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Abstract

In this article, we study the long-time behaviour of a system describing the coupled motion of
a rigid body and of a viscous incompressible fluid in which the rigid body is contained. We assume
that the system formed by the rigid body and the fluid fills the entire space R3. In the case in which
the rigid body is a ball, we prove the local existence of mild solutions and, when the initial data are
small, the global existence of solutions for this system with a precise description of their large time
behavior. Our main result asserts, in particular, that if the initial datum is small enough in suitable
norms then the position of the center of the rigid ball converges to some h∞ ∈ R3 as time goes
to infinity. This result contrasts with those known for the analogues of our system in 2 or 1 space
dimensions, where it has been proved that the body quits any bounded set, provided that we wait
long enough. To achieve this result, we use a “monolithic” type approach, which means that we
consider a linearized problem in which the equations of the solid and of the fluid are still coupled.
An essential role is played by the properties of the semigroup, called fluid-structure semigroup,
associated to this coupled linearized problem. The generator of this semigroup is called the fluid-
structure operator. Our main tools are new Lp − Lq estimates for the fluid-structure semigroup.
Note that these estimates are proved for bodies of arbitrary shape. The main ingredients used to
study the fluid-structure semigroup and its generator are resolvent estimates which provide both
the analyticity of the fluid-structure semigroup (in the spirit of a classical work of Borchers and
Sohr) and Lp − Lq decay estimates (by adapting a strategy due to Iwashita).
Key words. Fluid-structure interaction, Incompressible Navier-Stokes system, Large time be-
haviour.
AMS subject classifications. 35Q35, 35B40, 76D03, 76D05.
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1 Introduction

We consider a homogeneous rigid body which occupies at instant t = 0 a ball B of radius R > 0 and
centered at the origin and we study the motion of this body in a viscous incompressible fluid which
fills the remaining part of R3. We denote by h(t), S(t), F(t) the position of the centre of the ball,
the domain occupied by the solid, which coincides with the ball of radius R centered at h, and the
domain filled by the fluid, respectively, at instant t > 0. Moreover, the velocity and pressure fields
in the fluid are denoted by u and p, respectively. With the above notation, the system describing
the motion of the rigid ball in the fluid is

∂tu+ (u · ∇)u− µ∆u+∇p = 0 (t > 0, y ∈ F(t)),

div u = 0, (t > 0, y ∈ F(t)),

u(t, y) = ḣ(t) + ω(t)× (y − h(t)) (t > 0, y ∈ ∂F(t)),

mḧ(t) = −
∫
∂S(t)

σ(u, p)ν ds (t > 0),

Jω̇(t) = −
∫
∂S(t)

(y − h(t))× σ(u, p)ν ds (t > 0),

u(0, y) = u0(y) (y ∈ F(0)),

h(0) = 0, ḣ(0) = `0, ω(0) = ω0.

(1.1)

In the above equations, ω(t) represents the angular velocity of the ball (with respect to its centre)
and the fluid is supposed to be homogeneous with density equal to 1 and of constant viscosity
µ > 0. Moreover, the unit vector field normal to ∂S(t) and directed towards the interior of S(t) is
denoted by ν(t, ·). The constant m > 0 and the matrix J stand for the mass and the inertia tensor
of the rigid body. Since in the above equations the rigid body is a homogeneous ball of radius R,
the inertia tensor is independent of time and

J =
2mR2

5
I3.

Finally, the Cauchy stress tensor field in the fluid is given by the constitutive law

σ(u, p)k` = −pδk` + µ

(
∂uk
∂y`

+
∂u`
∂yk

)
(1 6 k, ` 6 3),

where δk` stands for the Kronecker symbol.
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The system (1.1) can be easily transformed into a system in which the fluid equation is written
in a fixed spatial domain. Indeed, using the change of frame x 7→ y(t, x) := x+ h(t) and setting

v0(x) = u0(x), v(t, x) = u(t, x+h(t)), π(t, x) = p(t, x+h(t)), `(t) = ḣ(t) (t > 0, x ∈ F(0)),

and E := F(0) = R3 \ B, equations (1.1) can be written in the form of the following system of
unknowns v, π, ` and ω:

∂tv + [(v − `) · ∇] v − µ∆v +∇π = 0 (t > 0, x ∈ E),

div v = 0, (t > 0, x ∈ E),

v = `+ ω × x (t > 0, x ∈ ∂E),

m ˙̀(t) = −
∫
∂E

σ(v, π)ν ds, (t > 0),

Jω̇(t) = −
∫
∂E

x× σ(v, π)ν ds, (t > 0),

v(0, x) = v0(x) (x ∈ E),

`(0) = `0, ω(0) = ω0.

(1.2)

As far as we know, the initial and boundary value problem (1.2) has been first studied in Serre [24],
where it is proved, in particular, that (1.2) admits global in time weak solutions (of Leray type).
The existence and uniqueness of strong solutions, with initial velocity supposed to be small (in the
Sobolev space W 1,2) has been first established in Cumsille and Takahashi [4]. For the Lp theory for
the local in time existence and uniqueness of strong solutions of (1.2), we refer to Geissert, Götze,
and Hieber [9]. Let us also mention that the analogue of (1.2) when the fluid-rigid body system fills
a bounded cavity Ω (instead of the whole R3) has also been studied in a quite important number
of papers (see, for instance, Maity and Tucsnak [20] and references therein).

A natural question when considering (1.2) is the large time behaviour of the position of the
mass centre of the ball, i.e., of the function h defined by

h(t) =

∫ t

0

`(s) ds (t > 0).

It is, in particular, important to establish whether the centre of the rigid ball stabilizes around
some position in R3 or its distance to the origin tends to infinity when t→∞. As far as we know,
this question is open in the three dimensional context of (1.2). However, if one replaces the rigid
ball by an infinite cylinder (so that the fluid can be modeled by the Navier-Stokes equations in
two space dimensions) the question is studied in Ervedoza, Hillairet, and Lacave [6], where it is
established that the norm of `(t) behaves like 1

t when t→∞, thus not excluding the possibility of
an unbounded trajectory of the rigid ball. Other results in the same spirit concern Burgers type
models for the fluid, like Vázquez and Zuazua [29], or one dimensional viscous compressible fluids,
like Koike [17].

The main novelty brought in by our work is twofold. Firstly, we prove that (1.2) is well-posed
(globally in time) for initial data which are small in appropriate Lq type spaces. Secondly, by
appropriately choosing q, we prove that there exists h∞ ∈ R3 such that limt→∞ h(t) = h∞, i.e.,
that the rigid body “stops” as t→∞.

To state our main result we first recall that if G ⊂ R3 is an open set, q > 1 and s ∈ R, the
notation Lq(G) and W s,q(G) stands for the standard Lebesgue and Sobolev-Slobodeckij spaces,
respectively. Our main result can be stated as follows:

Theorem 1.1. With the above notation for the set E. There exists ε0 > 0 such that for every

v0 ∈
[
L3(E)

]3
and `0, ω0 ∈ R3 with

div v0 = 0 in E, v0 · ν = (`0 + ω0 × x) · ν on ∂B. (1.3)

‖v0‖[L3(E)]3 + ‖`0‖R3 + ‖ω0‖R3 6 ε0, (1.4)
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there exists a unique solution (v, `, ω) of (1.2) in C0([0,∞);
[
L3(E)

]3 × R3 × R3) such that

sup
t>0

{
(‖v(t)‖[L3(E)]3 + ‖`(t)‖R3 + ‖ω(t)‖R3)

+ t1/2(‖v(t)‖[L∞(E)]3 + ‖`(t)‖R3 + ‖ω(t)‖R3) + min{1, t1/2}‖∇v(t)‖[L3(E)]9

}
<∞. (1.5)

with

lim
t→0

(
t1/4(‖v(t)‖[L6(E)]3 + ‖`(t)‖R3 + ‖ω(t)‖R3) + t1/2‖v(t)‖[L∞(E)]3 + t1/2‖∇v(t)‖[L3(E)]9

)
= 0.

Moreover, for q ∈ (1, 3], there exists ε0(q) ∈ (0, ε0] such that if v0 ∈ [Lq(E)]
3 ∩

[
L3(E)

]3
satisfies

(1.3) and
‖v0‖[L3(E)]3 + ‖`0‖R3 + ‖ω0‖R3 6 ε0(q),

then, for every p ∈
[
max

{
3
2 , q
}
,∞
]

the solution (v, `, ω) of (1.2) satisfies

sup
t>0
{t3/2(1/q−1/p)(‖v(t)‖[Lp(E)]3 + ‖`(t)‖R3 + ‖ω(t)‖R3)} <∞. (1.6)

In particular, if q < 3/2, taking p = ∞ in (1.6) we have that ` ∈ L1([0,∞);R3), hence that the
position of the centre of the moving rigid ball converges to some point at finite distance h∞ ∈ R3

as t→∞.

Remark 1.2. In fact, one can prove that, for every v0 ∈
[
L3(E)

]3
and `0, ω0 ∈ R3 satisfying

(1.3)–(1.4), the solution (v, `, ω) of (1.2) provided by Theorem 1.1 satisfies, for all θ ∈ [0, 1/2),

sup
t>0

min{tθ, t1/2}‖∇v(t)‖[L3(E)]9 <∞, (1.7)

see Theorem 8.2 afterwards.

As precisely stated in Theorem 8.2 below, the results in Theorem 1.1 can be completed to
include a local in time existence result without any smallness assumption on the initial data, see
Section 8 for more precise statements.

The proof of Theorem 1.1 is based on decay estimates for the solutions of the linearized version of
(1.2). Therefore, an important part of this work is devoted to the study of the semigroup associated
to the linearized problem. As shown in the forthcoming sections, this semigroup called the fluid-
structure semigroup, and its generator (called the fluid-structure operator) share several important
properties of the Stokes semigroup and Stokes operator in an exterior domain. To establish this
fact, an essential step consists in proving that the resolvent estimates derived in Iwashita [15]
and Giga-Sohr [10] for the Stokes operator also hold for the fluid-structure operator (see also the
corresponding estimates for the non-autonomous system describing the Navier-Stokes flow around a
rotating obstacle, which have been obtained in Hishida [13] and [14]). Our results on the linearized
problem will be derived for a solid of arbitrary shape, opening the way to a generalization of Theorem
1.1 for solids of arbitrary shape. However, the fixed point methodology used in the present paper
to pass from the linearized equations to the full nonlinear problem is strongly using the fact that
the rigid body is a ball (see the comments in Section 9 below concerning some tracks towards the
modification of this procedure for tackling rigid bodies of arbitrary shape).

Note that Theorem 1.1 refers to mild solutions of (1.2), i.e., satisfying the integral equationv(t, ·)
`(t)
ω(t)

 = Tt

v0

`0
ω0

+

∫ t

0

Tt−sPf(s) ds (t > 0), (1.8)

where
f(s, x) = −1E(x) [(v(s, x)− `(s)) · ∇] v(s, x)) (x ∈ E, s > 0),
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T = (Tt)t>0 is the fluid-structure semigroup and P is a Leray type projector on the space of free

divergence vector fields on R3 which coincide with a rigid velocity field on B. A precise definition
of these objects requires some preparation and notation, so it is postponed to Section 3. However,
we mention here that the roles of the projector P and of the fluid-structure semigroup in this paper
are very close to those played by the Leray projector and the Stokes semigroup in the analysis
of the Navier-Stokes equations. Consequently, the construction and study of the fluid-structure
semigroup and of its generator are essential steps of our analysis, which are detailed in Sections 4,
5, 6 and 7.

The outline of the paper is as follows. In Section 2, we introduce the notation (in particular
several function spaces) that will be used throughout the article and we recall several results on
the Stokes system exterior domains. In Section 3 we introduce the fluid-structure operator and we
give some of its basic properties. Section 4 is devoted to resolvent estimates for the fluid-structure
operator. We use existing results on the Stokes system exterior domain to derive our results. In
Sections 5 - 6 we show that the fluid-structure operator generates a bounded analytic semigroup on
a suitable Banach space. We prove, in particular, Lp − Lq decay estimates for the fluid-structure
semigroup in Section 7. Section 8 is devoted to the proof of Theorem 1.1. In Section 9, we formulate
some open problems. Some technical results are collected in Section A and Section B.

2 Notation and preliminaries

Throughout this paper, the notation
N, Z, R, C

stands for the sets of natural numbers (starting with 1), integers, real numbers and complex num-
bers, respectively. For n ∈ N, the euclidian norm on Cn will be simply denoted by | · |. For θ ∈ (0, π)
we define the sector Σθ in the complex plane by

Σθ = {λ ∈ C \ {0} | |argλ| < θ}. (2.1)

Moreover, Z+ stands for N ∪ {0}. For n, m ∈ N, u : Rn → Rm and α ∈ Zn+ we set |α| =
∑n
k=1 αk

and we use the notation ∂αu for the partial derivative ∂|α|u
∂x
α1
1 ...xαnn

.

If G ⊂ R3 is an open set, q > 1 and k ∈ N, we denote the standard Lebesgue and Sobolev spaces
by Lq(G) and by W k,q(G), respectively. For s ∈ R, W s,q(G) denotes the Sobolev-Slobodeckij
spaces. The norms on [Lq(G)]n and

[
W k,q(G)

]n
with n ∈ N, will be denoted by ‖ · ‖q,G and

‖ · ‖k,q,G, respectively. When G = R3, these norms will be simply denoted by ‖ · ‖q and ‖ · ‖k,q,
respectively. Moreover, the space W k,q

0 (G) is the completion of C∞0 (G) with respect to the W k,q(G)
norm.

We use repeatedly below the following well known result due to Bogovskii ([1]):

Lemma 2.1. Let G be a smooth bounded domain in R3, q ∈ (1,∞) and k ∈ Z+ and let

Lq0(G) =

{
f ∈ Lq(G)

∣∣∣∣ ∫
G

f dx = 0

}
.

Then there exists a linear bounded operator BG from
[
W k,q

0 (G)
]3
∩ [Lq0(G)]

3
to [W k+1,q

0 (G)]3 such

that

div (BGf) = f in G,

(
f ∈

[
W k,q

0 (G)
]3
∩ [Lq0(G)]

3

)
. (2.2)

We also introduce the homogeneous Sobolev spaces

Ŵ 1,q(G) :=
{
f ∈ Lqloc(G) | ∇f ∈ Lq(G)3

}
,
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with the norm
‖f‖

Ŵ 1,q(G)
:= ‖∇f‖q,G,

where we identify elements differing by a constant.
Moreover, the function space

Lqσ(G) =
{
ϕ ∈ [C∞0 (G)]

3 | div ϕ = 0
}‖·‖q,G

,

will often appear in the remaining part of this work.
For k ∈ N, and s, q ∈ R with 1 < q <∞, we define the weighted Sobolev spaces W k,q,s(G) by

W k,q,s(G) =
{
f
∣∣ (1 + |x|2)s/2 ∂αf ∈ Lq(G), |α| 6 k

}
, (2.3)

and we set Lq,s(G) = W 0,q,s(G). For ϕ ∈ [W 1,q(G)]3 we denote by D(ϕ) the associated strain field
defined by

D(ϕ)ij =
1

2

(
∂ϕi
∂xj

+
∂ϕj
∂xi

)
(i, j ∈ {1, 2, 3}). (2.4)

To end this section, we recall several results due to Borchers and Sohr [2] and Iwashita [15], on
the Stokes system in the exterior domain E = R3 \ O, where O ⊂ R3 is an open bounded set with
∂O of class C2. More precisely, we consider the stationary Stokes problem:

λv − µ∆v +∇p = f (x ∈ E),

div v = 0 (x ∈ E),

v = 0 (x ∈ ∂O).

(2.5)

By combining Theorem 1.2 in [2] and Corollary 3.2 in [15] we have:

Theorem 2.2. Let θ ∈
(
π
2 , π

)
and let Σθ be the set defined in (2.1). Then

1. Then there exist two families of operators (R(λ))λ∈Σθ and (P (λ))λ∈Σθ such that for every
λ ∈ Σθ we have

R(λ) ∈ L
(

[Lq(E)]
3
,
[
W 2,q(E)

]3)
, P (λ) ∈ L

(
[Lq(E)]

3
, Ŵ 1,q(E)

)
, (q > 1),

and the functions v = R(λ)f and p = P (λ)f satisfy (2.5). Moreover, there exists a positive
constant M , depending only on O, q and θ such that for every λ ∈ Σθ we have

|λ|‖R(λ)f‖q,E + ‖µ∆R(λ)f −∇P (λ)f‖q,E 6M‖f‖q,E
(
q > 1, f ∈ [Lq(E)]

3
)
. (2.6)

2. For every q > 1, λ ∈ Σθ, m ∈ Z+, s > 3
(

1− 1
q

)
and s′ < − 3

q , we have

R(λ) ∈ L
(

[Wm,q,s(E)]
3
,
[
Wm+2,q,s′(E)

]3)
, P (λ) ∈ L

(
[Wm,q,s(E)]

3
,Wm+1,q,s′(E)

)
.

Moreover, the functions λ 7→ R(λ) and λ 7→ P (λ) are holomorphic from Σθ to

L
(

[Wm,q,s(E)]
3
,
[
Wm+2,q,s′(E)

]3)
and L

(
[Wm,q,s(E)]

3
,Wm+1,q,s′(E)

)
, respectively. Fi-

nally, there exist

R0 ∈ L
(

[Wm,q,s(E)]
3
,
[
Wm+2,q,s′(E)

]3)
, P0 ∈ L

(
[Wm,q,s(E)]

3
,Wm+1,q,s′(E)

)
such that

lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖R(λ)−R0‖L

(
[Wm,q,s(E)]3,[Wm+2,q,s′ (E)]

3
) <∞, (2.7)

lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖P (λ)− P0‖L([Wm,q,s(E)]3,Wm+1,q,s′ (E)) <∞. (2.8)
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Remark 2.3. Setting R(0) := R0 and P (0) := P0, estimates (2.7) and (2.8) imply that the
functions λ 7→ R(λ) and λ 7→ P (λ) extend to continuous functions from Σθ ∪ {0} to

L
(

[Wm,q,s(E)]
3
,
[
Wm+2,q,s′(E)

]3)
and L

(
[Wm,q,s(E)]

3
,Wm+1,q,s′(E)

)
, respectively.

3 Some background on the fluid-structure operator

3.1 Definition and first properties

In this section, we introduce the fluid-structure operator and the fluid-structure semigroup and we
remind some of their properties, as established in the existing literature. For the remaining part
of this section the notation Ω designs either an open, connected and bounded subset of R3, with
∂Ω of class C2, or we have Ω = R3. Let O be an open bounded set with smooth boundary such
that O ⊂ Ω and such that 0 is its center of mass. We denote EΩ = Ω \ O and we set ER3 := E.
Moreover, we denote by ν the unit normal vector on ∂O oriented towards the interior of O.

Reminding notation (2.4) for the tensor field D, we introduce the function space

Xq(Ω) =
{

Φ ∈ [Lqσ(Ω)]
3

∣∣∣ D(Φ) = 0 in O
}
, (3.1)

associated to the sets Ω and O, which plays an important role in this work. Note that, for every

q ∈ (1,∞) the dual (Xq(Ω))∗ of Xq(Ω) can be identified with Xq′(Ω), where
1

q
+

1

q′
= 1, with the

duality pairing

〈f, g〉Xq′ (Ω),Xq(Ω) =

∫
O
ρf · g dx+

∫
EΩ

f · g dx (f ∈ Xq
′
(Ω), g ∈ Xq(Ω)),

where ρ is the constant density of the rigid body. Our notation is making explicit only the de-
pendence of Xq on Ω since these spaces will be used later on for various Ω and with fixed O. For
Ω = R3, we simply set

Xq := Xq(R3). (3.2)

Since every Φ in Xq(Ω) satisfies D(Φ) = 0 in O, there exist a unique couple

[
`
ω

]
∈ C3 × C3 and

ϕ ∈ Lqσ(EΩ) such that

Φ(x) = ϕ(x)1EΩ
(x) + (`+ ω × x)1O(x) (x ∈ Ω),

where 1U stands for the characteristic function of the set U (see for instance [27, Lemma 1.1]). We
can thus use the identification:

Xq(Ω) '


ϕ`
ω

 ∈ [Lq(EΩ)]
3 × C3 × C3, with div (ϕ) = 0 in EΩ,

ϕ(x) · ν(x) = (`+ ω × x) · ν(x) for x ∈ ∂O and ϕ(x) · ν(x) = 0 for x ∈ ∂Ω} , (3.3)

with
‖Φ‖Xq(Ω) ' ‖ϕ‖q,EΩ + |`|+ |ω|.

The two results below will allow us to precisely introduce the projection operator Pq,Ω from [Lq(Ω)]
3

onto Xq(Ω) which will be used in the following, and which will be denoted by Pq when Ω = R3.
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Proposition 3.1. Let O be an open bounded set of R3 with ∂O of class C2. For q > 1 let Gq1 and
Gq2 be the spaces

Gq1 =
{
u ∈

[
Lq(R3)

]3 | u = ∇q1 for some q1 ∈ L1
loc(R3)

}
,

Gq2 =

u ∈
[
Lq(R3)

]3
∣∣∣∣∣∣∣∣

div u = 0 in R3, u = ∇q2 in E, q2 ∈ L1
loc(E),

u = ϕ in O with ϕ ∈ [Lq(O)]3,∫
O
ϕdy = −

∫
∂O

q2ν ds,

∫
O
ϕ× y dy = −

∫
∂O

q2ν × y ds

 .

Then for every u ∈
[
Lq(R3)

]3
there exists a unique triple

 vw1

w2

 ∈ Xq ×Gq1 ×G
q
2 with

u = v + w1 + w2. (3.4)

The map u 7→ v, denoted Pq, is a projection operator form [Lq(Ω)]
3

onto Xq(Ω). Moreover, the

dual of the operator Pq is Pq′ , where
1

q
+

1

q′
= 1.

For the proof of Proposition 3.1 we refer to Wang and Xin [30, Theorem 2.2].

Proposition 3.2. Let Ω ⊂ R3 be an open bounded set with ∂Ω of class C2 . Let O be an open
bounded set with ∂O of class C2 such that O ⊂ Ω. For q > 1 let Gq1(Ω) and Gq2(Ω) be the spaces

Gq1(Ω) =
{
u ∈ [Lq(Ω)]

3 | u = ∇q1 for some q1 ∈W 1,q(Ω)
}
,

Gq2(Ω) =


u ∈ [Lq(Ω)]

3

∣∣∣∣∣∣∣∣∣∣∣

div u = 0 in Ω, u = ∇q2 in EΩ, q2 ∈W 1,q(EΩ),

u(x) · ν(x) = 0 for x ∈ ∂Ω,

u = ϕ in O with ϕ ∈ [Lq(O)]3,∫
O
ϕdy = −

∫
∂O

q2ν ds,

∫
O
ϕ× y dy = −

∫
∂O

q2ν × y ds


.

Then for every u ∈ [Lq(Ω)]
3

there exists a unique triple (v, w1, w2) ∈ Xq(Ω)×Gq1(Ω)×Gq2(Ω) with

u = v + w1 + w2. (3.5)

The map u 7→ v, denoted Pq,Ω, is a projection operator form [Lq(Ω)]
3

onto Xq(Ω). Furthermore,

the dual of the operator Pq,Ω is Pq′,Ω, where
1

q
+

1

q′
= 1.

The proof of Proposition 3.2 is similar to the proof of [30, Theorem 2.2]. However, for the sake
of completeness we provide a short proof in Appendix A.

We also need some density results. Let us define

Yq(Ω) = {u ∈ C∞c (Ω),divu = 0 in Ω, Du = 0 in O}
‖.‖q,Ω

. (3.6)

As before, for Ω = R3, we simply set
Yq := Yq(R3). (3.7)

Using Proposition 3.1 and Proposition 3.2, we have the following result
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Proposition 3.3. We have Xq(Ω) = Yq(Ω) and Xq = Yq.

The proof of this proposition is similar to [7, Theorem 2] and [23, Theorem 1.6]. We provide a
short proof in Appendix A.

The fluid-structure operator on Ω is the operator Aq,Ω : D(Aq,Ω) → Xq(Ω) defined, for every
q > 1, by

D(Aq,Ω) =

{
ϕ ∈

[
W 1,q

0 (Ω)
]3
∩ Xq(Ω)

∣∣∣∣ ϕ|EΩ
∈
[
W 2,q(EΩ)

]3}
, (3.8)

Aq,Ωϕ = Pq,ΩAq,Ωϕ (ϕ ∈ D(Aq,Ω)), (3.9)

where Pq,Ω is the projector introduced in Proposition 3.1, and the operator Aq,Ω : D(Aq,Ω) →
[Lq(Ω)]

3
is defined by D(Aq,Ω) = D(Aq,Ω) and for every ϕ ∈ D(Aq,Ω),

Aq,Ωϕ =

µ∆ϕ in EΩ,

−2µm−1

∫
∂O

D(ϕ)ν ds−
(

2µJ−1

∫
∂O

y ×D(ϕ)ν ds

)
× y in O.

(3.10)

where m and J are given in terms of the constant density ρ of the body by

m =

∫
O
ρdx, J = (Jk,`)k,`∈{1,2,3} with Jk,` =

∫
O
ρ
(
δk,` |x|2 − xkx`

)
dx. (3.11)

Note that the tensor of inertia J is positive. Also note that in the following, the density ρ of the
homogeneous body will not intervene anymore directly: it will only appear through the constants
m and J defined above.

In the case Ω = R3, the operators Pq,Ω,Aq,Ω and Aq,Ω are denoted by Pq,Aq and Aq, respectively
and Aq : D(Aq)→ Xq is defined, for every q > 1, by

D(Aq) =
{
ϕ ∈

[
W 1,q(R3)

]3 ∩ Xq
∣∣∣ ϕ|E ∈

[
W 2,q(E)

]3}
, (3.12)

Aqϕ = PqAqϕ (ϕ ∈ D(Aq)). (3.13)

In the case q = 2 and when O is a ball, the fluid-structure operator Aq has been introduced in
Takahashi and Tucsnak [26], where it has been proven that this operator generates an analytic
semigroup on X2. Later, Wang and Xin [30] proved that the operator Aq generates an analytic
semigroup on X6/5 ∩ Xq if q > 2 and that if the solid is a ball in R3 the operator Aq generates an
analytic semigroup (not necessarily bounded) on X2 ∩Xq if q > 6. One of our main result improves
the result of Wang and Xin [30]. Actually, in Theorem 6.1 we will prove that Aq generates a bounded
analytic semigroup on Xq for any q > 1. Moreover, this result is true for bodies of arbitrary shape.

It is important for future use to rephrase the resolvent equation for Aq,Ω in a form involving
only PDEs and algebraic constraints. To this aim, for λ ∈ C, we consider the system

λv − µ∆v +∇π = f (x ∈ EΩ),

div v = 0 (x ∈ EΩ),

v = 0 (x ∈ ∂Ω),

v = `+ ω × x (x ∈ ∂O),

mλ` = −
∫
∂O

σ(v, π)ν ds+ f`,

J λω = −
∫
∂O

x× σ(v, π)ν ds+ fω.

(3.14)
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In the above system the unknowns are v, π, ` and ω, whereas

σ(v, π) := −πI + 2νD(v).

By slightly adapting the methodology used in [25, 26] for the case q = 2, it can be checked that
we have the following equivalence:

Proposition 3.4. Let Ω ⊂ R3 be an open, connected and bounded set with ∂Ω of class C2 or
Ω = R3. Let 1 < q < ∞ and λ ∈ C. Assume that f ∈ [Lq(EΩ)]

3
and f`, fω ∈ C3. If (v, π, `, ω) ∈[

W 2,q(EΩ)
]3 × Ŵ 1,q(EΩ)× C3 × C3 satisfies (3.14) then

(λI − Aq,Ω)V = F, (3.15)

where

V = v1EΩ
+ (`+ ω × x)1O, F = Pq,Ω

(
f1EΩ

+
(
m−1f` + J−1x× fω

)
1O
)
.

Conversely, assume that F ∈ Xq(Ω) and V ∈ D(Aq,Ω) satisfy (3.15). Then there exists π ∈
Ŵ 1,q(EΩ) such that (v, `, ω) ∈

[
W 2,q(EΩ)

]3 × C3 × C3 satisfies (3.14) where

v = V |EΩ , ` =
1

m

∫
O
V dx, ω = −J−1

∫
O
V × x dx,

and

f = F |EΩ , f` =
1

m

∫
O
F dx, fω = −J−1

∫
O
F × x dx.

3.2 The fluid-structure semigroup on bounded domains

In this subsection we assume that Ω is an open bounded set in R3 with boundary of class C2. In
this case the operator Aq,Ω has been extensively studied in Maity and Tucsnak [20]. In particular,
by combining the density result from Proposition 3.3 with Theorem 1.3 and Theorem 4.1 from [20],
we have

Theorem 3.5. With the above notation, let q > 1 and assume that Ω ⊂ R3 is bounded, with ∂Ω of
class C2. Then the operator Aq,Ω, defined in (3.8)-(3.9), generates an analytic and exponentially

stable C0-semigroup, denoted Tq,Ω =
(
Tq,Ωt

)
t>0

, on Xq(Ω).

The above result has the following consequence, which follows by standard analytic semigroups
theory:

Corollary 3.6. With the notation and under the assumptions in Theorem 3.5, for every θ ∈
(
π
2 , π

)
the exists a constant M , possibly depending on q, θ, O and Ω, such that

(1 + |λ|)
∥∥∥(λI − Aq,Ω)

−1
∥∥∥
L(Xq(Ω))

+
∥∥∥Aq,Ω (λI − Aq,Ω)

−1
∥∥∥
L(Xq(Ω))

6M (λ ∈ Σθ ∪ {0}).

By combining Corollary 3.6 and Proposition 3.4 we obtain the following result:

Proposition 3.7. Let θ ∈ (π/2, π), q ∈ (1,∞) and assume that Ω ⊂ R3 is bounded, with ∂Ω
of class C2. Then there exists a constant C > 0, possibly depending on θ, q, Ω and O, such
that for all λ ∈ Σθ, f ∈ [Lq(EΩ)]

3
and f`, fω ∈ C3, there exists a unique solution (v, π, `, ω) ∈[

W 2,q(EΩ)
]3 × Ŵ 1,q(EΩ)× C3 × C3 of (3.14) satisfying

(1 + |λ|) (‖v‖q,EΩ + |`|+ |ω|) + ‖v‖2,q,EΩ + ‖∇π‖q,EΩ 6 C (‖f‖q,EΩ + |f`|+ |fω|) . (3.16)

We need below the following slight generalization of Proposition 3.7:
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Corollary 3.8. With the notation and assumptions in Proposition 3.7, let v ∈
[
W 2,q(EΩ)

]3
,

π ∈ Ŵ 1,q(EΩ), `, ω ∈ C3 be such that

v(x) = 0 (x ∈ ∂Ω)

v = `+ ω × x (x ∈ ∂O),

div v ∈W 1,q
0 (EΩ),

∫
EΩ

div v dx = 0.

Then for every λ0 > 0 there exists a constant C = C(Ω, p, λ0, θ) such that

|λ| (‖v‖q,EΩ
+ |`|+ |ω|) + ‖D2v‖q,EΩ

+ ‖∇π‖q,EΩ

6 C
(
‖λv −∆v +∇π‖q,EΩ

+ ‖∇div v‖q,EΩ

+

∣∣∣∣mλ`+

∫
∂O

σ(v, π)ν ds

∣∣∣∣+

∣∣∣∣J λω +

∫
∂O

x× σ(v, π)ν ds

∣∣∣∣ ), (3.17)

for every λ ∈ Σθ with |λ| 6 λ0.

Proof. According to Lemma 2.1 there exists ṽ ∈
[
W 2,q

0 (EΩ)
]3

such that div ṽ = div v on EΩ and

‖ṽ‖2,q,EΩ
6 C‖div v‖1,q,EΩ

, (3.18)

where C is a constant depending only on Ω and on q. Setting u = v− ṽ we see that u ∈
[
W 2,q(EΩ)

]3
and

u(x) = 0 (x ∈ ∂Ω),

u(x) = `+ ω × x (x ∈ ∂O),

σ(u, π) = σ(v, π) (x ∈ ∂O),

div u = 0 (x ∈ EΩ).

By applying Proposition 3.7 and elementary inequalities, it follows that

|λ| (‖u‖q,EΩ
+ |`|+ |ω|) + ‖D2u‖q,EΩ

+ ‖∇π‖q,EΩ
6 C‖λu− µ∆u+∇π‖q,EΩ

+ C

∣∣∣∣mλ`+

∫
∂O

σ(v, π)ν ds

∣∣∣∣+ C

∣∣∣∣J λω +

∫
∂O

x× σ(v, π)ν ds

∣∣∣∣ (λ ∈ Σθ).

The above estimate and (3.18) imply the conclusion (3.17).

4 From the Stokes operator in exterior domains to the fluid-
structure operator in the whole space

In this section, we study the fluid structure operator Aq,Ω, defined in (3.12)-(3.13), in the case
Ω = R3. As mentioned in Sections 2 and 3, in this case the space Xq(Ω), defined in (3.1), and the
operators Pq,Ω, Aq,Ω are simply denoted by Xq, Pq and Aq, respectively. The main idea developed
in this section is that the resolvent of the fluid-structure operator can be expressed in terms of
the resolvent of the Stokes operator with homogeneous Dirichlet conditions on the boundary of an
obstacle of arbitrary shape O. The connection between these two families of resolvents is then used
to study the behaviour of the of (λI − Aq)−1 for λ close to zero, in the spirit of the similar results
for the Stokes operator in exterior domains obtained by Iwashita [15].
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Let O be an open, bounded subset of R3 with ∂O of class C2 and let E = R3 \ O. We consider
the system 

λu− µ∆u+∇π = f (x ∈ E),

div u = 0 (x ∈ E),

u = `+ ω × x (x ∈ ∂O),

mλ` = −
∫
∂O

σ(u, π)ν ds+ f`,

J λω = −
∫
∂O

x× σ(u, π)ν ds+ fω,

(4.1)

where f ∈ [Lq(E)]3, f`, fω ∈ C3 and λ ∈ C. In the above system the unknowns are u, π, ` and ω,
whereas

σ(u, π) := −πI + 2µD(u).

To study the solvability of (4.1) we introduce several auxiliary operators.
Firstly, given λ ∈ C and `, ω ∈ C3, we consider the boundary value problem:{

λw − µ∆w +∇η = 0, div w = 0 (x ∈ E),

w(x) = `+ ω × x (x ∈ ∂O),
(4.2)

and we remind the notation (2.3) (and more generally the notation in Section 2) for the possibly
weighted Sobolev spaces in unbounded domains.

Proposition 4.1. Assume that θ ∈ (0, π). Then for all q > 1, for every λ ∈ Σθ and `, ω ∈ C3, the

system (4.2) admits a unique solution (w, η) ∈
[
W 2,q(E)

]3 × Ŵ 1,q(E). Moreover, let (Dλ)λ∈Σθ be
the family of operators defined by

Dλ

[
`
ω

]
=

[
w
η

]
(λ ∈ Σθ, `, ω ∈ C3), (4.3)

where (w, η) ∈
[
W 2,q(E)

]3 × Ŵ 1,q(E) is the solution of (4.2). Then for every λ ∈ Σθ and m ∈ N,
we have

Dλ ∈ L(C6,
[
Wm+1,q(E)

]3 × Ŵm,q(E)), (4.4)

Dλ ∈ L
(
C6,

[
Wm+1,q,s′(E)

]3
×Wm,q,s′(E)

) (
s′ < −3

q

)
. (4.5)

Finally, there exists

D0 ∈
⋂

m∈N,q>1,s′<− 3
q

L
(
C6,

[
Wm+1,q,s′(E)

]3
×Wm,q,s′(E)

)

such that
lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖D(λ)−D0‖L

(
C6,[Wm+1,q,s′ (E)]

3×Wm,q,s′ (E)
) <∞, (4.6)

for every m ∈ N, q > 1 and s′ < − 3
q .

Proof. We choose two balls B1 and B2 in R3 such that O ⊂ B1 ⊂ B1 ⊂ B2. We define a cut-off
function χ ∈ C∞(R3) such that χ(x) ∈ [0, 1] for every x ∈ R3 and

χ(x) =

{
1 if x ∈ B1,

0 if x ∈ E \B2.
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We set
w(x) = χ(x)(`+ ω × x)− BB2\B1

(∇χ · (`+ ω × x)),

where BB2\B1
is the Bogovskii operator as introduced in Lemma 2.1. It is easy to see that, div w = 0

in E, w(x) = ` + ω × x for x ∈ ∂E and w ∈ W k,q(E), for any k ∈ N. Since w = w̃ + w, where w̃
satisfies {

λw̃ − µ∆w̃ +∇η = −λw + ν∆w, div w̃ = 0 (x ∈ E),

w̃ = 0 (x ∈ ∂O).

We can apply classical regularity results for Stokes (e.g. [15, Proposition 2.7(i)]) to get (4.4) and
Theorem 2.2 to obtain (4.5)-(4.6).

The above result allows us to introduce the family of operators (Tλ)λ∈Σθ ⊂ L(C6) defined by

Tλ
[
`
ω

]
=


∫
∂O

σ(w, η)ν ds∫
∂O

x× σ(w, η)ν ds

 (λ ∈ Σθ, `, ω ∈ C3), (4.7)

where (w, η) is the solution of (4.2), given by Dλ according to (4.3).

Proposition 4.2. Let θ ∈ (0, π). For every λ ∈ Σθ let (Tλ)λ∈Σθ be the operators defined in (4.7)
and let (Kλ)λ∈Σθ be the family of operators defined by

Kλ =

[
λmI3 0

0 λJ

]
+ Tλ (λ ∈ Σθ). (4.8)

Then there exists K0 ∈ L(C6) invertible such that

lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖Kλ −K0‖L(C6) <∞. (4.9)

Moreover, Kλ is invertible for every λ ∈ Σθ and

lim sup
λ∈Σθ,λ→0

|λ|− 1
2

∥∥K−1
λ −K

−1
0

∥∥
L(C6)

<∞. (4.10)

Proof. For `, ω ∈ C3 we set

[
w0

η0

]
= D0

[
`
ω

]
, K0

[
`
ω

]
=


∫
∂O

σ(w0, η0)ν ds∫
∂O

x× σ(w0, η0)ν ds

 ,
where D0 is the operator introduced in Proposition 4.1. Applying Proposition 4.1 and a standard
trace theorem it follows that (4.9) holds. The fact that K0 (which is called the resistance matrix of
O) is invertible is a classical result (see, for instance, Happel and Brenner [11, Section 5.4], where
it is shown that this matrix is strictly positive).

On the other hand, taking the inner product in
[
L2(E)

]3
of the first equation in (4.2) by w,

integrating by parts and using the second equation in (4.2) it follows that〈
Tλ
[
`
ω

]
,

[
`
ω

]〉
C6

= λ

∫
E

|w|2 dx+ 2µ

∫
E

|D(w)|2 dx (`, ω ∈ C3, λ ∈ Σθ). (4.11)

Assume now that `, ω ∈ C3 and λ ∈ Σθ are such that

Kλ
[
`
ω

]
=

[
λmI3 0

0 λJ

] [
`
ω

]
+ Tλ

[
`
ω

]
= 0.
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Taking the inner product in C6 of the two sides of the above formula by

[
`
ω

]
and using (4.11) it

follows that

λm|`|2 + λ〈Jω, ω〉C3 + λ

∫
E

|w|2 dx+ 2µ

∫
E

|D(w)|2 = 0.

If λ ∈ Σθ with Imλ 6= 0 it follows that ` = 0 and ω = 0. On the other hand, if λ ∈ Σθ and Imλ = 0
we have Reλ > 0. In this case, we obtain w = 0 and consequently ` = ω = 0. We have thus shown
that the operator in (4.8) is invertible for every λ ∈ Σθ. This fact, (4.9) and the fact that K0 is
invertible finally imply (4.10).

We are now in a position to state the main result in this section.

Theorem 4.3. Let q ∈ (1,∞) and θ ∈
(
π
2 , π

)
. Then

1. For every λ ∈ Σθ there exist operators

R(λ) ∈ L
(

[Lq(E)]
3 × C6,

[
W 2,q(E)

]3 × C6
)
, P(λ) ∈ L

(
[Lq(E)]

3 × C6, Ŵ 1,q(E)
)
,

such that, for f ∈ [Lq(E)]
3
, f`, fω ∈ C3, settingu`
ω

 = R(λ)

 ff`
fω

 , π = P(λ)

 ff`
fω

 , (4.12)

then u, `, ω and π satisfy (4.1).

2. For λ ∈ Σθ, m ∈ Z+, s > 3
(

1− 1
q

)
and s′ < − 3

q , we have

R(λ) ∈ L
(

[Wm,q,s(E)]
3 × C6,

[
Wm+2,q,s′(E)

]3
× C6

)
, (4.13)

P(λ) ∈ L
(

[Wm,q,s(E)]
3 × C6,Wm+1,q,s′(E)

)
. (4.14)

Moreover, the functions λ 7→ R(λ) and λ 7→ P(λ) are holomorphic from Σθ to

L
(

[Wm,q,s(E)]
3 × C6,

[
Wm+2,q,s′(E)

]3
× C6

)
and L

(
[Wm,q,s(E)]

3 × C6,Wm+1,q,s′(E)
)

, re-

spectively. Finally, there exist

R0 ∈ L
(

[Wm,q,s(E)]
3 × C6,

[
Wm+2,q,s′(E)

]3
× C6

)
,

P0 ∈ L
(

[Wm,q,s(E)]
3 × C6,Wm+1,q,s′(E)

)
,

such that

lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖R(λ)−R0‖L

(
[Wm,q,s(E)]3×C6,[Wm+2,q,s′ (E)×C6]

3
) <∞, (4.15)

lim sup
λ∈Σθ,λ→0

|λ|− 1
2 ‖P(λ)− P0‖L([Wm,q,s(E)]3×C6,Wm+1,q,s′ (E)) <∞. (4.16)

Proof. Let m ∈ Z+, q > 1, s > 0, f ∈ [Wm,q,s(E)]
3

and f`, fω ∈ C3. For λ ∈ Σθ ∪ {0} we remind
from Proposition 4.2 that the matrix Kλ, defined in (4.8), is invertible and we set

[
`λ
ωλ

]
= K−1

λ

 f` −
∫
∂O

σ(R(λ)f, P (λ)f)ν ds

fω −
∫
∂O

x× σ(R(λ)f, P (λ)f)ν ds

 (λ ∈ Σθ ∪ {0}), (4.17)
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where (R(λ)) and (P (λ)) are the families of operators introduced in Theorem 2.2 and Remark 2.3.
The last formula implies, according to Proposition 4.2 and Theorem 2.2, that there exist δ, cδ > 0
such that

|`λ|+ |ωλ| 6 cδ

(
|f`|+ |fω|+ ‖f‖[Wm,q,s(E)]3

)
(λ ∈ Σθ ∪ {0}, |λ| 6 δ). (4.18)

For λ ∈ Σθ ∪{0} we set

[
vλ
ηλ

]
= Dλ

[
`λ
ωλ

]
, where (Dλ)λ∈Σθ∪{0} is the family of operators introduced

in Proposition 4.1, and we define[
uλ
πλ

]
=

[
R(λ)f
P (λ)f

]
+

[
vλ
ηλ

]
(λ ∈ Σθ ∪ {0}), (4.19)

where the operators (R(λ))λ∈Σθ∪{0}, (P (λ))λ∈Σθ∪{0} have been introduced in Theorem 2.2 and
Remark 2.3. By combining Theorem 2.2, Proposition 4.1 and (4.18) it follows that for every

s > 3
(

1− 1
q

)
, s′ < − 3

q and δ > 0 there exists d > 0 (possibly depending on s, s′ and δ) such that

‖uλ‖[Wm+2,q,s′ (E)]
3 + ‖πλ‖Wm+1,q,s′ (E) 6 d

(
|f`|+ |fω|+ ‖f‖[Wm,q,s(E)]3

)
(λ ∈ Σθ ∪ {0}, |λ| 6 δ, f ∈ [Wm,q,s(E)]

3
, f`, fω ∈ C3). (4.20)

By combining (4.17) and (4.19) it follows that for every λ ∈ Σθ we have that u = uλ, ` = `λ,
ω = ωλ and π = πλ satisfy (4.1). Consequently, if we set

R(λ)

 ff`
fω

 =

R(λ)f + vλ
`λ
ωλ

 (λ ∈ Σθ ∪ {0}), (4.21)

P(λ)

 ff`
fω

 = P (λ)f + ηλ, (λ ∈ Σθ ∪ {0}), (4.22)

then for every λ ∈ Σθ the operators R(λ), P(λ) satisfy (4.13), (4.14) and u, `, ω and π defined by
(4.12) is indeed a solution of (4.1).

Finally the properties (4.15) and (4.16), with R0 := R(0), follow now from (4.21), (4.22),
together with (2.7)–(2.8), (4.6) and (4.10).

5 Further properties of the fluid-structure semigroup in R3

In this section we study the fluid structure operator Aq,Ω, defined in (3.12)-(3.13), in the case
Ω = R3. More precisely, we give several results opening the way to the proofs of the facts that Aq
generates a bounded analytic semigroup and of the decay estimates for the fluid-structure operator
by collecting several results which follow quite easily from the existing literature. The first one is:

Proposition 5.1. Let 1 < q < ∞ and let θ ∈
(
π
2 , π

)
. Then there exist γ > 0 and mq,θ > 0 such

that ∥∥∥λ (λI − Aq)−1
∥∥∥
L(Xq)

6 mq,θ, (λ ∈ Σθ, |λ| > γ). (5.1)

Consequently, Aq generates an analytic semigroup on Xq.

The proof of the above result can be obtained by a perturbation argument. Since this argument
is a slight variation of the proof of Theorem 3.1 in [20], where the similar estimate is detailed for
the case of fluid-structure system confined in a bounded domain, we omit the proof. We also note
that by combining Proposition 3.4 and the first statement of Theorem 4.3, we have
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Proposition 5.2. For every λ ∈ Σθ and F ∈ Xq, setting

R(λ)

F |E`F
ωF

 =

uλ,F`λ,F
ωλ,F

 , (5.2)

where the family (R(λ)) has been introduced in (4.12) and

`F =
1

m

∫
O
F dx, ωF = −J−1

∫
O
F × x dx, (5.3)

we have
(λI − Aq)−1

F = uλ,F1E + (`λ,F + ωλ,F × x)1O. (5.4)

The result below provides some simple but important properties of the fluid-structure operator
Aq.

Proposition 5.3. For every 1 < q <∞, the dual A∗q of Aq is given by A∗q = Aq′ , with
1

q
+

1

q′
= 1.

Proof. For G ∈ Xq′ , we set

`G =
1

m

∫
O
G dx, ωG = −J−1

∫
O
G× x dx.

We consider the equation
(λI − Aq′)W = G, (5.5)

which according to Proposition 3.4 is equivalent to the system

λϕ− div σ(ϕ, πϕ) = G|E , divϕ = 0 (x ∈ E),

ϕ = ψ + κ× x, (x ∈ ∂O),

λmψ = −
∫

Γ

σ(ϕ, πϕ)ν ds+ `G,

λJ κ = −
∫

Γ

y × σ(ϕ, πϕ)ν ds+ ωG,

(5.6)

where

ϕ = W |E , ψ =
1

m

∫
O
W dx, κ = −J−1

∫
O
W × x dx.

Assume that u ∈
[
W 2,q(E)

]3
, π ∈ Ŵ 1,q(E), ` ∈ C3 and ω ∈ C3 satisfy the system (4.1). Taking

the inner product in C3, of (5.6)1 by u and of (4.1) by ϕ, integrating by parts and summing up the
two formulas we obtain∫

E

〈f, ϕ〉C3 dx+

∫
∂O

σ(u, π)ν · ϕ ds =

∫
E

〈u,G〉C3 dx+

∫
∂O

σ(ϕ, πϕ)ν · u ds. (5.7)

Using the boundary conditions, the above relation can be written as∫
E

〈f, ϕ〉C3 dx+ 〈f`, ψ〉C3 + 〈fω, κ〉C3 =

∫
E

〈u,G〉C3 dx+ 〈`, `G〉C3 + 〈ω, ωG〉C3 . (5.8)

In terms of the operator Aq and Aq′ , the above equality reads as

〈(λI − Aq)U,W 〉Xq,Xq′ = 〈U, (λI − Aq′)W 〉Xq,Xq′ , (U ∈ D(Aq),W ∈ D(Aq′)),
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with U = u1E + (` + ω × y)1O. Therefore from the above identity we deduce D(Aq′) ⊂ D(A∗q).
In order to prove the reverse inclusion, we first note that, for λ0 > 0 large enough the operator
(λ0I − Aq′) is invertible (see Proposition 5.1). Take λ0 as above and W ∈ D((λ0I − Aq)∗). Since

X∗q = Xq′ , there exists Ũ ∈ D(Aq′) such that

(λ0I − Aq′) Ũ =
(
λ0I − A∗q

)
W.

Let U ∈ D(Aq). Then using the last two formulas, we obtain

〈(λ0I − Aq)U,W 〉Xq,Xq′ =
〈
U, (λ0I − A∗q)W

〉
Xq,Xq′ =

〈
U, (λ0I − Aq′)Ũ

〉
Xq,Xq′

=
〈

(λ0I − Aq)U, Ũ
〉
Xq,Xq′

.

In particular, we have 〈
(λ0I − Aq)U,W − Ũ

〉
Xq,Xq′

= 0 for all U ∈ D(Aq). (5.9)

Therefore W = Ũ and this completes the proof.

The last result in this section provides some information on the resolvent equation associated
to Aq.

Proposition 5.4. Let λ ∈ C, such that λ /∈ (−∞, 0). Then for every q ∈ (1,∞) we have

(i) Ker (λI − Aq) = {0}.

(ii) Range (λI − Aq) = Xq.

Proof. Due to Proposition 3.4, it is enough to show that if (u, π, `, ω) ∈
[
W 2,q(E)

]3 × Ŵ 1,q(E) ×
C3 × C3 satisfies the system (4.1) with (f, f`, fω) = 0, then u = π = ` = ω = 0.

We first consider the case q = 2. Multiplying, (4.1)1 by u, (4.1)4 by ` and (4.1)5 by ω, we obtain
after integration by parts:

λ

∫
E

|u|2 + 2µ

∫
E

|D(u)|2 + λm|`|2 + λ 〈Jω, ω〉C3 = 0. (5.10)

Note that, to justify properly these computations, we should multiply (4.1)1 by ϕRu, where ϕR =
ϕ(x/R), ϕ being a smooth cut-off function taking value one close to the unit ball and vanishing
outside the ball of radius 2, and R being a large positive parameter. One should then prove the
following convergences,

lim
R→∞

∫
E

ϕR|D(u)|2 dx =

∫
E

|D(u)|2 dx, (5.11)

lim
R→∞

∫
E

|u||∇u||∇ϕR| dx = 0, (5.12)

∃cπ ∈ R, such that lim
R→∞

∫
E

|π + cπ||u||∇ϕR| dx = 0, (5.13)

the first limit coming from Lebesgue dominated convergence theorem and the second from the fact
that u ∈ L2(E) and ∇u ∈ L2(E). The last limit is more delicate and is based on the fact that,
since ∇π ∈ L2(E), there exists a constant cπ such that π + cπ ∈ L6(E). Then we can write∫

E

|π + cπ||u||∇ϕR| dx 6 ‖π + cπ‖6,E‖u‖2,R3\B(R)‖∇ϕR‖3,R3 .
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To conclude (5.13), it then remains to check that ‖∇ϕR‖3,R3 is bounded uniformly in R, while
‖u‖2,R3\B(R) goes to 0 as R→∞.

If Imλ 6= 0, we take the imaginary part of identity (5.10) and obtain that u = π = ` = ω = 0. If
Imλ = 0, then Reλ > 0, hence using the above identity and the boundary conditions we also obtain
u = π = ` = ω = 0.

Let us then consider the case q > 2 and λ 6= 0. Let B1 and B2 be two open balls in R3 such that

O ⊂ B1, B1 ⊂ B2,

and let ϕ1, ϕ2 ∈ C∞(R3) be such that ϕ1(x) > 0, ϕ2(x) > 0, ϕ1(x) + ϕ2(x) = 1 for every x ∈ R3,
ϕ1 = 1 on B1, ϕ1 = 0 on R3 \ B2, ϕ2 = 1 on R3 \ B2 and ϕ2 = 0 on some open neighbourhood of
B1. Then ϕ1u satisfies the following system

λ(ϕ1u)−∆(ϕ1u) +∇(ϕ1π) = −2(∇u)(∇ϕ1)− (∆ϕ1)u+ π∇ϕ1 (x ∈ B2 \ O),

div (ϕ1u) = (∇ϕ1) · u (x ∈ B2 \ O),

ϕ1u = 0 (x ∈ ∂B2),

ϕ1u = `+ ω × x (x ∈ ∂O),

mλ`+

∫
∂O

σ(ϕ1u, ϕ1π)ν ds = 0,

J λω +

∫
∂O

x× σ(ϕ1u, π)ν = 0.

(5.14)

Note that −2(∇u)(∇ϕ1)− (∆ϕ1)u+ π∇ϕ1 ∈
[
L2(B2 \ O)

]3
. Therefore, by using Corollary 3.8 we

obtain (ϕ1u, ϕ1π) ∈
[
W 2,2(B2 \ O)

]3 ×W 1,2(B2 \ O). Similarly, (ϕ2u, ϕ2π) satisfies the following
system{

λ(ϕ2u)−∆(ϕ2u) +∇(ϕ2π) = −2(∇u)(∇ϕ2)− (∆ϕ2)u+ π∇ϕ2 (x ∈ R3),

div (ϕ2u) = (∇ϕ2) · u (x ∈ R3).
(5.15)

We also have 2(∇u)(∇ϕ2)− (∆ϕ2)u+ π∇ϕ2 ∈
[
L2(R3)

]3
. By standard results on Stokes operator

in the whole space, we also get (ϕ2u, ϕ2π) ∈
[
W 2,2(R3)

]3× Ŵ 1,2(R3). Combining the above results

we obtain u ∈
[
W 2,2(E)

]3
and π ∈ Ŵ 1,2(E).

Let us consider the case 1 < q < 2 and λ 6= 0. We use a bootstrap argument here. Let us set f̄i =

−2(∇u)(∇ϕi)− (∆ϕi)u+π∇ϕi. By Sobolev imbedding theorem we obtain f̄1, f̄2 ∈
[
Lr(B2 \ O)

]3
,

for r > q, with
1

3
+

1

r
=

1

q
. This implies that ϕ1u ∈

[
W 2,r(B2 \ O)

]3
and ϕ2u ∈

[
W 2,r(R3)

]3
, hence

u ∈
[
W 2,r(E)

]3
. If r > 2, we are reduced to the previous case. Otherwise, we continue the process

until we get u ∈
[
W 2,2(E)

]3
.

We next consider the case λ = 0, which only consists in justifying identity (5.10) in that case,
since u = π = ` = ω = 0 would then follow immediately.

According to [8, Lemma V.4.1], we have that for all p ∈ (1,∞), D2u ∈ Lp(E) and ∇π ∈ Lp(E).
Consequently, using [3, Theorem 2.1], for all r > 3/2, ∇u ∈ Lr(E). In particular, ∇u ∈ L2(E)
and we then get the convergence (5.11). We also have, again from [3, Theorem 2.1], for all q̃ > 3,
u ∈ Lq̃(E). Taking q̃ > 3 close to 3 and r > 3/2 close to 3/2 so that 1− 1/q̃ − 1/r < 1/3, choosing
s > 3 such that 1/s+ 1/q̃ + 1/r = 1, we get∫

E

|u||∇u||∇ϕR| dx 6 ‖u‖q̃,E‖∇u‖r,E‖∇ϕR‖s,E .

Using then that ‖∇ϕR‖s,E goes to 0 as R goes to infinity since s > 3, the convergence (5.12) also
holds.
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Similarly, using that for all p ∈ (1,∞), ∇π ∈ Lp(E), we get that there exists cπ ∈ R such that
π + cπ ∈ Lr(E) for all r > 3/2, and we then get, with the choices of q̃ > 3, r > 3/2 and s > 3
above, satisfying 1/s+ 1/q̃ + 1/r = 1, that∫

E

|π + cπ||u||∇ϕR| dx 6 ‖π + cπ‖r,E‖u‖q̃,E‖∇ϕR‖s,E .

Using again that ‖∇ϕR‖s,E goes to 0 as R goes to infinity since s > 3, the convergence (5.13) also
holds.

6 Analyticity of the Fluid-Structure semigroup

We begin by stating the main result in this section, which, besides being of independent interest, is
an important ingredient in the proof of our main results. In fact, as mentioned earlier, this result
improves the existing result of [30, Theorem 2.5, Theorem 2.9].

Theorem 6.1. For every 1 < q < ∞ and θ ∈
(
π
2 , π

)
there exists Mq,θ > 0 such that the operator

Aq satisfies ∥∥λ(λI − Aq)−1
∥∥
L(Xq) 6Mq,θ (λ ∈ Σθ). (6.1)

Consequently, Aq generates a bounded analytic semigroup Tq = (Tqt )t>0 on Xq.

The guiding idea in proving the above result is borrowed from Borchers and Sohr [2] and
it consists in using a contradiction argument and appropriate cut-off functions, combined with
Proposition 3.7 and classical results for the Stokes operator in the whole space.

A first step towards the proof of Theorem 6.1 is the following result, concerning the case q ∈
(1, 3/2):

Proposition 6.2. Let q ∈
(
1, 3

2

)
and θ ∈ (π2 , π). Let (R(λ)) and (P (λ)) be the family of the

operators introduced in Theorem 4.3. For (f, f`, fω) ∈ [Lq(E)]
3 × C3 × C3, we setu`

ω

 = R(λ)

 ff`
fω

 , π = P(λ)

 ff`
fω

 (λ ∈ Σθ). (6.2)

Then there exists a constant Mq,θ > 0 such that, for every (f, f`, fω) ∈ [Lq(E)]
3 ×C3 ×C3 and for

every λ ∈ Σθ,

|λ|(‖u‖q,E + |`|+ |ω|) +
∥∥D2u

∥∥
q,E

+ ‖∇π‖q,E + |`|+ |ω| 6Mq,θ(‖f‖q,E + |f`|+ |fω|). (6.3)

Proof. First remark that Proposition 5.1 easily implies (6.3) for λ ∈ Σθ with |λ| > γ. We thus
focus on the proof of the estimate (6.3) for λ ∈ Σθ with |λ| 6 γ. Assume that (6.3) is false for some
q ∈

(
1, 3

2

)
for λ ∈ Σθ with |λ| 6 γ. Then there exists a sequence of complex numbers (λn)n∈N,

together with a sequence (un, `n, ωn) in Xq ∩ (
[
W 2,q(E)

]3 ∩ ×C3 × C3) and (πn) in Ŵ 1,q(E) such
that

0 < |λn| 6 γ, | arg λn| 6 θ (n ∈ N), (6.4)

|λn|(‖un‖q,E + |`n|+ |ωn|) +
∥∥D2un

∥∥
q,E

+ ‖∇πn‖q,E + |`n|+ |ωn| = 1 (n ∈ N), (6.5)

‖λnun − µ∆un +∇πn‖q,E → 0, as n→∞, (6.6)

mλn`n +

∫
∂O

σ(un, πn)ν ds→ 0, as n→∞, (6.7)

J λnωn +

∫
∂O

x× σ(un, πn)ν ds→ 0, as n→∞. (6.8)
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To obtain the desired contradiction we proceed, following [2], in several steps.
Step 1: Localization.

Let B1 and B2 be two open balls in R3 such that

O ⊂ B1, B1 ⊂ B2,

and let ϕ1, ϕ2 ∈ C∞(R3) be such that ϕ1(x) > 0, ϕ2(x) > 0, ϕ1(x) + ϕ2(x) = 1 for every x ∈ R3,
ϕ1 = 1 on B1, ϕ1 = 0 on R3 \ B2, ϕ2 = 1 on R3 \ B2 and ϕ2 = 0 on some open neighbourhood of
B1. After some calculations, we see that for each n ∈ N we have

λn(ϕ1un)−∆(ϕ1un) +∇(ϕ1πn) = ϕ1 (λnun −∆un +∇πn)

−2(∇un)(∇ϕ1)− (∆ϕ1)un + πn∇ϕ1 (x ∈ B2 \ O),

div (ϕ1un) = (∇ϕ1) · un (x ∈ B2 \ O),

ϕ1un = 0 (x ∈ ∂B2),

ϕ1un = `n + ωn × x (x ∈ ∂O),

mλn`n +

∫
∂O

σ(ϕ1un, ϕ1πn)ν ds = mλn`n +

∫
∂O

σ(un, πn)ν,

J λnωn +

∫
∂O

x× σ(ϕ1un, πn)ν = J λnωn +

∫
∂O

x× σ(un, πn)ν ds.

(6.9)

By applying Corollary 3.8 and using the fact that ϕ1 vanishes outside B2, it follows that there
exists c > 0 such that for every n ∈ N we have

|λn| (‖ϕ1un‖q,E + |`n|+ |ωn|) + ‖D2(ϕ1un)‖q,E + ‖∇(ϕ1πn)‖q,E + |`n|+ |ωn|
6 c (‖ϕ1(λnun −∆un +∇πn)‖q,E + ‖∇(∇ϕ1 · un)‖q,E + 2‖∇un · ∇ϕ1‖q,E)

+ c (‖(∆ϕ1)un‖q,E + ‖πn∇ϕ1‖q,E)

+ c

(∣∣∣∣mλn`n +

∫
∂O

σ(un, πn)ν

∣∣∣∣+

∣∣∣∣J λnωn +

∫
∂O

x× σ(un, πn)ν ds

∣∣∣∣) . (6.10)

On the other hand, using the fact that ϕ2 = 0 on some open neighbourhood of B1, for each n ∈ N
we have:

λn(ϕ2un)−∆(ϕ2un) +∇(ϕ2πn) = ϕ2 (λnun −∆un +∇πn)

−2(∇un)(∇ϕ2)− (∆ϕ2)un + πn∇ϕ2 (x ∈ R3),

div (ϕ2un) = (∇ϕ2) · un (x ∈ R3).

(6.11)

Using classical results for the Stokes operator in R3 (see, for instance, McCracken [22]), it follows
that, for every n ∈ N we have

|λn|‖ϕ2un‖q,E + ‖D2(ϕ2un)‖q,E + ‖∇(ϕ2πn)‖q,E
6 c (‖ϕ2(λnun −∆un +∇πn)‖q,E + ‖∇(∇ϕ2 · un)‖q,E + 2‖∇un · ∇ϕ2‖q,E)

+ c (‖(∆ϕ2)un‖q,E + ‖πn∇ϕ2‖q,E) . (6.12)

By combining (6.10) and (6.12) it follows that for every n ∈ N we have

|λn| (‖un‖q,E + |`n|+ |ωn|) + ‖D2un‖q,E + ‖∇πn‖q,E + |`n|+ |ωn|
6 |λn| (‖ϕ1un‖q,E + ‖ϕ2un‖q,E + |`n|+ |ωn|) + ‖D2(ϕ1un)‖q,E + ‖D2(ϕ2un)‖q,E

+ ‖∇(πnϕ1)‖q,E + ‖∇(πnϕ2)‖q,E 6 c‖λnun −∆un +∇πn‖q,E

+ c

(∣∣∣∣mλn`n +

∫
∂O

σ(un, πn)ν

∣∣∣∣+

∣∣∣∣J λnωn +

∫
∂O

x× σ(un, πn)ν ds

∣∣∣∣)+W (un,∇un, πn), (6.13)
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where

W (un,∇un, πn) = c

2∑
j=1

(‖∇(∇ϕj · un)‖q,E + 2‖∇un · ∇ϕj‖q,E)

+ c

2∑
j=1

(‖(∆ϕj)un‖q,E + ‖πn∇ϕj‖q,E) (n ∈ N). (6.14)

Step 2. Passage to the limit.
Let r, s > 1 be defined by

1

3
+

1

s
=

1

q
and

1

3
+

1

r
=

1

s
,

so that
2

3
+

1

r
=

1

q
and 1 < s < 3. (6.15)

By Theorem 2.1 and Lemma 3.1 in Crispo and Maremonti [3] and (6.5), we have

‖un‖r,E 6 C‖∇un‖s,E 6 C‖D2un‖q,E 6 C, (6.16)

‖πn‖s,E 6 C‖∇πn‖q,E 6 C. (6.17)

Thus, there exist a subsequence, still denoted by (un), (πn), (`n), (ωn) and u ∈ [Lr(E)]
3
, π ∈ Ls(E),

(`, ω) ∈ C3 × C3 and λ ∈ Σθ such that

un ⇀[Lr(E)]3 u, πn ⇀Ls(E) π, `n → `, ωn → ω, λn → λ, as n→∞, (6.18)

where ⇀X stands for the weak convergence in a Banach space X. Let us set

Un = un1E + (`n + ωn × x)1O (n ∈ N), U = u1E + (`+ ω × x)1O. (6.19)

Then Un ∈ Xr and the sequence (Un) weakly converges to U in Xr. According to (6.6)–(6.8) and
by the definition of the operator Aq, we have that

Un ∈ D(Aq) for all n ∈ N, and (λn − Aq)Un →Xq(E) 0 as n→∞.

Let W ∈ D(Aq′) ∩ D(Ar′). By Proposition 5.3,

0 = lim
n→∞

〈(λnI − Aq)Un,W 〉Xq,Xq′ = 〈U, (λI − Ar′)W 〉Xr,Xr′ .

Since the set {(λI − Ar′)W |W ∈ D(Aq′) ∩ D(Ar′)} ⊆ Xq′∩Xr′ is dense in Xr′ (see Proposition 5.4),
the last formula implies that U = 0. Consequently, using (6.5) and (6.6),

λnun ⇀[Lq(E)]3 0, ∆un ⇀[Lq(E)]3 0, ∇πn ⇀[Lq(E)]3 0, as n→∞.

Next using the fact that supn ‖πn‖Ls(Ω) <∞ (see (6.17)) we deduce that π = 0.
Now we consider the expression W (un,∇un, πn) defined in (6.14). We claim that

lim
n→∞

W (un,∇un, πn) = 0. (6.20)

To shorten the proof, since all the terms in W (un,∇un, πn) are the same as in [2], we consider
only one term of W (un,∇un, πn), say fj,n = ∇(∇ϕj · un) for j ∈ {1, 2}, since the other terms can

be estimated in a similar manner. Note that, fj,n ∈
[
W 1,q

0 (B2 \B1)
]3

for every n ∈ N and using
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(6.16), (6.18) and the fact that u = 0 we also have (fj,n) converges weakly to 0 in
[
Lq(B2 \B1)

]3
.

Moreover, using (6.17)

‖fj,n‖1,q,B2\B1
6 C(‖un‖q,B2\B1

+ ‖∇un‖q,B2\B1
)

6 C(‖un‖r,B2\B1
+ ‖∇un‖s,B2\B1

) ( since r, s > q)

6 C(‖un‖r,E + ‖∇un‖s,E) 6 C. (6.21)

Thus, fj,n converges strongly to 0 in
[
Lq(B2 \B1)

]3
as n → ∞. Consequently, we obtain (6.20).

This, together with (6.5), contradicts the estimate (6.13), which ends the proof.

We are now in position to prove the main result in this section.

Proof of Theorem 6.1 . We first note that from Proposition 3.4, Theorem 4.3 and Proposition 6.2,
we obtain (6.1) for 1 < q < 3

2 . In the case 3
2 6 q 6 2 we take q0 ∈ (1, 3

2 ). We define 0 6 s 6 1 by

1

q
=

s

q0
+

1− s
2

.

Since (6.1) holds for q0, there exists a constant Mθ,q0 > 0 such that∥∥λ(λI − Aq0)−1
∥∥
L(Xq0 )

6Mθ,q0 (λ ∈ Σθ).

On the other hand, A2 is a self-adjoint operator on X2 (see [26]). Therefore, we also have∥∥λ(λI − A2)−1
∥∥
L(X2)

6Mθ,2 (λ ∈ Σθ),

for some Mθ,2 depending only on θ. Then by Riesz-Thorin interpolation theorem (see for instance
[28, Theorem 1, Section 1.18.7]), we obtain∥∥λ(λI − Aq)−1

∥∥
L(Xq) 6Ms

θ,q0M
1−s
θ,2 (λ ∈ Σθ). (6.22)

This ends the proof of (6.1) for
3

2
6 q 6 2.

In the case 2 < q < ∞, we take 1 < q′ 6 2 such that
1

q
+

1

q′
= 1. By Proposition 5.3, we have

λ(λI − Aq)−1 = [λ(λI − Aq′)−1]∗, so that∥∥λ(λI − Aq)−1
∥∥
L(Xq) =

∥∥λ(λI − Aq′)−1
∥∥
L(Xq′ ) (λ ∈ Σθ).

We have already seen that (6.1) holds for 1 < q 6 2. Thus from the above identity we infer that,
(6.1) holds for any 2 < q <∞, which ends the proof.

We end this section with the result below, whose proof can be easily obtained by combining
Theorem 6.1 and the results from Lunardi [19, Chapter 3]:

Corollary 6.3. With the assumptions and notations of Theorem 6.1, for any ε > 0 there exists
Cε > 0, such that∥∥Ak−1

q U
∥∥
Xq 6 ε

∥∥AkqU∥∥Xq + Cε ‖U‖Xq (U ∈ D(Akq ), k ∈ N). (6.23)
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7 Decay estimates for the fluid-structure semigroup

Based on Theorem 6.1, we consider the fluid-structure semigroup which is, for each q ∈ (1,∞), the
bounded analytic semigroup Tq introduced in Theorem 6.1. Our main result in this section is:

Theorem 7.1. (i) Let 1 < q < ∞. Let R0 > 0 be such that O ⊂ BR0
. Then for any R > R0,

there exists a constant C > 0, depending on q and R, such that

‖TqtU‖q,BR 6 Ct−
3
2q ‖U‖Xq (t > 1, U ∈ Xq). (7.1)

(ii) Let 1 < q 6 r <∞ and σ = 3
2

(
1
q −

1
r

)
. Then there exists a constant C > 0, depending on q

and r, such that
‖TqtU‖Xr 6 Ct−σ ‖U‖Xq (t > 0, U ∈ Xq). (7.2)

(iii) Let 1 < q 6 r 6 3. Then there exists a constant C > 0, depending on q and r, such that

‖∇TqtU‖r,E 6 Ct−σ−1/2 ‖U‖Xq (t > 0, U ∈ Xq). (7.3)

(iv) Estimate (7.2) also holds for 1 < q <∞ and r =∞.

Let us emphasize that Theorem 7.1 holds for the linearized fluid-structure equations for bodies
O of arbitrary shapes. It seems thus likely that these properties can be used to derive the well-
posedness for solids of arbitrary shape, see the discussion in Section 9 below.

Let us also mention that, Maremonti and Solonnikov in [21] proved that, while considering
Stokes equation in the exterior domain, the same decay estimates hold, and the estimate (7.2) are
sharp for 3/2 6 q 6 r 6 ∞. It is then expected that same holds for the fluid-structure operator
also. This is indeed the case, at least in the case of the ball, see Theorem B.1 in the appendix for
more details.

Our methodology to prove the above result is inspired by [15] and it consists in using the
resolvent estimates developed in Section 4 - Section 6. However, applying the strategy proposed in
[15] requires several adaptations which are described below.

To start with, we state the following regularity result of the projection operator Pq.

Proposition 7.2. Let k ∈ N. Assume that 1 < r 6 q < ∞. Let u ∈
[
Lq(R3)

]3
be such that

div u = 0 in D′(R3) and ∂αu ∈ [Lr(E)]
3

for every multi-index α ∈ Z3
+ with |α| = k. Then

∂α(Pqu) ∈ [Lr(E)]
3

for every multi-index α ∈ Z3
+ with |α| = k. Moreover, there exists a constant

C independent of the choice of u with the above properties, such that

∑
|α|=k

‖∂αPqu‖r,E 6 C

∑
|α|=k

‖∂αu‖r,E + ‖u‖q

 . (7.4)

Proof. Let v = Pqu. Then
v(x) = `v + ωv × x (x ∈ O), (7.5)

where

`v =
1

m

∫
O
v dx, ωv = − 1

J

∫
O
v × x dx. (7.6)

Moreover, there exists a positive constant C, depending only on q and on O, such that (see for
instance [30, Proof of Theorem 2.2, Eq. (3.14)])

|`v|+ |ωv| 6 C ‖u‖q . (7.7)
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Since div u = 0, we have that w1 from the decomposition (3.4) of u vanishes and, according to [30,
Proof of Theorem 2.2, Eq. (3.15)], w2 from the same decomposition satisfies w2 = ∇π2, with π2

satisfying

∆π2 = 0 in E,
∂π2

∂ν
= u · ν − (`v + ωv × x) · ν on ∂O. (7.8)

Then estimate (7.4) follows from (7.7) and from Giga and Sohr [10, proof of Lemma 2.3].

We next provide two results characterising the graph norm of Amq in terms of Sobolev spaces.

Proposition 7.3. Let 1 < q <∞.

(i) Assume that U ∈ D(Aq) and AqU |E ∈ [Wm,q(E)]
3

for some m ∈ Z+. Then U |E ∈
[
Wm+2,q(E)

]3
and there exists a constant Cm > 0 such that

‖U‖m+2,q,E 6 Cm

(
‖AqU‖m,q,E + ‖U‖Xq

)
. (7.9)

(ii) For every m ∈ N, if U ∈ D(Amq ), then U |E ∈W 2m,q(E) and

‖U‖2m,q,E 6 C
(∥∥Amq U∥∥Xq + ‖U‖Xq

)
(U ∈ D(Amq )). (7.10)

Proof. Let us set AqU = −F , so that F |E ∈ [Wm,q(E)]
3
. Moreover, we denote

u = U |E , ` =
1

m

∫
O
U dx, ω = −J−1

∫
O
U × x dx.

Then according to Proposition 5.2 there exists π ∈ Ŵ 1,q(E) such that u, π, ` and ω satisfy
−µ∆u+∇π = F (x ∈ E),

div u = 0 (x ∈ E),

u = `+ ω × x (x ∈ ∂O).

Let

[
w1

η1

]
= D1

[
`
ω

]
, where D1 is the Dirichlet map introduced in Proposition 4.1. According to

Proposition 4.1, for every k ∈ N there exists positive constants C1,k, C2,k such that

‖w1‖k+1,q,E + ‖π1‖Ŵk,q(E)
6 C1,k (|`|+ |ω|) 6 C2,k‖U‖Xq . (7.11)

We denote ũ = u− w1 and π̃ = π − η1. Then ũ and π̃ satisfy
−µ∆ũ+∇π̃ = F + w1 (x ∈ E),

div ũ = 0 (x ∈ E),

ũ = 0 (x ∈ ∂O).

According to [15, Proposition 2.7(i)], for every m ∈ N there exists a positive constant C3,m such
that

‖ũ‖m+2,q,E 6 C3,m

(
‖F‖m,q,E + ‖w1‖m,q,E + ‖ũ‖q,E

)
.

The above estimate together with (7.11) implies the estimate (7.9).
To prove (7.10), we use an induction argument. We first note that (7.10) is true for m = 1,

since it is nothing else but the estimate (7.9) for m = 0. Let us assume that (7.10) is true for some
m ∈ N and U ∈ D(Am+1

q ). Then by (7.9) and induction hypothesis, there exists a positive constant
Cm > 0 such that

‖U‖2m+2,q,E 6 Cm

(
‖AqU‖2m,q,E + ‖U‖Xq

)
6 C

(∥∥Am+1
q U

∥∥
Xq + ‖AqU‖Xq + ‖U‖Xq

)
. (7.12)

Then the assertion (7.10) holds for m replaced by m+ 1 by applying Corollary 6.3 repeatedly and
(7.12). This completes the proof of the proposition.

24



Proposition 7.4. Let q ∈ (1,∞). Then:

(i) For any m ∈ N, there exists a positive constant Cm > 0 such that∥∥Amq U∥∥Xq 6 Cm

(
‖U‖2m,q,E + ‖U‖Xq

) (
U ∈ D(Amq )

)
. (7.13)

(ii) Let θ ∈
(π

2
, π
)

and m ∈ N. Then there exists a positive constant Cm > 0 such that

∥∥(λI − Aq)−1F
∥∥

2m+2,q,E
6 Cm

(
‖F‖2m,q,E + ‖F‖Xq

)
,(
F ∈ D(Amq ), λ ∈ Σθ, |λ| > 1

)
. (7.14)

Proof. We use an induction argument to prove (7.13). Using Proposition 3.1, (3.9) and (3.10) we
first note that the estimate (7.13) is true for m = 1. Assume that (7.13) holds for some m ∈ N and
U ∈ D(Am+1

q ). By the induction hypothesis, we have∥∥Am+1
q U

∥∥
Xq 6 Cm

(
‖AqU‖2m,q,E + ‖AqU‖Xq

)
,

(
U ∈ D(Am+1

q )
)
. (7.15)

By applying Proposition 7.2 and Corollary 6.3, the above estimate implies that∥∥Am+1
q U

∥∥
Xq 6 Cm

(
‖U‖2m+2,q,E + ‖U‖Xq

) (
U ∈ D(Am+1

q )
)
. (7.16)

Thus (7.13) also holds when m is replaced by m+ 1.
Finally (7.14) follows from the facts that∥∥λ(λI − Aq)−1

∥∥
L(D(Amq ))

6M, (λ ∈ Σθ) (7.17)

together with the estimates (7.10) and (7.13).

Remark 7.5. Putting together (7.10) and (7.13), it follows that, for every m ∈ N, the graph
norm of Amq is equivalent to ‖·‖2m,q,E + ‖·‖Xq . We also note that this equivalence also holds for the

bounded domain version of the fluid-structure operator, i.e., Ω ⊂ R3 open and bounded, and the

operator Aq,Ω defined in (3.9). Moreover, elements ϕ of D(Amq ) belong to
[
W 1,q(R3)

]3 ∩ Xq(R3)

and satisfy ϕ|E ∈
[
W 2m,q(E)

]3
.

To state the next results, which yield decay estimates for the fluid-structure semigroup in
weighted Lp spaces, we remind from Section 2 the notation Lq,s for the weighted Lebesgue spaces
introduced in (2.3).

Theorem 7.6. Let 1 < q <∞. Let s and s′ be real numbers such that s > 3(1−1/q) and s′ < −3/q.
Then there exists a positive constant C, depending only on q, s and s′, such that

‖TqtU‖[Lq,s′ (R3)]
3 6 C(1 + t)−

3
2 ‖U‖[Lq,s(R3)]3 U ∈ Xq ∩

[
Lq,s(R3)

]3
. (7.18)

Proof. We first note that Theorem 4.3 is a complete analogue of Corollary 3.2 in [15], and Theo-
rem 6.1 is the analogue of the main result in [2]. We can thus complete the proof following line by
line the proof of Theorem 1.1 in [15].
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Remark 7.7. For U0 ∈ D(Aq), we denote by

u0 = U0|E , `0 =
1

m

∫
O
U0 dx, ω0 = − 1

J

∫
O
U0 × x dx.

Moreover for every t > 0, we set U(t) = TqtU0 and

u(t) = U(t)|E , `(t) =
1

m

∫
O
U(t) dx, ω(t) = − 1

J

∫
O
U(t)× x dx.

Then there exists π ∈ C([0,∞); Ŵ 1,q(E)) such that (u, π, `, ω) satisfies the following system

∂tu− µ∆u+∇π = 0, divu = 0 (t > 0, x ∈ E),

u = `+ ω × x (t > 0, x ∈ ∂O),

m ˙̀ +

∫
∂O

σ(u, π)ν ds = 0 (t > 0),

J ω̇ +

∫
∂O

x× σ(u, π)ν ds = 0, (t > 0),

u(0) = u0 (x ∈ E),

`(0) = `0, ω(0) = ω0.

(7.19)

Our next result in this section provides Lq − Lr smoothing estimates for the fluid-structure
semigroup Tq for small time:

Theorem 7.8. Let 1 < q 6 r < ∞ and σ = 3
2

(
1
q −

1
r

)
. Then for each τ ∈ (0,∞), there exists a

constant C > 0, depending on τ, q and r, such that

‖TqtU‖Xr 6 Ct−σ ‖U‖Xq (t 6 τ, U ∈ Xq), (7.20)

‖∇TqtU‖r,E 6 Ct−σ−
1
2 ‖U‖Xq (t 6 τ, U ∈ Xq). (7.21)

Proof. Let N = [2σ], where [·] denotes the integer part function. Let us assume that N is even.
Then by (7.10), there exists a constant C > 0 depending on τ, q and r, such that

‖TqtU‖N,q,E + |`(t)|+ |ω(t)| 6 C
(∥∥∥AN/2q TqtU

∥∥∥
Xq

+ ‖TqtU‖Xq
)

6 C
(
t−

N
2 ‖U‖Xq + τ

N
2 t−

N
2 ‖U‖Xq

)
6 Ct−

N
2 ‖U‖Xq (t ∈ (0, τ ]). (7.22)

In a similar manner, we also obtain

‖TqtU‖N+2,q,E + |`(t)|+ |ω(t)| 6 Ct−
N+2

2 ‖U‖Xq (t ∈ (0, τ ]). (7.23)

Thus by Sobolev embedding, interpolation and using (7.22)-(7.23), we obtain

‖TqtU‖Xr 6 C
(
‖TqtU‖r,E + |`(t)|+ |ω(t)|

)
6 C

(
‖TqtU‖2σ,q,E + |`(t)|+ |ω(t)|

)
6 C

(
‖TqtU‖

2σ−N
2

N+2,q,E ‖T
q
tU‖

N+2−2σ
2

N,q,E + |`(t)|+ |ω(t)|
)
6 Ct−σ ‖U‖Xq , t ∈ (0, τ ].

If N is odd then we replace N by N − 1. This completes the proof of (7.20). The proof of (7.21)
is completely similar, thus omitted here.
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The next step towards the proof of Theorem 7.1 is the following result:

Lemma 7.9. With the notations and assumptions of Theorem 7.1, let d > R0 and let m ∈ N.
Moreover, denote Ed := {x ∈ E | |x| < d}. Then

(i) There exists a constant C > 0 depending on d and m such that for all t > 0,

‖TqtU‖q,Bd + ‖TqtU‖2m,q,Ed 6 C(1 + t)−
3
2

(
‖U‖2m,q,Ed + ‖U‖Xq

)
, (7.24)

for every U ∈ D(Amq ) with U = 0 for |x| > d.

(ii) There exists a constant C > 0 depending on d and m such that for all t > 0,

‖∂tTqtU‖q,Bd + ‖∂tTqtU‖2m,q,Ed 6 C(1 + t)−
5
2

(
‖U‖2m+2,q,Ed

+ ‖U‖Xq
)
, (7.25)

for every U ∈ D(Am+1
q ) with U = 0 for |x| > d.

Proof. The proof can be obtained following line by line the proof Lemma 5.2 from Iwashita [15].
More precisely, it suffices to use instead of Proposition 2.7 and Lemma 2.8 in [15] our results in
Proposition 7.3 and Proposition 7.4 above, respectively, and to replace expansion (3.2) in [15] by
(4.15) above.

Proposition 7.10. With the notation and assumptions of Remark 7.7 and Theorem 7.1, let d >
R0 + 5 and m ∈ N. Moreover, assume that U0 ∈ Ran(Tq1). Then there exists a positive constant C,
depending only on E, d,m and q, such that, for every t > 0 we have

‖u(t, ·)‖2m,q,Ed + |`(t)|+ |ω(t)| 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+2m+2,q,E + |`0|+ |ω0|

)
, (7.26)

‖∂tu(t, ·)‖2m,q,Ed + | ˙̀(t)|+ |ω̇(t)| 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+2m+4,q,E + |`0|+ |ω0|

)
, (7.27)

‖π(t, ·)‖2m+1,q,Ed
6 C(1 + t)−

3
2q

(
‖u0‖[3/q]+2m+4,q,E + |`0|+ |ω0|

)
, (7.28)

where [s] denotes the integer part of s ∈ R.

Proof. We follow with minor modifications the steps of the proof of Lemma 5.3 in [15].
Step 1. Since U0 ∈ Ran(Tq1), we have U0 ∈ D(Akq ) for all k ∈ N. Let ũ0 be an extension of u0 to

R3 such that ũ0 ∈
[
W 2m,q(R3)

]3
and ‖ũ0‖2m,q 6 C ‖U0‖D(Amq ), where C is a constant independent

of U0. Then div ũ0 ∈W 2m−1,q
0 (O) and

∫
O

div ũ0 =

∫
∂O

(`0 +ω0×x) ·ν ds = 0. Then by Lemma 2.1

we have that BO (divũ0) ∈W 2m,q
0 (O). Let us set

ψ = ũ0 − BO (divũ0) ,

where BO (divũ0) is seen as a function in
[
W 2m,q(R3)

]3
after its extension by 0 in E. Then ψ ∈[

W 2m,q(R3)
]3

has the following properties

ψ(x) = U0(x) = u0(x) for all x ∈ E, div ψ(x) = 0 in R3, ‖ψ‖2m,q 6 C ‖U0‖D(Amq ) . (7.29)

Step 2. We consider the following Stokes system in R3{
∂tv0(t, x)− µ∆v0(t, x) = 0, div v0(t, x) = 0 (t > 0, x ∈ R3),

v0(0, x) = ψ(x) (x ∈ R3).
(7.30)
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Let q and r be such that 1 < q 6 r 6∞ and define σ = 3
2 ( 1
q −

1
r ). According to classical estimates

(see, for instance, [15, Lemma 5.1]) for the heat kernel, for every m ∈ Z+, there exists a constant
Cm > 0, depending on q and r, with

‖∇mv0(t, ·)‖r 6 Cmt
−σ−m2 ‖ψ‖q (t > 0), (7.31)

‖∇mv0(t, ·)‖r 6 Cm(1 + t)−σ−
m
2 ‖ψ‖[2σ]+m+1,q (t > 0), (7.32)

‖∇m∂tv0(t, ·)‖r 6 Cmt
−σ−1−m/2 ‖ψ‖q (t > 0), (7.33)

‖∇m∂tv0(t, ·)‖r 6 Cm(1 + t)−σ−1−m2 ‖ψ‖[2σ]+m+3,q (t > 0). (7.34)

Let ϕ ∈ C∞0 (R3) be such that ϕ(x) = 1 for |x| 6 d − 2 and ϕ(x) = 0 for |x| > d − 1. Denote

Ωd =
{
x ∈ R3 | d− 2 6 |x| 6 d− 1

}
and let Bd : D(Ωd) → [D(Ωd)]

3
be the Bogovskii operator

such that div(Bdh) = h if

∫
Ωd

h = 0. We define

v1(t, ·) = Bd(−∇ϕ · v0(t, ·)) (t > 0). (7.35)

By applying (7.32) and (7.34), it follows that there exists a constant Cm > 0, depending on q, such
that

‖v1(t, ·)‖m,q,E 6 Cm ‖∇ϕ · v0(t, ·)‖m−1,q,E 6 Cm(1 + t)−3/2q ‖ψ‖[3/q]+m,q (t > 0), (7.36)

‖∂tv1(t, ·)‖m,q,E 6 Cm ‖∇ϕ · ∂tv0(t, ·)‖m−1,q,E 6 Cm(1 + t)−3/2q ‖ψ‖[3/q]+m+2,q (t > 0).

(7.37)
Step 3. We now set

v2(t, x) = u(t, x)− (1− ϕ)v0(t, x) + v1(t, x) (t > 0, x ∈ E). (7.38)

Then v2, π, ` and ω satisfy

∂tv2 − µ∆v2 +∇π = f, div v2 = 0 (t > 0, x ∈ E),

v2 = `+ ω × x (t > 0, x ∈ ∂O),

m ˙̀ +

∫
∂O

σ(v2, π)ν ds = 0 (t > 0),

J ω̇ +

∫
∂O

x× σ(v2, π)ν ds = 0 (t > 0),

v2(0, x) = ζ(x) (x ∈ E),

`(0) = `0, ω(0) = ω0,

(7.39)

where
f = −2(∇ϕ · ∇)v0 − µ(∆ϕ)v0 + ∂tv1 − µ∆v1, (7.40)

ζ(x) = ϕ(x)ψ(x) + v1(0, x) (x ∈ E). (7.41)

Moreover, we have

div f(t, x) = 0, div ζ(x) = 0 (t > 0, x ∈ E), (7.42)

suppf(t, ·) ⊂ {d− 2 6 |x| 6 d− 1} (t > 0).

Denote
V20 = ζ1E + (`0 + ω0 × x)1O,
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and
V2(t, x) = v2(t, x)1E(x) + (`(t) + ω(t)× x)1O(x) (t > 0, x ∈ R3). (7.43)

Recall that U0 ∈ Ran(Tq1), in particular U0 ∈ D(Amq ) for every m ∈ N. Therefore V20 ∈ D(Amq ) for
every m ∈ N and there exists a constant C > 0, depending on m and q, such that

‖V20‖D(Amq ) 6 Cm ‖U0‖D(Amq ) . (7.44)

Using (7.31), (7.32), (7.36) and (7.37), we infer that there exists a constant C > 0, depending only
on m and q, such that

‖f(t, ·)‖m,q,E 6 Cm(1 + t)−3/2q ‖ψ‖[3/q]+m+2,q (t > 0). (7.45)

On the other hand, applying the variation of the constants formula to (7.39), we have

V2(t, ·) = TqtV20 +

∫ t

0

Tqt−sf(s, ·) ds (t > 0). (7.46)

The last estimate, combined with Lemma 7.9, can be used, following line by line the end of the
third step of the proof of Lemma 5.3 in [15], to obtain the existence of a constant C (depending
only on d, m and q), such that for every t > 0 we have

‖V2(t, ·)‖2m,q,Ed 6 Cm(1 + t)−3/2q
(
‖u0‖[3/q]+2m+2,q,E + |`0|+ |ω0|

)
. (7.47)

‖∂tV2(t, ·)‖2m,q,Ed 6 Cm(1 + t)−3/2q
(
‖u0‖[3/q]+2m+4,q,E + |`0|+ |ω0|

)
. (7.48)

Final step. Estimates (7.26) easily follow by combining (7.38) with the estimates (7.31) - (7.33),
(7.36), (7.37), (7.47) and (7.48). The estimate (7.27) can be obtained similarly. Putting together
(7.26) and (7.27), from (7.19)1 we obtain

‖∇π(t, ·)‖2m,q,Ed 6 ‖∂tu(t, ·)‖2m,q,Ed + ‖∆u(t, ·)‖2m,q,Ed
6 C(1 + t)−3/2q

(
‖u0‖[3/q]+2m+4,q,E + |`0|+ |ω0|

)
(t > 0).

Then the estimate (7.28) follows from the above estimate after redefining π as π −
∫
Ed

π dx and

applying Poincaré type inequalities.

The results in Lemma 7.9 and Proposition 7.10 provide decay estimates for the restrictions to
bounded sets of the solution u of the linearized problem. The result below provides decay estimates
for the restriction of u(t, ·) to the exterior of the bounded set Ed introduced in Lemma 7.9.

Proposition 7.11. With the notation and assumptions of Remark 7.7 and Theorem 7.1, let d >
R0 + 5. Moreover, assume that U0 ∈ Ran(Tq1). Then there exists a positive constant C, depending
only on E, d and q, such that, for every t > 0 we have

‖u(t, ·)‖r,{|x|>d} 6 C(1 + t)−σ
(
‖u0‖[3/q]+[2σ]+7,q,E + |`0|+ |ω0|

)
(1 < q 6 r <∞), (7.49)

‖∇u(t, ·)‖r,{|x|>d} 6 C(1 + t)−σ−1/2
(
‖u0‖[3/q]+[2σ]+7,q,E + |`0|+ |ω0|

)
(1 < q 6 r 6 3), (7.50)

where [s] denotes the integer part of s ∈ R.
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Proof. Let χ ∈ C∞(R3) be such that χ(x) = 1 for |x| > d and χ(x) = 0 for |x| < d− 1. It follows
that for every t > 0 we have that supp div(χu(t, ·)) ⊂ {d− 1 < |x| < d} . Then there exists v3(t, ·)
such that div v3 = div(χu), supp v3(t, ·) ⊂ {d− 1 < |x| < d} and for every m ∈ N, we have

‖v3(t, ·)‖m,q 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+m+2,q,E + |`0|+ |ω0|

)
, (7.51)

‖∂tv3(t, ·)‖m,q 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+m+4,q,E + |`0|+ |ω0|

)
, (7.52)

for some constant C > 0 depending on m and q. To derive the last two estimates we have used
Bogovskii Lemma, (7.26) and (7.27). We now define

v4(t, x) = χ(x)u(t, x)− v3(t, x) (t > 0, x ∈ R3). (7.53)

Note that div v4 = 0 so that v4 satisfies{
∂tv4 − µ∆v4 +∇(χπ) = h, divv4 = 0, (t > 0, x ∈ R3),

v4(0, x) = v40(x) (x ∈ R3),
(7.54)

where
h = −2(∇χ · ∇)u(t)− µ(∆χ)u+ ∂tv3 − µ∆v3 + π∇χ, (7.55)

and
v40(x) = χ(x)U0(x)− v3(0, x) (x ∈ R3). (7.56)

Note that, since all the functions appearing in (7.54) are supported away from O, the function
v4 shares all the properties derived in Lemma 5.5 and proofs of Theorems 1.2 and 1.3 of [15]. In
particular,

‖v4(t, ·)‖r 6 C(1 + t)−σ
(
‖u0‖[3/q]+[2σ]+7,q,E + |`0|+ |ω0|

)
(1 < q 6 r <∞), (7.57)

and

‖∇v4(t, ·)‖r 6 C(1 + t)−σ−1/2
(
‖u0‖[3/q]+[2σ]+7,q,E + |`0|+ |ω0|

)
(1 < q 6 r 6 3). (7.58)

By combining (7.57), (7.51) (with m = [2σ] + 1) and Sobolev’s embedding theorem we conclude
that

‖u(t)‖r,{|x|>d} 6 ‖v3(t)‖r,E + ‖v4(t)‖r
6 C ‖v3(t)‖[2σ]+1,q,E + ‖v4(t)‖r

6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+m+3,q,E + |`0|+ |ω0|

)
+ C(1 + t)−σ

(
‖u0‖[3/q]+m+7,q,E + |`0|+ |ω0|

)
6 C(1 + t)−σ

(
‖u0‖[3/q]+m+7,q,E + |`0|+ |ω0|

)
.

This completes the proof of (7.49).
Finally, the proof of (7.50) is obtained similarly from (7.58), together with (7.51) (with m =

[2σ] + 2).

We are now in a position to prove the main result in this section.

Proof of Theorem 7.1, items (i)–(iii). For small times, Theorem 7.1 items (i)–(iii) simply is The-
orem 7.8, and we thus only focus on the estimates of Theorem 7.1 items (i)–(iii) for times larger
than 1.
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To prove (7.1), it suffices to note that, for every U ∈ Xq we have Tq1U ∈ D(Akq ) for any k ∈ N,
so that applying (7.26) with m = 0 we obtain∥∥Tqt+1U

∥∥
q,BR

6 C(1 + t)−3/2q‖U‖q,R3 (t > 0, U ∈ Xq). (7.59)

Concerning (7.2), we first note that this estimate holds for t ∈ (0, 1] (see (7.20)). Again applying
(7.26) with m = [2σ] + 1, we get∥∥Tqt+1U

∥∥
r,Ed

6 C
∥∥Tqt+1U

∥∥
[2σ]+1,q,Ed

6 C(1 + t)−3/2q‖U‖q,R3 (t > 0, U ∈ Xq),

and by (7.49) ∥∥Tqt+1U
∥∥
r,{|x|>d} 6 C(1 + t)−σ‖U‖q,R3 (t > 0, U ∈ Xq).

The above two estimates give (7.2) for t > 1.
The proof of (7.3) follows analogously by combining (7.21), (7.26) and (7.50).

To complete the proof of Theorem 7.1, it remains to show that (7.2) holds for r = ∞ and
1 < q <∞. To this aim, we first prove the following result

Proposition 7.12. With the notation and assumptions of Remark 7.7 and Theorem 7.1, let d >
R0 + 5. Moreover, assume that 1 < q <∞ and U0 ∈ Ran(Tq1). Then there exists a positive constant
C, depending only on d and q, such that, for every t > 0 we have

‖u‖∞,E 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+7,q,E + |`0|+ |ω0|

)
, (t > 0, 1 < q <∞). (7.60)

where [s] denotes the integer part of s ∈ R.

Proof. Combining (7.38) together with the estimates (7.32)(with m = 0, r = ∞), (7.36)(with
m = 3) and (7.47) (with m = 2), we deduce that

‖u‖∞,Ed 6 C(1 + t)−3/2q
(
‖u0‖[3/q]+6,q,E + |`0|+ |ω0|

)
, (t > 0, 1 < q <∞). (7.61)

where the set Ed has been defined in Lemma 7.9. Moreover, using (7.51) with m = 3 we also have

‖v3(t, ·)‖∞ 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+6,q,E + |`0|+ |ω0|

)
, (t > 0, 1 < q <∞). (7.62)

where v3 is defined as in Proposition 7.11. Therefore, by virtue of the decomposition (7.53), it
remains to show the L∞ estimate of v4, where v4 is defined by (7.54). Recall the definition of h
from (7.55). Using (7.26), (7.28), (7.51) and (7.52), we obtain for any m ∈ N ∪ {0}

‖h(t, ·)‖m,q 6 C(1 + t)−
3
2q

(
‖u0‖[3/q]+m+4,q,E + |`0|+ |ω0|

)
, (t > 0, 1 < q <∞). (7.63)

Let us take q0 = min{5/4, q}. Then using (7.32) and the above estimate, we evaluate

‖v4(t, ·)‖∞ 6 C

(
(1 + t)−3/2q ‖v40‖[3/q]+1,q +

∫ t

0

(1 + t− s)−3/2q0 ‖h(s)‖[3/q0]+1,q0
ds

)
6 C

(
(1 + t)−3/2q ‖v40‖[3/q]+1,q +

∫ t

0

(1 + t− s)−3/2q0 ‖h(s)‖[3/q0]+1,q ds

)
6 C

(
‖u0‖[3/q]+7,q,E + |`0|+ |ω0|

)(
(1 + t)−

3
2q +

∫ t

0

1

(1 + t− s)3/2q0(1 + s)3/2q
ds

)
6 C(1 + t)−

3
2q

(
‖u0‖[3/q]+7,q,E + |`0|+ |ω0|

)
.

Note that, in the above estimate, we have used the fact that h has compact support, which comes
from its definition in (7.55) and the fact that v3 is compactly supported. The above estimate
together with (7.61) and (7.62) implies (7.60).
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Proof of Theorem 7.1, item (iv), estimate (7.2) for q ∈ (1,∞) and r =∞. Note that, for every U ∈
Xq we have Tq1U ∈ D(Akq ) for any k ∈ N. Thus applying (7.60) we have∥∥Tqt+1U

∥∥
∞ 6 C(1 + t)−3/2q ‖U‖Xq (t > 0, 1 < q <∞, U ∈ Xq).

This proves (7.2) for q ∈ (1,∞), r =∞, and t > 1.
For t ∈ (0, 1), 1 < q <∞, and q0 > max{3, q}, we apply Theorem 7.8 to obtain

‖TqtU‖∞,E 6 C ‖∇TqtU‖
3/q0
q0,E
‖TqtU‖

1−3/q0
q0,E

6 Ct−3/2q ‖U‖Xq , (0 < t < 1, 1 < q <∞, U ∈ Xq).

where the constant C is independent of t. This completes the proof of item (iv) of Theorem 7.1.

8 Proof of the main results

In this section, we focus on the analysis of the non-linear fluid-structure model, assuming that the
rigid body is a ball. Note that this assumption has been already used when fixing the frame via a
simple translation, which drastically simplifies the structure of the non-linear terms. Given q > 1
we continue to use the notation Xq for the space defined in Eq. (3.1) and Tq for the fluid structure
semigroup introduced in the previous sections. However, to simplify the notation and when there
is no risk of confusion, the fluid-structure semigroup will be simply denoted by T. Similarly, if the
appropriate value of q is clear from the context, the projector Pq, introduced in Proposition 3.2, is
simply denoted by P.

The arguments we are using are close to those in Kato [16], with several adaptations necessary
to tackle the extra term coming from the motion of the rigid body, in a spirit close to [6], and with
the extensive use of the results obtained in the previous sections on the fluid-structure semigroup,
and in particular Theorem 7.1.

We rely, in particular, on the following lemma, which is a rather straightforward consequence
of Theorem 7.1:

Lemma 8.1. Let p0 and q0 be such that q0 ∈ [3/2,∞) and p0 ∈ [q0,∞]. Then there exists C > 0

such that for every F ∈ Lq0(R3;R3×3) satisfying F = 0 in B and divF ∈
[
Lr(R3)

]3
for some

r ∈ (1, p0] \ {∞} we have

‖TrtPrdivF‖p0
6 Ct−3/2(1/q0−1/p0)−1/2‖F‖q0,E (t > 0). (8.1)

Proof. The proof follows the same steps as those appearing in [6, Proof of Corollary 3.10]. More

precisely, for F ∈ Lq0(R3;R3×3) satisfying F = 0 in B and divF ∈
[
Lr(R3)

]3
for some r ∈

(1, p0]\{∞}, we necessarily have F ·ν = 0 on ∂B and for t > 0, TrtPrdivF is a well-defined element
of Xr ∩ X∞ (see Theorem 7.1).

Setting r0 = max{r, q0}, we thus have that

‖TrtPrdiv (F )‖r0
= sup
ϕ∈Xr

′
0 , ‖ϕ‖

Xr
′
0
61

{
〈TrtPrdiv (F ), ϕ〉Xr0 ,Xr′0

}
= sup
ϕ∈Xr

′
0 , ‖ϕ‖

Xr
′
0
61

{
〈divF,Tr

′

t ϕ〉Xr,Xr′
}

( by Proposition 3.1 and Proposition 5.3)

= sup
ϕ∈Xr

′
0 , ‖ϕ‖

Xr
′
0
61

{
−
∫
E

F · ∇Tr
′
0
t ϕdx

}
( as F = 0 in B)

6 ‖F‖q0,E sup
ϕ∈Xr

′
0 , ‖ϕ‖

Xr
′
0
61

‖∇Tr
′
0
t ϕ‖q′0,E .
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Finally, using (7.3), we obtain

‖TrtPrdivF‖r0 6 Ct−3/2(1/q0−1/r0)−1/2‖F‖q0,E (t > 0).

Now, for p0 ∈ [r0,∞], we use

‖TrtPrdivF‖p0 6 ‖Tr0t/2‖L (Xr0 ,Xp0 )‖Trt/2PrdivF‖r0 6 Ct−3/2(1/q0−1/p0)−1/2‖F‖q0,E

where the last estimate comes from (7.2).

We state below a result which, taking in consideration the notation recalled at the beginning of
this section, clearly includes our main result in Theorem 1.1. More precisely, this result provides
local in time existence of solutions for initial data in X3 and global existence of solutions of (1.2)
for small data in X3, with a description of the long time behavior of the solutions when further
assuming that the initial datum belongs to Xq for some q ∈ (1, 3].

Theorem 8.2. Let V0 ∈ X3. Then there exists T0 > 0 such that there exists a unique solu-

tion V =

v`
ω

 ∈ C0([0, T0];X3) with t1/4V (t) ∈ C0([0, T0];X6), t1/2V (t) ∈ C0([0, T0];X∞) and

min{t1/2, 1}∇v(t) ∈ C0([0, T0];
[
L3(E)

]9
) of (1.2), such that

lim
t→0

(
‖t1/4V (t)‖X6 + ‖t1/2V (t)‖X∞ + ‖t1/2∇v(t)‖3,E

)
= 0.

Furthermore, this solution is such that for all p ∈ [3,∞], t3/2(1/3−1/p)V ∈ C0([0, T0];Xp).
Besides, there exists ε0 > 0 such that if ‖V0‖3 6 ε0, T0 can be taken to be infinite, i.e. T0 =∞,

for all p ∈ [3,∞], t3/2(1/3−1/p)V ∈ C0
b ([0,∞];Xp), and for all θ ∈ [0, 1/2), min{t1/2, tθ}∇v(t) ∈

L∞(0,∞;
[
L3(E)

]9
).

For q ∈ (1, 3], there exists ε0(q) ∈ (0, ε0] such that if V0 belongs to Xq ∩ X3 and satisfies
‖V0‖3 6 ε0(q), then the solution V also satisfies, for all p ∈ [max{q, 3/2},∞], t3/2(1/q−1/p)V ∈
C0
b ([0,∞];Xp).

Proof. Existence theory for V0 ∈ X3. We first focus on the existence of solutions V of (1.2).
As mentioned in the introduction, we are looking for mild solutions V of the non-linear problem

(1.2), i.e. solutions of the equation (1.8). For each t > 0 we identify V (t, ·) with a triple

v(t, ·)
`(t)
ω(t)

,

where v(t, ·) : E → R3 and `(t), ω(t) ∈ R3, as described in (3.3).
We first remark that, since (v − `) · ν = 0 on ∂B, we have

− 1E [(v − `) · ∇] v = divF, (8.2)

where
F (s, x) = −1E(x)(v(s, x)− `(s))⊗ v(s, x) (s > 0, x ∈ R3). (8.3)

In particular the triple V =

v`
ω

 is a mild solution of (1.2) iff it satisfies

V (t) = TtV0 +

∫ t

0

Tt−s P divF (s) ds (t > 0), (8.4)

where F is defined in (8.3). The above formulation will be intensively used in the remaining part
of the section, in conjonction with Lemma 8.1.
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For T > 0, we introduce the class

C (T ) =

V =

v`
ω

 with t1/4V ∈ C0([0, T ];X6), t1/2V ∈ C0([0, T ];X∞)

and min{t1/2, 1}∇v ∈ C0([0, T ];
[
L3(E)

]9
)
}
,

which we endow with the norm

‖V ‖C (T ) = ‖t1/4V (t)‖L∞(0,T ;X6) + ‖t1/2V (t)‖L∞(0,T ;X∞) + ‖min{t1/2, 1}∇v‖L∞([0,T ];[L3(E)]9).

Note in particular that, for V =

v`
ω

 ∈ C (T ), we have the estimate

|`(t)| 6 1

max{t1/4, t1/2}
‖V ‖C (T ), (t > 0).

We start by remarking that we are looking for a solution V of (1.8) or equivalently (8.4). We
then define the map ΛT : V ∈ C (T ) 7→ ΛTV defined for t ∈ [0, T ] by

ΛTV (t) = TtV0 +

∫ t

0

Tt−sP(1E(`(s)− v(s)) · ∇v(s)) ds, (8.5)

or, equivalently,

ΛTV (t) = TtV0 +

∫ t

0

Tt−sPdiv (1E(`(s)− v(s))⊗ v(s)) ds,

Next we claim the following lemma:

Lemma 8.3. There exists a constant C0 > 0 independent of T such that

‖ΛTV ‖C (T ) 6 ‖TtV0‖C (T ) + C0‖V ‖2C (T ), (V ∈ C (T )), (8.6)

‖ΛTV a − ΛTV
b‖C (T ) 6 C0(‖V a‖C (T ) + ‖V a‖C (T ))‖V a − V b‖C (T ), (V a, V b ∈ C (T )). (8.7)

Proof. Since estimate (8.6) can be easily deduced from (8.7) by taking V a = 0 and V b = V , we
prove only (8.7).

Let V a and V b be in C (T ). Then easy computations show that

ΛTV
a(t)− ΛTV

b(t) =

∫ t

0

Tt−sPdivG(s) ds,

where G is given by

G(s) = 1E

(
(`a(s)− va(s))⊗ va(s)− (`b(s)− vb(s))⊗ vb(s)

)
, (s ∈ (0, T ]).

Writing

G(s) = 1E((`a(s)− `b(s))− (va(s)− vb(s)))⊗ va(s)

+ 1E(`b(s)− vb(s))⊗ (va(s)− vb(s)), (s ∈ (0, T ]),
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we easily deduce that for all s ∈ (0, T ),

‖G(s)‖6 6 2‖V a(s)− V b(s)‖∞(‖V a(s)‖6 + ‖V b(s)‖6) + 2‖V a(s)− V b(s)‖6(‖V a(s)‖∞ + ‖V b(s)‖∞)

6
2

s3/4
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

Besides, for all s ∈ (0, T ], divG(s) belongs to [L3(R3)]3 since V a and V b belongs to C (T ). Therefore,
using Lemma 8.1, with p0 = q0 = 6,

‖t1/4(ΛTV
a(t)− ΛTV

b(t))‖L∞(0,T ;X6)

6 C sup
t∈(0,T ]

{
t1/4

∫ t

0

1

(t− s)1/2

1

s3/4
ds

}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

6 C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ), (8.8)

for some C independent of T , where we used that, by scaling, for all t > 0,

t1/4
∫ t

0

1

(t− s)1/2s3/4
ds =

∫ 1

0

1

(1− s)1/2s3/4
ds.

Similarly, using again Lemma 8.1, with p0 =∞, q0 = 6, we get, for some C independent of T ,

‖t1/2(ΛTV
a(t)− ΛTV

b(t))‖L∞(0,T ;X∞)

6 C sup
t∈(0,T ]

{
t1/2

∫ t

0

1

(t− s)3/4

1

s3/4
ds

}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

6 C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ). (8.9)

To estimate ∇(ΛTV
a − ΛTV

b), it is convenient to first write

ΛTV
a(t)− ΛTV

b(t) =

∫ t

0

Tt−sPg(s) ds, (t ∈ (0, T ]),

where g is given

g(s) = 1E((`a(s)− `b(s)) · ∇va(s) + `b(s) · ∇(va(s)− vb(s)))
− 1E(va(s)− vb(s))) · ∇va(s)− 1Evb(s) · ∇(va(s)− vb(s)), (s ∈ (0, T ]),

that we decompose as
g(s) = g`(s) + gv(s), (s ∈ (0, T ]),

with

g`(s) = 1E((`a(s)− `b(s)) · ∇va(s) + 1E`
b(s) · ∇(va(s)− vb(s)), (s ∈ (0, T ]),

gv(s) = −1E(va(s)− vb(s))) · ∇va(s)− 1Evb(s) · ∇(va(s)− vb(s)), (s ∈ (0, T ]).

We then bound g` in [L3(R3)]9: for s ∈ (0, T ],

‖g`(s)‖3 6 |`a(s)− `b(s)|‖∇va(s)‖3,E + |`b(s)|‖∇(va − vb)(s)‖3,E

6
2

max{s1/4, s1/2}min{1, s1/2}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

6
2

min{s3/4, s1/2}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).
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We also bound gv in [L2(R3)]9: for s ∈ (0, T ],

‖gv(s)‖2 6 ‖V a(s)− V b(s)‖X6‖∇va(s)‖3,E + ‖V b(s)‖X6‖∇(va − vb)(s)‖3,E

6
2

s1/4 min{1, s1/2}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

6
2

min{s3/4, s1/4}
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

Accordingly, estimate (7.3) yields

‖min{1, t1/2}∇(ΛTV
a(t)− ΛTV

b(t))‖L∞(0,T ;[L3(E)]9)

6 C sup
t∈[0,T ]

{∫ t

0

min{1, t1/2}
(t− s)1/2 min{s3/4, s1/2}

ds+

∫ t

0

min{1, t1/2}
(t− s)3/4 min{s3/4, s1/4}

ds

}
× (‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

We then show that the supremum in t ∈ [0, T ] can in fact be bounded by a constant independent
of T . For t ∈ (0, 1),∫ t

0

min{1, t1/2}
(t− s)1/2 min{s3/4, s1/2}

ds =

∫ t

0

t1/2

(t− s)1/2s3/4
ds = c1/2,3/4t

1/4 6 c1/2,3/4, (8.10)∫ t

0

min{1, t1/2}
(t− s)3/4 min{s3/4, s1/4}

ds =

∫ t

0

t1/2

(t− s)3/4s3/4
ds = c3/4,3/4, (8.11)

where cα,β is defined for (α, β) ∈ (0, 1)2 by

cα,β =

∫ 1

0

1

(1− s)αsβ
ds.

For t > 1, we write∫ t

0

min{1, t1/2}
(t− s)1/2 min{s3/4, s1/2}

ds

=

∫ 1

0

1

(t− s)1/2s3/4
ds+

∫ t

1

1

(t− s)1/2s1/2
ds 6 c1/2,3/4 + c1/2,1/2, (8.12)∫ t

0

min{1, t1/2}
(t− s)3/4 min{s3/4, s1/4}

ds

=

∫ 1

0

1

(t− s)3/4s3/4
ds+

∫ t

1

1

(t− s)3/4s1/4
ds 6 c3/4,3/4 + c3/4,1/4. (8.13)

Consequently, there exists some C independent of T > 0 such that

‖min{1, t1/2}∇(ΛTV
a(t)− ΛTV

b(t))‖L∞(0,T ;[L3(E)]9)

6 C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ). (8.14)

Putting together estimates (8.8), (8.9) and (8.14), we conclude the estimate (8.7) and Lemma
8.3.

According to Lemma 8.3, for K > 0, the set C (T,K) = {V ∈ C (T ), ‖V ‖C (T ) 6 K} is such

that for all V a and V b in C (T,K),

‖ΛTV a − ΛTV
b‖C (T ) 6 2C0K‖V a − V b‖C (T ), (8.15)
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where C0 is the constant in Lemma 8.3. Therefore, for K 6 K0 = 1/(4C0), the map ΛT is
1/2-Lipschitz in C (T,K).

Now, for V0 ∈ X3, the map T 7→ ‖TtV0‖C (T ) is a continuous increasing function of T , which is
bounded by C‖V0‖X3 according to estimates (7.2)–(7.3), and which goes to 0 as T to 0 by density
of D(A3) in X3 and the decay estimates (7.2)–(7.3).

Therefore, for V0 ∈ X3, we can guarantee that there exists a time TK > 0 such that

‖TtV0‖C (TK) 6
K

2
,

so that by (8.6), for K 6 K0 = 1/(4C0), the set C (TK ,K) is stable by ΛTK , and ΛTK is strictly
contractive in it. Therefore, by Banach-Picard fixed point theorem, there exists a fixed point
V ∈ C (TK), which is by construction a mild solution of (1.2).

Besides, this solution is such that for all T < TK , V |(0,T ) is the fixed point of ΛT in C (T,K).
Therefore, for T such that ‖TtV0‖C (T ) 6 1/(8C0), it is easy to check from (8.6) that ‖V |(0,T )‖C (T ) 6
2‖TtV0‖C (T ), and thus goes to 0 as T → 0.

Furthermore, V can be constructed as the limit of the sequence Vn+1 = ΛTKVn for n ∈ N,
V1 = 0, for which we have, for all n ∈ N, Vn ∈ C (TK ,K). Elements of this sequence satisfies

Vn+1(t) = TtV0 +

∫ t

0

Tt−sPdiv (1E(`n(s)− vn(s))⊗ vn(s)) ds, (t ∈ (0, TK ]). (8.16)

In particular, using (8.1), we get

‖Vn+1‖L∞(0,TK ;X3) 6 C‖V0‖X3 + C sup
t∈[0,TK ]

{∫ t

0

1

(t− s)1/2s1/2
ds

}
‖s1/4Vn(s)‖2L∞(0,TK ;X6)

+ C sup
t∈[0,TK ]

{∫ t

0

1

(t− s)1/2s1/2
ds

}
‖s1/2Vn(s)‖L∞(0,TK ;X∞)‖Vn‖L∞(0,TK ;X3)

6 C‖V0‖X3 + CK2 + CK‖Vn‖L∞(0,TK ;X3).

Therefore, taking K smaller if necessary to guarantee that CK < 1, we get that the sequence Vn
is also uniformly bounded in L∞(0, TK ;X3), so that its limit V is also bounded in L∞(0, TK ;X3).
We then easily deduce by interpolation that, for all p ∈ [3,∞], t3/2(1/3−1/p)V ∈ C0([0, TK ];Xp).

Besides, since ‖TtV0‖C (∞) 6 C1‖V0‖X3 according to estimates (7.2)–(7.3) for some constant C1,
if ‖V0‖X3 is small enough (namely 6 1/(8C0C1)), we can take K = 2C‖V0‖X3 and TK = ∞. In
this case, we have from the above computations that the above sequence Vn stays in C (∞,K) and
stays bounded in L∞(0,∞;X3) with ‖Vn‖L∞(0,∞;X3) 6 C‖V0‖X3 . Consequently, when ‖V0‖X3 is
small enough, we can deduce by interpolation that there exists C > 0 such that for all n ∈ N,

sup
p∈[3,∞]

‖t3/2(1/3−1/p)Vn‖L∞(0,∞;Xp) + ‖Vn‖C (∞) 6 C‖V0‖X3 , (8.17)

and this also holds for the limit V of the sequence Vn:

sup
p∈[3,∞]

‖t3/2(1/3−1/p)V ‖L∞(0,∞;Xp) + ‖V ‖C (∞) 6 C‖V0‖X3 .

Now, we prove that we also have that for all θ ∈ [0, 1/2), min{t1/2, tθ}∇v ∈ L∞(0,∞; [L3(E)]9),
taking ‖V0‖X3 smaller if needed. Indeed, starting from (8.16), that we rewrite

Vn+1(t) = TtV0 +

∫ t

0

Tt−sP(1E(`n(s)− vn(s)) · ∇vn(s)) ds, (t ∈ (0,∞)), (8.18)
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using (7.3) with r = 3 and q = 3 and q = 3/2, we have, for all t > 0 and n ∈ N,

‖min{t1/2, tθ}∇vn+1(t)‖[L3(E)]9) 6 C min{t1/2, tθ}t−1/2‖V0‖X3

+ C min{t1/2, tθ}
∫ t

0

(t− s)−1/2|`n(s)|‖∇vn(s)‖[L3(E)]9 ds

+ C min{t1/2, tθ}
∫ t/2

0

(t− s)−1/2−1/2‖vn(s)‖X3‖∇vn(s)‖[L3(E)]9 ds

+ C min{t1/2, tθ}
∫ t

t/2

(t− s)−1/2‖vn(s)‖X∞‖∇vn(s)‖[L3(E)]9 ds

6 C‖V0‖X3

+ C‖V0‖X3

∫ t

0

min{t1/2, tθ}
(t− s)1/2 max{s1/2, sθ}min{s1/2, sθ}

ds‖min{s1/2, sθ}∇vn(s)‖L∞(0,∞;[L3(E)]9)

+ C‖V0‖X3

∫ t/2

0

min{t1/2, tθ}
(t− s) min{s1/2, sθ}

ds‖min{s1/2, sθ}∇vn(s)‖L∞(0,∞;[L3(E)]9)

+ C‖V0‖X3

∫ t

t/2

min{t1/2, tθ}
(t− s)1/2s1/2 min{s1/2, sθ}

ds‖min{s1/2, sθ}∇vn(s)‖L∞(0,∞;[L3(E)]9).

where we used that the sequence (Vn) satisfies (8.17), and

‖max{s1/2, sθ}`n(s)‖L∞(0,∞) + ‖Vn(s)‖L∞(0,∞;X3) + ‖s1/2Vn(s)‖L∞(0,∞;X∞) 6 C‖V0‖X3 .

Now, arguing as in (8.10)–(8.13), one can easily check that there exists a constant C independent
of t such that for all t > 0,∫ t

0

min{t1/2, tθ}
(t− s)1/2 max{s1/2, sθ}min{s1/2, sθ}

ds+

∫ t/2

0

min{t1/2, tθ}
(t− s) min{s1/2, sθ}

ds

+

∫ t

t/2

min{t1/2, tθ}
(t− s)1/2s1/2 min{s1/2, sθ}

ds 6 C.

Consequently, combining the above estimates, we have, for all n ∈ N,

‖min{t1/2, tθ}∇vn+1(t)‖L∞(0,∞;[L3(E)]9) 6 C‖V0‖X3

+ C‖V0‖X3‖min{s1/2, sθ}∇vn(s)‖L∞(0,∞;[L3(E)]9). (8.19)

It follows that if ‖V0‖X3 is small enough, then the sequence (min{t1/2, tθ}∇vn(t)) is bounded
in L∞(0,∞; [L3(E)]9), and since vn converges to v in C (∞), we obtain (min{t1/2, tθ}∇v(t)) ∈
L∞(0,∞; [L3(E)]9).

Uniqueness. Let V a and V b be two mild solutions of (1.2) with the same initial datum V 0 in
the class C (T0) such that for ‖V a‖C (T ) and

∥∥V b∥∥
C (T )

go to 0 as T → 0.

Then, setting
e(t) = ‖V a − V b‖C (t), t ∈ (0, T0),

according to (8.7), we have

e(t) 6 C0

(
‖V a‖C (t) +

∥∥V b∥∥
C (t)

)
e(t), t ∈ (0, T0).

Since ‖V a‖C (T ) and
∥∥V b∥∥

C (T )
go to 0 as T → 0, there exists t0 ∈ (0, T0], such that

C0

(
‖V a‖C (t0) +

∥∥V b∥∥
C (t0)

)
< 1
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and thus e(t0) = 0, and V a and V b coincides on [0, t0]. If t0 < T0, it is easily seen that this argument
can be repeated on time intervals of the form [t∗, T ] with t∗ > t0: Using that for t ∈ (0, 1) such
that t+ t∗ 6 T0,

‖V a(·+ t∗)‖C (t) +
∥∥V b(·+ t∗)

∥∥
C (t)

6

(
t

t+ t∗

)1/4 (
‖V a‖C (T0) +

∥∥V b∥∥
C (T0)

)
.

we immediately have that there exists t1 > 0 such that if V a and V b coincide in [0, t∗] with t∗ > t0,
then they coincide on [0,min{t∗ + t1, T0}]. This argument proves that V a and V b in fact coincide
on the whole time interval [0, T0].

The case of an initial datum in Xq for q ∈ (1, 3). Let q ∈ (1, 3) and V0 ∈ Xq ∩ X3 with
‖V0‖X3 6 ε0. Then we know that the solution V of (1.2) is global in time and belong to C (∞),
and we know that the sequence given by V1 = 0 and Vn+1 = Λ∞(Vn), i.e.

Vn+1(t) = TtV0 +

∫ t

0

Tt−sPdiv (1E(`n(s)− vn(s))⊗ vn(s)) ds, (t ∈ (0,∞]),

= TtV0 +

∫ t

0

Tt−sP(1E(`n(s)− vn(s)) · ∇vn(s)) ds, (t ∈ (0,∞]),

converges to V in C (∞), and we have the estimates (8.17).
To prove that V is bounded in some class, it is enough to check that the sequence (Vn)n∈N is

uniformly bounded in this class.
Let us start by proving that min{1, t1/2}∇v ∈ L∞(0,∞; [Lq(E)]

9
). With p ∈ (3,∞) such that

1/p+ 1/q < 1,

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq(E)]9) 6 C‖V0‖Xq

+ C‖V0‖X3 sup
t>0

{∫ t

0

min{1, t1/2} ds

(t− s)3/(2p)+1/2s3/2(1/3−1/p) min{1, s1/2}

}
‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq(E)]9)

+ C‖V0‖X3 sup
t>0

{∫ t

0

min{1, t1/2} ds

(t− s)1/2 max{1, s1/2 }min{1, s1/2}

}
‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq(E)]9),

where we used that, according to (8.17),

‖t3/2(1/3−1/p)Vn‖L∞(0,∞;Xp) + ‖max{1, t1/2}`n‖L∞(0,∞) 6 C‖V0‖X3 .

We then use that

sup
t>0

{∫ t

0

min{1, t1/2}
(t− s)3/(2p)+1/2s3/2(1/3−1/p) min{1, s1/2}

ds

}
6 C,

sup
t>0

{∫ t

0

min{1, t1/2}
(t− s)1/2 max{1, s1/2 }min{1, s1/2}

ds

}
6 C,

which can be proved along the same lines as in (8.10)–(8.11)–(8.12)–(8.13).
This allows to deduce

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq(E)]9)

6 C‖V0‖Xq + C‖V0‖X3‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq(E)]9). (8.20)

Accordingly, if ‖V0‖X3 is small enough, we have that

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq(E)]9) 6 C‖V0‖Xq +
1

2
‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq(E)]9),
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so that the sequence (min{1, t1/2}∇vn)n∈N is uniformly bounded in L∞(0,∞; [Lq(E)]
9
), and passing

to the limit n→∞, min{1, t1/2}∇v belongs to L∞(0,∞; [Lq(E)]
9
).

Accordingly, min{t1/2, t}(vn − `n) · ∇vn belongs to L∞(0,∞;Lq(R3)) and we can use Lemma
8.1 for q0 > max{q, 3/2}.

Then we set q0 = max{q, 3/2}, and we next prove that t3/2(1/q−1/q0)V ∈ L∞(0,∞;Xq0) and
t3/2(1/q−1/6)V ∈ L∞(0,∞;X6). In order to do that, again we look at the sequence (t3/2(1/q−1/q0)Vn)n∈N
in L∞(0,∞;Xq0):

‖t3/2(1/q−1/q0)Vn+1‖L∞(0,∞;Xq0 ) 6 C‖V0‖Xq

+ C sup
t>0

{∫ t

0

t3/2(1/q−1/q0)

(t− s)1/2s1/2s3/2(1/q−1/q0)
ds

}
‖Vn‖C (∞)‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 )

6 C‖V0‖Xq + C‖V0‖X3‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 ).

This implies that for ‖V0‖X3 small enough, the sequence (t3/2(1/q−1/q0)Vn)n∈N is uniformly bounded
in L∞(0,∞;Xq0) by C‖V0‖Xq .

Similarly, we consider the norm of t3/2(1/q−1/6)Vn in L∞(0,∞;X6):

‖t3/2(1/q−1/6)Vn+1‖L∞(0,∞;X6) 6 C‖V0‖Xq

+ C sup
t>0

{∫ t/2

0

t3/2(1/q−1/6)

(t− s)1/2+3/2(1/q0−1/6)s1/2s3/2(1/q−1/q0)
ds

}
‖Vn‖C (∞)‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 )

+ C sup
t>0

{∫ t

t/2

t3/2(1/q−1/6)

(t− s)1/2s1/2s3/2(1/q−1/6)
ds

}
‖Vn‖C (∞)‖t3/2(1/q−1/6)Vn‖L∞(0,∞;X6)

6 C‖V0‖Xq + C‖V0‖X3‖V0‖Xq + C‖V0‖X3‖t3/2(1/q−1/3)Vn‖L∞(0,∞;X6).

Accordingly, if ‖V0‖X3 is small enough, the sequence (t3/2(1/q−1/6)Vn)n∈N is bounded in L∞(0,∞;X6)
by C‖V0‖Xq + C‖V0‖X3‖V0‖Xq .

Therefore, the limit V of the sequence (Vn)n∈N satisfies t3/2(1/q−1/q0)V ∈ L∞(0,∞;Xq0) and
t3/2(1/q−1/6)V ∈ L∞(0,∞;X6).

Then, we use that V satisfies

V (t) = TtV0 +

∫ t

0

Tt−sPdiv (1E(`(s)− v(s))⊗ v(s)) ds, (t ∈ (0,∞]),

and the fact that, from our previous computations, there exists C > 0 such that for all s > 0,

‖(`(s)− v(s))⊗ v(s)‖6 6 2 ‖V (s)‖∞ ‖V (s)‖6 6
C

s1/2 s3/2(1/q−1/6)
6

C

s3/(2q)+1/4
,

‖(`(s)− v(s))⊗ v(s)‖q0 6 2 ‖V (s)‖∞ ‖V (s)‖q0 6
C

s1/2 s3/2(1/q−1/q0)
6

C

s1/2+3/2(1/q−1/q0)
.

Next, using Lemma 8.1 with q0 and p0 =∞ for s ∈ (0, t/2), and with 6 and p0 =∞ for s ∈ (t/2, t),
we have

‖t3/(2q)V (t)‖L∞(0,∞;X∞) 6 C‖V0‖Xq

+ C sup
t>0

{∫ t/2

0

t3/(2q)

(t− s)1/2+3/(2q0)s1/2+3/2(1/q−1/q0)
ds+

∫ t

t/2

t3/(2q)

(t− s)3/4s3/2q+1/4
ds

}
6 C <∞.

Therefore, t3/(2q)V (t) ∈ L∞(0,∞;X∞). Since we have already proved that t3/2(1/q−1/q0)V ∈
L∞(0,∞;Xq0), we conclude by interpolation that for all p ∈ [q0,∞], t3/2(1/q−1/p)V ∈ L∞(0,∞;Xp).
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9 Concluding remarks and open questions

The main result in this paper, namely Theorem 1.1, concerns the wellposedness of the system
modelling the motion of a rigid ball in a viscous incompressible fluid filling the remaining part of
R3 and asserts that the position of the centre of the ball tends, when t → ∞, to some position
h∞ ∈ R3. This result differs from those previously obtained in two space dimensions in [6], or for a
simplified 1D model in [29], where it has been shown that the distance of the centre of the ball to
the origin tends to +∞ when t→∞. Several open questions seem natural in view of our results.

One of the most challenging ones, for which we have no track at this stage, is determining h∞
from the initial data.

Another natural question is the generalization of Theorem 1.1 for a body of arbitrary shape.
When the rigid body is not a ball, writing the equations in a fixed domain requires the use of
more delicate changes of variables, since it has to include the rotation of the body. There are
basically two ways of doing that: one consists in setting v(t, x) = Q∗(t)u(t, h(t) + Q(t)x) , where
Q(t) is the rotation matrix of the body, that is the solution of Q̇(t)Q∗(t)x = ω(t)× x starting from
Q(0) = Id. The problem is that such change of frame would induce in the fixed frame a term of
the form (ω× x) · ∇v which our estimate does not allow to handle since the identity mapping does
not belong to L∞(E). The alternative approach proposed in [4], which consists in constructing a
change of variable which follows the structure in a neighbourhood of it and equals the identity far
from the body, seems more suitable to deal with the non-linear terms. However, this change of
variable introduces a lot of delicate terms which we do not know how to handle in the above setting
so far. In fact, even in two space dimensions, the existing results (see [6]) provide an analysis of
the motion of a rigid body in a viscous incompressible fluid in R2 only in the case when the rigid
body is a disk.

Finally, let us mention that the counterparts in two space dimensions of some of our results in
Sections 4–7 have been used in Takahashi and Lacave [18] to study the behaviour of solutions of
(1.2) when the radius of the rigid ball tends to zero (see also He and Iftimie [12] and references
therein). We believe that the approach in [18] can be adapted to the three dimensional case by
using our results on the fluid structure-semigroup and its generator, but this deserves further work.

Acknowledgements. The authors are indebted to Toshiaki Hishida for his suggestions, which
had led to many improvements of our work.

Appendix A

A.1 Proof of Proposition 3.2

We first show that every u ∈ [Lq(Ω)]
3

can be written in the form u = v+w1 +w2, with v ∈ Xq(Ω),
w1 ∈ Gq1(Ω) and w2 ∈ Gq2(Ω).

To this aim, let q11 be the solution of the problem

∆q11 = div u in Ω, q11 = 0 on ∂Ω.

Thus q11 ∈W 1,q
0 (Ω) and we have div(u−∇q11) = 0 in Ω. Accordingly (u−∇q11) · ν is well-defined

on ∂Ω, and we can solve

∆q12 = 0 in Ω, ∂νq12 = (u−∇q11) · ν on ∂Ω.

Setting then q1 = q11+q12, and w1 = ∇q1, w1 ∈ Gq1(Ω), and div (u−w1) = 0 in Ω and (u−w1)·ν = 0
on ∂Ω.

Since we are looking for v ∈ Xq(Ω), we know that

v = `v + ωv × x for x ∈ O, (A.1)
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for some `v ∈ R3 and ωv ∈ R3. We set

ϕ(x) = u(x)−∇q1(x)− `v − ωv × x x ∈ O, (A.2)

and

w2 =

{
∇q2 in EΩ

ϕ in O.
(A.3)

Since we are looking for w2 ∈ Gq2(Ω) we require

`v =
1

m

∫
O

(u−∇q1 − ϕ) dx =
1

m

[∫
O

(u−∇q1) dx+

∫
∂O

q2ν ds

]
, (A.4)

and

ωv = − 1

J

∫
O

(u−∇q1 − ϕ)× x dx = − 1

J

[∫
O

(u−∇q1)× x dx+

∫
∂O

q2ν × x ds

]
, (A.5)

where m and J are defined in (3.11).
Now we define q2 as the solution of the Neumann problem

∆q2 = 0 in EΩ,

∂q2

∂ν
= 0 on ∂Ω,

∂q2

∂ν
= (u−∇q1) · ν − (`v + ωv × x) · ν on ∂O,

(A.6)

where `v and ωv are defined in (A.4) and (A.5), respectively. Note that, q2 solves a Laplace equation
with non-local boundary condition. As shown below, we have that q2 ∈W 1,q(EΩ) and there exists
a constant C depending on q, Ω and O such that

‖q2‖1,q,EΩ
6 C ‖u‖q,Ω . (A.7)

In this case we can determine `v and ωv from (A.4) and (A.5) respectively. Consequently, we obtain
ϕ and w2 from (A.2) and (A.3) respectively. In particular, we have that w2 ∈ Gq2(Ω) and by setting
v = u− w1 − w2 we can verify that v ∈ Xq(Ω).

We still have to prove that q2 ∈ W 1,q(Ω) and (A.7) holds. If q = 2, this is a consequence of
Lax-Milgram Theorem (see for instance [5, Lemma 1]). If q 6= 2, we employ a density argument.

Assume that u ∈ [C∞0 (Ω)]
3

and q2 solves (A.6). Then there exists a constant C depending only on
q,Ω and O such that

‖q2‖1,q,EΩ
6 C

(
‖u‖q,Ω + |`v|+ |ωv|

)
. (A.8)

Next, by following the arguments of the proof of Theorem 2.2 in [30], we have

|`v|+ |ωv| 6 C ‖u‖q,Ω , (A.9)

where C is a positive constant depending only on q,Ω and O. The above two estimates yield that
there exists a positive constant C, depending only on q,Ω and O, such that estimate (A.7) holds.
Thus the conclusion follows by a density argument. This completes the proof of the existence of
a decomposition with the required properties. The proof of uniqueness of the decomposition is
similar to that of [30, Theorem 2.2].
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A.2 Proof of Proposition 3.3

Let Yq(Ω)⊥ and (Yq)⊥ be the annihilators of Yq(Ω) and Yq respectively, i.e.,

Yq(Ω)⊥ =

{
u ∈ Lq

′
(Ω) |

∫
Ω

u · v dx = 0 for all v ∈ Yq(Ω)

}
,

(Yq)⊥ =

{
u ∈ Lq

′
(R3) |

∫
R3

u · v dx = 0 for all v ∈ Yq
}
.

Let us set Gq
′
(Ω) = Gq

′

1 (Ω)⊕Gq
′

2 (Ω) and Gq
′

= Gq
′

1 ⊕G
q′

2 .

Step 1. We claim that Yq(Ω)⊥ = Gq
′
(Ω) and (Yq)⊥ = Gq

′
.

Let us assume that u ∈ Gq
′
(Ω) = Gq

′

1 (Ω) ⊕ Gq
′

2 (Ω), i.e., u = u1 + u2 with u1 ∈ Gq
′

1 (Ω) and

u2 ∈ Gq
′

2 (Ω). Let us take v ∈ C∞c (Ω), div v = 0 in Ω, and Dv = 0 in O. Then we have∫
Ω

u1 · v dx =

∫
Ω

∇q1 · v dx = 0,

and∫
Ω

u2 · v dx =

∫
EΩ

∇q2 · v dx+

∫
O
ϕ · (`v + ωv × y) dy ( using the definition of Gq

′

2 (Ω))

=

∫
∂O

q2((`v + ωv × y) · ν) ds+

∫
O
ϕ · (`v + ωv × y) dy = 0.

Thus by density
∫

Ω
u · v = 0 for all v ∈ Yq(Ω). This shows that u ∈ Yq(Ω)⊥ and Gq

′
(Ω) ⊂ Yq(Ω)⊥.

In a similar manner, we can show Gq
′ ⊂ (Yq)⊥.

Conversely, let us assume that u ∈ Yq(Ω)⊥. Then according to Proposition 3.2,

u = w + w0, w = Pq′,Ωu, w0 ∈ Gq
′
(Ω).

Since u ∈ Yq(Ω)⊥, by similar calculation as above, we obtain for all v ∈ C∞c (Ω), with div v = 0 in Ω
and Dv = 0 in O,

0 =

∫
Ω

u · v dx =

∫
Ω

w · v dx.

We claim that w ∈ Gq
′

2 (Ω). By choosing, v ∈ C∞c (EΩ) with div v = 0 in EΩ, we have∫
EΩ

w · v dx = 0 for all v ∈ C∞c (EΩ),with div v = 0 in EΩ.

Then by de Rham’s theorem there is a distribution q2 such that w = ∇q2 in EΩ. Further, from the
fact that w ∈ Xq′(Ω) we have q2 ∈ L1

loc(EΩ), and if Ω is a bounded domain we have q2 ∈W 1,q′(EΩ).
Furthermore, we have w = `w + ωw × y in O, and

0 =

∫
Ω

w · v dx =

∫
EΩ

w · v dx+m`w · `v + Jωu · ωv,

for all v ∈ C∞c (Ω), with div v = 0 in Ω, Dv = 0 in O, and v = `v + ωv × y in O.

In particular,∫
∂O

q2ν ·v ds+m`w · `v +Jωw ·ωv = 0, for all v ∈ C∞c (Ω), with div v = 0 in Ω, and Dv = 0 in O.
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Now by choosing v as above with v = `v in O we infer that∫
∂O

q2ν ds = −m`w = −
∫
O
w dy.

Similarly, by choosing v = ωv × y in O we get

−
∫
∂O

q2ν × y ds =

∫
O
w × y dy.

Therefore w ∈ Gq′(Ω). Since by construction, w = Pq′,Ωu belongs to Xq′(Ω), and Xq′(Ω)∩Gq′(Ω) =

{0}, w = 0 and u = w0 belongs to Gq
′
(Ω). The proof is similar when Ω = R3.

Step 2. By Proposition 3.2, we have Xq′ = [Lq
′
(Ω)]3/Gq

′
(Ω). Then

Xq(Ω) = Xq
′
(Ω)∗ =

[
[Lq
′
(Ω)]3/Gq

′
(Ω)
]∗

=
[
Gq
′
(Ω)
]⊥

= Yq(Ω).

The same also holds when Ω = R3.

Appendix B Optimality of the decay estimates in (7.2) in
the case of a ball

In this section, following [21, p.441], we prove the optimality of the decay estimates (7.2) when O
is the unit ball (the extension to any ball can be done analogously and is left to the reader).

Theorem B.1. Let O be the unit ball, and Tqt be the fluid-structure semigroup introduced in
Theorem 6.1 for q ∈ (1,∞).

There is no ε > 0 and r > q > 3/2 with r 6∞ such that the semigroup Tt = Tqt satisfies

‖TtU‖Xr 6 Ct−σ−ε ‖U‖Xq (t > 0, U ∈ Xq). (B.1)

where σ = 3
2

(
1
q −

1
r

)
.

In other words, item (ii) and (iv) of Theorem 7.1 are sharp decay estimates.

Proof. First, using the semigroup property and the decay estimates (7.2), if (B.1) holds for some
r ∈ [3/2,∞] and q ∈ [3/2, r], writing

‖Tt‖L(X3/2,X∞) 6
∥∥Tt/3∥∥L(Xr,X∞)

∥∥Tt/3∥∥L(Xq,Xr)

∥∥Tt/3∥∥L(X3/2,Xq)

the decay estimate (B.1) holds for r = ∞ and q = 3/2. Therefore, in the following, we suppose
without loss of generality that (B.1) holds with r =∞ and q = 3/2, i.e.

‖TtU‖X∞ 6 Ct−1−ε ‖U‖X3/2 (t > 0, U ∈ X3/2). (B.2)

Following the arguments in [21, p.441], we will prove that if this estimate holds, then the Kirchoff
potential (see e.g. [11, p.163])

v(x) =
3

4

(
x

|x|3
x1 +

e1

|x|

)
− 1

4

(
3
x

|x|5
x1 −

e1

|x|3

)
, p(x) =

3µ

2

x1

|x|3
, (x ∈ E), (B.3)

would belong to L3(E), which is obviously not the case.
Indeed, recalling that we assumed that O is the unit ball. One can then check that (v, p) in

(B.3) satisfies the equations{
−µ∆v +∇p = 0, div v = 0 (x ∈ E),
v = e1, (x ∈ ∂O).

(B.4)

44



Also note that V given by V |E = v and V |O = e1 belongs to all Xq with q > 3.
Next, let q ∈ (1, 3/2) and consider a datum U0 ∈ Xq ∩X3/2. With the notations of Remark 7.7,

U(t) = TtU0 corresponds to (u(t), π(t), `(t), ω(t)) solving (7.19).
Multiplying then the equation (7.19)(1) by v, integrating on E, doing integration by parts and

using the boundary conditions, we get

d

dt

(
m` · e1 +

∫
E

u · v dx

)
+

∫
∂O

σ(v, p)ν · (`+ ω × x) ds = 0,

and integrating in time on (0, T ) for some T > 0,

〈V,U0〉Xq′ ,Xq = 〈V,U(T )〉Xq′ ,Xq +

∫ T

0

∫
∂O

σ(v, p)ν · (`+ ω × x) dsdt. (B.5)

On one hand, using the decay estimate (7.2), for s ∈ (q, 3/2), we have ‖U(T )‖Xs 6 CT−αs‖U0‖Xq
for some positive decay rate αs > 0, and since s′ > 3,

|〈V,U(T )〉Xq′ ,Xq | = |〈V,U(T )〉Xs′ ,Xs | 6 CT−αs‖V ‖Xs‖U0‖Xq .

On the other hand, using (7.2) with r = 3/2, we get that for all t > 0, |`(t)|+|ω(t)| 6 C‖U0‖X3/2 ,
while the estimate (B.2) implies that for all t > 0, |`(t)|+ |ω(t)| 6 Ct−1−ε‖U0‖X3/2 .

Accordingly, using identity (B.5), we get, for all U0 ∈ Xq ∩ X3/2 and T > 0,

|〈V,U0〉Xq′ ,Xq | 6 CT−αs‖V ‖Xs‖U0‖Xq + C‖σ(v, p)‖L∞(∂O)

∫ T

0

1

(1 + t)1+ε
dt‖U0‖X3/2 .

Letting T go to infinity, we obtain that for all U0 ∈ Xq ∩ X3/2,

|〈V,U0〉Xq′ ,Xq | 6 C‖U0‖X3/2 . (B.6)

This implies that V ∈ X3 from [21, Lemma 2.6], and from the explicit formula of V (recall (B.3)),
we get a contradiction.
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