show a negligible impact on the averaged quantities such as the void fraction or the 

velocity. However, under laminar conditions, the mesh quality seems to have an effect on their 

RMS values, which are not significant here but need to be clarified for future investigations with 

turbulent base flow. The nature of collisions has also been investigated, and no strong 

differences have been observed between the purely elastic and the non-elastic rebound cases, 

in the present flow configurations.  

Last but not least, it is worth mentioning that the DNS approach is self-consistent and 

does not rely on empirical collective correlations or closure relations. This is obviously an 

appropriate choice to investigate complex multiphase flow interactions, paving also the way for 

the turbulent regime. We finally believe that the present work shows how DNS, which are often 

restricted to academic problems, can nowadays be an efficient way to bring answers to the 

complex questions arising from some practical chemical engineering problems. 
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Annexe 1: the optimum lift force 

In the region closest to the wall such that 𝑙 ≪ 𝑚𝑖𝑛(𝐿𝛾, 𝐿𝑆), the formulation from 

Cherukat and Mclaughlin (1994) is expressed as: 

 𝑭𝑙𝑖𝑓𝑡

3𝜌𝐶𝑉𝑟,𝑥
2

4𝜋𝑟

= (1.7716 + 0.2160𝜅 − 0.7292𝜅2 + 0.4854𝜅3)𝒏

− (3.2397𝜅−1 + 1.1450 + 2.0840𝜅 − 0.9059𝜅2)𝛬𝒆𝑦

+ (2.0069 + 1.0575𝜅 − 2.4007𝜅2 + 1.3174𝜅3)𝛬2𝒏 

(16)   

where 𝛬 =
𝑟�̇�

𝑉𝑟,𝑥
 is the non-dimensional shear, 𝒏 is the inner normal vector of the closest wall and 

𝒆𝑦 is the unity vector on 𝒚 direction. 

 Far from the wall, the expression from McLaughlin (1993) is preferred: 

 
𝑭𝑙𝑖𝑓𝑡 = −

27𝜌𝐶

4𝜋2𝑟
𝑉𝑟,𝑥𝑠𝑖𝑔𝑛(�̇�)√𝜈𝐶|�̇�| 𝐽𝒆𝑦 

(17)   

where the function 𝐽 takes into account contributions from the shear-induced lift in an 

unbounded flow expressed and the presence of the wall. Various authors proposed a 

formulation of 𝐽 for a certain range of 𝑙𝛾 and 𝜖. For small 𝑙𝛾 and large |𝜖|, the expression from 

Cox and Hsu (1977) is appropriate: 

 
𝐽 =

𝜋2

16
(
11

6
𝑙𝛾 −

1

𝜖
) 

(18)   

Vasseur and Cox (1977) derived an expression for small |𝜖|: 

 
𝐽 =

2𝜋2

3|𝜖|
𝐼 + 𝐽𝑢 

(19)   

The term 𝐼 is an integral that can be found in the work of Vasseur and Cox (1977) and that was 

evaluated the approximated by Arcen et al. (2006) based on fourth order polynomials: 

 𝐼 = −3.1 ∙ 10−4𝑙𝑆
4
+ 3.53 ∙ 10−3𝑙𝑆

3
− 1.088 ∙ 10−2𝑙𝑆

2
− 9.86 ∙ 10−3𝑙𝑆 + 9.57 ∙ 10−2 (20) (a) 



when 0 ≤ 𝑙𝑆 ≤ 4.5, 

 𝐼 = 6.78 ∙ 10−7𝑙𝑆
4
− 4.81 ∙ 10−5𝑙𝑆

3
+ 1.26 ∙ 10−3𝑙𝑆

2
− 1.485 ∙ 10−2𝑙𝑆 + 7.05 ∙ 10−2 (20) (b) 

when 4.5 < 𝑙𝑆 ≤ 25  and 

 𝐼 = 0 (20) (c)  

when 25 < 𝑙𝑆. 

The function 𝐽𝑢 was derived by McLaughlin (1991) and approximated in a simpler form by 

Legendre and Magnaudet (1998): 

 𝐽𝑢 = 2.255(1 + 0.2𝜖−2)−1.5 (21)   

Finally, McLaughlin (1993) obtained a closed form solution which they tabulated for the range 

|𝜖| ≥ 0.2 and 0.1 ≤ 𝑙𝛾 ≤ 5 and which was approximated by Takemura et al. (2009) for a more 

convenient use: 

 𝐽 = [1 − 𝑒𝑥𝑝(−
11𝜋2

96

𝑙𝛾

𝐽𝑢
)] 𝐽𝑢 −

𝜋2

𝜖
𝐼𝐿0𝑒𝑥𝑝(−0.22|𝜖|0.8𝑙𝛾2.5) (22)   

where 𝐼𝐿0 stands for the transverse force coefficient in the unsheared case: 

 𝐼𝐿0 = (
1

16
+ 3.21 ∙ 10−7𝑙𝑆

4.58
) 𝑒𝑥𝑝(−0.292𝑙𝑆) (23)   

For 𝑙𝛾 > 5, McLaughlin (1993) give the approximate expression of 𝐽: 

 𝐽 = 𝐽𝑢 −
1.879

𝑙𝛾5 3⁄
 (24)   

  

 

The formulation of the optimum lift force is synthetized in Table 6 with the list of equations and 

their range of applicability: 



Table 6 : Synthesis of the optimum lift force equations. 

 |𝜖| < 0.2 0.2 ≤ |𝜖| ≤ 2 |𝜖| > 2 

𝑙𝛾 < 𝑚𝑖𝑛(1, 𝐿𝑆 𝐿𝛾⁄ ) (16) (16) (16) 

𝑚𝑖𝑛(1, 𝐿𝑆 𝐿𝛾⁄ ) ≤ 𝑙𝛾 < 0.1 (17)  (19)(20)(21) (17)  (18) (17)  (18) 

𝑚𝑎𝑥 (0.1,𝑚𝑖𝑛(1, 𝐿𝑆 𝐿𝛾⁄ )) ≤ 𝑙𝛾 ≤ 5 (17)  (19)(20)(21) (17)  (22)(21)(23) (17)  (22)(21)(23) 

𝑙𝛾 > 𝑚𝑎𝑥(5, 𝐿𝑆 𝐿𝛾⁄ ) (17)  (24)(21)  (17)  (24)(21) (17)  (24)(21) 

 

  



Nomenclature 

 

Latin symbols 

𝐶𝑑 drag coefficient 

𝐶∥,⊥ parallel and perpendicular drag 

corrections 

𝐷 non-dimensional hydrodynamic diffusion 

coefficient 

𝑒 unity vector 

𝑓 hindering function 

𝑓𝑒𝑥𝑡   back force 

𝐹  volume force 

𝐹𝐶−𝐷  hydrodynamic force 

𝑔 gravitational constant 

ℎ half inter-electrode gap 

ℎ𝑙  lubrication distance 

𝑖 current density 

𝐼 Vasseur & Cox integral 

𝐼𝐿0 unsheared transverse force coefficient 

𝑙 nearest wall distance 

𝑙𝑆  dimensionless Stokes wall distance 

𝑙𝛾 dimensionless shear wall distance 

𝐽 McLaughlin function 

𝐿 domain length 

𝐿𝑆 Stokes lengthscale 

𝐿𝛾 Saffman lengthscale 

𝑛  normal vector 

𝑁 grid nodes number 

𝑁�̇� bubbles per time step 

𝑁𝐶𝑁 number of Cranck-Nicholson 

iterations 

𝑝 absolute pressure 

∇𝑃 mean pressure gradient 

∇𝑝′ pressure gradient fluctuations 

𝑟 bubble radius 

𝑅 ideal gas constant 

𝑅𝑒𝐷 particle Reynolds number 

𝑅𝑒ℎ  DNS Reynolds number 

𝑅𝑒𝛾 shear base Reynolds number 

𝑆𝑡 Stokes number 

𝑡 time 

𝑇 period 

𝑇𝑝𝑚𝑒𝑎𝑛, 𝑇𝑝𝑓𝑙𝑢𝑐, 𝑇𝑎𝑑𝑣, 𝑇𝑑𝑖𝑓𝑓 , 𝑇𝑓𝑒𝑥𝑡  mean 

pressure, fluctuating pressure, 

advection, diffusion, back force NS terms 

𝑢  continuous phase velocity 

�̃� intermediate velocity 

𝑢𝐶𝑃  maximum Poiseuille velocity 

𝑣  bubble velocity 

𝑣𝑑𝑟𝑖𝑓𝑡 drift velocity 

𝑣𝑆𝑡𝑜𝑘𝑒𝑠  Stokes velocity 

𝑉∗ non-dimensional velocity scale 

𝑉𝑟 relative velocity 

𝑥, 𝑦, 𝑧 streamwise, wall normal, spanwise 

positions 

∆𝑋∗ non-dimensional displacement scale 

 



Greek symbols 

𝛼 void fraction 

𝛽 non-dimensional shear-induced diffusion 

coefficient 

�̇� shear rate 

𝛬 non-dimensional shear 

𝛿𝛼 void fraction boundary layer thickness 

𝜖 shear/Stokes ratio 

휀𝑟  restitution coefficient 

𝜅 radius to wall distance ratio 

𝜏 shear stress 

𝜇 dynamic viscosity 

𝜈 kinematic viscosity 

𝜌 density 

𝜔 non-dimensional shear-induced

 migration coefficient 

 

Subscripts 

𝑎𝑑𝑑 added mass 

𝑎𝑝𝑝 approach 

 𝐶 continuous phase 

𝑐𝑜𝑙 collision 

𝐷 dispersed phase 

𝑖, 𝑗 relative to bubble 𝑖, 𝑗 

𝑜𝑣𝑙𝑝 overlap 

𝑟𝑒𝑏 rebound 

𝑠𝑡𝑎𝑡 stationary 

𝑤 wall 

𝑥, 𝑦, 𝑧 streamwise, wall-normal, spanwise 

components 

𝑥 = ⋯ , 𝑦 = ⋯ variable evaluation at 

position … 

 

Superscripts 

∗ non-dimensional variable 

𝑘 variable evaluated at time step k 

−𝑡, 𝑧 time- and z- averaged variable 

𝑅𝑀𝑆 RMS of the variable 

 

Bold style applies for vectors
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