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Modal Analysis of Chiral Metamaterial Using
Characteristic Mode Analysis and Eigenmode
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Abstract—A chiral metamaterial (MTM) is analyzed using two
modal analysis methods: Characteristic Mode Analysis (CMA)
and Eigenmode Expansion Method (EEM). Chiral MTMs are
commonly associated to antennas and other microwave devices
due to their ability to interact with electromagnetic waves and
alter their polarizations. Here, the interaction of a chiral helix
with linearly polarized electromagnetic plane waves is studied
and asymmetric transmission is demonstrated. The different
metrics given by CMA and EEM are analyzed and compared. It
is shown that the modal weighing coefficient is a good metric to
analysis the chiral properties of the MTM and these results are
validated using a full-wave approach. It is also shown that if the
two modal approaches propose very close results qualitatively, the
maximum value of the modal current density obtained by EEM
is closer to the one obtained by full-wave simulations. The modal
approaches presented to analyse chiral MTM can be applied for
the analysis of circularly polarised chiral metamaterial-inspired
antennas.

I. INTRODUCTION

Over the last two decades, numerous research works have
investigated Metamaterials (MTMs) which are highly desirable
for applications ranging from antennas to microwave devices.
The significant contribution of MTMs in improving antenna
performances, such as gain [1], bandwidth and radiation pat-
tern [2] has been widely demonstrated. In [3], MTM-inspired
antennas include resonant parasitic elements into the near-
field region of a driven radiator so that the strong coupling
between them helps to achieve high radiation efficiency. More
recently, exotic electromagnetic properties of chiral MTMs
have been experimentally demonstrated including negative
index refraction [4], [5], elliptical or circular dichroism [6],
polarization transformation [7] and giant optical activity [8].
Another appealing feature is the circular conversion dichroism
yielding an asymmetric transmission phenomenon which can
be of interest for the design of circularly polarized MTM
antennas [9].

Calculation of the effective parameters (electric permittivity
and magnetic permeability) [10], [11] is a common technique
for the design and evaluation of MTMs. However, numerical
techniques based on modal expansions such as the Eigenmode
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Expansion Method (EEM) [12] and Characteristic Mode Anal-
ysis (CMA) [13] are now extensively studied [14] to bring
more physical insight on the radiation phenomena. EEM and
CMA are attractive methodologies for MTM antenna designs
because they are excitation independent and applicable to
arbitrarily shaped structures. Furthermore, since it has been
claimed [3] that enhanced antenna performances of electrically
small MTM antennas are obtained by stored energy compen-
sation, the evaluation of modal stored energies by MTMs is
of great interest. Stored energy is based on the knowledge of
the current sources of energy densities and on the evaluation
of eigenvalues [15], [16]. The comparison between CMA and
EEM is interesting since CMA is an approximate and fast
approach with real eigenvalues and eigencurrents, whereas
EEM is an absolute approach with complex eigenvalues and
eigencurrents.

To date, chiral MTMs have been analysed using the nu-
merical or analytical evaluation of reflection and transmission
coefficients [17]. The purpose of this paper is to demonstrate
that modal approaches can bring more physical insight for the
design of efficient chiral antennas. To support this objective,
it is essential to show which metrics of modal approaches
are relevant to highlight the properties of chiral MTM and
how to compare them to existing techniques [18]. In [19], an
intrinsic chiral MTM based on a spiral helix was analyzed
for the first time using both EEM and CMA. The net stored
energy of the inclusion was evaluated and it was demonstrated
that a circular polarized (CP) wave is transmitted by the helix
when it is excited by a linearly polarized plane wave at normal
incidence. In this expanded paper, we are more specifically
interested in studying, interpreting and comparing the metrics
given by both CMA and EEM methods for the chiral MTM
helix. These metrics include stored energy, Modal Significance
(MS), modal surface current density and Modal Weighting
Coefficients (MWCs). The asymmetric transmission of the
chiral helix is demonstrated using the MWCs and validated
by a comparison with a full-wave analysis. A qualitative
and quantitative analyses will also be proposed to highlight
the most appropriate modal approach for studying this chiral
MTM.

The paper is organized as follows. In section II, CMA and
EEM are introduced and compared. Section III gives a brief
review of the chiral MTM helix under consideration and details
its properties such as the asymmetric transmission of linearly
polarized EM waves. In section IV, results in terms of modal
metrics are presented along with a numerical validation using
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a full-wave analysis. Section V finally discusses the relevance
of the modal approaches for studying chiral MTM while
proposing a critical comparison between the two approaches
CMA and EEM.

II. MODAL APPROACHES

A. Eigenmode Expansion Method (EEM)

The eigenmodes are described by the standard eigenvalues
equation [12], [20] as follows:

Z(~Ieemn (~r, ω)) = Υeem
n

~Ieemn (~r, ω). (1)

where Z is a linear operator, ~Ieemn and Υeem
n are the eigen-

currents and eigenvalues, respectively, r̃ represents the field
point and ω denotes the angular frequency. The EEM can
be computed from a modal decomposition of the Method of
Moments (MoM) impedance matrix [21]. It is obvious from
(1) that the eigenvalues and the eigencurrents are independent
from the incident field. Both Υeem

n and ~Ieemn are complex
quantities.

Let us consider a Perfect Electric Conductor (PEC) body
excited with an incident field ~Ei. The induced current ~I
produced by the incident field radiates a scattered field ~Es.
After applying the boundaries conditions on the tangential
field, the scattered field can be defined by [21]:

[ ~Es]tan = −Z(~Ieem). (2)

Equation (2) demonstrates that the tangential component
of the electric field and the current distribution have the
same behavior on the surface of PEC bodies. Applying the
orthogonality, the total current is given by:

~Ieem =
∑
n

〈~Ieemn , ~Ei〉
Υeem

n 〈~Ieemn , ~Ieemn 〉
~Ieemn . (3)

Using (1) and (2) and considering the Poynting theorem, the
eigenmodes can be expressed as

Υeem
n =

Prad(~Ieemn ) + jω[Wm(~Ieemn )−We(~I
eem
n )]

〈~Ieemn
∗, ~Ieemn 〉

, (4)

where Prad(~Ieemn ) is the radiated power and [Wm(~Ieemn ) −
We(~I

eem
n )] represents the net stored energy of the eigenmode.

After normalizing (4) to 〈~Ieemn
∗, ~Ieemn 〉 , the eigenvalues be-

come:

Υeem
n = Prad(~Ieemn ) + jω[Wm(~Ieemn )−We(~I

eem
n )]. (5)

To easily manipulate the eigenvalues of the eigenmodes, which
are complex quantities as defined above, it is important to
define the ratio between the imaginary and real parts of the
eigenvalues Υeem

n [22], [23]. Using (5), we can introduce:

λeemn =
[Wm(~Ieemn )−We(~I

eem
n )]

Prad(~Ieemn )
. (6)

As λeemn represents the ratio between the net stored power and
the radiated power, it gives some physical insight on the nature
of the eigenmodes [24]. Therefore, for antennas and scattering
problems, it is interesting to focus on the eigenmodes with the
smallest magnitude of λeemn .

B. Characteristic Mode Analysis (CMA)

Characteristic modes (CMs) can be defined with the gener-
alized eigenvalues problem [14]:

X(~Ichan (~r, ω)) = λchan R(~Ichan (~r, ω)), (7)

where λchan are the characteristic values, ~Ichan are the charac-
teristic currents, and R and X are respectively the real and
imaginary parts of the impedance operator [21], R = Z+Z∗

2

and X = Z−Z∗

2j being symmetric and real matrices [14], [25].
Since Ichan is a real quantity, the characteristic currents are
equiphase. The characteristic values are defined by:

λchan =
[Wm(Ichan )−We(I

cha
n )]

Prad(Ichan )
. (8)

Based on the reciprocity theorem, it is known that if Z is a
linear symmetric operator then R and X are real symmetric
operators. Therefore, the characteristic values λchan and the
characteristic currents Ichan are real quantities. It is important to
note that the characteristic values and currents are independent
of any excitation. The characteristic currents ~Ichan on the PEC
depend only on the conductor shape and size [20]. The total
current ~Ichan can be defined as the combination of all modal
currents:

~Icha =

N∑
n=1

cn~I
cha
n , (9)

where cn is the complex modal expansion coefficient which
defines the weighting of each mode of the total current. The
total current can also be written as:

~Icha =

N∑
n=1

V i
n
~Ichan

1 + jλchan

, (10)

where V i
n represents the modal excitation coefficient. By

combining (9) and (10), the modal expansion coefficients can
be expressed as:

|cn| =
∣∣∣∣ V i

n

1 + jλchan

∣∣∣∣ = |V i
n|MS, and (11)

MS =

∣∣∣∣ 1

1 + jλchan

∣∣∣∣ . (12)

From (11), it is interesting to note that the excitation of the
desired mode not only requires a large Modal Significance
(MS) but also a large modal excitation coefficient. Moreover,
to better define the coupling between the nth characteristic
current and an external excitation, we define the MWCs as
follows:

Wn =
V i
n

1 + jλchan

. (13)

The eigenvalues of the CMs represent the ratio between the
net stored power and the radiated power. As for the EEM, the
net stored energy within a scattering or radiation problem is
proportional to the magnitude of the eigenvalues.

C. Stored energy for CMA and EEM

For both EEM and CMA, the eigenvalues give a physical
insight in terms of net stored energy. Modes with positive
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eigenvalues are linked to magnetic stored energy, whereas
modes with negative eigenvalues are linked to electric stored
energy. Zero eigenvalues indicate a resonance. Also, the eval-
uation of the stored energy in the near-field allows to better
classify the MTM as a magnetic or an electric structure, i.e., to
better associate MTMs to antennas according to their electric
or magnetic nature. The expression of the stored energy for the
radiating structure was determined in [15]. Other approaches
were proposed in [16], [26]. It is important to note that for
EEM, the computation of the stored energy is based on the
ratio between the imaginary and real parts of the eigenvalues,
as mentioned in (6). In this paper, the evaluation of the stored
energy Wsto is based on the expression [27] given by:

Wsto =
1

4ω
IHX ′I, (14)

where X ′ is expressed in (13) by:

X ′ = ω
∂X

∂ω
, (15)

I represents the eigencurrents and the superscript H denotes
the Hermitian transpose. The stored energy Wsto is the con-
tribution of electric (We) and magnetic (Wm) energies. These
quantities are defined as:

Wm =
1

8ω
IHXmI, and (16)

We =
1

8ω
IHXeI, (17)

where X is the reactance part of the impedance matrix and
Xe = X ′ −X and Xm = X ′ +X .

These equations are used both for CMA and EEM to
compute the energy stored by complex structures. For CMA,
the stored energies are real quantities and for EEM, the stored
energies are complex quantities since the eigencurrents are
complex values. The net stored energy is thus evaluated as
<e(Wm −We).

D. Comparison between CMA and EEM

The main features and properties of the metrics associated
to the two modal approaches are summarised in Table I. CMA
is an approximate approach since the characteristic values and
currents are assumed real, i.e, the phase current is neglected,
making the interpretation of CMs easier. A major feature that
makes CMA attractive is that the CMs are orthogonal in terms
of currents and far fields. Thus, the CMs form a very useful
basis set in the expansion of any possible fields or currents
associated with a PEC body. On the other hand, EEM is
an absolute approach because the eigen values and currents
are complex quantities. The EEM eigenmodes do not hold
the electromagnetic power orthogonality in general since the
eigenmodes are complex. In section IV, a comparison between
the two methods is performed.

III. DESCRIPTION OF CHIRAL METAMATERIAL

In this section, a brief review of chirality is introduced. Chi-
ral MTMs represent a special category of artificial structures

TABLE I
COMPARISON OF PROPERTIES BETWEEN CMA AND EEM.

CMA EEM
Based on the gen-
eralized eigenvalues
X( ~In

cha
(r, ω)) =

λ cha
n R( ~In

cha
(r, ω))

Based on the
standard eigenvalues
Z( ~In

eem
(r, ω)) =

Υeem
n

~In
eem

Approximate
approach

Absolute approach

Easy to manipulate
(Real quantities)

Difficult to manipu-
late (Complex quan-
tities)

The stored and the
net stored energies
are equal and real
quantities (real cur-
rents)

The stored energy is
complex (complex
currents) and the net
stored energies is
evaluated as the real
part of the stored
energy

The characteristic (eigen) values and currents
are independent from the source.

referring to geometries that cannot superpose to their mirror
images and have no plane of symmetry. The electromagnetic
properties of chiral material are Optical Activity (OA) and
Circular Dichroism (CD). OA represents the rotation of a
polarization wave after propagating through a chiral material.
CD defines the absorption or transmission between the Left
Hand Circularly Polarized (LHCP) and the Right Hand Cir-
cularly Polarized (RHCP) waves [28]. As a consequence of
anti-symmetry in chiral MTMs, a high coupling between the
magnetic and electric fields exists in this category of MTMs.
The relationship equation between the electric and magnetic
fields is described by:

~D = ε ~E + jκ ~H, and (18)

~B = µ ~H + jκ ~E, (19)

where ~D, ~E, ~H , ~B are the displacement vector, electric field,
magnetic field and the magnetic flux density, respectively. The
parameters ε, µ and κ are the permittivity, permeability and the
chiral parameter, respectively. The latter defines the coupling
strength between the magnetic and the electric fields. When η
is equal to zero, (18) and (19) have the same form as isotropic
materials. In Table II, a comparison of the properties of a
chiral medium and a simple isotropic medium is presented.
It is interesting to note that the intrinsic wave impedance is
independent of η. Due to the existence of η, the degeneracy
of the two CP waves is broken, i.e., the refractive index is
increased for one CP and reduced for the other one [29].

There are two types of chiral MTMs, the extrinsic chiral
MTM, with a non-symmetry of the 3D structure and the
intrinsic chiral MTM such as the chiral helix which has
intrinsic chirality for its continuous stereo structure [28]. The
latter type of chiral MTMs is widely used to achieve the
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TABLE II
COMPARISON OF PROPERTIES BETWEEN ISOTROPIC AND CHIRAL MEDIUM.

Characteristics Isotropic
Medium

Chiral Medium

Constitutive relations
~D = ε ~E ~D = ε ~E + jκ ~H
~H = ~B/µ ~B = µ ~H + jκ ~E

Wave-numbers k =
ω
√
µε

k± = ω[±γ +√
µcεc]

Eigenmodes Linear po-
larization

Circular polariza-
tion

Intrinsic impedance ζ =
√
µε ζc =

√
µcεc

broadband conversion of polarization in the terahertz range.
In this paper, we are interested in the optimal chiral helix
characterized by its equivalent magnetic, dielectric and chiral
properties [18]. The equivalence between these three properties
leads to a circularly polarized wave transmitted by the optimal
helix [18].

Fig. 1. The chiral MTM inclusion.

Fig. 1 shows the structure of the optimal helix that will
be studied using CMA and EEM. The design of the structure
consists in a single turn PEC strip helix whose dimensions are
R = 7.75 mm, h = 12 mm, 2r = 1.55 mm with a pitch angle
of α = 13.65 ◦ [18].

IV. RESULTS

A. Modal Analysis of the Chiral MTM

The MoM solver of the commercial tool FEKO is used to
design the chiral helix described in section III and calculate its
impedance matrix Z. The Z-matrix is extracted and the CMs
and eigenmodes are computed. For EEM, the eigen modes
are sorted according to the ratio between the imaginary and
real parts of the complex eigenvalues. The chosen frequency
band is relatively narrow and no modal tracking issues were
observed for CMA and EEM for the first two modes.

The different modal metrics of CMA and EEM are analysed
and discussed showing how the properties of chiral MTMs can
be highlighted using these metrics. The modal approach differs
from [18], [30] where reflection and transmission coefficients,
either numerically or analytically determined, are used for the
analysis of the chiral MTMs.

1) Modal net stored energy: The modal net energy stored
<e(Wm − We) by the eigenmodes and CMs of the chiral
helix are evaluated and compared. The first two modes are
calculated for both modal methods assuming that only two
modes are sufficient to analyze electrically small structures
[31]. <e(Wm−We) are plotted in Fig. 2 for CMA and EEM.
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Fig. 2. Real-part of the net stored energy against frequency for the modes 1
and 2 computed by CMA and EEM.

For modes 1 and 2, the net stored energy (normalised to the
radiated power) is similar for CMA and EEM. A resonance
is identified when <e(Wm − We) is zero. For both CMA
and EEM, the helix resonates at 2.82 GHz. The net stored
energy of mode 1 is positive before the resonant frequency
and negative after the resonant frequency, showing that the
energy switches from magnetic to electric at resonance. Mode
2 presents a net stored magnetic energy greater than the
electric one in the whole frequency band of interest for both
methods. It is found that the eigenmodes and the CMs behave
similarly in terms of net stored energy.

2) Modal Significance (MS): In CMA and EEM theories,
the MS is an important parameter as it states the coupling
capabilities of each mode to the external source. As described
in (12), the MS transforms the eigenvalues interval from
[−∞,+∞] to [0, 1]. Fig. 3 shows the MS evaluated by CMA
and EEM.

Only mode 1 is a resonating mode since it has MS > 0.7
[14] for both CMA and EEM. The resonant frequency is
2.82GHz. The MS of mode 2 and 3 is less than 0.7 in the
whole frequency band. The MS of the CMs is similar to the
MS of the eigenmodes for the chiral helix.

3) Modal surface current distribution: To provide a better
analysis of the eigenmodes and CMs, it is essential to study
the current distribution of the different modes. Fig. 4 presents
the modal current of the first two modes for both methods.

For CMA, the current are real quantities, as demonstrated in
section II. Therefore, the characteristic currents are equiphase.
For EEM, the eigenmodes are complex and the current distri-
bution is not equiphase (phase not shown). For both methods,
only mode 1 can radiate since it is a resonating mode. Unlike
mode 2, the current is asymmetric and this will cause a
cancellation of the electric field ~E in the far field region. The
other modes can hardly be excited at 2.82 GHz, since their
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Fig. 4. Magnitude of the surface Current for the first two modes for CMA
and EEM at 2.8 GHz (isometric view) (a) Current distribution of mode 1
by CMA with maximum of 1.1 Am−2(b) Current distribution of mode 2 by
CMA with maximum of 1.05 Am−2(c) Current distribution of mode 1 by
EEM with maximum of 0.065 Am−2(d) Current distribution of mode 2 by
EEM with maximum of 0.063 Am−2.

MS is pretty low. The two methods behave similarly in terms
of current distribution but they show differences in terms of
magnitude (for mode 1, the maximum value is 1.1 Am−2 for
CMA and 0.065 Am−2 for EEM).

4) Modal Weighting Coefficient (MWC) : In this part,
the asymmetric transmission property of the chiral helix is
analyzed using MWCs, the figure of merit characterizing how
each mode reacts under an external excitation. The excitation
is provided by a linearly-polarized plane wave propagating in
the forward or backward directions at an incidence angle of
45 ◦ The two possible configurations of polarization TE and
TM are depicted in Fig. 5.

In the TE case, the electric field ~E is polarized along the
helix axis (~x axis) whereas the magnetic field ~H is along the
helix axis in the TM case. The excitation source is placed at

Fig. 5. TE and TM polarization with an incidence angle 45 ◦.

±d in the ~x direction to analyze the two opposite directions of
propagation. Then, the MWC of the dominant mode, i.e., mode
1, is computed for the forward and backward propagation. Fig.
6. shows the MWC of mode 1 under TE and TM polarizations.

Fig. 6. Modal Weighting coefficient of Mode 1 under TE and TM with an
incidence angle 45 ◦. Inset depicts a projection of the helix in the xy plane.

It is clear from Fig. 6 that an asymmetric transmission is
observed since the response of the chiral helix is different for
forward and backward propagation. The difference between
the two responses is very large in the TM case and much lower
in the TE case. We conclude that the helix response is more
affected by a magnetic excitation as the net stored energy in
the near region of the helix is electric as demonstrated above.

To sum up the previous results, it has been demonstrated
that the different metrics evaluated by both CMA and EEM
are similar in terms of stored energy, MS and modal current
distribution. Therefore chiral helices can be analyzed using
either CMA or EEM. In addition, MWC is a good metric to
highlight chiral properties in modal techniques.

B. Full Wave Simulation of the Chiral MTM

In this section, the properties of the chiral MTM are
analysed in terms of cross polarization conversion using the
scattering parameters of an array of periodically distributed
chiral helices with a periodicity of 15 mm and 20 mm
along the ~y and ~x axes respectively. The periodic array is
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investigated with the frequency domain finite-element solver
of the commercial simulation tool ANSYS HFSS. Floquet-
Bloch periodic boundary conditions are applied. Floquet ports
are used for the excitation and an incidence angle of 45 ◦ is
applied. Only the fundamental mode is considered in each
configuration.
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Fig. 7. Reflection coefficient of the chiral helix for the TE and TM polariza-
tion with an incidence angle of 45 ◦ for different propagation directions.

The reflection coefficients are presented Fig. 7 for the
TE and TM configurations and the forward and backward
propagation directions with a 45 ◦incidence angle. The res-
onant frequency is at 2.82 GHz. For the TE configuration,
the reflection coefficients for the two opposite propagation
directions show a slight difference of 1 dB while the difference
is more significant of 4 dB for the TM configuration. This
highlights that the full-wave simulations validate the asym-
metric transmission of chiral helices previously demonstrated
by modal analysis (MWCs).

V. DISCUSSIONS

The results presented in section IV-A-4 has shown that
Modal Weighting Coefficient is good metric to demonstrate
chiral properties. This has been further validated by the full-
wave analysis presented in IV-B. Indeed for the chiral MTM
(Fig. 1), the asymmetric transmission is slightly different for
the TE forward and backward propagation. For the TM con-
figuration, the difference on the reflection coefficients is more
remarkable for the two opposite propagation directions. A
good agreement between the modal analysis and the full wave
simulation results is found. To provide further comparison
between the two modal techniques (EEM and CMA), the
surface current density on the chiral MTM is calculated. Fig. 8
shows the current given by the full wave analysis and modal
approaches for mode 1 by CMA and EEM.

Mode 1 being resonant and predominant, it is the only mode
shown here. The maximum values of the magnitude of the
surface current density are given in Table. III.

TABLE III
COMPARISON BETWEEN THE MAXIMUM VALUES OF THE SURFACE

CURRENT DENSITY COMPUTED BY FULL-WAVE ANALYSIS, CMA AND
EEM.

Full-wave analy-
sis

CMA (Mode 1) EEM (Mode 1)

0.0721 Am−2 1.1027 Am−2 0.0662 Am−2

Though, from a qualitative point of view, the current dis-
tribution is identical in all approaches and from a quantitative
point of view, EEM shows closer results to the full wave
analysis. To conclude, the results given by CMA and EEM
show similarities in terms of net stored energy, current distri-
bution and modal significance, therefore chiral MTMs can be
analyzed using CMA or EEM. Moreover, modal approaches
can be used to demonstrate the asymmetric transmission of
chiral MTMs.

VI. CONCLUSION

This paper described the analysis of a complex MTM, i.e.
a chiral MTM inclusion based on a spiral helix using two
modal analyses, CMA and EEM. The chiral helix with a single
turn is characterized by an intrinsic chirality, i.e., a CP wave
transmission at normal incidence. The two methods showed
similarities in terms of resonant frequency, modal significance,
net stored energies and surface current density distribution.
Similar current distributions were observed for both modal
methods and the full-wave analysis one. However, current
values (maximum of current at resonance) are much closer
to the direct analysis for EEM.

To demonstrate that chiral MTMs exhibit an asymmetric
transmission for linear polarization, the MWCs were evaluated
for TE and TM configurations of forward and backward
propagation directions at an incidence angle of 45 ◦. Different
MWCs were observed for the two propagation directions
which was validated and confirmed using the full wave simu-
lation.

The effect of the chiral MTM helix on the field polarization
can be exploited for the design of circularly polarized MTM-
inspired antennas. The use of modal approaches and more
specifically EEM should prove to be useful to take into account
the coupling between the chiral MTMs and the antenna.
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