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Abstract

In this article, we study the long-time behaviour of a system describing the coupled motion
of a rigid body and of a viscous incompressible fluid in which the rigid body is contained. We
assume that the system formed by the rigid body and the fluid fills the entire space R3. In the
case in which the rigid body is a ball and the initial data are small, we prove the global existence
of solutions for this system and we describe their large time behavior. Our main result asserts,
in particular, that if the initial datum is small enough in suitable norms then the position of the
center of the rigid ball converges to some ho, € R3 as time goes to infinity. This result contrasts
with those known for the analogues of our system in 2 or 1 space dimensions, where it has been
proved that the body quits any bounded set, provided that we wait long enough. To achieve this
result we use a “monolythic” type approach, which means that we consider a linearized problem in
which the equations of the solid and of the fluid are still coupled. An essential role is played by the
properties of the semigroup, called fluid-structure semigroup, associated to this coupled linearized
problem. The generator of this semigroup is called the fluid-structure operator. Our main tools
are new LP — L7 estimates for the fluid-structure semigroup. Note that these estimates are proved
for bodies of arbitrary shape. The main ingredients used to study the fluid-structure semigroup
and its generator are resolvent estimates which provide both the analyticity of the fluid-structure
semigroup (in the spirit of a classical work of Borchers and Sohr) and L? — L7 decay estimates (by
adapting a strategy due to Iwashita).
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1 Introduction

We consider a homogeneous rigid body which occupies at instant ¢ = 0 a ball B of radius R > 0 and
centered at the origin and we study the motion of this body in a viscous incompressible fluid which
fills the remaining part of R3. We denote by h(t), S(t), F(t) the position of the centre of the ball,
the domain occupied by the solid, which coincides with the ball of radius R centered at h, and the
domain filled by the fluid, respectively, at instant ¢ > 0. Moreover, the velocity and pressure fields
in the fluid are denoted by u and p, respectively. With the above notation, the system describing
the motion of the rigid ball in the fluid is

Ou+ (u-V)u— pAu+Vp=0 (t>0, ye F(t)),
divu =0, (t>0, yeFt)),
(t y) = h(t) + w(t) x (t>0, y € dF(t)),
(

/88 o(u,p)rds t>0), 1)
/ ) x o(u,p)rds (t>0),
aS(t

u(0,y) = uo(y) (y € 5(0)),

R(0) = 0, h(0) = £o, w(0) = wo.

In the above equations, w(t) represents the angular velocity of the ball (with respect to its centre)
and the fluid is supposed to be homogeneous with density equal to 1 and of constant viscosity
i > 0. Moreover, the unit vector field normal to 0S(t) and directed towards the interior of S(t) is
denoted by v(t,-). The constant m > 0 and the matrix J stand for the mass and the inertia tensor
of the rigid body. Since in the above equations the rigid body is a homogeneous ball of radius R,
we have

2mR?
J = Is.
58
Finally, the Cauchy stress tensor field in the fluid is given by the constitutive law
0 0
oty P)ke = —ple + 1 | o 4 2L (1 <k, l<3),
6 ayk

where dy¢ stands for the Kronecker symbol.
The system ([1.1) can be easily transformed into a system in which the fluid equation is set in
a fixed spatial domain. Indeed, using the change of frame z — y(t,x) := x + h(t) and setting

vo(z) = wo(x), v(t,x) =ult,z+h(t)), w(t,z)=p(t,x+h(t)), L) = h(t) (t > 0,2 € F(0)),

and E := F(0) = R®\ B, equations (I.1)) can be written in the form of the following system of
unknowns v, 7, £ and w:

00+ [(v =€) - Vv — pAv + Vr =0 (t>0,2 € E),
dive =0, (t>0,z€kl),
v=~_L+wXxz (t>0,z€0FE),
d t > 0),
/BEO'UTFZ/S ( ) (12)
/azxavﬂ'yds, (t >0),
OF
(0, ) = vo(x) (w € B),
£(0) = o, w(0) =



As far as we know, the initial and boundary value problem has been first studied in Serre [20],
where it is proved, in particular, that admits global in time weak solutions (of Leray type).
The existence and uniqueness of strong solutions, with initial velocity supposed to be small (in the
Sobolev space W'2) has been first established in Cumsille and Takahashi [4]. For the L? theory for
the local in time existence and uniqueness of strong solutions of we refer to Geissert, Gotze
and Hieber [7]. Let us also mention that the analogue of when the fluid-rigid body system fills
a bounded cavity Q (instead of the whole R?) has also been studied in a quite important number
of papers (see, for instance, Maity and Tucsnak [I8] and references therein). A natural question
when considering is the large time behaviour of the position of the mass centre of the ball,
i.e., of the function h defined by

h(t) = /0 0(s) ds (t > 0).

It is in particular important to establish whether the centre of the rigid ball stabilizes around some
position in R? or its distance to the origin tends to infinity when ¢t — co. As far as we know,
this question is open in the three dimensional context of . However, if one replaces the rigid
ball by an infinite cylinder (so that the fluid can be modeled by the Navier-Stokes equations in
two space dimensions) the question is studied in Ervedoza, Hillairet and Lacave [6], where it is
established that the norm of ¢(¢) behaves like % when ¢t — oo, thus not excluding the possibility of
an unbounded trajectory of the rigid ball. Other results in the same spirit concern Burgers type
models for the fluid, like Vazquez and Zuazua [25], or one dimensional viscous compressible fluids,
like Koike [I5].

The main novelty brought in by our work is twofold. Firstly, we prove that is well-posed
(globally in time) for initial data which are small in appropriate L? type spaces. Secondly, by
appropriately choosing ¢, we prove that there exists ho, € R? such that lim; o h(t) = heo, i.e.,
that the rigid body “stops” as t — oo.

To state our main result we first recall that if G C R? is an open set, ¢ > 1 and s € R, the
notation LY(G) and W*9(G) stands for the standard Lebesgue and Sobolev-Slobodeckij spaces,
respectively. Our main result can be stated as follows:

Theorem 1.1. With the above notation for the set E, let g € (1,3/2]. Then there exists g > 0
such that for every vy € [L9(E)]* N [L3(E)]3 and ly, wo € R with

3
v € [W2’3/2(E)} (1.3)
divyg =01in E, (1.4)
vo(x) =€y +wo X (x € 0B), (1.5)
[vollza(mys + lvoll sy + Iollrs + llwollrs < €0, (1.6)
there exists a solution (v,£,w) of (1.2) in C°(]0, 00); [L?’(E)]3 x R3 x R?) such that
sup {22021 (o (8) |2 gy + 1608l + w(t)[s)} < oo (1.7)
Moreover, for every q1 € [3,00) this solution satisfies
sup{t*/ 20/ ([|o(8) | por gy + 1608 s + lw(t)llrs)} < oo, (1.8)

t>0

and
SUp [ VUl z/2 gy < o

In particular, if ¢ < 3/2, taking qi sufficiently large in (1.8) we have that £ € L'(]0,00); R?), hence
that the position of the centre of the moving rigid ball converges to some point at finite distance
heo € R? ast — 0.



The proof of Theorem [I.1]is based on decay estimates for the solutions of the linearized version of
(1.2). Therefore, an important part of this work is devoted to the study of the semigroup associated
to the linearized problem. As shown in the forthcoming sections, this semigroup, called the fluid-
structure semigroup, and its generator (called the fluid-structure operator) share several important
properties of the Stokes semigroup and Stokes operator in an exterior domain. To establish this fact
an essential step consists in proving that the resolvent estimates derived in Iwashita [I3] and Giga
[8] for the Stokes operator also hold for the fluid-structure operator (see also the corresponding
estimates for the non autonomous system describing the Navier-Stokes flow around a rotating
obstacle, which have been obtained in Hishida [I1] and [12]). Our results on the linearized problem
will be derived for a solid of arbitrary shape, opening the way to a generalization of Theorem to
situations in which the solid is not necessarily a ball. However, the fixed point methodology used
in the present paper to pass from the linearized equations to the full nonlinear problem requires
that the rigid body is a ball (see the comments in Section |§| below concerning some tracks towards
the modification of this procedure for tackling rigid bodies of arbitrary shape).

Note that Theorem refers to mild solutions of , i.e., satisfying the integral equation

v(t, ") o ¢
) | =1 o] + / T, .Pf(s)ds (t>0), (1.9)
w(t) wo 0
where
F(5,2) = ~Lp(@) [(v(s5,2) — £(5)) - V] (s, 2)) (re B s>0),

T = (Tt)t>0 is the fluid-structure semigroup and P is a Leray type projector on the space of free
divergence vector fields on R? which coincide with a rigid velocity field on B. A precise definition
of these objects requires some preparation and notation, so it is postponed to Section [3| However,
we mention here that the roles of the projector P and of the fluid-structure semigroup in this paper
are very close to those played by the Leray projector and the Stokes semigroup in the analysis
of the Navier-Stokes equations. Consequently, the construction and study of the fluid-structure
semigroup and of its generator are essential steps of our analysis, which are detailed in Sections
Band

As shown in Section[§] Theorem [I.T]can be extended to weaker notions of solutions, in particular
to initial data vy € [L9(E)]* N [L?’(E)]3 and vy, wp € R? which satisfy and

divvg=0in FE, vo v = ({y+wo Xz vondB. (1.10)

In this case, the solution of is given in a much weaker sense which will be made precise in
Section [§] Theorem [8:I0] Section [9] will then provide some further comments.

The outline of the paper is as follows. In Section [2| we introduce the notation (in particular
several function spaces) that will be used throughout the article and we recall several results on
the Stokes system exterior domains. In Section [3| we introduce the fluid-structure operator and
we give some of its basic properties. Section [4] is devoted to resolvent estimates for the fluid-
structure operator. We use existing results on the Stokes system exterior domain to derive our
results. In Sections [f] - [6] we show that the fluid-structure operator generates a bounded analytic
semigroup on a suitable Banach space. We prove, in particular, LP — L? decay estimates for the
fluid-structure semigroup in Section[7} Section [§]is devoted to the proof of main result, Theorem
and its generalization. In Section [9} we formulate some open problems. Some technical results are
collected in Appendix [A] and in Appendix [B]



2 Notation and preliminaries

Throughout this paper, the notation
N, Z, R, C

stands for the sets of natural numbers (starting with 1), integers, real numbers and complex num-
bers, respectively. For n € N, the euclidian norm on C™ will be simply denoted by |-|. For § € (0, )
we define the sector ¥y in the complex plane by

Se={AeC\{0} | |arg)| <6} (2.1)

Moreover, Z; stands for NU{0}. For n, m € N, u: R" — R™ and o € Z"} we set |a| = >, _; o,
alely
oz{l..xnn

If G C R3 is an open set, ¢ > 1 and k € N, we denote the standard Lebesgue and Sobolev spaces
by L(G) and by W*4(G), respectively. For s € R, W*9(G) denotes the Sobolev-Slobodeckij
spaces. The norms on [L(G)]™ and [Wk’q(G)]n with n € N, will be denoted by || - ||4,¢ and
| - llk.q.c» Tespectively. When G = R?, these norms will be simply denoted by || - ||, and || - ||.qs
respectively. Moreover, the space Wéc /(@) is the completion of C§°(G) with respect to the W4(Q)
norm. We also introduce the homogeneous Sobolev spaces

and we use the notation 0%u for the partial derivative

Wh(G) = {f € LL (G) | Vf € LUG)*},

loc

with the norm
110y = IVFllq.c

where we identify to elements differing by a constant. If G is locally Lipschitz, then we have
———=1IV-llza

C(G) = Wh(Q).

Furthermore, if G is bounded then we can fix a representative f € /I/I71>‘1(G) by / f dz =0. Thus
G
by setting

e ={rer© | [ ra=o}.

we can write

Whe(@) = Wh(G) N LY(G). (2.2)

We also introduce the space

P Illq.c
13(@) = {e e CF @) |aive =0f
For k € N, and s,¢q € R with 1 < ¢ < oo, we define the weighted Sobolev spaces W45 (G) by
Whas(G) = {f | (1+[2])/26%f € LU(G), |o] <k}, (2.3)

and we set L?%(G) = W%%5(G). For ¢ € WH4(G) we denote by D(p) the associated strain field
defined by

1 (0p; | Oy o
Dk =3 (52 +52) G e 1,2.3), (2.4

We use repeatedly below the following well known result due to Bogovskii ([1]):



Lemma 2.1. Let G be a smooth bounded domain in R3, g € (1,00) and k € Z. Then there exists
3
a linear bounded operator Bg from [Wéc’q(G)] NLUG))® to [WETVU(G)]? such that

div (Baf) = f (7 ¢ [wi@)] nizger). (25)

To end this section we remind, following Borchers and Sohr [2] and Iwashita [13], several results
on the Stokes system in the exterior domain F = R3\ O, where O C R? is an open bounded set
with 00 of class C?. More precisely, we consider the stationary Stokes problem:
A —pAv+Vp=f (x € E),
dive =0 (x € E), (2.6)
v=0 (z € 00).

By combining Theorem 1.2 in [2] and Corollary 3.2 in [13] we have:

Theorem 2.2. Let 0 € (%,7) and let ¢ be the set defined in (2.1). Then

1. Then there exist two families of operators (R(A\))xes, and (P(X))xes, such that for every
A € Xy we have

RO € £ (LB, [wiB)), PO e £ (LB WE),  (@>1)

and the functions v = R(A\)f and p = P(\)f satisfy (2.6). Moreover, there exists a positive
constant M, depending only on O, q and 0 such that for every A\ € Xy we have

AR fllg.6 + ILARNf = VPN fllg g < M| f

v (a>1 FeuEP). @1
2. Foreveryq>1, A€X¥g, meZs,s>3 (1 — %) and s’ < —3, we have
’ 3 ’
R(\) € £ ([WW(E)P, w2 ()] ) POy eL(wmeE)P Wt ().

Moreover, the functions A — R(A) and XA — P(X) are holomorphic from ¥s to
’ 3 ’
L ([V[/m’q’s(E)]?’7 [Wm+2’q’s (E)} ) and L ([Wm’q’s(E)]B,Wm+1’q’s (E)), respectively. Fi-

nally, there exist

Roe L ([WWS(E)]?’, [WW?M’(E)]?’) . Pel ([Wm’q’s(E)]g WL’ (E))

such that )
)\IEHXIIZ,S;IEO |/\‘ 2 HR(A) - ROHE([Wm,q,S(E)]?)}[Wm#»Zq,S'(E)]3> < o0, (28)
. 1
AEI;S?;JEO A7 [[P(A) - PO||L([Wm,q,s(E)]3,Wm+1.q,s’(E)) < 00. (2.9)

Remark 2.3. Setting R(0) := Rop and P(0) := P, estimates (2.8) and (2.9) imply that the
functions A — R(\) and A — P()) extend to continuous functions from Xy U {0} to

’ 3 !
c ([WWS(E)P, W20 (E)] ) and £ ([Wm’qu(E)]s,Wm“’qu (E)), respectively.



3 Some background on the fluid-structure operator

3.1 Definition and first properties

In this section we introduce the fluid-structure operator and the fluid-structure semigroup and we
remind some of their properties, as established in the existing literature. For the remaining part of
this section the notation € designs either an open, connected and bounded subset of R3, with 9
of class C?, or we have Q = R3. Let O be an open bounded set with smooth boundary such that
O C Q. We denote Eq = Q\ O and we set Egs := E. Moreover, we denote by v the unit normal
vector on O oriented towards the interior of O.

Reminding notation for the tensor field D, we introduce the function space

X9(Q) = {@ e [Le(Q)? D(®) =0 in 0} , (3.1)

associated to the sets Q) and O, which plays an important role in this work. Note that, for every
/ 1 1
€ (1,00) the dual (X?(Q2))* of X9(2) can be identified with X7 (), where p + 7 = 1, with the
duality pairing

<f79>xq/(g)7xq(g) = /Opf-gdx-i- frgdz (f e Xq/(ﬂ)v g € X9()),

Eq

where p is the constant density of the rigid body. Our notation is making explicit only the de-
pendence of X7 on ) since these spaces will be used later on for various 2 and with fixed O. For
Q =R3, we simply set

X9 := X9(R?). (3.2)

Since every ® in X9(Q) satisfies D(®) = 0 in O, there exists a unique couple Lﬂ € C? x C3 such

that

®(z) = p(2)lp, (z) + (£ +w x 2)Lo(z) (z € ),
where 1y stands for the characteristic function of the set U (see for instance [23, Lemma 1.1]). We
can thus use the identification:

¥
XU(Q) ~ < | €] € [LIU(EQ))® x C* x C?, with div (¢) = 0 in Eq,
w

Op(x) -v(r) =(l+wxz) viorxedO and dp(z) - v(xz) =0 for x € 00} . (3.3)

Let 2 C R? be an open bounded set with 9 of class C? or let Q = R3. Let P, o be the
projection operator from [L7(€2)]* onto X9(€2). When Q = R3, P, gs is simply denoted by P;. In
the following two propositions, we recall the existence of such projection operator for Q) = R? as
well as for 2 bounded domain.

Proposition 3.1. Let O be an open bounded set of R® with OO of class C?.For ¢ > 1 let G and
G be the spaces

Gl = {u € [L’I(]R?’)]3 | u= Vg for some q; € L%OC(R?’)},

divu=0inR? u=Vg in E, ¢ €L} (R3),

loc

/sody:f/ qv dv, /saxz/dy:f/ qov X ydy
O o0 O o0

Gl = ue [LIRY]



v
Then for every u € [LQ(R‘?)}?’ there exists a unique triple |wy | € X2 x G x G§ with
w2

U=+ w + ws. (3.4)
The map u — v, denoted Py, is a projection operator form [LI(Q)]® onto X9(2). Moreover, the
1 1
dual of the operator Py is Py, where — + — =1
a g

For the proof of Proposition we refer to Wang and Xin [26] Theorem 2.2].

Proposition 3.2. Let Q C R? be an open bounded set with 9§ of class C? . Let O be an open
bounded set with OO of class C? such that O C Q. For q¢ > 1 let GI(Q) and GL(Q) be the spaces

G1(Q) = {u €LY | u= Vg for some ¢, € Wol’q(Q)} ,

divu=0in Q, u=Vq in Eq, ¢ € WY4(Eg),
u=¢ in O with ¢ € [L1(0)]3,

/apdy:—/ qav dv, /gpxydy:—/ qav X ydry
1) 20 1) 20

Then for every u € [LY(Q)])® there exists a unique triple (v, wy, wy) € X1(Q) x GI(Q) x GL(Q) with

G3(Q) = {u € [L7(Q))

u=v+ w + ws. (3.5)

The map u — v, denoted Py q, is a projection operator form [L7(0)]® onto X4(Q). Furthermore,
1 1
the dual of the operator Py q is Py o, where — + — = 1.
qa g
The proof of Proposition [3.2]is similar to the proof of [26, Theorem 2.2]. However, for the sake
of completeness we provide a short proof in Appendix [A]

The fluid-structure operator on € is the operator A, o : D(Ag,q) — X9(Q) defined, for every
q>1, by

Dtga) = {o e [W3@)] 0@ | oie < (720(E)}, (36)

Agop =PyoAgap (¢ € D(Ag0)), (3.7)
where P, o is the projector introduced in Proposition and the operator A, q : D(Agq) —
[L2(Q)]? is defined by D(Ay.q) = D(A,q) and for every ¢ € D(Ay0),

JI7AN" in Fq,

—2um ™! D(p)vdy — <2ujl / y X D(p)v d'y> xy in O.
80 d

Aq,QSO = (3-8)

(@]

where m and J are given in terms of the constant density p of the body by
m =/ pdz, T = (Tk,0)keef1,2,3y With Ty e =/ p Ok |z|* — xpy) da.
@ O

In the case Q = R3, the operators Py o, A, o and A, o are denoted by Py, A, and A, respectively
and A, : D(A,) — X7 is defined, for every ¢ > 1, by

D(a,) = {p e W IR nxt | gpe[W2i(B)’}, (3.9)



Agp =PgAqp (v € D(Ag))- (3.10)

In the case ¢ = 2 and when O is a ball, the fluid-structure operator A, has been introduced in
Takahashi and Tucsnak [22], where it has been proven that this operator generates an analytic
semigroup on X2. Later, Wang and Xin [26] proved that the operator A, generates an analytic
semigroup on HS/5(R?) N HY(R3) if ¢ > 2 and that if the solid is a ball in R® the operator A, gs
generates an analytic semigroup (not necessarily bounded) on H?(R?) N H?(R?) if ¢ > 6.

It is important for future use to rephrase the resolvent equation for A, o in a form involving
only PDEs and algebraic constraints. To this aim, for A € C, we consider the system

A — pAv + V7 = f (x € Eq),
dive =0 (x € Eq),
v=0 (x € 09),
v=_L+wXxz (x € 00), (3.11)

mM = —/ o(v,m)vds + fo,
o0

T w = —/ xxo(v,mvds+ f,.
o0

In the above system the unknowns are v, 7, £ and w, whereas
o(v,m) = —nwl 4+ 2vD(v).
By slightly adapting the methodology used in [21], 22] for the case ¢ = 2, it can be checked that
we have the following equivalence:

Proposition 3.3. Let Q C R? be an open, connected and bounded set with 02 of class C? or
QO =R3 Letl < q< oo and A\ € C. Assume that f € [Lq(EQ)]3 and fo, f., € C3. Then

(v,m,0,w) € [WQ"I(EQ)]3 X WI’Q(EQ) x C3 x C3 satisfies if
(M — Ay )V =Py oF, (3.12)
where
V=vlg,+(+wxz)lo, F=Pyo(flg,+(m 'fe+IT 'axf,)lo).

Conversely, assume that F € X1(Q) and V € D(Agq) satisfy (3.12). Then there exists m €
Wl’q(EQ) such that (v,¢,w) € [VVQ"Z(EQ)]3 x C3? x C? satisfies (3.11)) where

U:V|EQ7 gzl/de, W:_j_l/vxxdl',
mJjo o

and

f=Flgg, fZZL/FdSC, fwz—J_l/Fxxdx.
m Jo o

3.2 The fluid-structure semigroup on bounded domains

In this subsection we assume that € is an open bounded set in R? with boundary of class C?. In
this case the operator A, o has been extensively studied in Maity and Tucsnak [I8]. In particular,
by combining Theorem 1.3 and Theorem 4.1 from [I8] we have:

Theorem 3.4. With the above notation, let ¢ > 1 and assume that @ C R? is bounded, with 0 of
class C?. Then the operator A, q, defined in (3.6)-(3.7), generates an analytic and exponentially

stable C°-semigroup, denoted T4t = (T?Q) Ly O X1(Q).
0

=



The above result has the following consequence, which follows by standard analytic semigroups
theory:

Corollary 3.5. With the notation and under the assumptions in Theoremm for every 6 € (g, 7r)
the exists a constant M, possibly depending on q, 0, O and 2, such that

1+ A H(ALA%Q)*H . HA%Q (AIqu@)*lH <M (A€ S U {0}).

L(Xq(Q L(Xq(2))
By combining Corollary [3.5] and Proposition [3.3] we obtain the following result:

Proposition 3.6. Let § € (7/2,7), ¢ € (1,00) and assume that  C R? is bounded, with O
of class C?. Then there exists a constant C > 0, possibly depending on 0, q, Q and O, such
that for all A € 3y, f € [L‘I(EQ)]3 and fo, f. € C3, there ewists a unique solution (v,7,{,w) €

[I/VZ*‘I(EQ)]3 x Whi(Eq) x C3 x €2 of (3.11) satisfying
L+ AD (vl + [+ lwh) + [vll2,0,80 + IVTllgz0 < C(IfllqEq + el + [fol])- (3.13)
We need below the following slight generalization of Proposition [3.6}

Corollary 3.7. With the notation in Proposition letv € [W27Q(EQ)]3, TE Wl’q(EQ), l, we
C3 be such that

v(z) =0 (x € 09)
v=~L4+wXxz (x € 00),

dive € W) Y(Eq), / div v dz = 0.
Eq

Then for every Ao > 0 there exists a constant ¢ = c¢(Q,p, N, 0) such that

AL (o]

e + 10+ &) + D%l g0 + V7l
< el = Av+ Vrllg g, + | Veiv ],z

—&—’m)\ﬂ—i—/ o(v,mvds ), (3.14)
00

+ ’j)\w—&—/ x x o(v,m)vds
00

for every A € Xy with |A| < Ao.
3
Proof. According to Lemma there exists v € [WO2 ’q(EQ)] such that divo = divv on Eq and

Hﬁ||27Q7EQ < C”diVU”L%EQ? (3.15)

where ¢ is a constant depending only on © and on ¢. Setting u = v—o we see that u € [W?P(Eq)] 3
and

u(z) =0 (x € 090),
u(z) =L+wxzx (x € 00),
o(u,m) =o(v,m) (x € 00),
divu =0 (z € Eq).

By applying Proposition [3.6] and elementary inequalities, it follows that

I (llullg,zq + 161+ |w]) + 1D ullg. o + V7 llg. 50 < CllmAu — pdu+ V| g,
+C /\£+/ o, mvds|+C J/\er/ x x o(v,m)vds (A € ).
a0 20
The above estimate and (3.15)) imply the conclusion ((3.14)). O
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4 From the Stokes operator in exterior domains to the fluid-
structure operator in the whole space

In this section we study the fluid structure operator A, o, defined in 3.10), in the case Q = R3.
As mentioned in Sections [2) I and [3| I, in this case the space X9(2 deﬁned in 1- , and the operators
Pyo, Ay o are simply denoted by X?, P, and A, respectlvely The main idea developed in this
section is that the resolvent of the fluid-structure operator can be expressed in terms of the resolvent
of the Stokes operator with homogeneous Dirichlet conditions on the boundary of an obstacle of
arbitrary shape O. The connection between these two families of resolvents is then used to study
the behaviour of the of (AI — A,)~! for A close to zero, in the spirit of the similar results for the
Stokes operator in exterior domains obtained by Iwashita [13].

Let O be an open, bounded subset of R3 with O of class C? and let E = R3\ O. We consider
the system

A — pAu+Vr = f (r € E),
divu=0 (x € E),
u=Ll+wxz (x € 00),

4.1
mM = 7/ o(u,m)vds + fo, (4.1)
20

T = —/ x X o(u,m)vds+ fu,
20

where f € [LY(E)]3, fo, f € C3 and A € C. In the above system the unknowns are u, 7, ¢ and w,
whereas
o(u,m) := —ml + 2uD(u).

To study the solvability of (4.1) we introduce several auxiliary operators.
Firstly, given A € C and ¢, w € C3, we consider the boundary value problem:

{)\w—qu—l—Vn—(), divw=0 (z€kE), (4.2)

w(z)=Ll+wx2x (x € 00),

and we remind the notation (2.3) (and more generally the notation in Section [2|) for the possibly
weighted Sobolev spaces in unbounded domains.

Proposition 4.1. Assume that 6 € (0,7). Then for all ¢ > 1, for every X € Xy and {,w € C3, the
system (4.2) admits a unique solution (w,n) € [Wz’q(E)]3 x WH4(E). Moreover, let (Dy)xes, be
the family of operators defined by

D, m = m (A€ Sy, L,we TP, (4.3)

where (w,n) € [V[/Q”I(Eﬂ3 X /Wl’q(E) is the solution of (4.2). Then for every A € Xy and m € N,

we have

Dy € L(CS, [W™tha(B)]® x W™4(E)), (4.4)
DyeLl ((CG, [W’“LW(E)}3 x e’ (E)) (s’ < —2) . (4.5)
Finally, there exists
I ((CG, [VV”HW’(E)]3 x WWS’(E))

mEN,q>1,s’<—%
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such that )
limsup [A[72[[D(A) = Dol| .

< 00, (4.6)
AEEH, A0 )

(co,[wmttas (B)]* xwma.s’ (E)
for everym €N, ¢g>1 and s’ < —%,

Proof. We choose two balls B; and B, in R3 such that O C B; C By C By. We define a cut-off
function y € C°°(R3) such that y(x) € [0,1] for every # € R? and

( ) 1 ifxeﬁl,
€Tr) =
X 0 ifze B\ B,

We set
w(z) = x(@)(l+wxz) =By, 5 (Vx- ((+wxuz)),

where B, 7, is the Bogovskii operator as introduced in Lemma@ It is easy to see that, divw = 0
in B, w(z) =f+wxx for v € OF and w € W*4(E), for any k € N. Since w = w + w, where w
satisfies

A0 — pAW 4+ V= - o+ vAw, divw=0 (re€k),

w=0 (x € 00).
We can apply classical regularity results for Stokes (e.g. [I3] Proposition 2.7(i)]) to get (4.4]) and
Theorem to obtain (4.5))-(4.6). O

The above result allows us to introduce the family of operators (T )xexn, C £(C®) defined by

a [ ] etwnwas
T { } _ 80 (N E Xy, t,weC?), (4.7)
w
/ x X o(w,n)vds
o0

where (w,n) is the solution of (4.2)), given by D) according to (4.3).

Proposition 4.2. Let 6 € (0,7). For every A € £y let (Tx)rex, be the operators defined in (4.7))
and let (KCx)xes, be the family of operators defined by

_ )\mlg 0
K= |: 0 /\j:| + T ()\ S 29). (4.8)
Then there exists Ko € L(CO) invertible such that
limsup [\~ [|Kx — Kol (o) < o0 (4.9)
AETH,A—0

Moreover, KCy is invertible for every A € 3¢y and

1
lim su A7z KT =t < 0. 4.10
)\623,)\30 A H A 0 HL(@) ( )

Proof. For {, w € C? we set

9

wnf], ] s

o v / x x o(wg,no)vds
00

where Dy is the operator introduced in Proposition [£.1} Applying Proposition [£.1] and a standard
trace theorem it follows that (4.9) holds. The fact that Ky (which is called the resistance matriz of
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0) is invertible is a classical result (see, for instance, Happel and Brenner [9, Section 5.4], where it
is shown that this matrix is strictly positive).

On the other hand, taking the inner product in [LQ(E)]3 of the first equation in (4.2)) by w,
integrating by parts and using the second equation in (4.2)) it follows that

w

<TA M 7 m >«:6 = )\/E lw|? dx + ”/E |D(w)|* dz (¢, we C* N e Xy). (4.11)

Assume now that ¢, w € C3 and \ € Xy are such that
14 Amls 0| |/ L
al] =[5 Sl n -

Taking the inner product in C°® of the two sides of the above formula by Lﬂ and using (4.11) it
follows that
Mm|l? + MTw,w)es + /\/ |w]? dz + ,u/ |D(w)|* = 0.
E E

If A € ¥y with Im A # 0 it follows that £ = 0 and w = 0. On the other hand, if A € ¥y and ImA =0
we have ReA > 0. In this case, we obtain w = 0 and consequently ¢ = w = 0. We have thus shown
that the operator in invertible for every A € ¥y. This fact, and the fact that ICy is
invertible finally imply (4.10). O

We are now in a position to state the main result in this section.
Theorem 4.3. Let g € (1,00) and § € (%, 7). Then

1. For every A € Xy there exist operators
RO\ € L ([Lq(E)]3 x €, [W29(E)]* cﬁ) . PN eL ([Lq(E)]3 x (CG,/WW(E)) :

such that, for f € [Lq(E)]g, fe, fo € C3, setting

=R\ | fe|, 7=PN)|fe|, (4.12)
w Juw fu

then u, ¢, w and w satisfy (4.1)).
2. For N\€ ¥y, m € Zy, s>3(1—%) ands’<—%, we have

RO\ € L <[Wm’q’5(E)]3 x C8, [Wmﬁ’qﬁ’(z;)]?’ x @6) : (4.13)

PO €L ([WWS(E)P x C°, WMHW’(E)) . (4.14)
Moreover, the functions A — R(X) and X — P(X) are holomorphic from s to
’ 3 ’
c ([WWLS(E)P x €, [Wmt2as' (E)| " x CG) and £ (W™ ()] x €O, Wm+1a+ (E) ), re-

spectively. Finally, there exist
, 3
Ro €L ([VV’WS(E)]3 x C°, [Wm“w (E)] X cﬁ) :

Py € £ (W (B) x €&, Wt (g)),
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such that

limsup [A7% [|R(A) — Roll
AEXg,A—=0

£(wmas(B)2xco,[Wmtzas (B)xCo]*) < 00, (4.15)

limsup [A72 ||P(A) — 730Hg([wm,q,s(E)]sXC(;’WmHTq,S/(E)) < o0. (4.16)
AET 9, A0

Proof. Let me€Z,,q>1,5s>0, f € [VV’”"J’S(E)]3 and fy, f., € C3. For A € ¥y U {0} we remind
from Proposition that the matrix Ky, defined in (4.8)), is invertible and we set

fe— | o(RA)f, P(N)f)vds
[“] =Kt ‘ /6‘0 (A e 2g U {0}), (4.17)

“x fm [ oxo(ROLPO s
200
where (R()A)) and (P(\)) are the families of operators introduced in Theorem [2.2) and Remark

The last formula implies, according to Proposition and Theorem that there exist d,cs > 0
such that

03]+ loal < €5 (1l + Ll + 1l ey (Aespu{o}, <o), (@18)

For A € £yU{0} we set BA} = D, [ff‘} , where (Dx)xes,uqoy is the family of operators introduced
A A
in Proposition and we define

[zj - Egigﬂ + [:;i] (A€ U{0}), (4.19)

where the operators (R(A))xes,ufo}s (P(A))res,uqoy have been introduced in Theorem and
Remark By combining Theorem [2.2] Proposition and (4.18)) it follows that for every

s>3 (1 - %) , 8 < —% and & > 0 there exists d > 0 (possibly depending on s, s’ and §) such that
||u/\||[Wm+2,q,s’(E)]3 + ||7T)\||Wm+1,q,5’(E) < d <|f€| + ‘fw' + ||f||[quS(E)]3>
A eSgu{0}, [N <6, fe W™ (E)?, fi,foeC?). (4.20)

By combining (4.17) and (4.19) it follows that for every A € Xy we have that u = wuy, £ = £y,
()

w = w) and w = ) satisfy . Consequently, if we set

f R(A)f +va

RV | l=| o (A€ 3 U {0}), (4.21)
fo WA
f
P | fe| =P+, (A € XU {0}), (4.22)
fw

then for every A € £y the operators R(A), P(A) satisfy (4.13)), (4.14) and u, ¢, w and 7 defined by

(4.12)) is indeed a solution of (4.1)).
Finally the properties (4.15) and (4.16), with Ry := R(0), follow now from (4.21)), (4.22)),
together with Proposition [£.2] and the corresponding properties of P and R in Theorem [2.2] O
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5 Further properties of the fluid-structure semigroup in R3

In this section we study the fluid structure operator A, o, defined in —, in the case Q = R3.
More precisely, we give several results opening the way to the proofs of the facts that A, generates a
bounded analytic semigroup and of the decay estimates for the fluid-structure operator by collecting
several results which follow quite easily from the existing literature. The first one is:

Proposition 5.1. Let 1 < g < oo and let 0 € (g,ﬂ') . Then there exists v > 0 such that

H)\()\I - Aq)_lu Mo~ (A€ o, A =7). (5.1)

<
L£(X9)
Consequently, A, generates an analytic semigroup on X9.

The proof of the above result can be obtained by a perturbation argument. Since this argument
can be obtained by a slight variation of the proof of Theorem 3.1 in [I8], where the similar estimate
is detailed for the case of fluid-structure system confined in a bounded domain, we omit the proof.
We also note that by combining Proposition [3.3 and the first statement of Theorem [£.3] we have

Proposition 5.2. For every A\ € ¥y and F € X9, setting

Flg U F
RA) | tr | = |bF |, (5.2)
Wr WA\ F

where the family (R(X)) has been introduced in (4.3) and

1
EF:—/Fdx, wF:—j_l/Fxxdx, (5.3)
mJjo o

we have
M —A) " F=uyplp+Urr+wrr xz)lo. (5.4)

The result below provides some simple but important properties of the fluid-structure operator
A

1 1
Proposition 5.3. For every 1 < ¢ < oo, the dual A} of Ay is given by Ay = Ay, with —+ — = 1.

qa 9
Proof. For G € X7, we set

EG:i/de, wG:—J_l/Gxxdx.
mJo @)

We consider the equation
(M — Ay )W =G, (5.5)
which according to Proposition [3.3]is equivalent to the system
Ap —div o(p, ) = G|g, dive=0 (x € E),
p=1+kKXuzx, (x € 00),

Amy = — /F oo, me)v ds + g, (5.6)

Aj/@:f/yxo(gp,ﬂ'q,)u ds + wg,
r

where

o =W|g, ¢:i/Wdz, n:fj*/vvxxdx.
mJjo o
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Assume that v € [W24(E) ° , T E ﬁ/\l*q(E),ﬁ € C3 and w € C3 satisfy the system (4.1). Taking
the inner product in C3, of (5.6), by u and of (4.1)) by ¢, integrating by parts and summing up the
two formulas we obtain

/E<f,<,0>cs dx—i—/@a(u,ﬂ)wgods. :/E<u,G)C3 dx+/oa(@,%)y-uds. (5.7)

Using the boundary conditions, the above relation can be written as

/ (fro)es dx + (fo, ¥)es + (fu, K)es = / (u, G)es dw + (£, lg)cs + (W, wa)cs- (5.8)
E E

In terms of the operator A, and A, the above equality reads as

(A = AYUW )y sr = (UM = Ag )Wy 5 (U € D(A), W € D(Ay)),

Xa,X4a

with U = ulg + (£ + w X y)Lo. Therefore from the above identity we deduce D(A,) C D(AY).
In order to prove the reverse inclusion, we first note that, for Ay > 0 large enough the operator
(Aol — Ay) is invertible (see Proposition [5.1)). Take Ag as above and W € D((Aol — Ag)*). Since
X = Xy, there exists Ue D(Ag ) such that

(Aol —Ag)U = (Aol — AL) W.

Let U € D(A,). Then using the last two formulas, we obtain

(Mol = AU W)y e = (U, ol = AW, 0 = <U, (Mol — Aq/)ﬁ>xq7xq,

- <()\I — AU, ﬁ>

Xa Xa'

In particular, we have

<(A01 — AU, W — I7>Xq ., = 0forall U e D(a,). (5.9)

Therefore W = U and this completes the proof. O

The last result in this section provides some information on the resolvent equation associated
to Ay.
Proposition 5.4. Let A € C, such that A ¢ (—00,0). Then for every q € (1,00) we have
(i) Ker (M —A,) = {0}.
(i1) Range (M — A,) = X9,
Proof. Due to Proposition , it is enough to show that if (u, 7, f,w) € [W2’q(E)]3 X W\l’q(E) X
C3 x C3 satisfies the system (4.1)) with (f, fe, fu) =0, then u =7 =/¢ =w = 0.

We first consider the case ¢ = 2. Multiplying, (4.1)); by u, (4.1), by £ and (4.1)); by w, we obtain
after integration by parts:

)\/ fuf? + 2M/ D)2 + Al + A (Tw,w) s = 0. (5.10)
E E

If ImA # 0, we take the imaginary part of this identity and obtain that u = 7 = ¢ = w = 0. If
ImA = 0, then ReX > 0, hence using the above identity and the boundary conditions we also obtain
u=nm=F=w=0.
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Let us then consider the case ¢ > 2 and X\ # 0. Let B; and B, be two open balls in R? such that
O C By, By C B,
and let 1, oo € C*°(R?) be such that o1(x) > 0, ga(z) > 0, p1(x) + p2(x) = 1 for every z € R,

p1=1o0n By, p1 =0 on R3\ By, o = 1 on R?\ By and @2 = 0 on some open neighbourhood of
B;. Then ¢yu satisfies the following system

AMpru) = Alpru) + V(prm) = =2(Vu)(Ver) — (Ap1)u +7Vepr (€ Ba\ 0),

div (p1u) = (V1) - u (z € B\ 0),

p1u =0 (z € 0By),
pru=~L+wxz (x € 00), (5.11)

mAl + / o(pru, prm)vds =0,
80

J dw +/ x X o(pru, m)v = 0.
80

Note that —2(Vu)(Ver) — (Ag1)u+ 7V € [L*(B: \ﬁ)]3 . Therefore, by using Corollary [3.7| we

obtain (p1u, p17) € [W?2(B, \ﬁ)]3 x WH2(By \ 0). Similarly, (pou, pom) satisfies the following
system

{)\(wgu) — A(pou) + V(pam) = —2(Vu)(Vpz) — (Ap2)u + 7V (z €R), (5.12)

div (pou) = (Veg) - u (x € R3).

We also have 2(Vu)(Vp2) — (Aps)u + 7V, € [LQ(R3)]3 . By standard results on Stokes operator
in the whole space, we also get (¢au, pam) € [W2’2(R3)]3 X /V[71’2(R3). Combining the above results
we obtain u € [VVQ’Q(E)]3 and m € ﬁ/\l’Q(E). B
Let us consider the case 1 < ¢ < 2 and A # 0. We use a bootstrap argument here. Let us set f; =
—2(Vu)(Vg;) — (Ap;)u+Ve;. By Sobolev imbedding theorem we obtain fi, fo € [L"(B2 \ O)] ’ )

1 1 1 _
for r > ¢, with 3 4 — = —. This implies that p1u € [W>"(B; \ ﬁ)]g and pou € [ngr(R?’)]S, hence
r q

u € [Wz"’(E)]S. If » > 2, we are reduced to the previous case. Otherwise, we continue the process
until we get u € [WQ’Q(E)]g.

Now we consider the case A = 0. By looking at the identity (5.10), we just need to show that
Vu € [LQ(E)}Q. By [3l Theorem 2.1], we know that

IVullz,p < CllID?ulls/5,5-

Therefore the conclusion follows as soon as we prove that D?u € [LS/ 5(E)]27. The argument is
similar to the case A # 0. If ¢ > 6/5, then it follows by a similar argument as above. Indeed,

we have f; € [LS/°(B, \ﬁ)]3 and fo € [L6/5(R3)}3 . Then D?*(pyu) € [L5/°(B, \ﬁ)]27 and

D?*(pou) € [L5/® (R3)]27. So we consider the case 1 < g < 6/5. As before, using embedding theorem
_ — _ 1 1 1

we first obtain f; € [LS(BQ \ ﬁ)]g and fy € [LS (R3)]3 for some s > ¢ with —+= = =. Consequently,
n s q

we have D?(pqu) € [L*(B; \E)]27 and D?(pou) € [LS(R‘?)}W. Observe that s > 6/5, thus we are

reduced to the previous case. O
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6 Analyticity of the Fluid-Structure semigroup

The main result in this section is:

Theorem 6.1. For every 1 < g < oo and 0 € (gﬂr) there exists Mg o > 0 such that the operator
A, satisfies
AT = )7 oy < Mgeo (X € o). (6.1)

Consequently, A, generates a bounded analytic semigroup T = (T});>o on X9.

The guiding idea in proving the above result is borrowed from Borchers and Sohr [2] and
it consists in using a contradiction argument and appropriate cut-off functions, combined with
Proposition [3.6] and classical results for the Stokes operator in the whole space.

A first step towards the proof of Theorem is the following result, concerning the case q €
(1,3/2):

Proposition 6.2. Let ¢ € (1,3) and § € (5,7). Let (R(\)) and (P(X)) be the family of the
operators introduced in Theorem|{.3. For (f, fo, f.,) € [LY(E)]* x C3 x C3, we set

U f f
=RV | Fe|, m=P0 | 1 (€ %), (6.2)
w Jw Jo

Then there exists a constant Mg > 0 such that, for every (f, fo, f.,) € [LY(E)]* x C* x C3 and for
every \ € Xy,

IN(ully, g + 101+ |wl) + [ D?ul| g + 1Vl g + 10+ |l < Moo fllgz + fel +1fal). (6.3)

Proof. First remark that Proposition easily implies (6.3) for A € ¥y with |A| > 7. We thus
focus on the proof of the estimate (6.3)) for A € ¥y with |A| < . Assume that (6.3) is false for some

q < (1, %) for A € ¥y with |A\| < 7. Then there exists a sequence of complex numbers (A, )nen,

together with a sequence (uy, £y, wy) in [W27q(E)}3 x C3 x C? and (7,) in /V[717q(E) such that

0 < |An| <7, |arg \,| < 6 (n €N), (6.4)
Mal(lunlly g + 1l + lwnl) + | D?unll, o + VTl g + 1l + o] =1 (n€N), (6.5)
(Apun — pAu, + V’]TnH{LE —0, asn— oo, (6.6)
mAnly —|—/ o (Up,mp)vds = 0, asn — oo, (6.7)
o0
T Awn —|—/ x X 0(Up, mp)vds — 0, as n — 0o. (6.8)
le)

To obtain the desired contradiction we proceed, following [2], in several steps.
Step 1: Localization.
Let B; and By be two open balls in R? such that

6CBl, EC327

and let @1, o € C®(R?) be such that ¢1(z) > 0, wa(z) > 0, p1(x) + @a2(z) = 1 for every = € R?,
w1 =1on By, p; =0 on R3 \ By, p2 =1 on R3 \ By and 2 = 0 on some open neighbourhood of
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B;. After some calculations, we see that for each n € N we have

An(p1un) — A(prun) + V(p1m,) = 01 (Apun — Auy, + V)
—2(Vun) (V1) — (Apr)un + 71 Vi € By\ O),

T € By\ O),

x € 0B3),

x € 00), (6.9)

div (p1un) = (V1) - u
prun =0
o1y =Ly +wp X x

mAnly +/ o(prun, p17m,)vds = mA, Ly, —|—/ 0 (Up, T )V,
o0 20

o~ o~~~

T Anwn, +/ T X 0(Q1Un, Tp)V = T Anwn, Jr/ x X 0(Up, T )V ds.
o0 o0

By applying Corollary and using the fact that ¢; vanishes outside Bs, it follows that there
exists ¢ > 0 such that for every n € N we have

0.5+ IV(erma)llg. 2 + [€n] + [wnl
0.5 +2[Vun - Vorlg )
l9.2)

‘JAnwn / x X 0(Up, ™) ds
o0

[An] (lo1un |q,E + [ln] + wnl) + ”Dz(‘»@lun)
< c(ller(Aun — Auy, + V) |q7E +[IV(Ver - up)
+ c (A )unllq,e + Imn Ver

C<‘m>\n€n+/ o (U, T )V
o0

On the other hand, using the fact that 5 = 0 on some open neighbourhood of By, for each n € N
we have:

) . (6.10)

/\n(502un) - A(‘P2un) + V(<p27rn) = ¥2 (/\nun - Aun + V7Tn)
—2(Vuy)(Va) — (Ap2)uy, + 7, Vo (x € R?), (6.11)
div (p2un) = (V2) - uy (z € R®).

Using classical results for the Stokes operator in R? (see, for instance, McCracken [19]), it follows
that, for every n € N we have

0.8 T 1D (p2un)llg. & + IV (027 llg, 2
< c(llp2(Aun — Auy, + V) |q,E +IV(Vep2 - up) |q,E +2(|Vauy, - V‘:02”11,15‘)
+c([[(Ap2)unllq, e + 7 Veorllg,r) . (6.12)

By combining (6.10) and (6.12)) it follows that for every n € N we have

|An 2t

Mal (lunllg,s + 1n] + |wnl) + 1 D*unllg.p + 1 Vnllgm + 1€n] + o
<l (lertunlle. + 2l + 1nl + lwnl) + [1D*(01un)llg,. & + 1 D*(92un) o6
H V(@ Veo)lles +IV(mVer)ler < clldun = Aun + Vallg,m

+c (‘mx\nﬁn +/ o (Up, T )V ‘jx\nwn / x X 0(Up, )V ds
00 00

where

> + W(un’ Vun, 7T7L)) (613)

2
W (tn, Vi, m) = ¢ ([V (Ve - un)llg.2 + 2| Vn - Vipsllg.2)
j=1

g.2 + 1T Ve;ll.r) (neN). (6.14)

2
Z [ (Ap;)un
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Step 2. Passage to the limit.
Let 7, s > 1 be defined by

1
- 4+-=- and -4 -=-,
S r S
so that 9 1 1
—+-=- andl<s<3. (6.15)
3 r q

By Theorem 2.1 and Lemma 3.1 in Crispo and Maremonti [3] and (6.5]), we have

||u7l||T7E < O”vunHS,E < C'HI)Z’U“rLHq,E < 07 (616)
Imalls.z < ClI Vg5 < C. (6.17)

Thus, there exist a subsequence, still denoted by (u,), (7n), (¢n), (wn) and u € [L"(E)?, 7 e L*(E),
(¢,w) € C3 x C? and \ € Xy such that

Un =[prE)P U Tn —Ls(B) Ty Ln =0 wp—=w, Ayg = A asn— oo, (6.18)
where — x stands for the weak convergence in a Banach space X. Let us set
Up=uplg+ Uy +w, xz)lo (n€N), U=ulg+ ({+wxz)le. (6.19)

Then U,, € X" and the sequence (U,,) weakly converges to U in X". According to f and
by the definition of the operator A,, we have that

Upn € D(Ay) foralln € N,  and (A, —Ay)U, —xa(p) 0 as n — oo.
Let W € D(A,) N D(A,+). By Proposition

0= tim (Al = Ag)Un, W) e = (U, (M = Ay )W) v

Since the set {(\ — A, )W | W € D(Ay) N D(A)} € X9 NX" is dense in X" (see Proposition,
the last formula implies that U = 0. Consequently, using ,

)\nun A[LQ(E)]‘? 0, Aun 4[Lq(E)]S 07 Vﬂ'n 4[Lq(E)]& O, as n — o0.

Next using the fact that sup,, ||7,| ) < 0o (see (6.17)) we deduce that 7 = 0.
Now we consider the expression W (u,, Vu,, 7,) defined in (6.14]). We claim that

lim W (uy, Vg, m,) = 0. (6.20)

n—o0

To shorten the proof, since all the terms in W (uy,, Vu,,m,) are the same as in [2], we consider
only one term of W (up, Vuy, m,), say fjn = V(Ve, - u,) for j € {1,2}, since the other terms can

_ 13
be estimated in a similar manner. Note that, f;, € Wol’q(Bg \Bl)} for every n € N and using

(6.16)), (6.18) and the fact that u = 0 we also have (f;,) converges weakly to 0 in [L?(Bs \El)]g .
Moreover, using ((6.17))

1finllyq, 8238, < Cllunlly sz, +1Vunlly 55,)
< C(Hun”r,Bz\El + ”vun”s,Bz\El) (since r,s > q)
<C

(lunllrp + [ Vunlls,g) < C. (6.21)

Thus, fj» converges strongly to 0 in [L9(Bs \El)f as n — oo. Consequently, we obtain (6.20].
This, together with (6.5]), contradicts the estimate (6.13)), which ends the proof. O

20



We are now in position to prove the main result in this section.

Proof of Theorem . We first note that from Proposition [3.3] Theorem [£.3] and Proposition [6.2]
we obtain (6.1]) for 1 < ¢ < % In the case % < ¢ < 2 we take qo € (1, %) We define 0 < s <1 by

1 S 1—s

qo 2

Since ([6.1]) holds for go, there exists a constant My 4, > 0 such that

| AT = Aqg, <My,  (NEX).

—1
) HL‘(X‘IO)
On the other hand, A, is a self-adjoint operator on X2 (see [22]). Therefore, we also have

AN — A, <Mooz (AEX),

)71||z:(x2)

for some My o depending only on 6. Then by Riesz-Thorin interpolation theorem (see for instance
[24, Theorem 1, Section 1.18.7]), we obtain

AL — A, S MG My5° (A€ ). (6.22)

)71||E(X11)

3
This ends the proof of (6.1]) for 3 <qg<2.

1 1
In the case 2 < q < oo, we take 1 < ¢’ < 2 such that — + — =1. By Proposition we have
q9 g
AN — Ay~ =M — Ay)71]*, so that

[ AT — A, )= [[MAT = Ay (A € ).

>_1HL(X‘2 )_1HL(X‘1’)

We have already seen that (6.1]) holds for 1 < ¢ < 2. Thus from the above identity we infer that,
(6.1)) holds for any 2 < ¢ < oo, which ends the proof. O

We end this section with the result below, whose proof can be easily obtained by combining
Theorem and the results from Lunardi [I7, Chapter 3]:

Corollary 6.3. With the assumptions and notations of Theorem for any € > 0 there exists
C. > 0, such that

||A’;*1U||Xq <e HA’;UHXq + Ce ||U Ixa (U DAk, keN). (6.23)

7 Decay estimates for the fluid-structure semigroup

Based on Theorem we consider the fluid-structure semigroup which is, for each ¢ € (1,00), the
bounded analytic semigroup T? introduced in Theorem Our main result in this section is:

Theorem 7.1. (i) Let 1 < q < co. Let Ry > 0 be such that O C Bpg,. Then for any R > Ry,
there exists a constant C' > 0, depending on q and R, such that

ITIU|, . < Ct™ 2 |U]lx, (t>1, UeX9). (7.1)

q,Br

1

(ii) Let 1 <g<r<ooando= % ( — ;). Then there exists a constant C' > 0, depending on q

and r, such that

1
q

IT{Ullxr < Ct77 (U] (t>0, UeX). (7.2)
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(iii) Let 1 < g <r < 3. Then there exists a constant C' > 0, depending on q and r, such that
IVTIU|, < Ct=77 2 ||U]ly, (t>0, UeX9). (7.3)

Our methodology to prove the above result is inspired by [I3] and it consists in using the
resolvent estimates developed in Section [d]- Section [} However, applying the strategy proposed in
[13] requires several adaptations which are described below.

To start with, we state the following regularity result of the projection operator P,.

Proposition 7.2. Let k € N. Assume that 1 < r < ¢ < oo. Let u € [LQ(R?’)]S be such that
div u = 0 in D'(R3) and 0°u € [L"(E)]® for every multi-index a € 73 with |a| = k. Then
0*(Pyu) € [L"(E))® for every multi-index o € Z3 with |a| = k. Moreover, there exists a constant
C independent of the choice of u with the above properties, such that

Yo N0 Peullee <O | D 10%ullye + llullg | - (7.4)

|| =k |a|=k
Proof. Let v =Pgu. Then
v(z) =Ly +wy X T (x € 0), (7.5)
where

1 1
L, = —/ v dz, wy=—— [ vxzxdz. (7.6)
mJjo J Jo

Moreover, there exists a positive constant C, depending only on ¢ and on O, such that (see for
instance [26], Proof of Theorem 2.2, Eq. (3.14)])
[€o] + |wy| < Clull, - (7.7)

Since div u = 0, we have that w; from the decomposition (3.4)) of u vanishes and, according to |26,
Proof of Theorem 2.2, Eq. (3.15)], we from the same decomposition satisfies wy = Vg, with o
satisfying

0
Amy =01in E, %zu-u—(&,—&—wvxx)-uona(’). (7.8)
Then estimate ([7.4)) follows from (|7.7) and from Giga and Sohr [8, proof of Lemma 2.3]. O

We next provide two results characterising the graph norm of A" in terms of Sobolev spaces.
Proposition 7.3. Let 1 < g < oo.

(i) Assume thatU € D(Ay) and AU € [(Wma(E))? for somem € Zy. Then Ug € [Wm+2>q(E)]3
and there exists a constant C,, > 0 such that

1205 < Con (186U g + 1011t ) - (7.9)
(it) For everym € N, if U € D(AT"), then Ujg € W*™4(E) and
1Nz < C (850 gy + 10115 (U € D(ay)). (7.10)
Proof. Let us set A,U = —F, so that Fjp € [W™4(E)]>. Moreover, we denote

u="Ug, é:i/de, w:—J_l/wadx.
mJjo o
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Then according to Proposition there exists ™ € Wl’q(E) such that u, 7, ¢ and w satisfy

—pAu+Vr =F (x € ),

divu=0 (x € E),
u=Cl4+wxax (x € 00).
Let B)l} =Dy [ﬂ , where D; is the Dirichlet map introduced in Proposition According to
1
Proposition for every k € N there exists positive constants C , C2  such that

lwillyt1,q.8 + 1Tt llg7ea ) < Crk (1€ 4 w]) < Cok[[U]|xa. (7.11)
We denote © = v —w; and # = 7w — 7;. Then u and 7 satisfy

AT+ VFE=F+w  (z€B),
divu=0 (x € B),
u=0 (x € 00).

According to [13, Proposition 2.7(i)], for every m € N there exists a positive constant Cs , such
that

il < Coimn (1Pl + 101l + [l -

The above estimate together with (7.11]) implies the estimate (|7.9).

To prove ([7.10), we use an induction argument. We first note that (7.10) is true for m = 1,
since it is nothing else but the estimate (7.9)) for m = 0. Let us assume that (7.10)) is true for some

méENand U € D(A;’LH). Then by (7.9) and induction hypothesis, there exists a positive constant
C,, > 0 such that

100201205 < Con (180Ul g 5+ 1010 ) < C ([|A7U ], + 146Uy + Wl ) - (7:12)

Then the assertion (7.10) holds for m replaced by m + 1 by applying Corollary [6.3] repeatedly and
(7.12). This completes the proof of the proposition. O

Proposition 7.4. Let g € (1,00). Then:
(i) For any m € N, there exists a positive constant Cp, > 0 such that

185Uz, < Con (10 o, + 1011 ) (U € D(Am). (7.13)

(i) Let 6 € (g,ﬂ') and m € N. Then there exists a positive constant Cy, > 0 such that
1T = 8) " Flypr 50 < Con (1Fllzmg + 1Pz )
(FeDAM), e, A =21). (7.14)

Proof. We use an induction argument to prove (|7.13). Using Proposition (3.7) and (3.8) we
first note that the estimate (7.9)) is true for m = 1. Assume that (7.13)) holds for some m € N and
U e ’D(A;”H). By the induction hypothesis, we have

14740 |y < Con (186U gy g + 189Ul ) (U € D(ATHY)). (7.15)
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By applying Proposition [7.2] and Corollary [6.3] the above estimate implies that
A7 Uy, < Cm (\\Ullzm+z,q,E + IIUIIXQ) (U e DATT). (7.16)

Thus ([7.13) also holds when m is replaced by m + 1.
Finally ([7.14) follows from the facts that

| AN — Aq)*luﬁ(p(%n)) <M, (A € %) (7.17)
together with the estimates (7.10)) and ([7.13). O

Remark 7.5. Putting together (7.10) and ([7.13)), it follows that, for every m € N, the graph norm
of A7" is equivalent to [|-|,,, , g+ |‘[lx. - We also note that this equivalence also holds for the bounded

domain version of the fluid-structure operator, i.e., Q C R? open and bounded, and the operator
Ay o defined in (3.7). Moreover, elements ¢ of D(A]") are such that ¢ € [Wl’q(R?’)]B NX?(R3) and

o € [W2ma(EB)]°.

To state the next results, which yield decay estimates for the fluid-structure semigroup in
weighted LP spaces, we remind from Section [2] the notation L?* for the weighted Lebesgue spaces

introduced in (2.3).

Theorem 7.6. Let 1 < g < co. Let s and s’ be real numbers such that s > 3(1—1/q) and s’ < —3/q.
Then there exists a positive constant C, depending only on q,s and s', such that

_3 s 3
||T§U||[Lq,d,(R3)}s SCA+ )72 U]l g0 rsyp UeXin [L¥(R)]". (7.18)

Proof. We first note that Theorem is a complete analogue of Corollary 3.2 in [I3], and Theo-
rem is the analogue of the main result in [2]. We can thus complete the proof following line by
line the proof of Theorem 1.1 in [13]. O

Remark 7.7. For Uy € D(4,), we denote by

1 1
U0:U0|E, g():f/ UO dl‘, WO:—f/ U()X.’L'd.%'.
mJo J Jo

Moreover for every t > 0, we set U(t) = T{U, and

1

7/ U(t) x x dz.

ut) =Ue. 1) = o [ U0 dn, w(o) =

Then there exists © € C([0, 00); Wl’q(E)) such that (u,, ¢,w) satisfies the following system

Ou — pAu+ Vo =0, divu=0 (t>0,z€E),
u=Ll+wxzx (t >0,z € 00),
m€+/ o(u,m)vds =0 (t>=0),
00 (7.19)
Jd)—i—/ x x o(u,m)rds =0, (t=0),
00
u(0) = uo (z € E),
5(0) Zfo, (JJ(O) = Wwp-

Our next result in this section provides L?— L" decay estimates for the fluid-structure semigroup
T for small time:
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Theorem 7.8. Let 1 < ¢ < r <oo ando = % (% — %) Then for each T € (0,00), there exists a

constant C' > 0, depending on T, q and r, such that

IT¢U e < Ct U]l (t<r, Uex9), (7.20)
IVT{U|, 5 < Ct77% Uy, (t< 7 UeX9). (7.21)

Proof. Let N = [20], where [-] denotes the integer part function. Let us assume that N is even.
Then by (7.10)), there exists a constant C' > 0 depending on 7, ¢ and r, such that

ITU |y g+ 16O] + ()] < © ([[432T00 | +1ITU )
<C(tF Ul + 750 Ul O F Uy (b€ 7)) (7:22)
In a similar manner, we also obtain

IT{Ul ny2,9.8 + @]+ w(®)] < C

(t € (0,7)). (7.23)
Thus by Sobolev embedding, interpolation and using (|7.22))-(7.23|), we obtain
IT{U e < € (ITEUN, 5 + 168)] + (D))
< C (ITfU 31,15 + 16O + ()]

20— N N+2—-20
C (I T 6 1TtV s + 1]+ (t)]) < CE Ul ¢ € (0,7,

If N is odd then we replace N by N — 1. This completes the proof of - The proof of | -
is completely, thus omitted here.

The next step towards the proof of Theorem is the following result:

Lemma 7.9. With the notations and assumptions of Theorem let d > Ry and let m € N.
Moreover, denote Eq:={x € E | |x| <d}. Then

(i) There exists a constant C > 0 depending on d and m such that for all t > 0,
_3
ITE0 Ny, + T80 o g,y < CO+ D7 (W0l g, + 100a ) s (7:24)

for every U € D(AY') with U =0 for |z| > d.
(ii) There exists a constant C > 0 depending on d and m such that for all t > 0,

10T, 5, + 1T s, < COU+ O (Wl + 100 ). (7.25)

for every U € D(ATTY) with U =0 for |z| > d.

Proof. The proof can be obtained following line by line the proof Lemma 5.2 from Iwashita [I3].
More precisely, it suffices to use instead of Proposition 2.7 and Lemma 2.8 in [I3] our results in
Proposition and Proposition above, respectively, and to replace expansion (3.2) in [I3] by

O

(4.15) above.
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Proposition 7.10. With the notation and assumptions of Remark[7.7 and Theorem[7.1}, let d >
Ry + 5 and m € N. Moreover, assume that Uy € Ran(T{). Then there exists a positive constant C,
depending only on d,m and q, such that, for everyt > 0 we have

et Vg, + 1]+ o(8)] < OO+ 75 (Juo

.3/q+2m+2,5 T [lol + |w0|) ; (7.26)
100t Wl g, 1, + 1O + 10 < OO+ 73 (ol /g1 420, + 1ol + ol ) s (7.27)
172 Mo 1m0 < OO+ (0l s + 1ol + ool (7.28)

where [s] denotes the integer part of s € R.

Proof. We follow with minor modifications the steps of the proof of Lemma 5.3 in [13].
Step 1. Since Uy € Ran(TY), we have Uy € D(A’;) for all kK € N. Let g be an extension of ug to

R? such that g € [WQm*q(R3)]3 and ||toly,, , < C'l|Uollp(am), where C'is a constant independent
’ q

of Uy. Then div @y € W™ "4(0) and / div 7y = /
o

(lo+wo x x)-v ds = 0. Then by Lemma
o0

we have that Bo (diviig) € Wa™9(0). Let us set
w = ﬂO - BO (dlvao) 3

where Bo (diviyg) is seen as a function in [W?2"4 (]R?’)]3 after its extension by 0 in E. Then ¢ €
[WQm’q(R3)]3 has the following properties

P(x) = Up(x) = up(x) for all z € B, div p(z) =0 in R®, [y, , <C 1Wollpgag - (7.29)

Step 2. We consider the following Stokes system in R?

Opvo(t, ) — pAvg(t,z) =0, div ve(t,x) =0 (t>0,2 € R?), (7.30)
00(0,2) = V() (z € B®). :
Let ¢ and r be such that 1 < ¢ < 7 < oo and define ¢ = %(% — %) According to classical estimates

(see, for instance, [I3l Lemma 5.1]) for the heat kernel, for every m € Z,, there exists a constant
Cyn > 0, depending on ¢ and r, with

V™0 (t, )l < Cont ™7~ |l (t=0), (7.31)
V™00 (t, )l < Con(1+ 877" F (19 201 4 g1, (t=0), (7.32)
19cvo(t, I, < Cont ™"~ Il (t=0), (7.33)
IV™ w0 (t, ), < Crn(1+8)"77 % [0ll o) s mag (t>0). (7.34)

Let ¢ € C5°(R?) be such that p(z) = 1 for |z| < d — 2 and p(z) = 0 for |z| > d — 1. Denote
Q= {2 eR?|d-2< 2| <d—1} and let By : D(Qq) — [D(Q4)]° be the Bogovskii operator

such that div(Bgh) = h if h = 0. We define
Qq

vi(t,+) = Ba(=Vip - o(t, ) (t>0). (7.35)

By applying (7.32)) and (7.34])), it follows that there exists a constant C,,, > 0, depending on ¢, such
that

||U1(t7 .)||7n7q7E < Cm ||VSO : Uo(t? .)”m—l,q,E g Cm(l + t)ig/Qq ‘|w||[3/q]+7n7q (t 2 0)7 (736)
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”atvl(tv ')Hm,q,E < Om ||v90 ! atUO(tv ')“m—l,q,E < Cm(l + t)73/2q ||wH[3/Q]+m+2,q (t 2 0)

(7.37)
Step 8. We now set
va(t,z) = u(t,z) — (1 — )vo(t, ) + v1(t, x) (t=0, z€F). (7.38)
Then vy, 7, ¢ and w satisfy
Opvg — pAve + V= f, dives =0 (t>0, z€F),
vy=L0+wXxXzx (t >0,z € 00),
mé—l—/ o(ve,m)rds =0 (t>0),
00 (7.39)
jc'u—i—/ x X o(ve, m)vds =0 (t >0),
00
v2(0,z) = ((x) (xr € E),
E(O) = Eo, OJ(O) = Wo,
where
f==-2(Ve-V)vg — u(Ap)vg + Opv; — pAwvy, (7.40)
((x) = p(x)Y () + v1(0,2) (z € E). (7.41)
Moreover, we have
div f(t,z) =0, div {(x) =0 (t>0,z€E), (7.42)
suppf(t,-) C{d—2 < |z| <d -1} (t>0).
Denote
Vao = (1 + (fo + wo X 7) 1o,
and

Va(t, z) = va(t, )L p(z) + (€(t) + w(t) X 2)lo(x) (t>0, z € R3).

Recall that Uy € Ran(TY{), in particular Uy € D(A}") for every m € N. Therefore Voo € D(A7") for
every m € N and there exists a constant C' > 0, depending on m and ¢, such that

HVQOHD(AT) <Cn ||U0||D(A;n) ' (7.43)

Using ((7.31)), (7.32)), (7.36]) and (7.37]), we infer that there exists a constant C' > 0, depending only
on m and ¢, such that

1F g < O+ D72 [l s (t > 0). (7.44)
On the other hand, applying the variation of the constants formula to ([7.39)), we have
t
Va(t,-) = TiVa +/ T? . f(s,-) ds (t=0). (7.45)
0

The last estimate, combined with Lemma [7.9] can be used, following line by line the end of the
third step of the proof of Lemma 5.3 in [I3], to obtain the existence of a constant C' (depending
only on d, m and ¢), such that for every ¢ > 0 we have

IVa(t Mpgagy < Com(L+ 072 (o314 m12.0,5 + ol + ol (7.46)
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10:Va(t, ')“D(A;n) < Cm(1+ t)73/2q <||U0||[3/Q]+2m+4,q,E + [bo| + |W0|) . (7.47)

Final step. Estimates ([7.26|) easily follow by combining ([7.38)) with the estimates ([7.31]) - (7.33]),

(7.36)), (7.37)), (7.46) and (7.47). The estimate (7.27)) can be obtained similarly. Putting together
(7.26) and (7.27), from (7.19)); we obtain

VA Mlam,gms < 1000t )lom gz, + 186E o 0.8,
<CO(1+ t)73/2q (||U0||q,[3/q]+2m+4,E + [bo| + |w0|) (t=0).
Then the estimate (7.28]) follows from the above estimate after redefining = as m — / 7 dz and
Eg

applying Poincaré type inequalities. O

The results in Lemma and Proposition [7.10] provide decay estimates for the restrictions to
bounded sets of the solution u of the linearized problem. The result below provides decay estimates
for the restriction of u(t,-) to the exterior of the bounded set E; introduced in Lemma

Proposition 7.11. With the notation and assumptions of Remark[7.7 and Theorem let d >
Ry + 5. Moreover, assume that Uy € Ran(T{). Then there exists a positive constant C, depending
only on d and q, such that, for every t > 0 we have

[tV oy < O+ 077 ([0l 5715 om0l +leol) (L <g<r<o0),  (7.48)
IVt M gragsay < CO 7 (ol /g1 30137, + 1ol + w0l ) (1< a<r<3),  (7.49)
where [s] denotes the integer part of s € R.

Proof. Let x € C*°(R3) be such that y(x) = 1 for |x| > d and x(x) = 0 for |z| < d — 1. Tt follows
that for every ¢t > 0 we have that supp div(xu(t,-)) C {d —1 < |z| < d} . Then there exists vs(t, -)
such that div vg = div(xu), supp vs(t,-) C {d — 1 < |z| < d} and for every m € N, we have

_3
et Mg, < CO+ 07 (ol 361mer2, + ol + el ) (7.50)
3
10003t Vg, < COA+ D75 (o]l g3 g + o] + leo]) (751)

for some constant C' > 0 depending on m and q. To derive the last two estimates we have used

Bogovskii Lemma, (7.26) and (7.27). We now define
va(t, ) = x(@)u(t, x) — vs(t, z) (t>0,z¢€ R3)

Note that div v4 = 0 so that v, satisfies

{am — pAvy + V(x7) = h, divoy =0, (t> 0,2 € R?), (7.52)
v4(0, ) = vgo(x) (r € R?), ’
where
h=—=2(Vx-V)u(t) — p(Ax)u + dws — pAvs + 7V, (7.53)
and
vao(x) = x()Up(x) — v3(0, ) (r € R?). (7.54)

Note that, since all the functions appearing in (7.52)) are supported away from O, the function vy
shares all the properties derived in Lemma 5.5 and proofs of Theorems, 1.2 and 1.3 of [13]. In
particular,

oat, Y, < CO+077 (Il o gtiampar.s + ol + ool (1<g<r<oo), (153)
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and
1904, < OO+ (ol 341 oy, + 1ol + o)) (1<q<r<3). (156)

By combining (7.55), (7.50) (with m = [2¢] 4+ 1) and Sobolev’s embedding theorem we conclude
that

)l grafsay < s (@)l + a0,
< Clo3lpoys1 0.5 + s,

_3 —0o
<O+ (ol /g1 mes,m + 1ol + ool ) + €1+ 577 (Jluo

lo.3/q)+m+7.5 + [0l + |wo|>

<C+t)77 <||u0||q,[3/q]+m+7)E + [lo| + |wo|> .

This completes the proof of (7.48).
Finally, the proof of (7.49)) is obtained similarly from (7.56]), together with (7.50) (with m =
[20’] + 2). O

We are now in a position to prove the main result in this section.

Proof of Theorem[7.4 For small times, Theorem simply is Theorem [7.8 and we thus only focus
on the estimates of Theorem [7.1] for times larger than 1.

To prove , it suffices to note that, for every U € X? we have T{U € D(A’;) for any k € N,
so that applying with m = 0 we obtain

T8 U, 5, S CA+ 072 Ullgzs (8> 0,U € X9). (7.57)

Concerning (7.2)), we first note that this estimate holds for ¢ € (0,1] (see (7.20)). Again applying
(7.26]) with m = [20] + 1, we get

T2 U, g, < ClITEAT|

and by (7.48)

<CA+0)73%|U|rs (t>0,U € X9),

r,Eq q,[20]+1,Eq

ITLAU], prsay < CA+ )TNl g s (t>0,U € X9).
Alz|>d}

The above two estimates give (7.2 for t > 1.
The proof of ([7.3)) follows analogously by combining (7.21)), (7.26) and (7.49). O

8 Proof of the main results

In this section, we focus on the analysis of the non-linear fluid-structure model when the initial
datum is small and the rigid body is a ball. More precisely, our main goal here is to prove Theorem
3] Moreover, in Theorem [8:10] we consider a weaker concept of solutions for which we also provide
a global in time existence result and we describe their large time behaviour.

The arguments we are using are close to those in Kato [14], with several adaptations necessary
to tackle the extra term coming from the motion of the rigid body, in a spirit close to [6], and with
the extensive use of the results obtained in the previous sections on the fluid-structure semigroup,
and in particular Theorem

We rely, in particular, on the following lemma, which is a rather straightforward consequence
of Theorem [T}

Lemma 8.1. Let py and qo be such that 3/2 < qo < po. Then there exists C > 0 such that for
every F € L% (R3;R3*3) satisfying F =0 in B and div F € [LT(R?’)]S for some r € (1, po] we have

TV P, div F|,, < Ct=3/20/0=1/p)=1/2| || (t>0). (8.1)
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Proof. The proof follows the same steps as those appearing in [6, Proof of Corollary 3.10]. More
precisely, for F € L% (R3;R3*3) satisfying F = 0 in B and div F € [lﬂ"(].R?’ﬂ3 for some 7 € (1, po],
we necessarily have F-v = 0 on 0B and T} P, div F is a well-defined element of X?° (see Theorem|7.1]).
Let p, and 7’ be the conjugates of py and r respectively. We thus have, using the density of X" in
XPo N X", that

||T;Prdiv (F)Hpo

— sup {(TIPrdiv (F), go}xpo xPb }

!
pEX70, o]l <1

= sup { (div F, ']I‘Z/cp>xr7xrf} ( by Proposition|3.1)and Proposition |5.3)
PEXPONXT el py <1

= sup {—/F~V’]I‘f6<pdx} (as F=0in B)
E

/
PEXPONXT | llell py <1

!/
<|Flos  sup VT el 5
peXPONX™ |y <1

Finally, using (7.3]) we obtain the estimate (8.1). O

In the remaining part of this section, when there is no risk of confusion, the fluid-structure
semigroup will be simply denoted by T (instead of T?). Similarly, if the appropriate value of ¢ is
clear from the context, the projector P, is simply denoted by P.

Remark 8.2. Note that from Theorem there exists C' > 0 such that for every Vo € D(A3/3)
we have

| TeVollase < CliVollayz < CliVollpa, ) (

=
WV
=

and
| Az/2TiVollzj2 < ClIVollpay,s) (t>0),

so that we easily deduce that
| VT:Vollz/2,2 < Cl[Vollpas,.) (Vo € D(A3)2),t > 0). (8.2)

Note that, according to (7.10)) and [3], if Vo € D(A3/2), Vi also belongs to X? for any p € [3/2, 00),
and thus for all p € [3/2, 00), there exists C such that

| TeVollp < ClIVollpas).) (Vo € D(A3)2),t = 0). (8.3)

Before going further, let us mention the following local existence result, whose functional setting
corresponds to the global existence result in Theorem

Theorem 8.3. Let Vo € D(Asj3). Then, for all p € (3,00), there exists Ty > 0 depending
v

on [|Vollp(a,,,) such that there ezists a unique solution V. = |{| € C°([0, Tp); XP) with Vv €
w

9
CO([0,Ty); [L*2(E)]") of (2).
Furthermore, for p € (3,00) and T > 0, two solutions of (1.2)) with the same intial datum which
both belong to C°([0,T]; XP) N C°([0,T7; [W1’3/2(E)]3) coincide on (0,T).

We postpone the proof of Theorem to the appendix, since it is not the main result of our
article and other (weaker) functional settings can be found in the literature for local existence
results, see, for instance, [7].
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Note that Theorem corresponds to an initial datum Vy € D(Ag/5), which is characterized,
through the identification described in (3.3]), to data (v, £y, wo) in [L3(E)]3 x R3 x R? satisfying

We are now in a position to prove our main result.

Proof of Theorem[I-1 The proof is divided into several steps.
Step 1: Reformulation of the non-linear problem. As mentioned in the introduction, we are
looking for mild solutions V' of the non-linear problem (1.2)), i.e. solutions of the equation (|1.9).

U(t? )
For each t > 0 we identify V (t,-) with a triple | £(t) |, where v(t,-) : E — R3 and £(t), w(t) € R3,
w(t)
as described in (3.3)).
We first remark that, since (v — h) - v = 0 on 9B, we have
—[(v—=42)-V]v=div F, (8.4)
where
F(s,z) = =1g(x)(v(s,z) — £(s)) @ v(s, x) (s>0, r € R?). (8.5)
v
In particular the triple V' = [ £ | is a mild solution of (1.2)) iff it satisfies
w
¢
V(t) =TV +/ Ti_sPdiv F(s)ds (t>=0), (8.6)
0

where F' is defined in (8.5)). The above formulation will be intensively used in the remaining part
of the section, in conjonction with Lemma

Step 2: Construction of a mild solution through a fixed point process. Let ¢ € (1,3/2]
and let

¢ ={V € C[0,00);X?) | t¥20/172/9V (1) € CP((0, 00); X3/?),

(14 32y (1) € CP([0,00); XF), (#3/20/371/6) 4 43/20/a=1/0) (1) € C ([0, 00);X5)},
(8.7)

where CP (I; U) stands for the set of bounded continuous functions from the interval I to the Banach
space U. Note that € is a Banach space when endowed with the norm

IVl = sup{t* 22|V (1) /5 + (1 + 62207 [V (1) 5
t>0
(P00 SRV @) 5}, (39
For K > 0, we denote by € (K) the ball
C(K)={V ¥, with |[V|¢ < K}. (8.9)

We also introduce the space C defined by
9
C= {v € L>(0,00;X?), with VV ¢ L°°(O,oo;L3/2(E))} } : (8.10)

and, for K’ > 0, we define

C(K') ={V €C, with sup |VV(t,)|s/2.r < K'}. (8.11)
t>0
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Moreover, for Vo € XN X3 N D(Az/5) with [|Vo|lxanxs < g0 we set
t
(AV)(t) = T Vo + / T,_sPdiv F(s)ds (Vesnc, t>0), (8.12)
0

where F' has been defined in (8.5). An essential step in the proof of Theorem is the following

lemma:

Lemma 8.4. There exists C > 0 such that for every K, K’ > 0 the function A defined in (8.12))
maps € (K) NC(K') into € (K1) NC(K}), where

Ky = C|[Volxarnxs + CK?, K{ = C|[Vollp(a,,,) + CKK'. (8.13)
Moreover, the constant C' introduced above is such that:
[A(V®) = A(V")le SCK|V® =V'|e  (V, VP e G(K)NC(K")), (8.14)

and

sup I(VAWV) = VAV )32 <CK|VE =V«

+CEsup [[(V(A(V)) = VAVt Misjom, (V VP G(E)NC(K')).  (8.15)

t>0
Proof. According to Theorem since Vp € X9 N X3 and it satisfies (1.6]), we have T;Vy € € and
sup{t*/ 22T, V|2 + (14 320/ T, V||
>0
+ (Y2070 4 2L T Vo lle} < C|Vollxanxs.  (8.16)

Moreover, since Vy € D(A3/2), we also have that T,V € L™ ([0, 0); [W1’3/2(R3))]3>, see (8.2). In

particular, we have that

T, Vo €C forallt> 0, iug ||VTtV0H3/2,E < C||V0||D(A3/2). (817)
>

We now want to show that second term in the right hand side of (8.12)) belongs to €. To this aim,
we first notice that for V € ¢(K) we have

10(s)] < s% (s> 0). (8.18)

Reminding to the reader that F' is given by ({8.5)), we can combine (8.18|) with the fact that

sup{||V (1)[|s + 20OV (#)]6} < K (V e ¢(K)),
t>0

to obtain that

1F()lls.5 < [v()I§ & + [€(s)] lv(s)lls,e

1 S 2K2
2
Moreover, using the fact that
igg{f?’/?(l/q_l/?’)HV(t)IIs +RUO) [V ()6} < K (V e ¢(K)),
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it follows that

1F($)lls.2 < [[v()§ & + [£(s)] |v(s)lls,2

<5 1 1 1 1

= §3/2(1/9—1/6) ¢3/2(1/3-1/6) + s1/2 g3/2(1/q—1/3)
2K*?

Similarly, using (8.18) and the estimate

sup{t*/ 22|V (1)[|a 2, + ¥ 2 YDV ()5} < K (V € ¢(K)),
t>0

we get
1 (3)l3/2,2 < [0(s)I3, 5 + [€(s)] o(s)]l3/2,
1 1 1
2
SK K53/2(1/q1/3>) t i 53/2(1“2/3)}

2K?
= $3/2(1/q-1/3)°

(s >0,V e F(K)). (8.21)

We are now in a position to estimate the second term in the right hand side of (8.12]). Note
that, using (8.5)), for V'€ € NC, we have

div F(s,-) € [L3/2(R3)r + [L6/5(]R3)r (s > 0).

It thus follows from the estimate (8.21)) and Lemma [8.1] with py = qo = 3/2 that for V € €(K)NC
and ¢t > 0 we have

¢
/ T;_Pdiv F(s)ds
0

t
1
< - F d
3/2 /0 (15—5)1/2H (8)ll3/2,£ ds

o K? CK?
sC /0 (= 5)172 37217173 9 S Gratsa—arm (8:22)

Lemma [8.1] with py = o = 3 and the estimate (8.19) yields:

Applying Lemma, with pg = 3, g0 = 3/2 for s € (0,t/2), and with py = g9 = 3 for s € (¢/2,1)
and the estimates (8.20)),(8.21)), we get

‘ 3

t/2 1 t 1
< /0 (t — 8)3/2(2/3_1/3)+1/2 HF(S)H?)/Q,E ds + /t/2 m”F(S)”&E ds

t ) t 1 t 1 K2 )

0

¢
/ T;_Pdiv F(s)ds
0

t/2 1 K2 t 1 K2
<C ds + ——————ds
0 (t _ 5)3/2(2/371/3)4»1/2 53/2(1/(171/3) t/2 (t _ 5)1/2 53/(2q)
CK?

S 13/2(1/q—1/3) (8.24)
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According to Lemma with pg = 6,q0 = 3 and (8.19)

Finally, using Lemma With po = 6,90 = 3/2 for s € (0,¢/2) and py = 6,q0 = 3 for s € (¢/2,1)
and using the estlmates (18.20) -, we deduce

t
/ T;_Pdiv F(s) ds
0

t
1
e b

K? CK?
<C (t—s) 3/2(1/3 1/6)+1/2 41/2 ds < $3/2(1/3-1/6)

(8.25)

¢
/ T;_Pdiv F(s)ds
0

6
t/2 1 t 1

S /0 (t — 5)3/22/3-1/6)+1/2 [1E(s)ll3/2,2 ds + /t/2 (t — 5)3/20/3-1/6)+1/2 1E'(s)|3,z ds

<c K 1 K2 1 K

5)3/2(2/3-1/6)+1/2 §3/2(1/a—1/3) 5+ /o (t— 8)3/20/B=1/61+1/2 §3/(20) s

t3/2(1/q71/6) (8.26)

Therefore, combining the estimates (8.16)) and (8.22)-(8.26)), we have proved that if V € €' (K)N

c,
[A(V)]le < ClIVollxanxs + CK?,

i.e. that A(V) € €(K;) with K; as in (8.13)).
In order to show the second estimate (8.13]), we use (8.17) for the first term of and (7.3)
to estimate the second term, to obtain that for all V € € (K) NC(K’), for every ¢ > 0 we have:

HV/tTt Pdiv (F(s))ds

3/2,E

/vm PA{(U(s) - v(s)) - V] u(s)} ds

3/2,B
< C ’ ¢ C
S m| ($)IVu(s)lz/z,eds + | m||U(5)||6,EHV”(5)||3/2,EdS
t t
C K C K
!

< ([ gmamtet | g
< CKK'. (8.27)

To study the Lipschitz character of the map A, we simply remark that, for V¢ and V?® in ¢ (K) N
C(K'"),

(A(V) — A(Vb))(t) = /t T Pdiv (F* — Fb)(s) ds, (t = 0), (8.28)
0
and that

F*—F' = “1gp(® =) @v* + 10’ —°) @°
= (v —ov") = (* =) @v* + 1’ — ) @ (v — ).

We can thus estimate F® — F? similarly as what has been done for F, starting from the estimate

a K a
[(£* —£%)(s)] < a7z (>0 V Vb e €(K)),
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to obtain that there exists C' > 0 such that for all s > 0,

a b a _ 1/b
”(Fa —Fb)(S)”gE < C(” Vv ||<g+ H V ”%)HV V ”‘5’

s s1/2
a CUl Ve + 1 VoIV = VP«
I(Fe = F*)(s) 5.5 < ) , (8.29)
C(l| ve Vb Ve — Vb
I(F® = F)(5)||s/2.5 < ULVelle + 1 Volle)ll ||%”. (8.30)

§3/2(1/q=1/3)

The above inequalities allow us to estimate (8.28)) in the norm of € by using arguments similar
to those used to estimate the second term in (8.12) and thus further to prove (8.14]).
Similarly, it is not difficult to show that for every s > 0 we have

a a C a a
(6% Vv — - Vo) (s) 32,6 < 317“' Ve + 1| VPV = YV Lo 0,00:15/2 (i)

C
+ SIT(HVVG|‘L°°(O,OO;L3/2(E)) + ||VVb||L°°(O,oo;L3/2(E)))||Va — V||

a a C a a
I(v® - Vo —* - Vo) (5)llo /5,8 < 7z (I Ve + | VII)IVVE = YV L (0 0011572
s1/

c . .
+ M(HVV | oo (0,005372(B)) + ||vvb||L°°(0,oo;L3/2(E)))”V — V.

Mimicking the proof of (8.27]), we easily deduce (8.15)). This concludes the proof of Lemma O

Setting
K =1/(2C), and K =2C|Vop(a,,.), (8.31)

Lemma implies that for Vo such that ||Vp||xsnxs < 75z, the map A maps ¢(K)NC(K') to
itself and it is strictly contractive for the norm

K

VNV, -

It thus admits a unique fixed point V in that class, for which we have in particular that V €
C(K)NE(K').

Step 3: Decay in X% norm for ¢; > 3. The fixed point V of A given by Lemma [84] for small
enough initial datum is the solution we are looking for. It remains to prove the decay estimate
. Let us only check the decay of the X% norm (this is only needed if ¢; > 6, since otherwise a
simple interpolation argument gives the result, but in fact our argument works for any ¢; > 3). In
order to do that, we proceed as for the estimate of the X® norm (see (8.25)- (8.26)): for all t > 0,

t
/ T;_sPdiv F(s) ds
0

t/2 1
</0 (t — 8)3/2(2/3_1/q1)+1/2||F(S)||3/2,E ds
q1

t
1
i /t/2 (t — s)3/2(1/3=1/q1)+1/2 |1F(s)l|3,e ds

t/2 2
1 K
<C ds
o (t— 8)3/2@/B=1/a)+1/2 §3/2(1/q-1/3)

K 1 K?
+ 2(1/3-1 1/2 c3/(2 dS
/2 (t—3)3/(/ /a1)+1/2 g3/(2q)

CK?

S BRGT (8.32)
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Since V satisfies , we thus obtain that for ¢t > 0,
32008719 1V (#)lg, < ClVollxunxs + CK? < C||Vol|xarxs-
This concludes the proof of Theorem O

Remark 8.5 (Uniqueness of the solution provided by Theorem [1.1]). We claim that the solution
V of provided by Theorem [1.1}in fact belongs to CP ([0, 00); XP) for some p > 3. Accordingly,
by Theorem the maximal solution of is defined globally in time.

Let us explain why V € CP([0,00); XP) for some p > 3. Fix p € (3,00). Since we already
have that t3/2(1/4=1/P)V () € CY(]0, 00); XP), we only have to focus on the behaviour of the norm
XP for small times. Now, since V is constructed as the fixed point of the map A which satisfies
the assumptions of Banach fixed point theorem, V is the limit of the sequence (V},)nen given by
Vo = 0 and for n € N, V.11 = A(V,,). Thus, it is clear that the sequence (V|0 1,))nen satisfies
Vatilo,m) = A1 (Valo,m)), where Ty is the time given by Theorem and Ar, is the map
introduced in the proof of Theorem in . Arguing as in the proof of Theorem it follows
that(Vy|(0,7))nen is a Cauchy sequence in C([0,T]; XP), which strongly converges to the unique
solution of given in Theorem

We have thus proved that V € Cf ([0, 00); XP), while V also satisfies VV € CJ ([0, 00); [L*/2(E)] %,
so that V' is the solution of within this class according to Theorem

Remark 8.6. In fact, to run the above proof, the only assumption needed on Vj in order to
construct a solution is that

sup {t3/2(l/q72/3)||TtV0H3/2 + (14 3203 1T, |5
t>0
+ (¢3/20/371/6) 4 32O TV |l6 + | VT Vo |z /2,6 < 0o. (8.33)

The assumptions in Theoremimply that Vy € D(Ag)2), which obviously implies . However,
it semms likely that assuming V, € D(A;g) is sufficient to guarantee (8.33).

For the uniqueness of solutions we only use that the map t — T;V; is also in CP([0, 00); X),
which can also be guaranteed by assuming the less demanding assumption V; € X6.

Therefore, the class of initial data proposed in Theorem is by no means sharp. As we shall
see afterwards in Theorem [8.10] we will anyway be able to extend this theorem to a much larger
class of initial data, for which the solutions will be considered in a weaker sense.

Remark 8.7. The usual smallness condition for global existence of solution (see [14]) simply is the
smallness of V; in X3. The difficulty here is that the above estimates strongly require the estimate
, which we do not know how to prove for initial data small only in X3.

Therefore, in our approach, we used that the initial datum is small in a set of the form X% N X3
for some gy < 3. In fact, Theorem focus on the case qo € (1,3/2), because that will allow to
conclude that the body stops as t — oo, but the following result can also be proved along the same
lines:

Theorem 8.8. Let g € (3/2,3) and 1 € (3,00) such that 3/2(1/q—1/q1) > 1/2. Then there exists
Vo
g0 > 0 such that for all Vo = | by | € X1 N X3 satisfying (1.3)-(1.4)-(1.5)~(1.6), there is a solution
wo
U(t7 )
V=1Lt | of such that

w(t)

sup {(1 + %2079 |V (2)]|3} < oo, (8.34)
t>0
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and for all ¢ € (3, 00),

sup {(¢3/2/3=1/a) 4 43/20/a=1/a) )1y (1)||,, } < oo.
>0

The detailed proof is left to the reader, since it mainly follows the one of Theorem [I.1] with the
important change that the class € and its norm should be redefined as

% ={V € C°0,00;X%), such that (1+ 321/ (1) € C2(0, 00; X3),
(320731 @) 4 43/2(1/a=1/a)yy () € CP(0, 00; XT)},

for some ¢; with 3/2(1/q —1/¢1) > 1/2, which we endow with the norm

IVile = sup{(1 + 32D [V (1) )5 + (/2B 0) g BRIV (@), ). (8.35)

The critical point in the proof of the existence of a fixed point to the map A will again be that
since 3/2(1/q —1/q1) > 1/2, for V € €, we again have, similarly as in (8.18]),

sup s'/2 [£(s)] < ||V ]|«
5>0

Vo
We end this section by an extension of Theorem [L.1| to the case Vo = |4y | € [LIY(E)]* N
wo
[L? (E)]3 x R3 x R? satisfying (1.6) and (1.10). In other words, we obtain here a global in time
existence result for a weaker notion of solution.
In order to do that, we will rely on the following lemma:

Lemma 8.9. Let O = B and E = R3*\ B, and q € (1,3/2]. Choosing gy > 0 as in Theorem for

vh v
all Vit = | £§ ,Vob = 88 in XIN X3 x R3 x R? satisfying 7 7 7, the respective
w§ w
v v?
solutions Ve = (14| and VP = [ £° | of with initial datum V& and V? given by Theorem|1.1
w w®
satisfy
Ve =Vl < CIVE = Vg llxanxs.- (8.36)

where || - ||¢ is defined by (8.8)). Besides, for all g1 > 3, we have
sup{t?/ 291D (|| (0% = 0*) () lg, + |(€ = €°)(8) |25

t>0
+lw® = w”)(t)llre)} < CIVE = Vi lxanxs.  (8.37)

Proof. The proof of Lemma is in fact almost contained in the proof of Theorem Indeed,
for V{ and V¥ as in the assumption, we have

t
Ve(t) = T Vg —|—/ T;_Pdiv F%(s) ds, where F%(s) = —1g(v*(s) — £%(s)) @ v*(s).
0
t
VOt =T VY + / T;_Pdiv F®(s) ds, where F’(s) = —15(v°(s) — £°(s)) @ v"(s).
0
Thus taking the difference of the last two forrmulas, we get

Vet) —veh(t) = T, (Ve — V) + / t T;_ Pdiv (F* — F’(s)) ds,
0
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so that

t
IV =V I =Vl | [ B (57— s as

€
a b 1 a b
S OIVE" = Vo'llxare + 51V = VI,

where the first estimate comes from Theorem while the second follows from estimate (8.14)
with the choice (8.31)) done in the proof of Theorem

In order to prove ([8.37)), we do as in (8.32)) using the bounds (8.29)) and (8.30]). Details are left

to the reader. ]

We thus have the following consequence of Theorem [I.1] and Lemma
Theorem 8.10. Let O = B and E =R3\ B, and q € (1,3/2]. Then there exists 9 > 0 such that

Vo
for all initial datum Vo = | £y | € X9N X3 satisfying (L.6]) and (1.10) and any sequence (Vo,n)nen
wo

converging to Vo in X9 N X3 and such that for alln € N, Vy,, satisfies 77 7,
the corresponding solutions V, of form a Cauchy sequence in € (defined in (8.7)), which
converges to a function V. € € satisfying the decay estimates f. Besides, this limit V is
independent of the sequence of initial data considered to approrimate V.

The proof of Theorem [B:10]is a straightforward consequence of Lemma [8.9] so it is omitted here.
Note that Theorem gives a very weak meaning to solutions of ((1.2) for initial datum in X¢NX3
with small norms as the unique limit of solutions of (|1.2)) for more regular initial data converging
in X7 N X3,

9 Concluding remarks and open questions

The main result in this paper, namely Theorem [I.I] concerns the wellposednes of the system
modelling the motion of a rigid ball in a viscous incompressible fluid filling the remaining part of
R3 and asserts that the position of the centre of the ball tends, when ¢ — 0o, to some position
hoo € R3. This result differs from those previously obtained in two space dimensions in [6], or for a
simplified 1D model in [25], where it has been shown that the distance of the centre of the ball to
the origin tends to 400 when ¢t — co. Several open questions seem natural in view of our results.

One of the most challenging ones, for which we have no track at this stage, is determining Ao
from the initial data.

Another natural question is the generalization of Theorem for a body of arbitrary shape.
When the rigid body is not a ball, writing the equations in a fixed domain requires the use of more
delicate change of variables, since it has to include the rotation of the body. There are basically
two ways of doing that: one consists in setting v(t, ) = Q*(¢t)u(t, h(t) + Q(t)x) , where Q(¢) is the
rotation matrix of the body, that is the solution of Q(t)Q*(t)z = w(t) x z starting from Q(0) = Id.
The problem is that such change of frame would induce in the fixed frame a term of the form
(wx x)- Vo which our estimate does not allow to handle since the identity mapping does not belong
to L*°(E). The alternative approach proposed in [4], which consists in constructing a change of
variable which follows the structure in a neighbourhood of it and equals the identity far from the
body, seems more suitable to deal with the non-linear terms. However, this change of variable
introduces a lot of delicate terms which we do not know how to handle in the above setting so far.
In fact, even in two space dimension, the existing results (see [6]) provide an analysis of the motion
of a rigid body in a viscous incompressible fluid in R? only in the case when the rigid body is a
disk.
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The smallness conditions in Theorem [[I] also raises some natural issues. The usual smallness
condition for global existence of solutions of Navier-Stokes equations (see, for instance, [14]) is
simply given in terms of the norm of Vj in X3, so that it might seem surprising to further impose
a smallness condition on ||Vy]|, with ¢ < 3/2. In fact, an easy adaptation of the proof of Theorem
shows that a similar global existence result holds when imposing a smallness condition on the
LN L3 norm of Vg with ¢ € (1,3) (see Remark. However, it is not clear if we can get a similar
global existence result by simply assuming that the L? norm of V; is small. This property is very
likely strongly linked with the following question. For Uy € X3, can we guarantee that, with the
notation of Remark there exists a constant C' > 0 such that for all ¢ > 0,

C
LIRS a2 ?

Indeed, this is precisely this estimate (recall ) that was used in our proof of Theorem
Finally, let us mention that the counterparts in two space dimensions of some of our results in
Sections have been used in Takahashi and Lacave [I6] to study the behaviour of solutions of
when the radius of the rigid ball tends to zero (see also He and Iftimie [I0] and references
therein). We believe that the approach in [I6] can be adapted to the three dimensional case by
using our results on the fluid structure-semigroup and its generator, but this deserves further work.

A Proof of Proposition (3.2

We first show that every u € [L9(€2)]* can be written in the form u = v + w; + ws, with v € X9(Q),
wy € GY(Q) and we € GL(Q). To this aim, let ¢; be the solution of the problem

Agi =divuin Q, ¢ =0 on 99Q.

Thus ¢1 € W, %(Q) and setting w, = Vg1, we clearly have w; € GY(Q). Since we are looking for
v € X?(), we know that
v="_y+w, Xz forzeO, (A.1)

for some ¢, € R? and w, € R3. We set

p(x) =u(x) = Vaqi(x) = b, —wy X T z e, (A.2)
and
\% in E
wy = { womee (A.3)
%) in O.

Since we are looking for wy € G4(Q) we require

€U=%/O(U—Vq1—gp) dxz% {/O(U—Vql) da:—!—/aoqzl/dfy], (A.4)

and

1 1
Wy = —— (u—Vql—ga)xmdxz—[/(u—Vql)xxdx—i-/ QQVXQId’j/:l. (A.5)
@

J Jo J 20

Now we define ¢y as the solution of the Neumann problem

qu =0 in EQ,

dq

67; — (’LL _ vql) .n on 89, (Aﬁ)
%:(u—Vm)'n—(fﬁrvaﬁ)'” on 80,

39



where ¢, and w,, are defined in (A.4) and (A.5)), respectively. Note that, ¢ solves a Laplace equation
with non-local boundary condition. As shown below, we have that gz € W9(Eq) and there exists
a constant C' depending on ¢, 2 and O such that

g2ll1,4,m, < Cllullyo- (A7)

In this case we can determine ¢, and w, from and respectively. Consequently, we obtain
¢ and wy from and respectively. In particular, we have that wy € G3(£2) and by setting
v =wu— wy —wsy we can verify that v € X7(Q).

We still have to prove that ¢ € W4(Q) and holds. If ¢ = 2, this is a consequence of
Lax-Milgram Theorem (see for instance [5, Lemma 1]). If ¢ # 2, we employ a density argument.

Assume that u € [C§° (©)]* and g solves (A.6). Then there exists a constant C' depending only on
q,€? and O such that

a2l g, < C (Jlully.q + 10l + o) (A8)
Next, by following the arguments of the proof of Theorem 2.2 in [26], we have
[€o] 4 wo| < Cllullgq (A.9)

where C' is a positive constant depending only on ¢, and O. The above two estimates yield that
there exists a positive constant C', depending only on ¢, 2 and O, such that estimate holds.
Thus the conclusion follows by a density argument. This completes the proof of the existence of
a decomposition with the required properties. The proof of uniqueness of the decomposition is
similar to that of [26] Theorem 2.2].

B Proof of Theorem [8.3

As in the proof of Theorem we start by remarking that we are looking for a solution V" of (1.9)
or equivalently .

Let p € (3,00). For T > 0, we introduce the class:
v 9
G(T)={V=|t|ec0,T);XP) with Vo € [00([0,T};L3/2(E))} ,
w
which we endow with the norm

Ve = [IVIlL<©rxe) + IVl Lo 0,7:28/2(2))-

We then define the map Ap : V € €(T) — ArV defined for t € [0,T] by

AV () = T,V + /0 Ty P((U(s) — v(s)) - Vo(s)) ds, (B.1)

or, equivalently,

ArV(t) =T Vo —1—/0 Ty Pdiv ((£(s) — v(s)) ® v(s)) ds,

For V¢ and V® € €(T), we estimate A7V — A7V? in the norm C°([0, T]; XP), for which we use
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Lemma [8.1] with ¢ = p and ¢ = p/2: for all t € [0,T7,

[ArVe - ArVh), < € / ol @ V) - ) e V() ds

b b
e / T V) © V) = V) @ VA8 2 ds

C/ 1/2 IV = VOllpoeo,r0) (IV 2o 0,750 + IV Lo 0,7:50)) ds

1 a a
+ CA (t — 8)1/2+3/2(2/p_1/p) HV - Vb”LQO(O,T;Xi”) (”V ||L°°(0,T;Xp) + ||Vb||L°°(07T;X7’)) ds

g C(T1/2+T1/2—3/2p)||va Vb

e (Ve + 1V em)

so that we have, for some constant C' independent of T' > 0,

[AT(V®) — Ar (V)| oo mxry < C(T + TYV23/20) | ye — b

e (IV* e +IV?

@ (1)) -

Then, for V2 and V® € €(T), we estimate V(ArV® — ArV?) in CO([0, T7; [L3/2(E)]9) using the
gradient estimate (7.3|) with » = 3/2 and ¢ = 3/2 and r = 3/2 and ¢, defined by 1/g, =2/3+1/p:
for all t € [0, 7],

V(A7 Ve = ArVO)(t O], 5 < c/ [€(s) - VV(s) — €°(s) - VV(8))|3/2, 1 ds

1/2

t
1 a a
+ C/O (t — 5)1/2+3/2(2/3+1/p—2/3) [V(s) - VV(s) — Vb(S) . VVb(s)qu ds
<0 [ IV = VPl (1 ey + 1V ) ds

+ C/O WHV“ ~ V) IV + 1V ler)) ds
SOT2+T2320)|[Ve = VP (Ve + IV ler))
where we have used that, for all s € (0,T),
1%(s) - WV (s) = €(s) - VV°(5))l|3/2,5
<NV = Voo 0,030 IVV N oo 0,75 2572(my) + 1Vl Loo (0,7550) IVVE = YV || oo 0,75 2872(y)
<V =Vg (Ve + 1IVPIlem)
and
[Ve(s) - VVs) = V(s) - VV(s)lg,
<V = VPl 0 IVV oo 0, z2r2(8)) + IVl 0,05 [VVE = VYV oo (0,7520/2 ()
<V =VPllga (Ve + 1V le) -

We have thus proved that there exists a constant C' > 0 such that for all 7' > 0, for all V* and
Vb in €(T),

[Ar(V*) - AT(Vb)H% 7y < C(TY2 + T27320) [V — Vo) (IV ey + VP () - (B.2)

Since we have from . ) that

[AT(O)ller) < CollVollpas,s):
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for some Cj independent of T', routine arguments show that, setting K = 2OO||VOHD(A3/2) and
To > 0 such that
1/2 1/2-3/2
4000||V0HD(A3/2)(T0/ +TO/ / p) = 1/27

we have, for all V € € (Tp) with |V |¢(1,) < K, [[A, V]« (r,) < K, and for all V* and V* in € (1)
with ||[V@ ¢(Ty) < K and HVbH%(To) < K, || A, (V) = ATO(Vb) € (To) S ||ve — Vo %(TO)/Q. Thus,
Banach fixed point theorem shows the existence of a fixed point V' to Ar, in the class € (Tp).

To get the uniqueness part in the proof of Theorem let V' and V° be two solutions of (1.2)
with the same initial datum in the class € (7). Then the above computations show that, setting

e(t) = (Ve =V Ol5, + [[(VV = VVOB)[55 1 (t€(0,1)),

we have
1

e(t) < C/O <(t 71)1/2 + = 5)1/2+3/(2p)> e(s)ds (te(0,7)),

while e(0) = 0. We can thus conclude that e vanish identically on (0,7) by Gronwall’s Lemma.
This concludes the proof of Theorem
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