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Abstract Trading off some accuracy for better performances in sci-
entific computing is an appealing approach to ease the exploration of
various alternatives on complex simulation models. Existing approaches
involve the application of either time-consuming model reduction tech-
niques or resource-demanding statistical approaches. Such requirements
prevent any opportunistic model exploration, e.g., exploring various scen-
arios on environmental models. This limits the ability to analyse new
models for scientists, to support trade-off analysis for decision-makers
and to empower the general public towards informed environmental in-
telligence. In this paper, we present a new approximate computing tech-
nique, aka. loop aggregation, which consists in automatically reducing
the main loop of a simulation model by aggregating the corresponding
spatial or temporal data. We apply this approximate scientific computing
approach on a geophysical model of a hydraulic simulation with various
input data. The experimentation demonstrates the ability to drastically
decrease the simulation time while preserving acceptable results with
a minimal set-up. We obtain a median speed-up of 95.13% and up to
99.78% across all the 23 case studies.

Keywords: Approximate Computing · Trade-off · Computational Sci-
ence.

1 Introduction

There is a long-standing history on numerical analysis to provide a better ac-
curacy in scientific computing. Research activities in the past decades result in
efficient solvers to accurately simulate ever more complex models. For example,
complex climate change models can nowadays be simulated to elaborate global
warming scenarios and their consequences. However, such simulations come with
the price of large computing and memory resources. While extremely useful to
elaborate accurate results on precise scenarios, the required resources limit the
possible interactions with the models. This prevents any interactive, live and
customized manipulation of such models, e.g., the ability to analyse new models
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for scientists, to support trade-off analysis for decision-makers and to empower
the general public towards informed environmental intelligence.

In this context, trading some accuracy for better performance in scientific
computing is an appealing approach to facilitate the exploration of various
alternatives on complex simulation models. This has been initially explored
through model reduction techniques [11,1], which require specific knowledge on
the model and highly-qualified analysis. Alternatively, statistical approaches are
explored to automatically infer a new (surrogate) model from a large and well-
qualified set of input/output simulations [9]. Although these approaches are
mostly automatic and potentially accurate and efficient, they usually require a
large, possibly controlled, set-up before providing acceptable results from the
inferred model.

Model reduction and statistical techniques are potentially very efficient, but
all require an important initial set-up (either time-consuming or resource-de-
manding) that prevents any opportunistic model exploration, e.g., exploration
of various scenarios on environmental models.

In this paper, we present a new approximate computing (AC) technique,
called loop aggregation. According to the main variable of interest, we auto-
matically reduce the main loop of the simulation model by aggregating to a given
degree the corresponding spatial or temporal data. This aggregation can be either
applied as a pre-processing of the input data or by model transformation. For
example, in the case of an a posteriori study of the causes of soil drying-up with
all the necessary data available, it is worthwhile to use the pre-processing imple-
mentation. Or, in the case of a crisis situation and the continuous monitoring of
a sudden and dangerous flooding episode, the model transformation will be able
to manage the available on-going data. We apply loop aggregation on a geo-
physical model of a hydraulic simulation with various input data from different
sites and climate series. The geophysical model concerns the groundwater flow
in coastal areas where sea level rise changes the distribution of saturation inland
and potentially generates risks of floodings even when submersion is properly
managed. Experiments are performed on 23 sites to investigate the potential re-
duction of computational time without significant modification of the assessment
of groundwater-issued vulnerability. Results show a median speed-up of 95.13%,
demonstrating the ability to drastically reduce the simulation time while pre-
serving acceptable results with a minimal set-up. We discuss the capacities and
limitations of the approach in the perspectives of further generalisation.

To follow up, Section 2 presents the simulation model of interest and mo-
tivates the needs for improved interactivity. After an introduction of the back-
ground related to AC in Section 3, Section 4 details the overall approach and
the rationales for a specific AC technique in the context of scientific computing.
Section 5 gives the details of experimenting the proposed approach on the sim-
ulation model of interest and Section 6 describes the evaluation conducted to
validate the approach. Section 7 presents related works on statistical approaches,
model reduction techniques and AC. Section 8 concludes the paper and gives the
perspectives related to this work.
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2 Motivating Example

Hydrologists are working to determine the impact of the sea level rise on coastal
aquifers, on increased saturation levels and associated consequences on inland
vulnerability. Between the current state of the aquifers and the predicted sea
level rise and climate scenarios, hydrological models are expected to provide
predictions.

Those models are based on the three-dimensional software Modflow [8] con-
sidered to be an international standard for simulating and predicting ground-
water movements. It is based on the Darcy’s law and conservation principles to
represent the groundwater flows. Groundwater flows are essentially modelled by
a diffusion equation with Dirichlet boundary conditions when the groundwater
level reaches the surface. The resulting parabolic partial differential equation is
discretised with a finite difference method and integrated with classical implicit
temporal schemes [8]. The quantity of interest to assess the groundwater-issued
vulnerability is derived from the depth to the groundwater level. When ground-
water levels rise to some tens of centimeters to the surface, vulnerability becomes
difficult to mitigate. Modflow requires both the geological and geographical set-
tings of the studied site (inputs illustrated as Geology and Land Use in Fig. 1)
and the meteorological forcing term (represented as the Weather input in Fig. 1)
driving the infiltration and the recharge to the aquifer. This configuration does
not change over the simulation period. The meteorological forcing term comes
from climate scenarios available on the next century with the estimation of the
different elements of the hydrological balance taken here as the input (recharge)
to the aquifer. The groundwater flow model provides over the simulation period
the location of the groundwater surface, more generally called water table.

Figure 1: Exploration of several climate scenarios simulations for various
stakeholders.

As shown in Fig. 1, although the model was created by and for hydrolo-
gists, the simulation results can also be of interest to other users. Indeed, with
growing awareness of climate change, general public including decision-makers
increasingly ask to investigate by themselves the effect of climate change on
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property and land use planning. Overall, people want to explore the different
future climate scenarios, and associated simulations, in an interactive way to
make informed decisions or to understand their impact.

Since Modflow is a complex model, its execution can last more than a day.
This simulation time is multiplied by the number of scenarios to explore which
prevent effective and interactive exploration of the predictions. Making the model
run faster would enable such exploration, but the predictions obtained must re-
main scientifically acceptable to respect the main trends and avoid any significant
bias.

Thus, there is a need for finding a trade-off between accuracy and perform-
ance. A solution is to simplify the model. However, hydrologists and/or decision-
makers may not have the expertise to make this trade-off through model reduc-
tion. This raises several scientific questions : (i) Can we make Modflow run faster
while maintaining acceptable predictions? (ii) Can we do so without any expert-
ise in hydrology or model simplification and any time-consuming/resource-de-
manding set-up? (iii) More generally, how to achieve it for scientific simulation
models? In this paper, we propose to investigate AC for scientific simulation
models to provide relevant trade-offs between accuracy and performance.

3 Introducing acceptable approximation into models

The trade-off between accuracy and performance is a well-known concern in soft-
ware engineering research. Approximate computing (AC) is one way to address
this concern automatically from a computational point of view. It relies on the
difference between the accuracy required by the developer or the user and the
accuracy given by the execution of the software [7]. It introduces approxima-
tion into the program while producing acceptable outputs with respect to the
purpose of the application thanks to an approximation strategy.

Loop perforation is an approximation strategy which assumes that iterations
of loops in a program take time to be computed when not all of them would be
necessary to achieve a result similar to that obtained from all of the iterations.
Within the software code, the appropriate loops are modified so that only a
subset of the iterations is realised. In practice, for a loop incremented by 1 at
each iteration, applying the loop perforation technique would mean changing the
increment from 1 to p so that only every p-th iteration is performed [12].

Thus, the number of iterations is reduced, fewer calculations are performed
and a gain in performance is obtained. The choice of p is made according to
the acceptability constraints made on the software outputs. Loop perforation
is a technique that achieves the trade-off between accuracy and performance
without knowledge of the application domain.

Another AC strategy, approximate loop unrolling [10], proposes, in addi-
tion to skipping iterations, to interpolate the results of non-computed iterations
thanks to an interpolation function. It enables to better preserve accuracy.

Models, such as scientific simulation models whose consideration is produ-
cing an output within an acceptable precision range and are being by definition
only an approximation of reality, can naturally benefit from a trade-off between
accuracy and performance through approximate computing.
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For scientific simulation models, the techniques of loop perforation or ap-
proximate unrolling cannot be straightforwardly applied. Removing iterations
from a simulation leads to different case studies and non-comparable simula-
tions. There is the exception of convergent simulations for which it is possible to
safely remove iterations whose results do not provide more information. However
without any information about the convergent criteria, it is not safe to assume
that scientific simulations with different numbers of iteration can be comparable.
In the case of our motivating example, Modflow, fully removing some iterations
corresponding to time steps would alter the duration of the simulation period.
Even more, meteorologic data are highly variable and cannot be easily inferred
between time steps. The recharge rate (ie. quantity of water to enter the aquifer
per time unit) varies on a daily basis. Removing iterations would change the
climate scenario. Thus, the model of Modflow undergoing loop perforation or
loop unrolling would not be comparable to the initial model.

4 Approach

To handle the issue of non-comparable simulations, we reduce the number of
computations while ensuring comparable conditions (eg. same duration of the
simulation period for Modflow). We introduce a new AC strategy adapted to
scientific models, the loop aggregation technique (depicted in Fig. 2). This
technique is similar to loop perforation and loop unrolling since it skips some loop
iterations but adds specific stages to keep the results and simulation consistent
with the baseline. It acts on the main loop of the simulator which is the loop
iterating at the highest level on all the input data and enclosing all the processing
of those data. The loop aggregation technique consists in three stages:

– aggregation (highlighted in blue): the input values of the main variable of
interest are aggregated through an aggregation function. In the case of Mod-
flow, the aggregate function consists in combining the recharge rate per day.

– processing (highlighted in violet): the operations within the loop are only
performed on aggregated values.

– interpolation (highlighted in pink): the intermediate results are retrieved
through an interpolation function.

As shown in Fig. 2, the simulation context guides the type of the loop

aggregation implementation : data pre-processing or model transformation.
Both implementations are equivalent as they reflect the loop aggregation ap-
proach. The difference is that the three stages are not carried out at the same mo-
ment. When all the input data are available before the model is run, a black-box
implementation relies on the separation of the three stages (Data pre-processing).
The aggregation stage acts as a pre-processing before the model execution, hence
the name of the strategy. The values of the input data are aggregated according
to an aggregation factor, p. The processing stage is carried out when the model
runs with the model remaining as is. The interpolation stage is then performed
as post-processing after the model execution. With a simulation context of dy-
namic data flows (ie. stream data), the model transformation strategy is used.
It is then necessary to perform the three stages of approximation dynamically
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Figure 2: The Loop Aggregation technique.

to take data into account when they are retrieved. This implies accessing the
model source code and adopting a white-box approach. All the stages and the
modifications are made within the main loop of the model and the value of the
iteration step is replaced by p, the value of the aggregation factor.

In essence, the loop aggregation technique adds an aggregation stage to
the approximation process described in approximate loop unrolling to enable
AC with scientific models. It enables a black-box implementation with separate
stages running at different times when all data are available or a white-box im-
plementation with a model transformation when dealing with dynamic data. The
number of computations is reduced by the use of the p-factor and the approxim-
ate simulation is still comparable to the reference one. In theory, the technique
can be applied to all scientific models with a main loop iterating over temporal
or spatial data. There is no need for specific knowledge about the application
domain of the model except for information about the use of the model.

5 Experimenting Loop Aggregation on Modflow

5.1 The case study of Modflow

The case study of our motivating example is based on the prediction of ground-
water movements in a watershed near Lestre in Normandy in France to assess
the risk of increased saturation at this site. The prediction period for the sim-
ulation is 42 years and is represented by 15340 stress periods (ie. time steps)
whose duration is set to correspond to a simulated day. The parameters of the
model have been set by hydrologists. Executing Modflow with those inputs and
non-aggregated data constitutes the reference simulation.

5.2 Approximating the model with the Loop Aggregation approach

We derive the approximate simulations using our loop aggregation technique
with different aggregation p-factors to assess the variation of the simulation
execution time.

In the case of Modflow, the main loop iterating over the stress periods, the
computation reduction is done by removing some of them. The values of the
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recharge rate are aggregated as it is the variable of interest. As all the input
data are available upstream, we perform our loop aggregation approach on
those data following the Data Pre-processing implementation. We experiment
two strategies for the aggregation stage (detailed hereafter) and linear regression
for results interpolation.

Strategy with the mean as aggregation function of the recharge. The
recharge data are aggregated for p being equal to 2, 7, 30, 90, 182, 365, 730
and 3652, corresponding to stress period durations of 2 days, 7 days, 1 month,
3 months, 6 months, 1 year, 2 years and 10 years. Those values of p were chosen
to represent meaningful periods for hydraulic and meteorological events.

The mean is chosen as the aggregation function. The choice has been made
according to the use of the recharge rate and according to the advice of ex-
perts to maintain the overall flux balance. To ensure comparable approximate
simulations, the aggregation has also to impact the values of the stress period
duration. Indeed, the simulation period must represent a span of 42 years. The
stress period duration of the aggregated stress periods is thus changed into the
value of p. For instance, with p=2, the inputs are modified as shown in Fig. 3a.

(a)

(b)
Figure 3: Aggregation strategies with p=2. a : mean as the aggregation function

of the recharge. b : p-th value assigned as the aggregated value of recharge.

Strategy with assigning the p-th value as the aggregated value of re-
charge. The aggregation is again carried out for p being equal to 2, 7, 30, 90,
182, 365, 730 and 3652. The stress period duration is changed into the value of p
and the recharge value of the p-th stress period is assigned as the mean recharge
value for the corresponding aggregated stress periods. The aggregation is carried
out as presented in Fig. 3b for p=2.
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5.3 Conditions of the experimentation

Modflow is run as a fortran written executable with compiled code for comput-
ing the groundwater flows in the aquifer. A wrapping software layer written in
Python by hydrologists is used to configure Modflow and format the simulation
inputs. The version of Modflow used is MODFLOW-NWT-SWR1, the U.S. Geo-
logical Survey modular finite-difference groundwater-flow model with Newton
formulation and with the version number 1.1.4 released on 04/01/2018 associ-
ated with the SWR1 which version number is 1.04.0 released on 09/15/2016.

The experimentation is done on a single node with a Intel(R) Xeon(R) CPU
E5-2650 v4 processor with 2.20GHz. Each simulation is run on a single core
with 2 threads and 8GB RAM. The model is embedded inside a Docker image
deployed on a virtual machine for each simulation. The virtual machine is a
Alpine Linux 3.4.3 amd64. Through the Docker image, the memory available for
each simulation is limited to 2Gb. These measures are taken to limit variations
in the experimentation environment.

6 Evaluation

In this section, we validate our ability to apply the loop aggregation on our
motivating scenario presented in Section 2. The goal is to answer the following
research questions :

RQ1 : Is loop aggregation able to perform substantial performance in-
crease while maintaining meaningful results for experts ?

RQ2 : Is the loop aggregation technique able to produce relevant trade-
offs for various input data such as climate scenarios and geographical sites?

6.1 Acceptation Criterion

Domain experts have established an approximation indicator called acceptance
criterion, which represents a threshold under which the indicator value should
remain for the approximated results to be considered acceptable.

Simulation approximations are defined on the quantities of interest of the
models. Considering the issues of coastal saturation, the relevant quantities de-
rive from the proximity of the aquifer to the surface. When the top of the aquifer
(water table) approaches the soil surface at a distance smaller than dc, water
resources, soil humidity, flooding risks and other human activities are impacted.
The characteristic distance dc depends on the type of human activity (eg. agri-
culture or cites). It also depends on local choices of collectivities.

However, the transition is not sharp. Rather, it is a transition zone from not
vulnerable conditions when the aquifer is deep enough to vulnerable close to the
surface (Fig. 4). The width of the transition zone will be noted ∆dc and be taken
as a linear function of dc with ∆dc(x)=αdc(x) where α is the proportionality
factor and x is the position. With dc typically of the order of 30 cm and α equal
to 1/3, the ∆dc the transition width is of the order of 10 cm.

Approximations on the quantities of interest will thus be weighted according
to their proximity to the surface with the function Ws(h), presented in Equa-
tion (1), where h is the piezometric level and zs is the altitude of the soil surface.
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Figure 4: Vulnerability zone and the associated representation of Ws.

Ws(h)=


0 if h<zs−

(
dc+

∆dc
2

)
sin

(
π
2

h−(zs−(dc+∆dc
2 ))

∆dc

)
if zs−

(
dc−∆dc2

)
≤h≤zs−

(
dc+

∆dc
2

)
1 if h>zs−

(
dc−∆dc2

) (1)

The H indicator ‖∆h‖2 on the saturation level is defined by Eq. 2. The
threshold for the H indicator is set by hydrologists to 0.1 m, meaning that any
approximation of the water table depth within a margin of 10 cm is acceptable.
Variables issued by the reference and approximate simulations are indexed by
the letters R and A respectively.

‖∆h‖2=

√∑
t

∑
xmax[Ws(hR(x,t)),Ws(hA(x,t))]∗(hR(x,t)−hA(x,t))2∑

t

∑
xmax[Ws(hR(x,t)),Ws(hA(x,t))]

(2)

6.2 [RQ1] Performance increase with loop aggregation

To answer RQ1, we assess the performance increase and the acceptation criterion
when applying loop aggregation on the Modflow model (Section 2). We use
two aggregation strategies with the same inputs (site, ie. Lestre, and recharge
series). The reference simulation is run in 34032 seconds, ie. 9 hours, 27 minutes
and 12 seconds.

Experiments with the strategy of the mean as the aggregation func-
tion. We observe in Fig. 5a&c that the most approximated the simulation is,
the fastest it is. It follows the rational idea that, for a dominantly linear model,
the duration of the execution is directly linked to the number of iterations in
the loop.With respect to the acceptance criterion, the approximated simulations
performed in our experiment with a period of less than one year (p=365) are
considered to produce acceptable outputs. Within these acceptable outputs, the
shortest execution time (1149 seconds or 19 minutes and 9.0 seconds) is obtained
with the simulation of one year stress periods. The execution time is reduced by
more than 29 times, a speed-up of more than 96.6%.
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Test with the strategy of the p-th value assigned to the aggregated
value. Loop aggregation shows again a performance gain (Fig. 5b&d). We
observe that the H indicator is higher for the same aggregation rate than for
the previous strategy which is consistent with the fact that we introduce more
approximation here (ie. the recharge values of the aggregated iterations are not
taken into account). The best speed-up is 87.49% with p=30 (Fig. 5d).

(a) (b)

(c) (d)

Figure 5: Evolution of H indicator and speed-up according to p for the mean
aggregation function strategy (a and c) and for the strategy with the p-th value
as the aggregated value (b and d). The red dashed line represents the value of

the acceptation criterion. c,d : H Ind. = H Indicator.

Stability of the execution time across simulations. To assess the stability
of the execution time obtained for the simulations, we run 30 replicates of the
reference simulation and 30 replicates of the simulation with p=365 and p=3652.
We use here the approximation with the mean aggregation function. The sum-
mary of the results is shown in Table 1. The execution times are stable enough
to back the conclusion of substantial performance increase, ie. the standard de-
viations and relative standard errors are significantly lower than the speed-up.

To answer RQ1, the loop aggregation provides substantial performance
increase while preserving accepted results for the Modflow hydraulic simulator.
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p
Number of
replicates

Mean
(s)

Median
(s)

Standard Deviation
(s)

RSE
(%)

1 30 3.57E+04 3.66E+04 3.01E+03 8.42
365 30 1.02E+03 9.68E+02 1.71E+02 16.77
3652 30 2.07E+02 2.00E+02 2.76E+01 13.33

Table 1: Variability of time across replicate simulations. RSE = Relative
Standard Error.

6.3 Approach robustness

To answer RQ2, we experiment loop aggregation with other inputs such as
climate scenarios (i.e. recharge series) or geographic sites. In these experiments,
we use the mean aggregation strategy for the following case studies.

Another climate scenario In this experiment, we use another climate scenario
while the rest of the experiment inputs remain the same as in inprevious section.
Again, loop aggregation leads to a substantial speed up 84.84% (p=90), while
remaining within the acceptation criterion.

Replication on other geographical sites. We conduct the same experiment-
ation on 22 other geographical sites. The cumulative execution time amounts to
24 days, 15 hours, 44 minutes and 27 seconds. The speed-up between the refer-
ence simulation and the fastest acceptable approximation is illustrated in Fig. 6
across the sites.

Empirically, we find that loop aggregation enables an acceptable approx-
imate simulation for all sites. The gains are not homogeneous but they are sub-
stantial. The mean and median speed-up are 91.93% and 95.13% with a minimum
of 72.26% (Doville) and a maximum of 99.78% (Graye-sur-Mer).

Figure 6: Speed-up across different geographical sites.

To answer RQ2, the loop aggregation technique provides appealing speed-
up while maintaining acceptable results with various inputs (ie. recharge series
and geographical sites).
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6.4 Threats to validity

Although we empirically validate that the loop aggregation approach gives
conclusive results for the Modflow scientific simulator in several scenarios, some
internal and external limitations remain. Our approach is not analytical but
empirical. Our technique may not be the only answer to find trade-off between
performance and acceptability with a minimal set-up. The experimentation was
carried out on a specific environment. Care should be taken to ensure that the
conclusion can be made with other environments. Moreover, while the indicator
used to determine the acceptability of the approximated results were given by
experts, it may not meet the expectations of other Modflow experts. To mitig-
ate these limitations, the experimentations have been carried out with various
inputs (several sites, another recharge series) and a second aggregation strategy.
Regarding external limitations, our implementation of loop aggregation is lim-
ited to a single scientific simulation model based on a differential equation and
to aggregating temporal data. Following works are needed to apply the tech-
nique with an aggregation on spatial data as well as including other scientific
simulation models (eg. other forms of equations).

7 Related Work

Other scientific approaches address the problem of providing trade-off between
accuracy and performance. The common goals of these works is to create a sur-
rogate model that can provide an acceptable solution while using less resources.
We can classify all these various works in three different categories : the statist-
ical approaches, model reduction approaches and AC approaches.

7.1 Statistical approaches

We gather under the umbrella of statistical approaches all techniques that con-
sist in finding correlation between a set of inputs and outputs of the model. It
therefore encompasses most machine learning and regression techniques. These
black-box techniques do not impose access to the inner model, but require both
access to a large number of inputs/outputs of the model and a training period.
At the end of the process, the original model is replaced by the learned model.

In [5], authors present an approach to efficiently explore architectural design
spaces through the replacement of simulator by a learned artificial neural net-
work. The artificial neural network is trained through sample inputs which were
obtained by repeated execution of the initial simulator.

In [4], authors describe an approach which builds a surrogate model of a
mobile network simulator. This surrogate model is then used to guide an op-
timisation technique. In [13], authors elaborate on a technique which leverage
Kriging models to be used for global multidisciplinary design optimisation.

7.2 Model Reduction approaches

Model reduction approaches[6] refer to a set of techniques that aim to reduce the
complexity of the simulation model used to represent the natural phenomenon.
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The design of the reduced model is done manually and requires both a deep
understanding of the natural phenomenon and model reduction techniques. At
the end of the process, the original model is replaced by the reduced model.

In [6], authors review the various model reduction techniques used in fluid
dynamics systems. In [2], authors present a tailored used of space and time
decomposition to transform the original model into several reduced models.

7.3 Approximate Computing approaches

AC approaches[7] refer to a set of techniques that aim to balance accuracy of
computing with performance. These techniques leverage the initial software or
model and automatically reduce its computation time by performing systematic
approximations. These techniques are automatic and systematic and keep the
structure of the original model.

In [12], authors present one of the major technique of AC : loop perfora-
tion. This technique, which is presented in more details in Section 3, consists in
reducing the required computing for a software loop by performing only a sub-
set of its iteration. In [10], authors present an approximate loop unrolling
technique for trading performance of loop over precision. They applied their tech-
nique, on computer vision library, music synthesizer library, text search engine
and a machine learning library.

Our loop approximation technique is inspired by the approximate loop un-
rolling technique but as mentioned in Section 4, applying this approach directly
on a scientific computation model would radically change the case study and
therefore it is not suitable.

Other works have been proposed to reduce the computation of loop iterating
over matrices. In [3], authors present an approach, called randomized numerical
linear algebra, which intends to remove randomly (according to a distribution
law) some data from a matrix to accelerate its processing. As mentioned before,
removing data is not a suitable approach since it will completely change the
subject of study.

8 Conclusion and Future Work

In this paper, we propose loop aggregation, an approximate scientific comput-
ing technique, that enables to automatically and systematically reduce the main
loop of a simulation model by aggregating the corresponding spatial or temporal
data. It can either be implemented as a black-box approximation with a data
pre-processing or as a white-box model transformation. Our experimentation on
a hydraulic simulator shows a median 95.13% speed-up of the simulation time
while preserving acceptable results for all the 23 use cases. The approach is sup-
ported with a minimal set-up as opposed to time-consuming model reduction
and resource-demanding statistical techniques. The flexibility provided ensures
that users can explore the simulations according to their specific constraints.

These results encourage further validation of the loop aggregation ap-
proach on other scientific simulation models with other forms of equations or



14 J. Sallou et al.

other simulation contexts. The technique does not replace the other statistical
or model reduction approaches applied to scientific models but rather comple-
ments them. Indeed, thanks to its minimal set-up, it can be used during a first
approximation phase to generate input/output pairs that can later be used for
more efficient statistical approaches as well as allowing a first exploration of the
model to better understand it for a possible model reduction approach later on.
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