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Hypoelliptic and spectral estimates for the
linearized Landau operator

Mohamad Rachid∗

Abstract

We are interested in the inhomogeneous Landau equation which describes
the evolution of a particle density f = f(t, x, v) representing at time t ≥ 0, the
density of particles at position x ∈ R

3 and velocity v ∈ R
3. The study is moti-

vated by the linearization of the Landau equation near Maxwellian distribution.
In this article, we establish hypoelliptic estimates, a localization of the spectrum
and estimates of the resolvent of the the linearized Landau operator with hard
potentials and Maxwellian molecules. The proof is based on a multiplier method
and requires refined pseudo-differential calculus tools.
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1 Introduction

1.1 The model.

In this paper, we study hypoellipticity and spectral properties associated to the spa-
tially inhomogeneous Landau equation. This equation is a kinetic model in plasma
physics that describes the evolution of the density function F = F (t, x, v) representing
at time t ∈ R

+, the density of particles at position x ∈ R
3 and velocity v ∈ R

3. This
equation is given by

{
∂tF + v · ∇xF = Q(F, F )
F|t=0 = F0,

(1)

where Q is the so-called Landau collision operator which acts on the variable v and
which contains diffusion in velocity. More precisely, the Landau operator is defined by

Q(G,F ) = ∂i

∫

R3

aij(v − v∗)[G∗∂jF − F∂jG∗] dv∗, (2)

where we use the convention of summation of repeated indices, and the derivatives
are in the velocity variable v i.e. ∂i = ∂vi

. Hereafter we use the shorthand notations
G∗ = G(v∗), F = F (v), ∂jG∗ = ∂v∗j

G(v∗), ∂jF = ∂vj
F (v), etc. The matrix A(v) =

(aij(v))1≤i,j≤3 is symmetric, positive, definite, depends on the interaction between
particles and is given by

aij(v) = |v|γ+2

(
δij − vivj

|v|2
)
, γ ∈ [−3, 1].

We recall the standard classification: we call hard potentials if γ ∈ (0, 1], Maxwellian
molecules if γ = 0, moderately soft potentials if γ ∈ [−2, 0), very soft potentials if
γ ∈ (−3,−2) and Coulombian potential if γ = −3. Hereafter we shall consider the
cases of hard potentials, Maxwellian molecules, i.e. γ ∈ [0, 1]. We denote by

µ(v) = (2π)−3/2e−|v|2/2

the normalized Maxwellian which is a global equilibrium. We linearize the Landau
equation around µ with the perturbation

F = µ+ µ1/2f.

The Landau equation ( 1 ) for f = f(t, x, v) takes the form
{
∂tf + v · ∇xf − µ−1/2Q(µ1/2f, µ) − µ−1/2Q(µ, µ1/2f) = µ−1/2Q(µ1/2f, µ1/2f)
f|t=0 = f0 = µ−1/2(F0 − µ),

(3)

since Q(µ, µ) = 0. Using the notation

Γ(f, g) = µ−1/2Q(µ1/2f, µ1/2g),

we may rewrite the above equation as
{
∂tf + Pf = Γ(f, f)
f|t=0 = f0,

(4)
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where the linearized Landau operator P takes the form

P = v · ∇x − L (5)

with
L = L1 + L2, L1 = Γ(

√
µ, f), L2 = Γ(f,

√
µ).

Operator P acts only in variables (x, v), is non selfadjoint, and consists of a transport
part which is skew-adjoint, a diffusion part acting only in the v variable and a compact
part (see for example Proposition 2.1 in [5]). Using for example [22], [21], the diffusion
part L1 is written as follows

L1f = ∇v · [A(v)∇vf ] −
(

A(v)
v

2
· v

2

)
f + ∇v ·

[
A(v)

v

2

]
f,

where A(v) = (aij(v))1≤i,j≤3 is a symmetric matrix with

aij = aij ∗v µ,

and the compact part L2 is given by

L2f = −µ−1/2∂i

{
µ
[
aij ∗v

{
µ1/2

[
∂jf +

vj

2
f
]}]}

.

Remark 1.1. Here we do not follow the same convention as the one in [8] for operators
L1 and L2.

1.2 Notations.

Throughout the paper we shall adopt the following notations: we work in dimension
n = 3 and denote by (x, v) ∈ R3

x × R3
v the space-velocity variables. For v ∈ R3 we

denote 〈v〉 = (1 + |v|2)1/2, where we recall that |v| is the canonical Euclidian norm
of v in R3. The gradient in velocity (resp. space) will be denoted by ∂v (resp. ∂x).
We shall also denote Dv = 1

i
∂v (resp. Dx = 1

i
∂x), and denote ξ the dual variable of

x, η the dual variable of v. For simplicity of notations, a ∼ b means that there exist
constants c1, c2 > 0 such that c1b ≤ a ≤ c2b; we abbreviate “≤ C ” to “.”, where C is
a positive constant depending only on fixed number. Finally, the space of distributions
on Ω is denoted by D′(Ω) where Ω ⊆ R

n is an open set.

1.3 Main results and comments.

In this article, we will show a localization property of the pseudospectrum of the
Landau operator P, that is to say the region of the complex plane where its resolvent
is a priori large (in fact we more precisely give a description of a large region where the
resolvent is controlled, which is included in the complementary of the pseudospectrum).
This result is given by the following theorem.

Theorem 1.2. Let P be the Landau operator on L2(R3
x × R3

v) defined in ( 5 ) with
γ ∈ [0, 1]. Then there are two constants CP > 0 and QP > 0 so that:
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a) The spectrum of P verifies

σ(P) ⊂ SP ∩ {ℜez ≥ 0},

with

SP =
{
z ∈ C, |z + 1|1/3 ≤ CP

(
ℜez + 1

)
, ℜez ≥ −1

2

}
. (6)

b) For any z 6∈ SP with ℜez ≥ −1
2
, the resolvent is estimated by

‖(z − P)−1‖B(L2
x,v) ≤ QP |z + 1|−1/3. (7)

Notice that if ℜez ≤ −1
2

then

‖(z − P)−1‖B(L2
x,v) ≤ |ℜez|−1. (8)

The results of Theorem 1.2 can be illustrated by the following figure:

ℜez

Im z

•
−1

2

Sc
P

SP

∂SP

Figure 1: Localization of the pseudospectrum of the Landau operator P.

In this figure ∂SP oriented from +i∞ to −i∞. The hatched part is where the spec-
trum is localized and the non hatched part is the zone where we have good resolvent
estimates (see ( 7 ) and ( 8 )).
Let us give now some comments and motivations of this result. The cuspidal form of
the pseudospectrum of linear or linearized kinetic operators was first shown in [9], [11]
for the Fokker-Planck operator, and then extended to operators appearing in statis-
tical mechanics by [6]. The main motivation for this type of study is to be able to
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understand the so-called pseudospectrum properties and derive possible trend to the
equilibrium or regularization properties for the related evolution equation thanks to
Cauchy formulae (see e.g. [11] for a complete result in the Fokker-Planck case). Any-
way in this article, as a first step of a complete study of properties of this type, we only
focus on the pseudospectral localization, but in the case of the much more complicated
linearized Landau operator.

The aim of this article is double. First we show that the linearized Landau operator
has indeed a pseudospectrum of cuspidal form, which is a good clue for thinking that
this is a very general property of general linear or linearized kinetic operators. Second
we propose a very robust and self contained pseudo-differential framework (see Section
3.1 ) in order to show this type of result. Our hope is that it can be used for many other
kinetic models. These tools are greatly inspired by previous works (see [1], [12], [13])
concerning kinetic equations, following fundamental ideas in [18] on Wick and Weyl
pseudodifferential calculus. Indeed the main remark done in all these works, following
preliminary works by Alexandre and Villani [2] is that the linearized Landau operator
L is, up to controlled/bounded operators, a pseudodifferential operator, namely that
there exists a symbol, in a Hörmander-type class of symbol (see Section 3.1 ) such that

L ≡ aw + controlled terms,

where w stands for the Weyl quantization. The equivalence above can be rigourosly
stated and we will do it in section 2 below. The understanding of Landau type opera-
tors has been greatly improved in the past twenty years, following in particular works
by Guo (see [8]).

Using these tools, the proof of the result given in Theorem 1.2 will follow the lines
of [12] (see also [1], [11]), where a multiplier method is used for proving regularization
(hypoelliptic) properties of the linearized landau operator. Let us emphasize here that
no regularization property is shown in this article, since we only focus on spectral
estimates. Mention anyway - and this is a remarkable feature of all these hypoellip-
tic/hypocoercive techniques - that the same (in spirit) methods give very strong and
precise results as the one given in the main theorem.

Organization of the article. In Section 2 we give some properties of the Landau
operator. In Section 3 , we prove hypoelliptic estimates with respect to the velocity
variable for a parametric operator. In Section 4 we give hypoelliptic estimates for the
linearized Landau operator. Section 5 is devoted to the proof of Theorem 1.2 . An
appendix is devoted to a short review of some tools used in this work (Weyl-Hörmander
quantization, Wick quantization and the proof of the Theorem A.6 (Basic Theorem)).

2 Properties of the Landau operator

In this section, we first present the decomposition of the linearized Landau operator
P then we exhibit a simpler form of this operator. To end up we show that P is a
generator of a strongly continuous semigroup. Throughout this section, we work with
γ ∈ [−3, 1].
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2.1 Splitting of the linearized operator.

Consider a smooth positive function χ ∈ C∞
c (R3

v) such that 0 ≤ χ(v) ≤ 1, χ(v) = 1
for |v| ≤ 1 and χ(v) = 0 for |v| > 2. For any R ≥ 1 we define χR(v) = χ( v

R
) and in

the sequel we shall consider the function MχR, for some constant M > 0. Then, we
introduce the decomposition of the operator P as P = A + K with

A = −L1 + v · ∇x +MχR, K = −L2 −MχR, (9)

where M > 0 and R > 0 will be chosen later.
We define the function F (v) as

F (v) =
(

A(v)
v

2
· v

2

)
− ∇v ·

[
A(v)

v

2

]
+MχR. (10)

Then, we can rewrite A as follows

Af = v · ∇xf − ∇v · [A(v)∇vf ] + F (v)f. (11)

2.2 Preliminaries.

We have the following results concerning the matrix A(v).

Lemma 2.1. The following properties hold:

a) For v ∈ R3\{0}, the matrix A(v) has a simple eigenvalue ℓ1(v) > 0 associated
with the eigenvector v and a double eigenvalue ℓ2(v) > 0 associated with the
eigenspace v⊥. Moreover, when |v| → +∞ we have

ℓ1(v) ∼ 2〈v〉γ and ℓ2(v) ∼ 〈v〉γ+2.

b) The function aij is smooth, for any multi-index α ∈ N3, there exists Cα > 0 such
that for all v ∈ R3, we have

|∂α
v aij(v)| + |∂α

v (aij(v)vj)| ≤ Cα 〈v〉γ+2−|α|,

c) For v ∈ R
3\{0}, we have

aij(v)vivj = ℓ1(v)|v|2,

aii(v) = tr(a(v)) = ℓ1(v) + 2ℓ2(v),

aij(v)ηiηj = ℓ1(v)|Pvη|2 + ℓ2(v)|(I − Pv)η|2,

with η ∈ R3 and Pv is the projection on v, i.e. Pvη =
(
η · v

|v|

)
v

|v|
.

d) For |v| > 1, we have

|∂α
v ℓ1(v)| ≤ Cα 〈v〉γ−|α| and |∂α

v ℓ2(v)| ≤ Cα 〈v〉γ+2−|α|.

Proof. See for example [4, Lemma 2.4], [8, Lemma 3] and [22, Proposition 1].
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Lemma 2.2. For all v ∈ R
3 with |v| > 1 , we have

ℓ1(v) & 〈v〉γ and ℓ2(v) & 〈v〉γ+2.

Proof. Using (a) in Lemma 2.1 , when |v| → +∞, we have ℓ1(v) ∼ 2〈v〉γ . In particular,
there is a constant N > 0 such that for all |v| > N , we have

ℓ1(v) ≥ 〈v〉γ.

We have that ℓ1(v) is continuous since A(v) is a positive definite symmetric matrix
and continuous (due to convolution with µ), hence the existence of a constant C > 0
such that for 1 ≤ |v| ≤ N

ℓ1(v) ≥ C 〈v〉γ,

and then for all v ∈ R3, perhaps with changing C,

ℓ1(v) ≥ C 〈v〉γ.

The proof will be the same for ℓ2(v).

Lemma 2.3. Let F (v) be defined in ( 10 ). Then, we can choose M and R big enough
such that for all v ∈ R

3, we have

F (v) & 〈v〉γ+2.

Proof. Since

F (v) ≥ 1

4
ℓ1(v)|v|2 −

∣∣∣∣∇v ·
[
A(v)

v

2

]∣∣∣∣+MχR,

according to Lemma 2.1 , we have

∣∣∣∣∇v ·
[
A(v)

v

2

]∣∣∣∣ . 〈v〉γ+1. (12)

So, using Lemma 2.2 and ( 12 ), there exist two positive constants C1, C2 such that

F (v) ≥ C1〈v〉γ+2 − C2〈v〉γ+1 +MχR,

then there exist M and R such that for all v ∈ R3

F (v) & 〈v〉γ+2.

Lemma 2.4. For any multi-index α ∈ N3, there exists Cα > 0 such that for all v ∈ R3,
we have

|∂α
v F (v)| ≤ Cα 〈v〉γ+2−|α|.
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Proof. For |v| > 2R, using Leibniz’s formula, we have

∂α
v F (v) =

1

4

∑

β≤α

(
α

β

)
∂α−βℓ1(v)∂β〈v〉2 − 1

4
∂αℓ1(v) − ∂α

(
∇v ·

[
A(v)

v

2

])
,

Then, using Lemma 2.1 and Lemma 2.2 we obtain

|∂α
v F (v)| ≤ cα 〈v〉γ+2−|α|.

The function F (v) being C∞ on |v| ≤ 2R, the estimates for |v| ≤ 2R are immediate.

Lemma 2.5. i) A(v) is written as follows

A(v) = BT(v)B(v), (13)

where B(v) = (bij(v))1≤i,j≤3 is a matrix with real-valued smooth entries.

ii) For any multi-index α ∈ N
3, there exists Cα > 0 such that for all v ∈ R

3, we
have

|∂α
v bij(v)| ≤ Cα 〈v〉

γ
2

+1−|α|. (14)

iii) There exists c, C > 0 such that for all v ∈ R3, for all η ∈ R3 we have

c 〈v〉γ(|η|2 + |v ∧ η|2) ≤ A(v)η · η = |B(v)η|2 ≤ C 〈v〉γ(|η|2 + |v ∧ η|2) (15)

Proof. i) As A(v) is a positive definite symmetric matrix (denoted S++
3 (R)) and ac-

cording to the spectral theorem, there exists Q an orthogonal matrix such that

A(v) = QT(v)D(v)Q(v).

On
{

|v| > 1
}
, v 7→ Q(v) can be calculated explicitly and can be chosen to be smooth.

If we set
B(v) = QT(v)

√
D(v)Q(v)

with
√

D(v) = diag
(√

ℓ1(v),
√
ℓ2(v),

√
ℓ2(v)

)
. We have that v 7→

√
D(v) is of class

C∞ for |v| > 1 (because ℓ1(v), ℓ2(v) are of class C∞ for |v| > 1). Then the application

v 7→ B(v) is of class C∞ on
{

|v| > 1
}
. Regarding the case where |v| ≤ 1, we consider

the following two applications:

φ : R3 → S++
3 (R)

v 7→ A(v)
,

ψ : S++
3 (R) → S++

3 (R)

M 7→
√
M

,

we note that φ, ψ are of class C∞, moreover B(v) = ψ ◦ φ(v). Then we have that the
application v 7→ B(v) is of class C∞.

ii) For |v| > 1, we have B(v) =
√
ℓ1(v)Pv +

√
ℓ2(v)(I − Pv), moreover using Lemma

2.1 , we have

|∂α
v

√
ℓ1(v)| . 〈v〉

γ
2

−|α|, |∂α
v

√
ℓ2(v)| . 〈v〉

γ+2

2
−|α| (16)
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and the fact that |∂α
v Pv| . 1 (Pv and all its derivatives are bounded), so we get that

for |v| > 1,

|∂α
v bij(v)| . 〈v〉

γ
2

+1−|α|, (17)

where the constants in ( 16 ), ( 17 ) depend on α.
The function bij(v) being C∞ on |v| ≤ 1, the estimates for |v| ≤ 1 are immediate.
Then, for all α ∈ N3, there exists Cα > 0 such that for all v ∈ R3, we have

|∂α
v bij(v)| ≤ Cα 〈v〉

γ
2

+1−|α|. (18)

iii) The estimate is immediate on |v| ≤ 1 because A(v) is a positive definite symmetric
matrix and A = BTB. For |v| > 1, using Lemma 2.1 , we have

aij(v)ηiηj = ℓ1(v)|Pvη|2 + ℓ2(v)|(I − Pv)η|2

& 〈v〉γ|η|2cos2(v, η) + 〈v〉γ+2 |v ∧ η|2

|v|2

& 〈v〉γ|η|2cos2(v, η) + 〈v〉γ |v ∧ η|2 + 〈v〉γ|η|2 sin2(v, η)

& 〈v〉γ(|η|2 + |v ∧ η|2),

on the other hand, we have

aij(v)ηiηj = ℓ1(v)|Pvη|2 + ℓ2(v)|(I − Pv)η|2

. 〈v〉γ|η|2 + 〈v〉γ+2 |v ∧ η|2

|v|2

. 〈v〉γ(|η|2 + |v ∧ η|2).

Hence the proof of (iii).

Using Lemma 2.5 , we can rewrite A in the form

A = v · ∇x + (B(v)∇v)∗ · B(v)∇v + F (v), (19)

where (B(v)Dv)∗ = DvB(v)T , is the formal adjoint of B(v)Dv.

2.3 Study of the operator P.

In this part, we will study the following problem:

{
∂tf + Pf = 0
f|t=0 = f0,

(20)

we show that the above problem is well-posed in the space L2(R3
x × R3

v) in the sense
of semi-groups. By Hille-Yosida Theorem, it is sufficient to show that A is maximal
accretive in the space L2(R3

x × R3
v), then using the Bounded Perturbation Theorem

in [7, Theorem 1.3], we get that the operator P is a generator of a strongly continuous
semigroup (for more details on the semi-group theory see also [19]). First, we start by
recalling the basic definition of hypoellipticity.
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Definition 2.6. Let P be a differential operator with C∞ coefficients in an open set
Ω ⊂ Rn. We say that P is a hypoelliptic operator on Ω, if, for any open ω ⊂ Ω, any
u ∈ D′(Ω), such that Pu ∈ C∞(ω) belongs to C∞(ω).

Lemma 2.7. Let A be the operator defined in ( 9 ). Then, A is a hypoelliptic operator.

Proof. Using formula ( 19 ), we can rewrite A in the following form:

A = v · ∂x︸ ︷︷ ︸
X0

+
( 3∑

j=1

b1,j(v)∂vj

)∗( 3∑

j=1

b1,j(v)∂vj

)

︸ ︷︷ ︸
X∗

1
X1

+
( 3∑

j=1

b2,j(v)∂vj

)∗( 3∑

j=1

b2,j(v)∂vj

)

︸ ︷︷ ︸
X∗

2
X2

+
( 3∑

j=1

b3,j(v)∂vj

)∗( 3∑

j=1

b3,j(v)∂vj

)

︸ ︷︷ ︸
X∗

3
X3

+F (v)

= X0 +
3∑

i=1

X∗
i Xi + F (v).

In addition, the coefficients bij(v) and F (v) are of class C∞, taking the vector field
square brackets we get

Yk = [Xk, X0] =
3∑

j=1

bk,j(v)∂xj
, for k ∈ {1, 2, 3} .

From the above, A is a “type II Hörmander’s operators” (see for example [9], [14]).

Moreover, the vector fields
{
Xi, Yi, i = 1, . . . , 3

}
generate all the space tangent to

R6
x,v so A is hypoelliptic operator.

Theorem 2.8. Let γ ∈ [−3, 1] and A be the operator defined in ( 9 ). Then, its closure
A on the space S(R6

x,v) is maximally accretive.

Proof. We adapt here the proof given in [9, page 44]. We apply the abstract criterion
by taking H = L2(R6

x,v) and the domain of A defined by D(A) = S(R6
x,v). First, we

show the accretivity of the operator A. We want to prove that ℜe (Au, u)H ≥ 0 for
u ∈ D(A). Indeed, from ( 19 )

ℜe (Au, u)H = ℜe (v · ∇xu, u)H︸ ︷︷ ︸
=0 since v·∇x is skew-adjoint

−ℜe (∇v · (A(v)∇vu), u)H + ℜe (F (v)u, u)H

= ‖B(v)∇vu‖2
H + ‖

√
F (v)u‖

2

H

≥ 0.

Since A is an accretive operator then its closure A exists and it is accretive (see [9,
Proposition 5.3]). Let us now show that there exists λ1 > 0 such that the operator

T = A + λ1Id

has dense image in H. We take λ1 = 1. Let f ∈ H satisfy

(f, Tu)H = 0, ∀u ∈ D(A). (21)

11



we want’s to prove that f = 0,
Since T is a differential operator then his formal adjoint T ♯ exists (in the sense of
distributions). According to ( 21 ) we obtain

T ♯f =
(

− ∇v · A(v)∇v + F (v) + 1 −X0

)
f = 0, in D′(R6). (22)

Using Lemma 2.7 , we have −∇v · A(v)∇v + F (v) + 1 −X0 is a hypoelliptic operator,
so f ∈ C∞(R6) (see [9, Chapter 2]).
Now we introduce the family of truncation functions ζk defined by

ζk(x, v) = ζ
( x
k1

)
ζ
( v
k2

)
, ∀k = (k1, k2) ∈ (N∗)2,

where ζ is a C∞ function satisfying the following conditions:





0 ≤ ζ ≤ 1,
ζ = 1 on B(0, 1),
supp ζ ⊂ B(0, 2),
ζ is a radial function.

The expression of T ♯(ζkf) is

T ♯(ζkf) = −∇v ·
(
A(v)∇v(ζkf)

)
+
(
F (v) + 1

)
ζkf −X0(ζkf)

= −∇v ·
(
A(v)([∇vζk]f)

)
− ∇vζk · A(v)∇vf −X0(ζk)f − ζkT

♯f,

by using ( 22 ), we obtain

T ♯(ζkf) = −∇v ·
(
A(v)([∇vζk]f)

)
− ∇vζk · A(v)∇vf −X0(ζk)f. (23)

We note that T ♯(ζkf) ∈ H, taking the scalar product with ζkf we obtain

(
T ♯(ζkf), ζkf

)

H
= −

∫∫
∇v ·

(
A(v)([∇vζk]f)

)
ζkf dxdv −

∫∫
X0(ζk)ζk|f |2 dxdv

−
∫∫ (

∇vζk · A(v)∇vf
)
ζkf dxdv,

By doing an integration by parts, we obtain

(
T ♯(ζkf), ζkf

)

H
=
∫∫

|B∇v(ζk)f |2 dxdv −
∫∫

X0(ζk)ζk|f |2 dxdv.

On the other hand, using ( 22 ), we obtain

(
T ♯(ζkf), ζkf

)

H
=
∫∫

|B∇v(ζkf)|2 dxdv +
∫∫ (

F (v) + 1
)
|ζkf |2 dxdv

−
∫∫

X0(ζkf)ζkf dxdv
︸ ︷︷ ︸
=0 since X0 is skew-adjoint

=
∫∫

|B∇v(ζkf)|2 dxdv +
∫∫ (

F (v) + 1
)
|ζkf |2 dxdv.

Using the fact that ∫∫
|B∇v(ζkf)|2 dxdv ≥ 0,
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we obtain
∫∫ (

F (v) + 1
)
|ζkf |2 dxdv ≤

∫∫
|B∇v(ζk)f |2 dxdv

︸ ︷︷ ︸
(i)

−
∫∫

X0(ζk)ζk|f |2 dxdv
︸ ︷︷ ︸

(ii)

. (24)

Estimate of (i): Using Lemma 2.1 -(b)-(d) and taking into account that the function
ζ is a radial function we obtain
∫∫

|B∇v(ζk)f |2 dxdv =
∫∫

ℓ1(v)|Pv∇vζk|2|f |2 dxdv +
∫∫

ℓ2(v)|(I − Pv)∇vζk|2|f |2 dxdv
︸ ︷︷ ︸

=0 since v is parallel to ∇vζk

≤ C0

k2
2

∫∫
〈v〉γΦk|f |2 dxdv,

where C0 > 0 and Φk = ζ( x
k1

)ζ
′
( v

k2
). Using the fact that γ ∈ [−3, 1] and the fact that

Φk is a bounded function we have the existence of a constant C1 > 0 such that,
∫∫

|B∇v(ζk)f |2 dxdv ≤ C1

( 1

k2
2

+
1

k2

)
‖f‖2.

Esimate of (ii): we have

∣∣∣∣
∫∫

X0(ζk)ζk|f |2 dxdv
∣∣∣∣ ≤ 1

k1

∫∫
|v|Φ̃kζk|f |2 dxdv,

where Φ̃k = ζ
′
( x

k1
)ζ( v

k2
).

Now, taking into account that the functions Φ̃k and ζk are bounded, we have the
existence of a constant C2 > 0 such that,

∣∣∣∣
∫∫

X0(ζk)ζk|f |2 dxdv
∣∣∣∣ ≤ C2

k2

k1
‖f‖2.

Finally, coming back to ( 24 ) we obtained the existence of a constant C > 0 such that,
∫∫

|ζkf |2 dxdv ≤ C
( 1

k2
2

+
1

k2

+
k2

k1

)
‖f‖2, ∀k. (25)

Taking k1 → +∞ in ( 25 ) we obtain
∫∫

|ζ(
v

k2

)f |2 dxdv ≤ C
( 1

k2
2

+
1

k2

)
‖f‖2, (26)

and taking k2 → +∞ in ( 26 ) we obtain
∫∫

|f |2 dxdv = 0,

then f = 0.

From now on, we write A for the closure of the operator A.

Corollary 2.9. Let γ ∈ [−3, 1] and P be the operator defined in ( 5 ). Then, −P is a
generator of a semi-group

(
S(t)

)

t≥0
strongly continuous on H = L2(R6

x,v) verifying

‖S(t)‖ ≤ e‖K‖t for t ≥ 0, (27)

where K the operator defined in ( 9 ).
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Proof. Using ( 9 ), the operator −P is written as follows

−P = −A − K.

According to Theorem 2.8 , A is a maximally accretive operator. According to the
Hille-Yosida Theorem, −A is a generator of a strongly continuous semi-group of con-
traction. On the other hand, −K is a bounded operator in H (we have L2 a compact
operator andMχR is bounded). Using the Bounded Perturbation Theorem in [7, Theo-

rem 1.3], we have that −P is a generator of a semi-group
(
S(t)

)

t≥0
strongly continuous

on H, moreover we have

‖S(t)‖ ≤ e‖K‖t for t ≥ 0. (28)

3 Hypoelliptic estimates for the operator with pa-

rameters

In the following discussion, we work with γ ∈ [0, 1]. In this section, we will study the
operator acting on the velocity variable v:

Aξ = iv · ξ + (B(v)∇v)∗ · B(v)∇v + F (v), (29)

where ξ is the parameter in R3. The operator Aξ is obtained by the partial Fourier
transformation in x. The goal of studying the operator Aξ and considering ξ as a
parameter, is to obtain estimates of the velocity variables v uniformly with respect to
ξ. Then by using the inverse Fourier transform with respect to x, we can obtain global
estimates in all variables. We note that the operator Aξ verifies for all u ∈ S(R3

v),

‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖

2

L2
≤ ℜe (Aξu, u)L2 . (30)

Notations. Throughout this section, we will use ‖ · ‖L2 to denote the norm in the
space L2(R3

v) and ξ is a parameter. We use pWick to denote the Wick quantization of
p in the variables (v, η) (for more details on Wick quantization see [17] and Appendix
A.3 ).
The main result in this section is Proposition 3.19 and Proposition 3.20 .

3.1 Pseudo-differential parts

In this part, we will show several lemmas concerning pseudo-differential symbols. We
need to build these symbols, who verify assumptions of Theorem A.6 , such that the
pseudo-differential operator associated to these symbols has good properties. These
operators play an important role in hypoellipic estimates. The standard concepts on
pseudo-differential calculus are explained in Appendix A . We define for (v, η) ∈ R6
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the following symbols, they depend on the parameter ξ but we do not mention it in
our notations since ξ is seen as a parameter.

λ(v, η) =
[
〈v〉γ

(
1 + |v|2 + |η|2 + |ξ|2 + |v ∧ η|2 + |v ∧ ξ|2

)]1/2
, (31)

a(v, η) = 1 + |v|2 + |η|2 + |ξ|2 + |v ∧ η|2 + |v ∧ ξ|2, (32)

g1(v, η) = 1 + 〈v〉 + 〈η〉, (33)

g2(v, η) = 1 + 〈ξ〉1/3 + 〈η〉, (34)

g3(v, η) = 1 + 〈ξ〉2/3 + 〈η〉2. (35)

Lemma 3.1. The above symbols are admissible weights in the sense of Definition A.1
uniformly with respect to the parameter ξ in R3.

Proof. We have to check λ is an admissible weight. It is sufficient to verify that there
exists two constants N and C, both depending only on γ, such that for all
Y = (v, η), Y ′ = (v′, η′), we have

λ(Y ) ≤ Cλ(Y ′) (1 + Γ(Y − Y ′))
N
,

where Γ is the metric defined by Γ = dv2 + dη2. We have

λ2(v, η)

λ2(v′, η′)
=

〈v〉γ

〈v′〉γ

(
1 + |v|2 + |η|2 + |ξ|2 + |v ∧ η|2 + |v ∧ ξ|2

1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2
)
. (36)

We now use Peetre’s inequality

〈y〉τ ≤ 2
|τ |
2 〈y′〉τ 〈y − y′〉|τ |

, τ ∈ R, (37)

to get
〈v〉γ

〈v′〉γ
≤ 2γ〈v − v′〉γ

.

Using ( 37 ), we obtain

1 + |v|2 + |η|2
1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2 ≤ 〈v〉2

〈v′〉2
+

〈η〉2

〈η′〉2
≤ 4 (〈v − v′〉 + 〈η − η′〉)2

and

|ξ|2
1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2 ≤ 1 ≤ (〈v − v′〉 + 〈η − η′〉)2

.

Using the relation
v ∧ ξ = (v − v′) ∧ ξ + v′ ∧ ξ,

we obtain

|v ∧ ξ|2
1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2 ≤ 1+

〈v − v′〉2〈ξ〉2

〈ξ〉2
≤ 2 (〈v − v′〉 + 〈η − η′〉)2

.

Moreover using the relation

v ∧ η = (v − v′) ∧ (η − η′) + (v − v′) ∧ η′ + v′ ∧ (η − η′) + v′ ∧ η′,
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we compute

|v ∧ η|2
1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2

≤ 4|v − v′|2|η − η′|2 + 4|v − v′|2|η′|2 + 4|v′|2|η − η′|2 + 4|v′ ∧ η′|2
1 + |v′|2 + |η′|2 + |ξ|2 + |v′ ∧ η′|2 + |v′ ∧ ξ|2

≤ 4|v − v′|2|η − η′|2 + 4|v − v′|2 + 4|η − η′|2 + 4

≤ 10 (〈v − v′〉 + 〈η − η′〉)4
.

Combining the above inequalities, we get

λ(Y )

λ(Y ′)
≤ Cγ (1 + Γ(Y − Y ′))

4+γ
2 ,

so λ is an admissible weight. The proof will be the same for a, g1, g2 and g3.

Lemma 3.2. For m ∈ R,
λm ∈ S(λm,Γ),

uniformly with respect to the parameter ξ in R3, where S(λm,Γ) is defined in Defini-
tion A.2 in Appendix A.1 .

Proof. We can rewrite λ as follows

λ(v, η) = 〈v〉 γ
2 a

1

2 (v, η).

To prove the wanted result, we use induction on |α + β| to prove that for any k ∈ R

and any |α+ β| ≥ 0,

|∂α
v ∂

β
η ak(v, η)| . ak(v, η), (38)

which obviously holds for |α + β| = 0. Now suppose |α + β| ≥ 1, then we have either
|α| ≥ 1 or |β| ≥ 1, and suppose |β| ≥ 1 without loss of generality. So we can write

∂β
η = ∂β̃

η ∂ηj
with |β̃| = |β| − 1 and thus

∂α
v ∂

β
η ak(v, η) = ∂α

v ∂
β̃
η

[
kak−1

(
2ηj + 2(v ∧ η)∂ηj

(v ∧ η)
)]
,

which along with Leibniz’ formula and the induction assumption yields

|∂α
v ∂

β
η ak(v, η)| . ak−1

(
1 + |η| + |v||η| + |v||v ∧ η| + |v|2

)

. ak(v, η),

on the other hand, we have for all k ∈ R,

〈v〉k ∈ S(〈v〉k,Γ). (39)

Finally, using ( 38 ), ( 39 ) and Leibniz’ formula we conclude for all |α + β| ≥ 0,

|∂α
v ∂

β
η λ

m(v, η)| ≤ Cα,β λ
m(v, η). (40)
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Lemma 3.3. For m ∈ R,
|ξ · ∂ηλ

m| . λm,

uniformly with respect to the parameter ξ in R
3.

Proof. Lemma 3.3 follows directly from (31 ) and the fact that

|ξ · ∂ηλ
2| = λ〈v〉

γ
2 a−1/2|ξ · η + v ∧ ξ · v ∧ η| . λ2,

we can conclude that for all m ∈ R,

|ξ · ∂ηλ
m| . λm,

uniformly with respect to the parameter ξ in R3.

Lemma 3.4. We have
gi ∈ S(gi,Γ), for i = 1, . . . , 3,

uniformly with respect to the parameter ξ in R3.

Proof. Using the fact that for all m ∈ R, 〈v〉m ∈ S(〈v〉m,Γ), 〈η〉m ∈ S(〈η〉m,Γ) we
obtain

∀α, β ∈ N
3, |∂α

v ∂
β
η gi(v, η)| ≤ Cα,β gi,

uniformly with respect to the parameter ξ in R
3.

Lemma 3.5. For all ε > 0,

i) ∂ηλ ∈ S(ελ+ ε−1〈v〉
γ
2

+1,Γ), ii) ∂ηg1 ∈ S(εg1 + ε−1,Γ),

iii) ∂ηg2 ∈ S(εg2 + ε−1〈v〉
γ
6

+1,Γ), iv) ∂ηg3 ∈ S(εg3 + ε−1〈v〉
γ
3

+1,Γ);

uniformly with respect to the parameter ξ in R3.

Proof. We have

|∂ηg1(v, η)| = |∂η

(
1 + 〈v〉 + 〈η〉

)
| . |η|〈η〉−1 . g

1/2
1 ,

|∂ηg2(v, η)| = |∂η

(
1 + 〈ξ〉1/3 + 〈η〉

)
| . |η|〈η〉−1 . g

1/2
2 〈v〉

γ
12

+ 1

2 ,

|∂ηg3(v, η)| = |∂η

(
1 + 〈ξ〉2/3 + 〈η〉2

)
| . 〈η〉 . g

1/2
3 〈v〉

γ
6

+ 1

2 .

Using Young’s inequality we get for all ε > 0,

|∂ηg1(v, η)| . εg1 + ε−1, |∂ηg2(v, η)| . εg2 + ε−1〈v〉
γ
6

+1, |∂ηg3(v, η)| . εg3 + ε−1〈v〉
γ
3

+1,

then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂α
v ∂

β
η ∂ηg1(v, η)| . εg1 + ε−1, |∂α

v ∂
β
η ∂ηg2(v, η)| . εg2 + ε−1〈v〉

γ
6

+1,

and |∂α
v ∂

β
η ∂ηg3(v, η)| . εg3 + ε−1〈v〉

γ
3

+1.

Regarding the symbol λ, we have

|∂ηλ(v, η)| = 〈v〉
γ
2 a−1/2

∣∣∣η + (v ∧ η)∂η(v ∧ η)
∣∣∣ . 〈v〉

γ
2 a−1/2

(
|η| + |v||v ∧ η|

)
. 〈v〉

γ
4

+ 1

2λ1/2.
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Using Young’s inequality we get for all ε > 0,

|∂ηλ(v, η)| . ελ+ ε−1〈v〉 γ
2

+1,

then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂α
v ∂

β
η ∂ηλ(v, η)| . ελ+ ε−1〈v〉 γ

2
+1.

From the above, we have shown that the symbols g1, g2, g3 and λ verify the hypotheses
of Theorem A.6 , so we can apply the results of Theorem A.6 to the following operators

gw
1,K =

(
g1 +K

)w
, (41)

gw
2,K =

(
g2 +K〈v〉

γ
6

+1
)w
, (42)

gw
3,K =

(
g3 +K〈v〉

γ
3

+1
)w
, (43)

λw
K =

(
λ+K〈v〉 γ

2
+1
)w
, (44)

where K the fixed constant given by Theorem A.6 . In Section 3.2, we will apply the
results of Theorem A.6 on the operators above.

Let ψ be a C∞
0 (R, [0, 1]) function such that

ψ = 1 on [−1, 1], supp ψ ⊂ [−2, 2]. (45)

Definition 3.6. Define the real-valued symbol

g = −B(v)ξ · B(v)η

λ4/3
ψ

(
|B(v)η|2 + F (v)

λ2/3

)
, (46)

where λ is the symbol defined in ( 31 ).

Lemma 3.7 (Lemma 3.3 in [12]). We have

ψ

(
|B(v)η|2 + F (v)

λ2/3

)
∈ S(1,Γ),

uniformly with respect to the parameter ξ in R3.

Lemma 3.8. The symbol g belongs to the class S(1,Γ) uniformly with respect to the
parameter ξ in R3.

Proof. Notice from ( 45 ) that

|B(v)η|2 + F (v) ≤ 2λ2/3, (47)

on the support of the function

ψ

(
|B(v)η|2 + F (v)

λ2/3

)
. (48)
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By recalling ( 31 ) and using ( 15 ), we obtain

|B(v)ξ| . 〈v〉
γ
2 |ξ| + 〈v〉

γ
2 |v ∧ ξ| . λ. (49)

We deduce from the Cauchy-Schwarz inequality that one can estimate

|B(v)ξ · B(v)η| . |B(v)ξ||B(v)η| . λ4/3, (50)

on the support of ψ. The symbol g is therefore a bounded function uniformly with
respect to the parameter ξ in R3. Using ( 14 ) and ( 15 ), we can estimate

|∂α
v B(v)ξ| . 〈v〉

γ
2 |ξ| . |B(v)ξ| . λ (51)

where α ∈ N3 with |α| ≥ 1. Using again ( 14 ) and ( 15 ), we can estimate

|∂α
v B(v)η| . 〈v〉

γ
2 |η| . |B(v)η| . λ1/3 (52)

on the support of ψ. Morever, one can estimate from above the modulus of all the
derivatives of the term B(v)η by a constant times λ1/3 on the support of the function

ψ

(
|B(v)η|2 + F (v)

λ2/3

)
.

Using Leibniz’s formula, Cauchy-Schwarz inequality ( 51 ), ( 52 ) one can estimate from
above the modulus of all the derivatives of the term B(v)ξ ·B(v)η by a constant times
λ4/3 on the support of the fonction ψ. According to Lemma 3.2 and Lemma 3.7 , this
proves that the symbol g belongs to the class S(1,Γ) uniformly with respect to the
parameter ξ in R3.

Lemma 3.9. We have
∣∣∣∣∣ξ · ∂η

[
ψ

(
|B(v)η|2 + F (v)

λ2/3

)]∣∣∣∣∣ . 1 + |B(v)η|2 + F (v),

uniformly with respect to the parameter ξ in R3.

Proof. Let ω = |B(v)η|2+F (v)
λ2/3 . We may write

ξ · ∂η [ψ(ω)] = ψ′(ω)

[
2B(v)ξ · B(v)η

λ2/3
+
(
|B(v)η|2 + F (v)

)
(ξ · ∂η)(λ−2/3)

]
.

Notice from ( 31 ) and ( 45 )

∣∣∣∣∣
2B(v)ξ · B(v)η

λ2/3

∣∣∣∣∣ .
|B(v)ξ||B(v)η|

λ2/3
.
λλ1/3

λ2/3
. λ2/3 . |B(v)η|2 + F (v),

on the support of the function ψ′(ω). One can then deduce Lemma 3.9 from
Lemma 3.3 .
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3.2 Hypoelliptic estimates

We shall consider the multiplier G = gWick defined by the Wick quantization of the
symbol g. We refer the reader to Appendix A.3 on Wick calculus. We begin by
noticing from (133 ) that there exists a real-valued symbol g̃ belonging to the class
S(1,Γ) uniformly with respect to the parameter ξ in R3 such that

G = gWick = g̃w; (53)

where g̃w denotes the operator obtained by the Weyl quantization of the symbol g̃
given by

(g̃wu)(v) =
1

(2π)3

∫

R6

ei(v−v′)·ηg̃

(
v + v′

2
, η

)
u(v′) dv′dη. (54)

We shall sometimes closely follow [12] and refer to appendix (Section A ) for the main
features of the Wick and the Weyl quantizations.
We begin by a series of Lemmas whose proof is exactly the same as the one in [12].

Lemma 3.10. There exists c1 > 0 such that for all u ∈ S(R3
v),

| (F (v)u,Gu)L2 | + | (∇v · (A(v)∇vu), Gu)L2 | ≤ c1 ℜe (Aξu, u)L2 ,

uniformly with respect to the parameter ξ in R3.

Proof. See Lemma 3.7 in [12].

Lemma 3.11. There exists c2 > 0 such that for all u ∈ S(R3
v),

∣∣∣∣‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2 −
(

[4π2|B(v)η|2 + F (v)]
Wick

u, u
)

L2

∣∣∣∣ ≤ c2 ℜe (Aξu, u)L2 ,

uniformly with respect to the parameter ξ in R3.

Proof. See Lemma 3.11 in [12].

Let δ be a positive parameter such that 0 < δ ≤ 1. We use a multiplier method and
write that

ℜe (Aξu, (1 − δG)u)L2 =‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2 − δℜe (iv · ξu,Gu)L2

+ δℜe (∇v · (A(v)∇vu), Gu)L2 − δℜe (F (v)u,Gu)L2 .
(55)

Lemma 3.12. We have for any s ∈ R

‖〈B(v)ξ〉s(1 − δG)u‖L2 . ‖〈B(v)ξ〉su‖L2,

uniformly with respect to the parameter ξ in R3.

Proof. See Lemma 3.8 in [12].

Proposition 3.13. There exists C > 0 such that for all u ∈ S(R3
v),

((λ2/3)Wicku, u)L2 ≤ C
(
ℜe(Aξu, u)L2 + ℜe(Aξu, (1 − δG)u)L2

)
,

uniformly with respect to the parameter ξ in R3.
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Proof. Using ( 55 ), we have for 0 < δ ≤ 1 and u ∈ S(R3
v),

‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2 − δℜe (iv · ξu,Gu)L2

= ℜe (Aξu, (1 − δG)u)L2 − δℜe (∇v · (A(v)∇vu), Gu)L2 + δℜe (F (v)u,Gu)L2 , (56)

uniformly with respect to the parameter ξ in R3. Recalling ( 53 ) and noticing from
( 133 ) and ( 134 ) that vWick = v, we may rewrite ( 56 ) as

‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2 − δℜe
(
iξ · vWicku,Gu

)

L2

= ℜe (Aξu, (1 − δG)u)L2 − δℜe (∇v · (A(v)∇vu), Gu)L2 + δℜe (F (v)u,Gu)L2 . (57)

Using Lemma 3.10 , we deduce that there is a constant c3 > 0 such that for all
0 < δ ≤ 1 and u ∈ S(R3

v),

‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2 − δℜe
(
iξ · vWicku,Gu

)

L2

≤ c3

(
ℜe (Aξu, u)L2 + ℜe (Aξu, (1 − δG)u)L2

)
, (58)

uniformly with respect to the parameter ξ in R3. We deduce from Lemma 3.8 and
( 135 ) that

−δℜe
(
iξ · vWicku,Gu

)

L2
= −δℜe

(
gWick(iξ · v)Wicku, u

)

L2

= δ
1

4π

(
{ξ · v, g}Wicku, u

)

L2
.

(59)

Using ( 46 ) with a direct computation of the Poisson bracket gives that

{ξ · v, g} = (B(v)ξ · B(v)η)(ξ · ∂η(λ−4/3))ψ

(
|B(v)η|2 + F (v)

λ2/3

)

+
|B(v)ξ|2
λ4/3

ψ

(
|B(v)η|2 + F (v)

λ2/3

)
+
B(v)ξ · B(v)η

λ4/3
ξ · ∂η

[
ψ

(
|B(v)η|2 + F (v)

λ2/3

)]
. (60)

We notice from Lemma 3.3 , Lemma 3.9 , ( 46 ) and ( 50 ) that

∣∣∣∣∣{ξ · v, g} − |B(v)ξ|2
λ4/3

ψ

(
|B(v)η|2 + F (v)

λ2/3

)∣∣∣∣∣ . 1 + |B(v)η|2 + F (v), (61)

uniformly with respect to the parameter ξ in R3. It follows from ( 59 ), ( 58 ) and
the fact that the Wick quantization is a positive quantization ( 132 ) that there exists
constante c4 > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R3

v),

δ

4π



[

|B(v)ξ|2
λ4/3

ψ

(
|B(v)η|2 + F (v)

λ2/3

)]Wick

u, u




L2

+ ‖B(v)∇vu‖2
L2 + ‖

√
F (v)u‖2

L2

≤ c3

(
ℜe (Aξu, u)L2 + ℜe (Aξu, (1 − δG)u)L2

)

+ δc4

([
1 + |B(v)η|2 + F (v)

]Wick
u, u

)

L2

, (62)
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uniformly with respect to the parameter ξ in R
3. It follows from Lemma 3.11 that

there exists c5 > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R3
v)

δ




[

|B(v)ξ|2
λ4/3

ψ

(
|B(v)η|2 + F (v)

λ2/3

)]Wick

u, u





L2

+ (4π2
[
|B(v)η|2 + F (v)

]Wick
u, u)L2

+ ‖u‖2
L2 ≤ c5

(
ℜe (Aξu, u)L2 + ℜe (Aξu, (1 − δG)u)L2

)
, (63)

uniformly with respect to the parameter ξ in R3.
Notice from ( 31 ), ( 45 ) and ( 15 ) that

δ
|B(v)ξ|2
λ4/3

ψ

(
|B(v)η|2 + F (v)

λ2/3

)
+ 4π2|B(v)η|2 + F (v) + 1 ≥

δ
|B(v)ξ|2 + |B(v)η|2 + F (v) + 1

λ4/3
ψ

(
|B(v)η|2 + F (v)

λ2/3

)

+ (|B(v)η|2 + F (v) + 1)

[
1 − ψ

(
|B(v)η|2 + F (v)

λ2/3

)]
&

δ
λ2

λ4/3
ψ

(
|B(v)η|2 + F (v)

λ2/3

)
+ δλ2/3

[
1 − ψ

(
|B(v)η|2 + F (v)

λ2/3

)]
& δλ2/3,

when 0 < δ
λ4/3 ≤ 1; since

|B(v)η|2 + F (v) ≥ λ2/3,

on the support of the function

1 − ψ

(
|B(v)η|2 + F (v)

λ2/3

)
.

By using again that the Wick quantization is a positive quantization ( 132 ), we deduce
that there exists C > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R3

v),

((λ2/3)Wicku, u)L2 ≤ C
(
ℜe(Aξu, u)L2 + ℜe(Aξu, (1 − δG)u)L2

)
,

uniformly with respect to the parameter ξ in R3.

Lemma 3.14. There exists C > 0 such that for all v ∈ R3 and ξ ∈ R3,

〈B(v)ξ〉1/3 ≤ Cm(v, ξ),

with

m(v, ξ) =
( ∫

R3

〈B(v + ṽ)ξ〉2/3π−3e−|ṽ|2 dṽ
)1/2

.

Proof. We have that

m(v, ξ)2 &
∫

R3

(1 + |B(v + ṽ)ξ|2/3)π−3e−|ṽ|2 dṽ,

therefore by using ( 15 ), we obtain that

m(v, ξ)2 &
∫

R3

(1 + 〈v + ṽ〉γ/3|ξ|2/3 + 〈v + ṽ〉γ/3|(v + ṽ) ∧ ξ|2/3)π−3e−|ṽ|2 dṽ,
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and using Peetre’s inequality ( 37 ), we have

〈v〉γ/3

〈ṽ〉γ/3
. 〈v + ṽ〉γ/3,

so we get

m(v, ξ)2 & 1 + 〈v〉γ/3|ξ|2/3 +
∫

R3

〈v〉γ/3

〈ṽ〉γ/3
|(v + ṽ) ∧ ξ|2/3π−3e−|ṽ|2 dṽ

& 1 + 〈v〉γ/3|ξ|2/3 +
∫

B(0,1)

〈v〉γ/3

〈ṽ〉γ/3
|(v + ṽ) ∧ ξ|2/3π−3e−|ṽ|2 dṽ

where B(0, 1) stands for the closed unit ball in R3. By noticing that we have

|(v + ṽ) ∧ ξ| ≥ |v ∧ ξ| − |ṽ ∧ ξ| ≥ |v ∧ ξ| − |ξ| ≥ 1

2
|v ∧ ξ|,

when |ṽ| ≤ 1 and 2|ξ| ≤ |v ∧ ξ|, it follows that

∫

R3

〈v〉γ/3

〈ṽ〉γ/3
|(v + ṽ) ∧ ξ|2/3π−3e−|ṽ|2 dṽ & 〈v〉γ/3|v ∧ ξ|2/3,

when 2|ξ| ≤ |v ∧ ξ|. Since

〈v〉γ/3|ξ|2/3 & 〈v〉γ/3|v ∧ ξ|2/3

when 2|ξ| ≥ |v ∧ ξ|. Based on the above and using ( 15 ), we obtain

m(v, ξ)2 & 1 + 〈v〉γ/3|ξ|2/3 + 〈v〉γ/3|v ∧ ξ|2/3 & 1 + |B(v)ξ|2/3
& 〈B(v)ξ〉2/3.

Lemma 3.15. For all u ∈ S(R3
v),

‖〈v〉
5γ
6

+2u‖2
L2 + ‖〈v〉

γ
3

+1B(v)Dvu‖2
L2 . ‖Aξu‖2

L2 + ‖u‖2
L2. (64)

Proof. See Lemma 3.3 in [10].

For the rest, we need to improve this estimate. We have the following Lemma.

Lemma 3.16. For all u ∈ S(R3
v),

‖〈v〉γ+2u‖2
L2 + ‖〈v〉

γ
2

+1B(v)Dvu‖2
L2 . ‖Aξu‖2

L2 + ‖u‖2
L2. (65)

Proof. We will start by estimating the term
([

Aξ, 〈v〉
γ
2

+1
]
u, 〈v〉

γ
2

+1u
)

L2
.

Let u ∈ S(R3
v), we have

∣∣∣
([

Aξ, 〈v〉
γ
2

+1
]
u, 〈v〉

γ
2

+1u
)

L2

∣∣∣ ≤
∣∣∣
(
B(v)

[
Dv, 〈v〉

γ
2

+1
]
u,B(v)Dv〈v〉

γ
2

+1u
)

L2

∣∣∣

+
∣∣∣
(
B(v)Dvu,B(v)

[
Dv, 〈v〉

γ
2

+1
]

〈v〉
γ
2

+1u
)

L2

∣∣∣

≤
∣∣∣
(
B(v)

[
Dv, 〈v〉

γ
2

+1
]
u,B(v)

[
Dv, 〈v〉

γ
2

+1
]
u
)

L2

∣∣∣

+
∣∣∣
(
B(v)

[
Dv, 〈v〉

γ
2

+1
]
u, 〈v〉

γ
2

+1B(v)Dvu
)

L2

∣∣∣

+
∣∣∣
(
B(v)Dvu,B(v)

[
Dv, 〈v〉

γ
2

+1
]

〈v〉
γ
2

+1u
)

L2

∣∣∣ ,
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using the fact that the symbol of the operator
[
Dv, 〈v〉

γ
2

+1
]

belongs to the class

S(〈v〉
γ
2 ,Γ) uniformly with respect to the parameter ξ and using the following notations

H1 = B(v)
[
Dv, 〈v〉

γ
2

+1
]

〈v〉−γ−1

︸ ︷︷ ︸
∈B(L2)

,

H2 = 〈v〉− γ
2

−1B(v)
[
Dv, 〈v〉

γ
2

+1
]

〈v〉− γ
2

︸ ︷︷ ︸
∈B(L2)

,

we obtain
∣∣∣
([

Aξ, 〈v〉
γ
2

+1
]
u, 〈v〉

γ
2

+1u
)

L2

∣∣∣ ≤
∣∣∣
(
H1〈v〉γ+1u,H1〈v〉γ+1u

)

L2

∣∣∣

+
∣∣∣
(
H1〈v〉γ+1u, 〈v〉

γ
2

+1B(v)Dvu
)

L2

∣∣∣

+
∣∣∣
(
〈v〉

γ
2

+1B(v)Dvu,H2〈v〉
γ
2

+1u
)

L2

∣∣∣ ,

using the fact that γ + 1 ≤ 2 + 5γ
6

and Lemma 3.15 , we obtain for all ε > 0

∣∣∣
([

Aξ, 〈v〉
γ
2

+1
]
u, 〈v〉

γ
2

+1u
)

L2

∣∣∣ . ε(‖〈v〉γ+2u‖2
L2+‖〈v〉

γ
2

+1B(v)Dvu‖2
L2)

+ Cε(‖Aξu‖2
L2 + ‖u‖2

L2).

On the other hand, we have
∣∣∣
(
Aξ〈v〉

γ
2

+1u, 〈v〉
γ
2

+1u
)

L2

∣∣∣ ≤
∣∣∣
(
Aξu, 〈v〉γ+2u

)

L2

∣∣∣+
∣∣∣
([

Aξ, 〈v〉
γ
2

+1
]
u, 〈v〉

γ
2

+1u
)

L2

∣∣∣

and
∣∣∣
(
Aξu, 〈v〉γ+2u

)

L2

∣∣∣ ≤ ε‖〈v〉γ+2u‖2
L2 + Cε‖Aξu‖2

L2.

Now using ( 30 ), we can write

‖〈v〉γ+2u‖2
L2 + ‖〈v〉

γ
2

+1B(v)Dvu‖2
L2

≤ ‖〈v〉
γ
2

+1〈v〉
γ
2

+1u‖2
L2 + ‖B(v)Dv〈v〉

γ
2

+1u‖2
L2 + ‖B(v)

[
Dv, 〈v〉

γ
2

+1
]
u‖2

L2

≤
∣∣∣
(
Aξ〈v〉

γ
2

+1u, 〈v〉
γ
2

+1u
)

L2

∣∣∣+ ‖B(v)
[
Dv, 〈v〉

γ
2

+1
]
u‖2

L2.

For the last term, we have

‖B(v)
[
Dv, 〈v〉

γ
2

+1
]
u‖2

L2 ≤ ‖H1〈v〉γ+1u‖2
L2 . ε‖〈v〉γ+2u‖2

L2 + Cε(‖Aξu‖2
L2 + ‖u‖2

L2).

Finally, taking ε small enough, we obtain for all u ∈ S(R3
v),

‖〈v〉γ+2u‖2
L2 + ‖〈v〉

γ
2

+1B(v)Dvu‖2
L2 . ‖Aξu‖2

L2 + ‖u‖2
L2. (66)

Proposition 3.17. There exists C > 0 such that for all u ∈ S(R3
v),

‖〈v〉
γ
3 |ξ|2/3u‖2

L2 ≤ C
(
‖Aξu‖2

L2 + ‖u‖2
L2

)
,

uniformly with respect to the parameter ξ in R3.

24



Proof. We deduce from Proposition 3.13 , Lemma 3.14 and Lemma 3.12 that

‖〈B(v)ξ〉1/3u‖L2 . ‖〈B(v)ξ〉−1/3Aξu‖2
L2‖〈B(v)ξ〉1/3u‖L2,

uniformly with respect to the parameter ξ in R
3. By substituting 〈B(v)ξ〉1/3u to u in

this estimate, we obtain that

‖〈B(v)ξ〉2/3u‖2
L2 . ‖〈B(v)ξ〉−1/3Aξ〈B(v)ξ〉1/3u‖L2‖〈B(v)ξ〉2/3u‖L2, (67)

uniformly with respect to the parameter ξ in R3. First, we have

〈B(v)ξ〉−1/3
[
Dv · A(v)Dv, 〈B(v)ξ〉1/3

]

= 〈B(v)ξ〉−1/3
3∑

j,k=1

Dvj
· ajk(v)

[
Dvk

, 〈B(v)ξ〉1/3
]

+ 〈B(v)ξ〉−1/3
3∑

j,k=1

[
Dvj

, 〈B(v)ξ〉1/3
]

· ajk(v)Dvk

= 〈B(v)ξ〉−1/3
3∑

j,k=1

Dvj
ajk(v)

[
Dvk

, 〈B(v)ξ〉1/3
]

+ 〈B(v)ξ〉−1/3
3∑

j,k=1

ajk(v)
[
Dvk

, 〈B(v)ξ〉1/3
]
Dvj

+ 〈B(v)ξ〉−1/3
3∑

j,k=1

ajk(v)Dvj

( [
Dvk

, 〈B(v)ξ〉1/3
] )

+ 〈B(v)ξ〉−1/3
3∑

j,k=1

[
Dvj

, 〈B(v)ξ〉1/3
]

· ajk(v)Dvk
.

Symbolic calculus shows that

[
Dv, 〈B(v)ξ〉1/3

]
=

1

i
∇v(〈B(v)ξ〉1/3),

and using the following notations

H3 = 〈B(v)ξ〉−1/3∂vj
ajk(v)∂vk

〈B(v)ξ〉1/3〈v〉−γ−1

︸ ︷︷ ︸
∈B(L2)

,

H4 = 〈B(v)ξ〉−1/3ajk(v)∂vj
∂vk

〈B(v)ξ〉1/3〈v〉−γ−2

︸ ︷︷ ︸
∈B(L2)

,

H5 = 〈B(v)ξ〉−1/3bik(v)∂vk
〈B(v)ξ〉1/3〈v〉− γ

2
−1

︸ ︷︷ ︸
∈B(L2)

,

H6 = 〈B(v)ξ〉−1/3bij(v)∂vj
〈B(v)ξ〉1/3〈v〉− γ

2
−1

︸ ︷︷ ︸
∈B(L2)

,
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where we used the fact that A(v) = BT(v)B(v). Then, going back to ( 67 ), we have

‖〈B(v)ξ〉2/3u‖2
L2

. ‖〈B(v)ξ〉−1/3Aξ〈B(v)ξ〉1/3u‖L2‖〈B(v)ξ〉2/3u‖L2 ,

. ‖〈B(v)ξ〉−1/3
[
Aξ, 〈B(v)ξ〉1/3

]
u‖2

L2 + ‖Aξu‖2
L2,

. ‖Aξu‖2
L2 + ‖H3〈v〉γ+1u‖2

L2 + ‖H4〈v〉γ+2u‖2
L2

+
3∑

i=1

‖H5

( 3∑

j=1

〈v〉
γ
2

+1bij(v)Dvj
u
)
‖2

L2 +
3∑

i=1

‖H6

( 3∑

k=1

〈v〉
γ
2

+1bik(v)Dvk
u
)
‖2

L2 ,

. ‖Aξu‖2
L2 + ‖〈v〉γ+1u‖2

L2 + ‖〈v〉γ+2u‖2
L2 + ‖〈v〉

γ
2

+1B(v)Dvu‖2
L2

We finally conclude from Lemma 3.16 that for all u ∈ S(R3
v),

‖〈B(v)ξ〉2/3u‖2
L2 . ‖Aξu‖2

L2 + ‖u‖2
L2.

This ends the proof of Proposition 3.17 .

Lemma 3.18. Let λK be the symbol defined in ( 44 ). Then for any ε̃ > 0 there exists
a constant Cε̃, such that for all u ∈ S(R3

v),

ℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ ℜe

(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

. ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + Cε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

(68)

Proof. As a preliminary step we firstly show that for any ε, ε̃ > 0 there exists a constant
Cε,ε̃, such that

ℜe
([

Aξ,
(
λ

1/3
K

)w]
u, aw

(
λ

1/3
K

)w
u
)

L2

. ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + Cε,ε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)

+ ε
{
ℜe

(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ ℜe

(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

}
,

(69)

where a is an arbitrary symbol belonging to S(1,Γ) uniformly with respect to the
parameter ξ. Using the notation

Z1 =
([
Dv · A(v)Dv,

(
λ

1/3
K

)w]
u, aw

(
λ

1/3
K

)w
u
)

L2
.

We have

Z1 =
3∑

i,j,k=1

([
bik(v)Dvk

,
(
λ

1/3
K

)w]
u, bij(v)Dvj

aw
(
λ

1/3
K

)w
u
)

L2

+
3∑

i,j,k=1

(
bikDvk

u,
[(
λ

1/3
K

)w
, bij(v)Dvj

]
aw
(
λ

1/3
K

)w
u
)

L2
.

Using the fact that

[
B(v)Dv,

(
λ

1/3
K

)w]
u = B(v)

[
Dv,

(
λ

1/3
K

)w]
u−

[(
λ

1/3
K

)w
, B(v)

]
Dvu,
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we obtain

|Z1| ≤
∣∣∣∣∣∣

3∑

i,j,k=1

(
bik(v)

[
Dvk

,
(
λ

1/3
K

)w]
u, bij(v)Dvj

aw
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

([(
λ

1/3
K

)w
, bik(v)

]
Dvk

u, bij(v)Dvj
aw
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
bik(v)Dvk

u, bij(v)
[
Dvj

,
(
λ

1/3
K

)w]
aw
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
bik(v)Dvk

u,
[(
λ

1/3
K

)w
, bij(v)

]
Dvj

aw
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

≤ |Z1,1| + |Z1,2| + |Z1,3| + |Z1,4|.

Estimate of Z1,1: Observing a ∈ S(1,Γ), ∂vλ
1/3
K ∈ S(〈v〉γ/6g2,K ,Γ) and using ( 14 )

with symbolic calculus shows that
[
Dvj

, aw
]

∈ Ψ(1,Γ), [bij(v), aw] ∈ Ψ(〈v〉
γ
2 ,Γ) and

[
Dvk

,
(
λ

1/3
K

)w] ∈ Ψ(〈v〉
γ
6 g2,K ,Γ)

uniformly with respect to the parameter ξ, where gw
2,K the operator defined in ( 42 ).

Now using the following notation

H7 = bik(v)
[
Dvk

,
(
λ

1/3
K

)w] (
gw

2,K

)−1 〈v〉−γ/6〈v〉− γ
2

−1

︸ ︷︷ ︸
∈B(L2)

,

we obtain

|Z1,1| ≤
∣∣∣∣∣∣

3∑

i,j,k=1

(
H7〈v〉

2γ
3

+1gw
2,Ku, bij(v)

[
Dvj

, aw
]

〈v〉− γ
2

−1〈v〉
γ
2

+1
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
H7〈v〉

2γ
3

+1gw
2,Ku, [bij(v), aw] 〈v〉− γ

2 〈v〉
γ
2Dvj

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
H7〈v〉

2γ
3

+1gw
2,Ku, a

wbij(v)Dvj

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

. Cε

(
‖〈v〉γ+2u‖2

L2 + ‖〈v〉γ+1Dvu‖2
L2 + ‖〈v〉

γ
3 |ξ|2/3u‖2

L2

)

+ εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
.

Moreover using Lemma 3.16 and Proposition 3.17 , we obtain

|Z1,1| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

Estimate of Z1,2: Observing ∂ηλ
1/3
K ∈ S(〈v〉

γ
6

+ 1

3 ,Γ) and using ( 14 ) with symbolic calcu-

lus shows that the symbol of the commutator
[(
λ

1/3
K

)w
, bik(v)

]
belongs to S(〈v〉

2γ
3

+ 1

3 ,Γ)
uniformly with respect to the parameter ξ. Now using the following notation

H8 =
[(
λ

1/3
K

)w
, bik(v)

]
〈v〉− 2γ

3
− 1

3

︸ ︷︷ ︸
∈B(L2)

,

27



we obtain

|Z1,2| ≤
∣∣∣∣∣∣

3∑

i,j,k=1

(
H8〈v〉

2γ
3

+ 1

3Dvk
u, bij(v)

[
Dvj

, aw
]
〈v〉− γ

2
−1〈v〉

γ
2

+1
(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
H8〈v〉

2γ
3

+ 1

3Dvk
u, [bij(v), aw] 〈v〉− γ

2 〈v〉
γ
2Dvj

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
H8〈v〉

2γ
3

+ 1

3Dvk
u, awbij(v)Dvj

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

. Cε‖〈v〉γ+1Dvu‖2
L2 + εℜe

(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
,

moreover using Proposition 3.17 , we obtain

|Z1,2| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

Estimate of Z1,3: Using the following notation

H9 = 〈v〉− γ
2

−1bij(v)
[
Dvj

,
(
λ

1/3
K

)w]
aw
(
gw

2,K

)−1 〈v〉−γ/6

︸ ︷︷ ︸
∈B(L2)

,

we obtain

|Z1,3| ≤
∣∣∣∣∣∣

3∑

i,j,k=1

(
〈v〉

γ
2

+1bikDvk
u,H9〈v〉

γ
6 gw

2,K

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

.

∣∣∣∣∣∣

3∑

i,j,k=1

(
〈v〉

γ
2

+1bikDvk
u, 〈v〉

γ
6 gw

2,K

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

. ε
(
‖〈v〉

γ
6

(
λ

1/3
K

)w
u‖2

L2 + ‖〈v〉
γ
6Dv

(
λ

1/3
K

)w
u‖2

L2 + ‖〈v〉
γ
6 |ξ|1/3

(
λ

1/3
K

)w
u‖2

L2

)

+ Cε‖〈v〉
γ
2

+1B(v)Dvu‖2
L2,

moreover using Lemma 3.16 and Proposition 3.13 , we obtain

|Z1,3| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ εℜe

(
Aξ(λ

1/3
K )wu, (1 − δG)(λ

1/3
K )wu

)

L2

+ Cε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

Estimate of Z1,4: Using the following notations

H10 = 〈v〉− γ
3

−1
[(
λ

1/3
K

)w
, bij(v)

] [
Dvj

, aw
]

〈v〉− γ
3

︸ ︷︷ ︸
∈B(L2)

,

H11 = 〈v〉− γ
3

−1
[(
λ

1/3
K

)w
, bij(v)

]
aw〈v〉− γ

3

︸ ︷︷ ︸
∈B(L2)

,
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we obtain

|Z1,4| ≤
∣∣∣∣∣∣

3∑

i,j,k=1

(
〈v〉

γ
3

+1bikDvk
u,H10〈v〉

γ
3

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

+

∣∣∣∣∣∣

3∑

i,j,k=1

(
〈v〉

γ
3

+1bikDvk
u,H11〈v〉

γ
3Dvj

(
λ

1/3
K

)w
u
)

L2

∣∣∣∣∣∣

. ε
(
‖〈v〉

γ
3

(
λ

1/3
K

)w
u‖2

L2 + ‖〈v〉
γ
3Dv

(
λ

1/3
K

)w
u‖L2

)

+ Cε‖〈v〉
γ
3

+1B(v)Dvu‖2
L2,

Moreover using Lemma 3.15 , we obtain

|Z1,4| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
,

so using the estimates of Z1,n for n = 1, . . . , 4, we obtain

|Z1| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

Let’s look now
Z2 =

([
F (v),

(
λ

1/3
K

)w]
u, aw

(
λ

1/3
K

)w
u
)

L2
,

observing the symbol ∂ηλ
1/3
K ∈ S(〈v〉

γ
6

+ 1

3 ,Γ), and using Lemma 2.4 with symbolic cal-

culus shows that the symbol of the commutator
[
F (v),

(
λ

1/3
K

)w]
belongs to S(〈v〉

3γ
2

+2,Γ)
uniformly with respect to the parameter ξ. Now using the following notation

H12 = 〈v〉− γ
2

−1
[
F (v),

(
λ

1/3
K

)w]〈v〉−γ−1

︸ ︷︷ ︸
∈B(L2)

,

we obtain

|Z2| ≤
∣∣∣
(
〈v〉

γ
2

+1H12〈v〉−γ−1〈v〉γ+1u, aw
(
λ

1/3
K

)w
u
)

L2

∣∣∣

≤
∣∣∣
(
H12〈v〉γ+1u, aw〈v〉

γ
2

+1
(
λ

1/3
K

)w
u
)

L2

∣∣∣

+
∣∣∣
(
H12〈v〉γ+1u,

[
〈v〉

γ
2

+1, aw
]

〈v〉− γ
2

−1〈v〉
γ
2

+1
(
λ

1/3
K

)w
u
)

L2

∣∣∣ ,

in addition, we have that the symbol of the commutator
[
〈v〉

γ
2

+1, aw
]

belongs to

S(〈v〉
γ
2

+1,Γ) and using Lemma 3.16 , we obtain

|Z2| . εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε(‖Aξu‖2

L2 + ‖u‖2
L2). (70)

Let’s look now
Z3 =

([
iv · ξ,

(
λ

1/3
K

)w]
u, aw

(
λ

1/3
K

)w
u
)

L2
,

using Lemma 3.3 with symbolic calculus shows that the symbol of the commutator[
iv · ξ,

(
λ

1/3
K

)w]
belongs to S(λ

1/3
K ,Γ) uniformly with respect to the parameter ξ. Now

using the following notation

H13 =
(
λ

1/3
K

)w
(aw)∗

[
iv · ξ,

(
λ

1/3
K

)w] ((
λ

2/3
K

)w)−1

︸ ︷︷ ︸
∈B(L2)

,

29



we obtain

|Z3| ≤
∣∣∣
(
H13

(
λ

2/3
K

)w
u, u

)

L2

∣∣∣ . ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + Cε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
. (71)

From the above, using the estimates of Zl for l = 1, . . . , 3, we obtain ( 69 ). Next we
prove ( 68 ), we have the following relation

ℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ ℜe

(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

= ℜe
(
Aξu,

(
λ

1/3
K

)w(
λ

1/3
K

)w
u
)

L2
+ ℜe

([
Aξ,

(
λ

1/3
K

)w]
u,
(
λ

1/3
K

)w
u
)

L2

+ ℜe
(
Aξu,

(
λ

1/3
K

)w
(1 − δG)

(
λ

1/3
K

)w
u
)

L2
+ ℜe

([
Aξ,

(
λ

1/3
K

)w]
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

= ℜe
(

Aξu,
(
λ

1/3
K

)w(
λ

1/3
K

)w ((
λ

2/3
K

)w)−1 (
λ

2/3
K

)w
u
)

L2

+ ℜe
([

Aξ,
(
λ

1/3
K

)w]
u,
(
λ

1/3
K

)w
u
)

L2

+ ℜe
(

Aξu,
(
λ

1/3
K

)w
(1 − δG)

(
λ

1/3
K

)w ((
λ

2/3
K

)w)−1 (
λ

2/3
K

)w
u
)

L2

+ ℜe
([

Aξ,
(
λ

1/3
K

)w]
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

gives, with ε̃ > 0 arbitrary,

ℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ ℜe

(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

. ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + Cε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
+ ℜe

([
Aξ,

(
λ

1/3
K

)w]
u,
(
λ

1/3
K

)w
u
)

L2

+ ℜe
([

Aξ,
(
λ

1/3
K

)w]
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2
.

We could apply ( 69 ) with a = 1 and a = 1 − δg̃ to control the last term in the above
inequality; this gives, with ε, ε̃ > 0 arbitrarily small,

ℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ ℜe

(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2

. ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + εℜe
(
Aξ

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
+ Cε,ε̃(‖Aξu‖2

L2 + ‖u‖2
L2)

+ εℜe
(
Aξ

(
λ

1/3
K

)w
u, (1 − δG)

(
λ

1/3
K

)w
u
)

L2
.

Letting ε small enough yields the desired estimate ( 68 ).

Proposition 3.19. Let λK be the symbol defined in ( 44). Then there exists C0 > 0
such that for all u ∈ S(R3

v),

‖
(
λ

2/3
K

)w
u‖2

L2 ≤ C0

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
. (72)

Proof. Using Proposition 3.13 , we have for all u ∈ S(R3
v),

((λ
2/3
K )Wicku, u)L2 . ℜe(Aξu, u)L2 + ℜe(Aξu, (1 − δG)u)L2, (73)

uniformly with respect to the parameter ξ in R3. By substituting
(
λ

1/3
K

)w
u to u in

the above estimate, we obtain that for all ε̃ > 0,

((
λ

2/3
K

)Wick(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2

. ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + Cε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
. (74)
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Notice from ( 133 ) that we may write

(λ
2/3
K )Wick = (λ

2/3
K )w + rw, (75)

with

r(v, η) =
∫ 1

0

∫

R6

(1 − θ)(λ
2/3
K )”(Y + θY1)Y1 · Y1e

−|Y1|2dY1 dθ,

where Y, Y1 ∈ R6 and (λ
2/3
K )”(Y ) is the Hessian of λ

2/3
K at the point Y . Define

r1 = π−3
∫ 1

0

∫

R6

(1 − θ)∇2
η(λ

2/3
K )(Y + θY1)η1 · η1e

−|Y1|2dY1 dθ,

r2 = π−3
3∑

j,k=1

∫ 1

0

∫

R6

(1 − θ)∂vj
∂ηk

(λ
2/3
K )(Y + θY1)(v1jη1k + v1kη1j)e

−|Y1|2dY1 dθ,

and

r3 = π−3
∫ 1

0

∫

R6

(1 − θ)∇2
v(λ

2/3
K )(Y + θY1)v1 · v1e

−|Y1|2dY1 dθ.

Using Lemma 3.5 with symbolic calculus shows that the symbol

∇2
η(λ

2/3
K ),∇v∇η(λ

2/3
K ) ∈ S(〈v〉γ+2,Γ),

uniformly with respect to the parameter ξ, then r1, r2 belong to S(〈v〉γ+2,Γ). Using
the following notations

H14 =
((
λ

2/3
K

)w)−1(
λ

1/3
K

)w
rw

1

(
λ

1/3
K

)w〈v〉−γ−2

︸ ︷︷ ︸
∈B(L2)

,

H15 =
((
λ

2/3
K

)w)−1(
λ

1/3
K

)w
rw

1

(
λ

1/3
K

)w〈v〉−γ−2

︸ ︷︷ ︸
∈B(L2)

,

we obtain for all ˜̃ε > 0,
∣∣∣
(
rw

1

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2

∣∣∣+
∣∣∣
(
rw

2

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2

∣∣∣

≤
∣∣∣
(
H14〈v〉γ+2u,

(
λ

2/3
K

)w
u
)

L2

∣∣∣+
∣∣∣
(
H15〈v〉γ+2u,

(
λ

2/3
K

)w
u
)

L2

∣∣∣

. ˜̃ε‖
(
λ

2/3
K

)w
u‖2

L2 + C˜̃ε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.

Taking into account that the symbol ∇2
v(λ

2/3
K ), belongs to S(〈v〉

γ
3 g3,K ,Γ) uniformly

with respect to the parameter ξ, where g3,K the operator defined in ( 43 ), then the

symbol r3 belongs to S(〈v〉
γ
3 g3,K ,Γ). Using the following notation

H16 =
((
λ

2/3
K

)w)−1(
λ

1/3
K

)w
rw

3

(
λ

1/3
K

)w(
gw

3,K

)−1〈v〉− γ
3

︸ ︷︷ ︸
∈B(L2)

,

we obtain
∣∣∣
(
rw

3

(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2

∣∣∣ ≤
∣∣∣
(
H16〈v〉

γ
3 gw

3,Ku,
(
λ

2/3
K

)w
u
)

L2

∣∣∣

. ˜̃ε‖
(
λ

2/3
K

)w
u‖2

L2 + C˜̃ε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
.
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From the above, using the estimates of rl for l = 1, . . . , 3, we obtain
∣∣∣
(
rw
(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2

∣∣∣ . ˜̃ε‖
(
λ

2/3
K

)w
u‖2

L2 + C˜̃ε

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
. (76)

By applying Theorem A.6 with p = λ, we obtain
((
λ

2/3
K

)w(
λ

1/3
K

)w
u,
(
λ

1/3
K

)w
u
)

L2
∼ ‖

[(
λ

1/3
K

)w]2
u‖2

L2 ∼ ‖
(
λ

2/3
K

)w
u‖2

L2, (77)

uniformly with respect to the parameter ξ. Using ( 76 ), then taking ˜̃ε small enough,
we get for all ε̃ > 0,

‖
(
λ

2/3
K

)w
u‖2

L2 . ε̃‖
(
λ

2/3
K

)w
u‖2

L2 + C̃ε̃

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
,

now taking ε̃ small enough, we obtain that there is a constant C0 > 0 such that for all
u ∈ S(R3

v),

‖
(
λ

2/3
K

)w
u‖2

L2 ≤ C0

(
‖Aξu‖2

L2 + ‖u‖2
L2

)
. (78)

Proposition 3.20. Let λK be the symbol defined in ( 44 ). Then there exists C0 > 0
such that for all u ∈ S(R3

v),

‖Aξu‖2
L2 ≤ C0‖

(
λ2

K

)w
u‖2

L2. (79)

Proof. We denote by σ̃ the symbol of the operator Aξ. We will show that σ̃ belongs
to S(λ2,Γ) uniformly with respect to the parameter ξ.
Using Lemma 3.11 in [12], we can write σ̃ as follows

σ̃ = iv · ξ + |B(v)η|2 + F (v) +R1 +R2,

where R1 (resp R2) is a symbol belongs to S(〈v〉γ+1〈η〉,Γ) (resp S(〈v〉γ,Γ)) uniformly
with respect to the parameter ξ.
For iv · ξ: Taking into account the fact that γ ≥ 0, we have

For |α| = 0, |iv · ξ| . |v|2 + |ξ|2 . 〈v〉γ+2 + 〈v〉γ|ξ|2 . λ2,

for |α| = 1, |∂α
v (iv · ξ)| = |ξ| . 〈v〉γ/2|ξ| . λ2,

for |α| ≥ 2, |∂α
v (iv · ξ)| = 0.

For |B(v)η|2: Using ( 14 ), we have

for |α| ≥ 1, |∂α
v B(v)η|2 . 〈v〉γ|η|2 . |B(v)η|2, (80)

then, using Cauchy-Schwarz we get

∀α ∈ N
3, |∂α

v (|B(v)η|2)| . |B(v)η|2 . λ2. (81)

On the other hand, also using ( 14 ), we have

pour |α| = 0, |B(v)η|2 . λ2,

pour |α| = 1, |∂α
η (|B(v)η|2)| . |B(v)||B(v)η| . λ2,

pour |α| = 2, |∂α
η (|B(v)η|2)| . |BT (v)B(v)| . λ2,

pour |α| ≥ 3, |∂α
η (|B(v)η|2)| = 0,
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so we get

∀α ∈ N
3, |∂α

η (|B(v)η|2)| . λ2. (82)

Moreover, one can estimate from above the modulus of all the derivatives of the term
|B(v)η|2 by a constant times λ2.

For F (v): Using Lemma 2.4 , we have

∀α ∈ N
3, |∂α

v F (v)| . 〈v〉γ+2−|α|
. λ2, (83)

which gives that F (v) ∈ S(λ2,Γ) uniformly with respect to the parameter ξ.
In addition, we have that R1, R2 ∈ S(λ2,Γ). From the above, we can deduce that σ̃
belongs to S(λ2,Γ) uniformly with respect to the parameter ξ. Using the following
notation

H17 = Aξ

((
λ2

K

)w)−1

︸ ︷︷ ︸
∈B(L2)

,

Then there exists C0 > 0 such that

‖H17ϕ‖2
L2 ≤ C0‖ϕ‖2

L2 ∀ϕ ∈ L2(R3
v), (84)

uniformly with respect to the parameter ξ, which implies for all u ∈ S(R3
v),

‖Aξu‖2
L2 ≤ C0‖

(
λ2

K

)w
u‖2

L2. (85)

4 Hypoelliptic estimates for the whole linearized

Landau operator

In this section, we show hypoelliptic estimates with respect to the velocity and position
variables for the Landau operator P. These estimates allow us to locate the spectrum
and estimate the resolvent of the Landau operator. We denote by ΛK the operator
associated to the symbol λK by considering the inverse Fourier transform with respect
to the variable x.

Theorem 4.1. There exists C > 0 such that for all u ∈ S(R6
x,v),

‖Λ
2/3
K u‖2

L2
x,v

≤ C
(
‖Pu‖2

L2
x,v

+ ‖u‖2
L2

x,v

)
. (86)

Proof. Using Theorem A.6 , we have for all u ∈ S(R3
v),

‖
(
λ

2/3
K

)w
u‖2

L2
v

∼ ‖
(
λw

K

)2/3
u‖2

L2
v
,

so using the Proposition 3.19 , there exists a constant C1 > 0 such that for all u ∈
S(R3

v),

‖
(
λw

K

)2/3
u‖2

L2
v

≤ C1

(
‖Aξu‖2

L2
v

+ ‖u‖2
L2

v

)
, (87)

33



uniformly with respect to the parameter ξ. By integrating the previous inequality with
respect to the parameter ξ in R3 and considering the inverse Fourier transform with
respect to the variable x, we obtain for all u ∈ S(R6

x,v),

‖Λ
2/3
K u‖2

L2
x,v

≤ C1

(
‖Au‖2

L2
x,v

+ ‖u‖2
L2

x,v

)
. (88)

Using ( 9 ), the operator P is written as follows

P = A + K.

Consequently, using ( 88 ), we have

‖Λ
2/3
K u‖2

L2
x,v

≤ C1

(
‖(A + K − K)u‖2

L2
x,v

+ ‖u‖2
L2

x,v

)

≤ C1

(
‖Pu‖2

L2
x,v

+ ‖Ku‖2
L2

x,v
+ ‖u‖2

L2
x,v

)

and using the fact that K is a bounded operator, we obtain that there exists a constant
C > 0 such that for all u ∈ S(R6

x,v),

‖Λ
2/3
K u‖2

L2
x,v

≤ C
(
‖Pu‖2

L2
x,v

+ ‖u‖2
L2

x,v

)
. (89)

By adding a term iκ to P with κ ∈ R, the proof doesn’t change due to the never
changing of the real part of P as mentionned crucially in Remark 2.2 in [11]. So
Theorem 4.1 admits the following extension.

Theorem 4.2. There exists C > 0 such that for all u ∈ S(R6
x,v),

∀κ ∈ R, ‖Λ
2/3
K u‖2

L2
x,v

≤ C
(
‖(P − iκ)u‖2

L2
x,v

+ ‖u‖2
L2

x,v

)
. (90)

Theorem 4.3. There exists C > 0 such that for all u ∈ S(R6
x,v),

‖Pu‖2
L2

x,v
≤ C‖Λ2

Ku‖2
L2

x,v
. (91)

Proof. Using Theorem A.6 , we have for all u ∈ S(R3
v),

‖
(
λ2

K

)w
u‖2

L2
v

∼ ‖
(
λw

K

)2
u‖2

L2
v
,

so using the Proposition 3.20 , there exists a constant C1 > 0 such that for all u ∈
S(R3

v),

‖Aξu‖2
L2

v
≤ C1‖

(
λw

K

)2
u‖2

L2
v
, (92)

uniformly with respect to the parameter ξ. By integrating the previous inequality
withrespect to the parameter ξ in R3 and considering the inverse Fourier transform
with respect to the variable x, we obtain for all u ∈ S(R6

x,v),

‖Au‖2
L2

x,v
≤ C1‖Λ2

Ku‖2
L2

x,v
. (93)
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Using ( 9 ), the operator P is written as follows

P = A + K.

Consequently, using ( 93 ), we have

‖Pu‖2
L2

x,v
≤ ‖Au‖2

L2
x,v

+ ‖Ku‖2
L2

x,v

≤ C1‖Λ2
Ku‖2

L2
x,v

+ C2‖u‖2
L2

x,v
,

with C2 > 0. Using the fact that the operator Λ2
K ≥ Id (see for instance Theorem

A.6 in the Appendix A.2 ), we obtain that there exists a constant C > 0 such that
for all u ∈ S(R6

x,v),

‖Pu‖2
L2

x,v
≤ C‖Λ2

Ku‖2
L2

x,v
. (94)

We srongly think the estimate in ( 86 ) is optimal in term of the index 2/3 appearing
in the left hand side, although we don’t prove that. This index 2/3 is classical for
kinetic model. We refer for example to Proposition 5.22 in [9], partial results in this
direction in the Fokker-Planck case.

5 Localisation of the spectrum for the Landau op-

erator

In all that follows, we denote by σ(P) the spectrum of the operator P, ρ(P) The
resolvent set of P and ‖ · ‖L2 to denote the norm in the space L2(R6

x,v). The following
lemma holds for any maximally accretive operator.

Lemma 5.1. Let (A, D(A)) be a maximally accretive operator in the Hilbert space H.
For any η ∈ ]0 , 1[ , the estimate

|z + 1|2η‖u‖2 ≤ 4
(
((A + 1)∗(A + 1))ηu, u

)

H
+ 4‖(A − z)u‖2

holds for all u ∈ D(A) and z ∈ C with ℜez ≥ −1 .

Proof. See Proposition B.1 in [11].

Proof of Theorem 1.2.

Proof. The proof will be divided into two steps.
First step:
Using ( 90 ) and the triangle inequality we therefore get for all z = ν + iκ ∈ C, with
ν = ℜez ≥ −1/2 and u ∈ S(R6

x,v),

‖Λ
2/3
K u‖2

L2 ≤ C(‖(P − iκ)u‖2
L2 + ‖u‖2

L2).

≤ C(‖(P − iκ− ν + ν)u‖2
L2 + ‖u‖2

L2)

≤ C(2‖(P − z)u‖2
L2 + (2ν2 + 1)‖u‖2

L2).
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But we have ν ≥ −1/2 implies 2ν + 2 ≥ 1, so we get

‖Λ
2/3
K u‖2

L2 ≤ C(6‖(P − z)u‖2
L2 + 6(ν + 1)2‖u‖2

L2)

≤ 6C(‖(P − z)u‖2
L2 + (ν + 1)2‖u‖2

L2),

By taking C̃ = 6C, we finally obtain the following estimate

‖Λ
2/3
K u‖2

L2 ≤ C̃
(
‖(P − z)u‖2

L2 + (ℜez + 1)2‖u‖2
L2

)
, (95)

for all u ∈ S(R6
x,v) and z ∈ C with ℜez ≥ −1

2
.

Second step:

First, we will show that there exists a constant C̃1 such that for all u ∈ S(R6
x,v), we

have

0 ≤
(
(A + 1)∗(A + 1)u, u

)

L2
≤ C̃1

(
Λ4

Ku, u
)

L2
, (96)

where A the operator defined in ( 9 ). Indeed, let u ∈ S(R6
x,v), we have

(
(1 + A)∗(1 + A)u, u

)

L2
=
(
(1 + A)u, (1 + A)u

)

L2
= ‖(1 + A)u‖2

L2 ≥ 0.

On the other hand, we have
(
(1 + A)∗(1 + A)u, u

)

L2
= ‖(1 + A)u‖2

L2 ≤ ‖Au‖2
L2 + ‖u‖2

L2.

Using ( 9 ), the operator P is written as follows

P = A + K,

we obtain
(
(1 + A)∗(1 + A)u, u

)

L2
≤ ‖Pu‖2

L2 + ‖Ku‖2
L2 + ‖u‖2

L2,

finally, using the fact that K is a bounded operator, ΛK ≥ Id and the estimate ( 91 ),
we obtain

(
(1 + A)∗(1 + A)u, u

)

L2
≤ (1 + ν0)‖Λ2

Ku‖2
L2 + C‖Λ2

Ku‖2
L2

≤ (1 + ν0 + C)‖Λ2
Ku‖2

L2,

where ν0 > 0. By taking C̃1 = (1 + ν0 + C), we obtain the estimate ( 96 ).
According to the monotonicity of the operator functional A −→ Aα for α ∈ [0 , 1], in

particular with α =
1

3
, we obtain

0 ≤
(
((1 + A)∗(1 + A))1/3u, u

)

L2
≤ C̃

2/3
1

(
Λ

4/3
K u, u

)

L2
.

According to Theorem 2.8 , A is maximally accretive, then by applying Lemma 5.1

with η =
1

3
, for ℜez ≥ −1/2 and u ∈ S(R6

x,v), we obtain

|z + 1|2/3‖u‖2
L2 ≤ 4

(
((1 + A)∗(1 + A))1/3u, u

)

L2
+ 4‖(A − z)u‖2

L2

≤ 4C̃
2/3
1

(
Λ

4/3
K u, u

)

L2
+ 4‖(A − z)u‖2

L2

≤ 4C̃
2/3
1 ‖Λ

2/3
K u‖2

L2 + 4‖(A − z)u‖2
L2

≤ 4C̃
2/3
1 ‖Λ

2/3
K u‖2

L2 + 4‖(P − z)u‖2
L2 + 4ν1‖u‖2

L2.
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With the inequality ( 95 ), we obtain

|z + 1|2/3‖u‖2
L2 ≤ (4C̃

2/3
1 C̃ + 4)‖(P − z)u‖2

L2 + (4C̃
2/3
1 C̃ + 16ν1)(ℜez + 1)2‖u‖2

L2.

By taking CP =
√

8(4ν1 + C̃
2/3
1 C̃), QP =

√
8(1 + C̃

2/3
1 C̃) we finally get

∀z ∈ C, ℜez ≥ −1/2, ∀u ∈ S(R6
x,v),

|z + 1|2/3‖u‖2
L2 ≤ Q2

P

2
‖(P − z)u‖2

L2 +
C2

P

2
(ℜez + 1)2‖u‖2

L2. (97)

Now let z /∈ SP such that ℜez ≥ −1/2, so according to the definition of SP given in
( 6 ) we have

(ℜez + 1)2 ≤ 1

C2
P

|z + 1|2/3,

then for all u ∈ S(R6
x,v), inequality ( 97 ) implies

|z + 1|2/3‖u‖2
L2 ≤ Q2

P‖(P − z)u‖2
L2 , (98)

we deduce that P − z is injective, moreover we can replace P − z by (P − z)∗ in ( 98 ),
which gives (P − z)∗ is injective and consequently P − z is bijective with dense image
in L2, therefore z ∈ ρ(P). By taking v = (P − z)u in the estimate ( 98 ) we get

‖(P − z)−1v‖2
L2 ≤ Q2

P |z + 1|−2/3‖v‖2
L2 ∀v ∈ L2,

then we obtain the resolvent estimate ( 7 ).
On the other hand, we have that if z ∈ σ(P) then z ∈ SP and taking into account that
the numerical range of the operator P is the half plan {ℜez ≥ 0}, we deduce that the
spectrum σ(P) satisfies

σ(P) ⊂ SP ∩ {ℜez ≥ 0}.
Concerning estimate ( 8 ), we have

ℜe ((P − z)u, u)L2 ≥ −ℜez‖u‖2
L2 with ℜez ≤ −1

2
< 0,

which implies that

‖(z − P)−1‖B(L2
x,v) ≤ |ℜez|−1.

The proof is then complete.

A Appendix

A.1 Weyl-Hörmander calculus

We recall here some notations and basic facts of symbolic calculus, and refer to [18]
and [15] for detailed discussions on the pseudo-differential calculus.
We introduce on R

2n the following metric

Γ = dv2 + dη2.
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Definition A.1. Let m ≥ 1 be a C∞ function on R
2n. We say that m is an admissible

weight for Γ if there exist two constants C > 0 and N > 0 such that

∀X, Y ∈ R
2n, m(X) ≤ C 〈X − Y 〉N m(Y ). (99)

Definition A.2. Let m be an admissible function. We denote by S(m,Γ) the symbol
class of all smooth functions p(v, η) (possibly depending on parameter ξ) satisfying

∀α, β ∈ N
n, ∃Cα,β > 0; ∀(v, η) ∈ R

2n, |∂α
v ∂

β
η p(v, η)| ≤ Cα,βm(v, η).

The space of symbols S(m,Γ) endowed with the semi-norms

‖p‖k;S(m,Γ) = sup
|α+β|≤k

sup
(v,η)∈R2n

|m(v, η)−1∂α
v ∂

β
η p(v, η)| ; k ∈ N (100)

becomes a Fréchet space.
For such a symbol p in S(m,Γ) we may define its Weyl quantization pw by

∀u ∈ S(Rn), (pwu)(v) =
1

(2π)n

∫

R2n
ei(v−v′)·ηp

(
v + v′

2
, η

)
u(v′) dv′dη. (101)

The Weyl quantization of S(m,Γ) is denoted by Ψ(m,Γ).

Theorem A.3. (Calderon-Vaillancourt)
Let pw be an operator in Ψ(1,Γ). We have pw a continuous operator on L2(Rn) and

∀u ∈ L2(Rn), ‖pwu‖L2 ≤ C‖p‖N ;S(1,Γ)‖u‖L2, (102)

where C > 0 and a positive integer N depending only on the dimension.

Proof. See Section 18 in [15].

Theorem A.4. Let pw be an invertible operator in Ψ(m,Γ), then its inverse [pw]−1

belongs to Ψ(m−1,Γ).

Proof. See Lemma A.2 in [11].

Definition A.5. Let pw ∈ Ψ(m,Γ). We say that pw is an elliptic operator if there
exists C > 0 such that

|p| ≥ Cm.

Let us also recall here the composition formula of Weyl quantization. Let a ∈ S(m1,Γ)
and b ∈ S(m2,Γ), the compositions of the pseudo-differential operators aw and bw are
pseudo-differential operators whose symbol, denoted a♯b, belongs to S(m1m2,Γ) and
has the following development:

a♯b = ab+
∫ 1

0

∫∫
e−iσ(Y −Y1,Y −Y2)/(2θ) i

2
σ(∂Y1

, ∂Y2
)a(Y1)b(Y2)dY1dY2dθ/(θ)2n, (103)

where σ is the symplectic form in T ∗Rn = R2n given by

σ(Z,Z ′) =
n∑

j=0

ζjz
′
j − zjζ

′
j. (104)

As we work with pseudo-differential operators which belong to classes associated to
the metric Γ, all operators will be defined as continuous operators of S(Rn) to S(Rn)
or from S ′

(Rn) to S ′
(Rn).
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A.2 Basic theorem

This theorem aims at giving a uniform statement for Weyl Hörmander tools with a
large parameter K. This theorem gives very important results which can use these
results to establish estimates which requires pseudo-differential operators. Part (I) in
the theorem below has been shown in [1] with τ = 1, but here we have improved this
result for all τ ∈ R. In general, these results give a general and robust framework to
techniques already used as well for work that requires these kinds of properties.

Theorem A.6. Let p, q ≥ 1 be two symbols which verify the following hypotheses:

i) p is an admissible weight.

ii) p ∼ q.

iii) p, q ∈ S(p,Γ).

iv) There exists M ∈ R such that for all ε > 0 we have ∂ηp, ∂ηq ∈ S(εp+ε−1〈v〉M ,Γ).

We define the symbols pK, qK as pK = p + K〈v〉M and qK = q + K〈v〉M . Then there
exists K0 such that for all K ≥ K0 :

I) For all τ ∈ R, (pτ
K)w and (qτ

K)w are invertible.

II) For all τ ∈ R, [(pτ
K)w]−1 and [(qτ

K)w]−1 are pseudo-differential operators that
belong to Ψ(p−τ

K ,Γ) uniformly in K.

III) For all τ ∈ R and for all κ ≥ 0, [(pκ
K)w]τ and [(qκ

K)w]τ are pseudo-differential
operators belong to Ψ(pκτ

K ,Γ) uniformly in K.

IV) For all τ ∈ R and for all κ ≥ 0, ∀u ∈ S(Rn), we have

‖[(pκ
K)w]τu‖2

L2 ∼ ‖(pκτ
K )wu‖2

L2,

uniformly in K.

V) For all τ ∈ R, ∀u ∈ S(Rn), we have

‖(pw
K)τu‖2

L2 ∼ ‖(pτ
K)wu‖2

L2 ∼ ‖(qτ
K)wu‖2

L2 ∼ ‖(qw
K)τu‖2

L2,

uniformly in K.

VI) ∀u ∈ S(Rn), we have
(pw

Ku, u)L2 ∼ (qw
Ku, u)L2,

uniformly in K.

VII) If M ≥ 0, we have pw
K, qw

K ≥ Id.

Proof. Let K > 0 and let p and q two symbols and M ∈ R such that the hypotheses
from (i) to (iv) are verified. For simplification, we will prove (I, II, III) just for the
operator (pτ

K)w, and we reason in the same way for (qτ
K)w.
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I. We will show that (pτ
K)w is invertible for all τ ∈ R. We note that pK is an admissible

weight (p is an admissible weight). We have pK ∈ S(pK ,Γ) uniformly in K. Indeed,
using (iii) we have for all α, β ∈ Nn,

|∂α
v ∂

β
η pK | ≤ |∂α

v ∂
β
η p| + |∂α

v ∂
β
ηK〈v〉M |

≤ Cα,β p+KCα,β,M〈v〉M

≤ C̃α,β,M pK .

More generally we can show, by induction on |α| and Leibnitz’s formula that for τ ∈ R,

∀α ∈ N
2n, |∂α

v,ηp
τ
K | ≤ Cα,β,τ p

τ
K ,

which gives pτ
K ∈ S(pτ

K ,Γ) uniformly in K.
Using formula ( 103 ), we may write

(pτ
K)w(p−τ

K )w = Id −Rw
K , (105)

where

RK = −
∫ 1

0
(∂ηp

τ
K)♯θ

(
∂v(p−τ

K )
)

dθ +
∫ 1

0
(∂vp

τ
K)♯θ

(
∂η(p−τ

K )
)

dθ

with g♯θh defined by

g♯θh(Y ) =
∫∫

e−2iσ(Y −Y1,Y −Y2)/θ 1

2i
g(Y1)h(Y2)dY1dY2/(πθ)

2n, (106)

with Y, Y1, Y2 ∈ R2n and σ a symplectic form defined in 104 .
Let now N be the integer which is given in ( 102 ). By [3, Proposition 1.1], we can find
a constant CN and a positive integer lN , both depending only on N but independent
of K and θ, such that

‖(∂ηp
τ
K)♯θ

(
∂v(p−τ

K )
)
‖N ;S(1,Γ) ≤ CN ‖∂ηp

τ
K‖lN ;S(pτ

K ,Γ)‖∂v(p−τ
K )‖lN ;S(p−τ

K ,Γ),

where the semi-norm ‖.‖k;S(M,Γ) is defined by ( 100 ).

Moreover, using (iv), we have ∂ηp ∈ S(εp + ε−1〈v〉M ,Γ), by taking ε = K−1/2, we
obtain ∂ηp ∈ S(K−1/2pK ,Γ). By writing ∂ηp

τ
K = τpτ−1

K ∂ηp, we obtain

|∂ηp
τ
K | ≤ C̃NK

−1/2pτ
K .

Then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂α
v ∂

β
η ∂ηp

τ
K | ≤ C̃NK

−1/2pτ
K ,

which gives ∂ηp
τ
K ∈ S(K−1/2pτ

K ,Γ) uniformly in K, moreover we have

‖(∂ηp
τ
K)‖lN ;S(pτ

K
,Γ) ≤ C̃NK

−1/2.

On the other hand we have p−τ
K ∈ S(p−τ

K ,Γ), and thus

‖∂v(p−τ
K )‖lN ;S(p−τ

K
,Γ) ≤ C̃N ,

with C̃N a constant depending only on N but independent of K. As a result,

‖(∂ηp
τ
K)♯θ

(
∂v(p−τ

K )
)
‖N ;S(1,Γ) ≤ CN C̃

2
NK

−1/2. (107)
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Similarly,
‖(∂vp

τ
K)♯θ

(
∂η(p−τ

K )
)
‖N ;S(1,Γ) ≤ CN C̃

2
NK

−1/2. (108)

Using the estimates ( 107 ), ( 108 ) we will estimate the semi-norm ‖RK‖N ;S(1,Γ). Indeed,

‖RK‖N ;S(1,Γ) ≤
∫ 1

0
‖(∂vp

τ
K)♯θ

(
∂η(p−τ

K )
)
‖N ;S(1,Γ) dθ +

∫ 1

0
‖(∂ηp

τ
K)♯θ

(
∂v(p−τ

K )
)
‖N ;S(1,Γ) dθ.

Then
‖RK‖N ;S(1,Γ) ≤ 2CN C̃

2
NK

−1/2,

and thus by ( 102 )
‖Rw

K‖B(L2) ≤ 2CCN C̃
2
NK

−1/2

with C a constant depending only on the dimension. Taking K1 =
(
4CCNC̃

2
N

)2
, so

we get for all K ≥ K1

‖Rw
K‖B(L2) ≤ 1

2
< 1,

this implies Id − Rw
K is invertible in the space B(L2). In addition, its inverse is given

by

(Id − Rw
K)−1 =

∞∑

i=0

(Rw
K)i ∈ B(L2). (109)

Based on ( 105 ) we obtain

(pτ
K)w

(
(p−τ

K )w(Id −Rw
K)−1

)
= Id.

Similarly we can find a R̂K ∈ S(1,Γ) such that

(
(Id − R̂w

K)−1(p−τ
K )w

)
(pτ

K)w = Id.

Based on the above (pτ
K)w is invertible and its inverse [(pτ

K)w]−1 is written in the form

[(pτ
K)w]−1 = (p−τ

K )w(Id −Rw
K)−1 = (Id − R̂w

K)−1(p−τ
K )w.

We have proved the conclusion in (I).

II. According to (I), we have [(pτ
K)w]−1 has the form

[(pτ
K)w]−1 = (p−τ

K )w(Id − Rw
K)−1.

By taking HK = (Id − Rw
K)−1 and using ( 109 ), we have HK is a continuous operator

in L2 uniformly in K. So based on Theorem A.4 , we have HK is a pseudo-differential
operator. We note by δ(HK) its symbol. We have δ(HK) belongs to S(1,Γ) uniformly
in K. From the above, we have [(pτ

K)w]−1 is a pseudo-differential operator (compo-
sitions of pseudo-differential operators). We denote hK its symbol, hK has the form
hK = p−τ

K ♯δ(HK) and belongs to S(p−τ
K ,Γ) uniformly in K.

We have proved the conclusion in (II).
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III. Using the Theorem A.4 , we have [
(
pκ

K

)w
]−1 is a pseudo-differential operator. Tak-

ing into account that the composition of the pseudo-differential operators is a pseudo-
differential operator, we obtain

∀n ∈ Z, [(pκ
K)w]n ∈ Ψ(pκn

K ,Γ). (110)

Now consider the case of the exponents τ ∈ R. By pseudo-differential calculus the
problem will be reduced to

∀τ ∈ I, [(pκ
K)w]τ ∈ Ψ(pκτ

K ,Γ),

where I an open interval of R. Note that the operator (pκ
K)w is self-adjoint because its

symbol pκ
K is real. Now we will show that (pκ

K)w is a positive operator for K sufficiently
large, wich is equivalent to show that

(
(pκ

K)wu, u
)

L2
≥ 0, ∀u ∈ S(Rn). (111)

Using again the formula ( 103 ), we can write

(p
κ/2
K )w(p

κ/2
K )w = (pκ

K)w − Rw
K , (112)

where

RK = −
∫ 1

0
(∂ηp

κ/2
K )♯θ

(
∂v(p

κ/2
K )

)
dθ +

∫ 1

0
(∂vp

κ/2
K )♯θ

(
∂η(p

κ/2
K )

)
dθ

with g♯θh defined in ( 106 ). Based on the proof of (I), we have

∂ηp
κ/2
K ∈ S(K−1/2p

κ/2
K ,Γ)

uniformly in K. Moreover we have ∂vp
κ/2
K ∈ S(p

κ/2
K ,Γ), so we get

(∂ηp
κ/2
K )♯θ

(
∂v(p

κ/2
K )

)
, (∂vp

κ/2
K )♯θ

(
∂η(p

κ/2
K )

)
and RK ∈ S(K−1/2pκ

K ,Γ)

uniformly in K. Writing Rw
K in the following form

Rw
K = K−1/2(p

κ/2
K )w K1/2[(p

κ/2
K )w]−1Rw

K [(p
κ/2
K )w]−1

︸ ︷︷ ︸
∈B(L2) uniformly in K

(p
κ/2
K )w,

we obtain
|(Rw

Ku, u)L2| ≤ C0K
−1/2‖(p

κ/2
K )wu‖2

L2,

with C0 some constant independent of K. Let K2 = 16C2
0 , then using the relation

( 112 ) we get for all K ≥ K2

((pκ
K)wu, u)L2 ≥ 3

4
‖(p

κ/2
K )wu‖2

L2 ≥ 0.

Then, using the following formula (see for example [23]) we can write

[(pκ
K)w]τ = −sin(πτ)

π

∫ ∞

0
sτ (s+ (pκ

K)w)−1 ds, τ ∈ (−1, 0). (113)

First, s+ (pκ
K)w is a pseudo-differential operator and its symbol aK,s verifies

∀s ∈ (0, 1), aK,s ∈ S(pκ
K ,Γ)
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and
∀s ≥ 1, aK,s ∈ S(s(pκ

K),Γ) uniformly in K and s.

So using the Theorem A.4 , (s + (pκ
K)w)−1 is a pseudo-differential operator and its

symbol bK,s verifies
∀s ∈ (0, 1), bK,s ∈ S((pκ

K)−1,Γ)

and
∀s ≥ 1, bK,s ∈ S(s−1(pκ

K)−1,Γ) uniformly in K and s.

Then, taking u ∈ S(Rn) we have

[(pκ
K)w]τu = −sin(πτ)

π

∫ ∞

0
sτ (s+ (pκ

K)w)−1u ds,

using the formula ( 101 ), we get

[(pκ
K)w]τu = −sin(πτ)

π

∫ ∞

0
sτ

(
1

(2π)n

∫

R2n
ei(v−v′).ηbK,s(

v + v′

2
, η)u(v′) dv′dη

)
ds,

=
1

(2π)n

∫

R2n
ei(v−v′).η

(
−sin(πτ)

π

∫ ∞

0
sτbK,s(

v + v′

2
, η) ds

)
u(v′) dv′dη.

So [(pκ
K)w]τ is a pseudo-differential operator and its symbol dK given by

dK = −sin(πτ)

π

∫ ∞

0
sτbK,s ds.

Then we will show that dK ∈ S(pκτ
K ,Γ). Indeed, let α, β ∈ Nn, (v, η) ∈ R2n,

|∂α
v ∂

β
η dK(v, η)| ≤ C

(∫ 1

0
sτ |∂α

v ∂
β
η bK,s| ds+

∫ ∞

1
sτ |∂α

v ∂
β
η bK,s| ds

)
,

≤ Cα,β

(∫ 1

0
sτ (pκ

K)−1 ds+
∫ ∞

1
sτ−1(pκ

K)−1 ds
)
,

≤ C̃α,β (pκ
K)−1,

which gives that dK ∈ S(pκτ
K ,Γ). Take I = (−1, 0), then we get

∀τ ∈ I, [(pκ
K)w]τ ∈ Ψ(pκτ

K ,Γ). (114)

In addition, [(pκ
K)w]τ is a bounded operator in L2 uniformly in K. Indeed,

(s+ (pκ
K)w)−1 ∈ Ψ(1,Γ) uniformly in K, then there exists a constant C1 > 0 such that

∀s ∈ (0, 1), ‖(s+ (pκ
K)w)−1‖B(L2) ≤ C1. (115)

On the other hand we have

∀u ∈ S(Rn), ((s+ (pκ
K)w)u, u)L2 ≥ s‖u‖2

L2,

which gives

∀s ≥ 1, ‖(s+ (pκ
K)w)−1‖B(L2) ≤ 1

s
. (116)

Using ( 115 ), ( 116 ) and the formula ( 113 ), we obtain

‖[(pκ
K)w]τ ‖B(L2) ≤ C2, (117)
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with C2 some constant independent of K.
Then based on ( 110 ), ( 114 ) we obtain for all τ ∈ I,

∀n ∈ Z, [[(pκ
K)w]τ ]

n ∈ Ψ(pκnτ
K ,Γ), (118)

so we have
∀τ ∈ R, [(pκ

K)w]τ ∈ Ψ(pκτ
K ,Γ). (119)

IV. We will show that

∀u ∈ S(Rn), ‖[(pκ
K)w]τu‖2

L2 ∼ ‖(pκτ
K )wu‖2

L2, (120)

otherwise we will show that there are two constants c, C > 0 independent of K such
that for all u ∈ S(Rn), we have:

‖(pκτ
K )wu‖2

L2 ≤ c ‖[(pκ
K)w]τu‖2

L2, (121)

and
‖[(pκ

K)w]τu‖2
L2 ≤ C‖(pκτ

K )wu‖2
L2. (122)

We will start with inequality ( 121 ), using the conclusion (III), we have that [(pκ
K)w]τ

is a pseudo-differential operator belongs to Ψ(pκτ
K ,Γ) uniformly in K. Taking

v = [(pκ
K)w]−τu, show inequality ( 121 ) is equivalent to showing that

‖(pκτ
K )w[(pκ

K)w]−τv‖2
L2 ≤ C3‖v‖2

L2 ∀v ∈ L2. (123)

Using the Theorem A.3 , we have (pκτ
K )w[(pκ

K)w]−τ ∈ Ψ(1,Γ) →֒ B(L2) uniformly in K,
hence the inequality ( 121 ).
Similarly, using the fact that [(pκ

K)w]τ [(pκτ
K )w]−1 ∈ Ψ(1,Γ) →֒ B(L2) uniformly in K,

then taking v = [(pκτ
K )w]−1u, we get the inequality ( 122 ), so the estimate ( 120 ) is

true.

V. We will first show that

∀u ∈ S(Rn), ‖(pτ
K)wu‖2

L2 ∼ ‖(qτ
K)wu‖2

L2, (124)

otherwise we will show that there are two constants C1, C2 > 0 independent of K such
that for all u ∈ S(Rn)

‖(pτ
K)wu‖2

L2 ≤ C1‖(qτ
K)wu‖2

L2, (125)

and
‖(qτ

K)wu‖2
L2 ≤ C2‖(pτ

K)wu‖2
L2. (126)

We will start with inequality ( 125 ), using hypothesis (iii) we have that
(qτ

K)w ∈ Ψ(pτ
K ,Γ) uniformly in K. Using the conclusion (II), we have (qτ

K)w is an
invertible operator, moreover its inverse [(qτ

K)w]−1 belongs to Ψ(p−τ
K ,Γ) uniformly in

K.
Taking v = [(qτ

K)w]−1u, show inequality ( 125 ) is equivalent to showing that

‖(pτ
K)w[(qτ

K)w]−1v‖2
L2 ≤ C1‖v‖2

L2 ∀v ∈ L2. (127)

Using the Theorem A.3 , we have (pτ
K)w[(qτ

K)w]−1 ∈ Ψ(1,Γ) →֒ B(L2) uniformly in K,
hence the inequality ( 127 ).
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Similarly, using the fact that (qτ
K)w[(pτ

K)w]−1 ∈ Ψ(1,Γ) →֒ B(L2) uniformly in K, then
taking v = [(pτ

K)w]−1u, we get the inequality ( 126 ), so the estimate ( 124 ) is true.
In the same way we have

∀u ∈ S(Rn), ‖(qτ
K)wu‖2

L2 ∼ ‖(qw
K)τu‖2

L2. (128)

Finally, using conclusion (IV) with κ = 1, we get that

∀u ∈ S(Rn), ‖(pw
K)τu‖2

L2 ∼ ‖(pτ
K)wu‖2

L2. (129)

VI. We will show that

∀u ∈ S(Rn), (pw
Ku, u)L2 ∼ (qw

Ku, u)L2. (130)

Indeed, let u ∈ S(Rn) we have

(pw
Ku, u)L2 = ((pw

K)1/2u, (pw
K)1/2u)L2 = ‖(pw

K)1/2u‖2
L2,

using the result (IV) with τ = 1
2
, we obtain that

‖(pw
K)1/2u‖2

L2 ∼ ‖(p
1/2
K )wu‖2

L2 ∼ ‖(q
1/2
K )wu‖2

L2 ∼ ‖(qw
K)1/2u‖2

L2 ∼ (qw
Ku, u)L2.

So the estimate ( 130 ) is true.

VII. We will show that

∀u ∈ S(Rn), (pw
Ku, u)L2 ≥ ‖u‖2

L2.

Indeed, let u ∈ S(Rn)

(pw
Ku, u)L2 = (pw

K−1u, u)L2 + (〈v〉Mu, u)L2,

based on the proof of ( 111 ), we can show that there exists a positive constant K3 such
that for all K ≥ K3 we have

(pw
K−1u, u)L2 ≥ 0,

Which gives

(pw
Ku, u)L2 = (pw

K−1u, u)L2

︸ ︷︷ ︸
≥0

+(〈v〉Mu, u)L2 ≥ ‖〈v〉M/2u‖2
L2.

With the condition M ≥ 0 we finally obtain

(pw
Ku, u)L2 ≥ ‖u‖2

L2.

Finally, for a symbol p which verifies the hypotheses of Theorem A.6 , we can fix

K ≥ max(K1, K2, K3)︸ ︷︷ ︸
K0

(131)

and we apply the results of Theorem A.6 to the operator pw
K .
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A.3 Wick quantization

Finally let us recall some basic properties of the Wick quantization, which is also called
anti-Wick in [20]. The importance in studying the Wick quantization lies in the facts
that positive symbols give rise to positive operators.
Let Y = (v, η) be a point in R6. The Wick quantization of a symbol q is given by

qWick = (2π)−3
∫

R6

q(Y )ΠY dY,

where ΠY is the projector associated to the Gaussian ϕY which is defined by

ϕY (z) = π−3/4e− 1

2
|z−v|2eiz·η/2, ∀z ∈ R

3.

The main property of the Wick quantization is its positivity, i.e.,

q(v, η) ≥ 0, ∀(v, η) ∈ R
6 implies qWick ≥ 0. (132)

According to Theorem 24.1 in [20], the Wick and Weyl quantizations of a symbol q
are linked by the following identities

qWick =
(
q ∗ π−3e−|·|2

)w
= qw + rw (133)

with

r(Y ) = π−3
∫ 1

0

∫

R6

(1 − θ)q”(Y + θY1)|Y1|2e−|Y1|2dY1 dθ, (134)

where q”(Y ) is the Hessian of q at the point Y . Therefore, according to ( 102 ), if
q ∈ S(1,Γ) then qWick is a bounded operator in L2 .
We also recall the following composition formula obtained in the proof of Proposition
3.4 in [16]

qWick
1 qWick

2 = [q1q2 − q′
1 · q′

2 +
1

i
{q1, q2}]Wick + T, (135)

with T a bounded operator in L2(R6) and q′ is the gradient of q with respect to Y ,
when q1 ∈ L∞(R6) and q2 is a smooth symbol

whose derivatives of order ≥ 2 are bounded on R6. The notation {q1, q2} denotes by
the Poisson bracket defined by

{q1, q2} =
∂q1

∂η
· ∂q2

∂v
− ∂q1

∂v
· ∂q2

∂η
. (136)
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