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Hypoelliptic and spectral estimates for the linearized Landau operator

We are interested in the inhomogeneous Landau equation which describes the evolution of a particle density f = f (t, x, v) representing at time t ≥ 0, the density of particles at position x ∈ R 3 and velocity v ∈ R 3 . The study is motivated by the linearization of the Landau equation near Maxwellian distribution. In this article, we establish hypoelliptic estimates, a localization of the spectrum and estimates of the resolvent of the the linearized Landau operator with hard potentials and Maxwellian molecules. The proof is based on a multiplier method and requires refined pseudo-differential calculus tools.

Introduction

The model.

In this paper, we study hypoellipticity and spectral properties associated to the spatially inhomogeneous Landau equation. This equation is a kinetic model in plasma physics that describes the evolution of the density function F = F (t, x, v) representing at time t ∈ R + , the density of particles at position x ∈ R 3 and velocity v ∈ R 3 . This equation is given by

∂ t F + v • ∇ x F = Q(F, F ) F |t=0 = F 0 , ( 1 
)
where Q is the so-called Landau collision operator which acts on the variable v and which contains diffusion in velocity. More precisely, the Landau operator is defined by

Q(G, F ) = ∂ i R 3 a ij (v -v * )[G * ∂ j F -F ∂ j G * ] dv * , ( 2 
)
where we use the convention of summation of repeated indices, and the derivatives are in the velocity variable v i.e. ∂ i = ∂ v i . Hereafter we use the shorthand notations

G * = G(v * ), F = F (v), ∂ j G * = ∂ v * j G(v * ), ∂ j F = ∂ v j F (v), etc. The matrix A(v) = (a ij (v)) 1≤i,j≤3
is symmetric, positive, definite, depends on the interaction between particles and is given by

a ij (v) = |v| γ+2 δ ij - v i v j |v| 2 , γ ∈ [-3, 1].
We recall the standard classification: we call hard potentials if γ ∈ (0, 1], Maxwellian molecules if γ = 0, moderately soft potentials if γ ∈ [-2, 0), very soft potentials if γ ∈ (-3, -2) and Coulombian potential if γ = -3. Hereafter we shall consider the cases of hard potentials, Maxwellian molecules, i.e. γ ∈ [0, 1]. We denote by

µ(v) = (2π) -3/2 e -|v| 2 /2
the normalized Maxwellian which is a global equilibrium. We linearize the Landau equation around µ with the perturbation

F = µ + µ 1/2 f.
The Landau equation [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF] for f = f (t, x, v) takes the form

∂ t f + v • ∇ x f -µ -1/2 Q(µ 1/2 f, µ) -µ -1/2 Q(µ, µ 1/2 f ) = µ -1/2 Q(µ 1/2 f, µ 1/2 f ) f |t=0 = f 0 = µ -1/2 (F 0 -µ), (3) 
since Q(µ, µ) = 0. Using the notation Γ(f, g) = µ -1/2 Q(µ 1/2 f, µ 1/2 g),

we may rewrite the above equation as

∂ t f + Pf = Γ(f, f ) f |t=0 = f 0 , ( 4 
)
where the linearized Landau operator P takes the form

P = v • ∇ x -L (5) 
with

L = L 1 + L 2 , L 1 = Γ( √ µ, f ), L 2 = Γ(f, √ µ).
Operator P acts only in variables (x, v), is non selfadjoint, and consists of a transport part which is skew-adjoint, a diffusion part acting only in the v variable and a compact part (see for example Proposition 2.1 in [START_REF] Degond | Dispersion relations for the linearized Fokker-Planck equation[END_REF]). Using for example [START_REF] Wang | Solving linearized Landau equation pointwisely[END_REF], [START_REF] Strain | Exponential decay for soft potentials near Maxwellian[END_REF], the diffusion part L 1 is written as follows

L 1 f = ∇ v • [A(v)∇ v f ] -A(v) v 2 • v 2 f + ∇ v • A(v) v 2 f,
where A(v) = (a ij (v)) 1≤i,j≤3 is a symmetric matrix with

a ij = a ij * v µ,
and the compact part L 2 is given by

L 2 f = -µ -1/2 ∂ i µ a ij * v µ 1/2 ∂ j f + v j 2 f .
Remark 1.1. Here we do not follow the same convention as the one in [START_REF] Guo | The Landau equation in a periodic box[END_REF] for operators L 1 and L 2 .

Notations.

Throughout the paper we shall adopt the following notations: we work in dimension n = 3 and denote by (x, v) ∈ R 3

x × R 3 v the space-velocity variables. For v ∈ R 3 we denote v = (1 + |v| 2 ) 1/2 , where we recall that |v| is the canonical Euclidian norm of v in R 3 . The gradient in velocity (resp. space) will be denoted by ∂ v (resp. ∂ x ). We shall also denote

D v = 1 i ∂ v (resp. D x = 1 i ∂ x )
, and denote ξ the dual variable of x, η the dual variable of v. For simplicity of notations, a ∼ b means that there exist constants c 1 , c 2 > 0 such that c 1 b ≤ a ≤ c 2 b; we abbreviate "≤ C " to " ", where C is a positive constant depending only on fixed number. Finally, the space of distributions on Ω is denoted by D ′ (Ω) where Ω ⊆ R n is an open set.

Main results and comments.

In this article, we will show a localization property of the pseudospectrum of the Landau operator P, that is to say the region of the complex plane where its resolvent is a priori large (in fact we more precisely give a description of a large region where the resolvent is controlled, which is included in the complementary of the pseudospectrum). This result is given by the following theorem. Theorem 1.2. Let P be the Landau operator on L 2 (R 3

x × R 3 v ) defined in [START_REF] Degond | Dispersion relations for the linearized Fokker-Planck equation[END_REF] with γ ∈ [0, 1]. Then there are two constants C P > 0 and Q P > 0 so that: a) The spectrum of P verifies σ(P) ⊂ S P ∩ {ℜe z ≥ 0}, with

S P = z ∈ C, |z + 1| 1/3 ≤ C P ℜe z + 1 , ℜe z ≥ - 1 2 . ( 6 
)
b) For any z ∈ S P with ℜe z ≥ -1 2 , the resolvent is estimated by

(z -P) -1 B(L 2 x,v ) ≤ Q P |z + 1| -1/3 . ( 7 
)
Notice that if ℜe z ≤ -1 2 then

(z -P) -1 B(L 2 x,v ) ≤ |ℜe z| -1 . ( 8 
)
The results of Theorem 1. In this figure ∂S P oriented from +i∞ to -i∞. The hatched part is where the spectrum is localized and the non hatched part is the zone where we have good resolvent estimates (see [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] and ( 8)).

Let us give now some comments and motivations of this result. The cuspidal form of the pseudospectrum of linear or linearized kinetic operators was first shown in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF], [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] for the Fokker-Planck operator, and then extended to operators appearing in statistical mechanics by [START_REF] Eckmann | Non-Equilibrium Statistical Mechanics of Strongly Anharmonic Chains of Oscillators[END_REF]. The main motivation for this type of study is to be able to understand the so-called pseudospectrum properties and derive possible trend to the equilibrium or regularization properties for the related evolution equation thanks to Cauchy formulae (see e.g. [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] for a complete result in the Fokker-Planck case). Anyway in this article, as a first step of a complete study of properties of this type, we only focus on the pseudospectral localization, but in the case of the much more complicated linearized Landau operator.

The aim of this article is double. First we show that the linearized Landau operator has indeed a pseudospectrum of cuspidal form, which is a good clue for thinking that this is a very general property of general linear or linearized kinetic operators. Second we propose a very robust and self contained pseudo-differential framework (see Section 3.1 ) in order to show this type of result. Our hope is that it can be used for many other kinetic models. These tools are greatly inspired by previous works (see [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF], [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF], [START_REF] Hérau | Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel[END_REF]) concerning kinetic equations, following fundamental ideas in [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] on Wick and Weyl pseudodifferential calculus. Indeed the main remark done in all these works, following preliminary works by Alexandre and Villani [START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF] is that the linearized Landau operator L is, up to controlled/bounded operators, a pseudodifferential operator, namely that there exists a symbol, in a Hörmander-type class of symbol (see Section 3.1 ) such that

L ≡ a w + controlled terms,
where w stands for the Weyl quantization. The equivalence above can be rigourosly stated and we will do it in section 2 below. The understanding of Landau type operators has been greatly improved in the past twenty years, following in particular works by Guo (see [START_REF] Guo | The Landau equation in a periodic box[END_REF]).

Using these tools, the proof of the result given in Theorem 1.2 will follow the lines of [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] (see also [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF], [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF]), where a multiplier method is used for proving regularization (hypoelliptic) properties of the linearized landau operator. Let us emphasize here that no regularization property is shown in this article, since we only focus on spectral estimates. Mention anyway -and this is a remarkable feature of all these hypoelliptic/hypocoercive techniques -that the same (in spirit) methods give very strong and precise results as the one given in the main theorem.

Organization of the article. In Section 2 we give some properties of the Landau operator. In Section 3 , we prove hypoelliptic estimates with respect to the velocity variable for a parametric operator. In Section 4 we give hypoelliptic estimates for the linearized Landau operator. Section 5 is devoted to the proof of Theorem 1.2 . An appendix is devoted to a short review of some tools used in this work (Weyl-Hörmander quantization, Wick quantization and the proof of the Theorem A.6 (Basic Theorem)).

Properties of the Landau operator

In this section, we first present the decomposition of the linearized Landau operator P then we exhibit a simpler form of this operator. To end up we show that P is a generator of a strongly continuous semigroup. Throughout this section, we work with γ ∈ [-3, 1].

Splitting of the linearized operator.

Consider a smooth positive function

χ ∈ C ∞ c (R 3 v ) such that 0 ≤ χ(v) ≤ 1, χ(v) = 1 for |v| ≤ 1 and χ(v) = 0 for |v| > 2. For any R ≥ 1 we define χ R (v) = χ( v R
) and in the sequel we shall consider the function Mχ R , for some constant M > 0. Then, we introduce the decomposition of the operator P as P = A + K with

A = -L 1 + v • ∇ x + Mχ R , K = -L 2 -Mχ R , ( 9 
)
where M > 0 and R > 0 will be chosen later.

We define the function F (v) as

F (v) = A(v) v 2 • v 2 -∇ v • A(v) v 2 + Mχ R . ( 10 
)
Then, we can rewrite A as follows

Af = v • ∇ x f -∇ v • [A(v)∇ v f ] + F (v)f. ( 11 
)

Preliminaries.

We have the following results concerning the matrix A(v).

Lemma 2.1. The following properties hold: a) For v ∈ R 3 \{0}, the matrix A(v) has a simple eigenvalue ℓ 1 (v) > 0 associated with the eigenvector v and a double eigenvalue ℓ 2 (v) > 0 associated with the eigenspace v ⊥ . Moreover, when |v| → +∞ we have

ℓ 1 (v) ∼ 2 v γ and ℓ 2 (v) ∼ v γ+2 .
b) The function a ij is smooth, for any multi-index α ∈ N 3 , there exists C α > 0 such that for all v ∈ R 3 , we have

|∂ α v a ij (v)| + |∂ α v (a ij (v)v j )| ≤ C α v γ+2-|α| , c) For v ∈ R 3 \{0}, we have a ij (v)v i v j = ℓ 1 (v)|v| 2 , a ii (v) = tr(a(v)) = ℓ 1 (v) + 2ℓ 2 (v), a ij (v)η i η j = ℓ 1 (v)|P v η| 2 + ℓ 2 (v)|(I -P v )η| 2 ,
with η ∈ R 3 and P v is the projection on v, i.e. 

P v η = η • v |v| v |v| . d) For |v| > 1, we have |∂ α v ℓ 1 (v)| ≤ C α v γ-|α| and |∂ α v ℓ 2 (v)| ≤ C α v γ+2-
ℓ 1 (v) v γ and ℓ 2 (v) v γ+2 .
Proof. Using (a) in Lemma 2.1 , when |v| → +∞, we have ℓ 1 (v) ∼ 2 v γ . In particular, there is a constant N > 0 such that for all |v| > N, we have

ℓ 1 (v) ≥ v γ .
We have that ℓ 1 (v) is continuous since A(v) is a positive definite symmetric matrix and continuous (due to convolution with µ), hence the existence of a constant C > 0 such that for 1

≤ |v| ≤ N ℓ 1 (v) ≥ C v γ ,
and then for all v ∈ R 3 , perhaps with changing C,

ℓ 1 (v) ≥ C v γ .
The proof will be the same for ℓ 2 (v).

Lemma 2.3. Let F (v) be defined in [START_REF] Hérau | Global hypoelliptic estimates for Landau-type operators with external potential[END_REF]. Then, we can choose M and R big enough such that for all v ∈ R 3 , we have

F (v) v γ+2 .
Proof. Since

F (v) ≥ 1 4 ℓ 1 (v)|v| 2 -∇ v • A(v) v 2 + Mχ R ,
according to Lemma 2.1 , we have

∇ v • A(v) v 2 v γ+1 . ( 12 
)
So, using Lemma 2.2 and ( 12 ), there exist two positive constants C 1 , C 2 such that

F (v) ≥ C 1 v γ+2 -C 2 v γ+1 + Mχ R ,
then there exist M and R such that for all v ∈ R 3

F (v) v γ+2 .
Lemma 2.4. For any multi-index α ∈ N 3 , there exists C α > 0 such that for all v ∈ R 3 , we have

|∂ α v F (v)| ≤ C α v γ+2-|α| .
Proof. For |v| > 2R, using Leibniz's formula, we have

∂ α v F (v) = 1 4 β≤α α β ∂ α-β ℓ 1 (v) ∂ β v 2 - 1 4 ∂ α ℓ 1 (v) -∂ α ∇ v • A(v) v 2 ,
Then, using Lemma 2.1 and Lemma 2.2 we obtain

|∂ α v F (v)| ≤ c α v γ+2-|α| .
The function F (v) being C ∞ on |v| ≤ 2R, the estimates for |v| ≤ 2R are immediate.

Lemma 2.5. i) A(v) is written as follows

A(v) = B T (v)B(v), ( 13 
)
where

B(v) = (b ij (v)) 1≤i,j≤3
is a matrix with real-valued smooth entries.

ii) For any multi-index α ∈ N 3 , there exists

C α > 0 such that for all v ∈ R 3 , we have |∂ α v b ij (v)| ≤ C α v γ 2 +1-|α| . ( 14 
)
iii) There exists c, C > 0 such that for all v ∈ R 3 , for all η ∈ R 3 we have

c v γ (|η| 2 + |v ∧ η| 2 ) ≤ A(v)η • η = |B(v)η| 2 ≤ C v γ (|η| 2 + |v ∧ η| 2 ) (15)
Proof. i) As A(v) is a positive definite symmetric matrix (denoted S ++ 3 (R)) and according to the spectral theorem, there exists Q an orthogonal matrix such that

A(v) = Q T (v)D(v)Q(v).
On |v| > 1 , v → Q(v) can be calculated explicitly and can be chosen to be smooth. If we set

B(v) = Q T (v) D(v)Q(v) with D(v) = diag ℓ 1 (v), ℓ 2 (v), ℓ 2 (v) . We have that v → D(v) is of class C ∞ for |v| > 1 (because ℓ 1 (v), ℓ 2 (v) are of class C ∞ for |v| > 1). Then the application v → B(v) is of class C ∞ on |v| > 1 .
Regarding the case where |v| ≤ 1, we consider the following two applications:

φ : R 3 → S ++ 3 (R) v → A(v) , ψ : S ++ 3 (R) → S ++ 3 (R) M → √ M , we note that φ, ψ are of class C ∞ , moreover B(v) = ψ • φ(v). Then we have that the application v → B(v) is of class C ∞ . ii) For |v| > 1, we have B(v) = ℓ 1 (v)P v + ℓ 2 (v)(I -P v )
, moreover using Lemma 2.1 , we have

|∂ α v ℓ 1 (v)| v γ 2 -|α| , |∂ α v ℓ 2 (v)| v γ+2 2 -|α| (16) 
and the fact that |∂ α v P v | 1 (P v and all its derivatives are bounded), so we get that for |v| > 1,

|∂ α v b ij (v)| v γ 2 +1-|α| , ( 17 
)
where the constants in ( 16), ( 17) depend on α.

The function b ij (v) being C ∞ on |v| ≤ 1, the estimates for |v| ≤ 1 are immediate.

Then, for all α ∈ N 3 , there exists C α > 0 such that for all v ∈ R 3 , we have

|∂ α v b ij (v)| ≤ C α v γ 2 +1-|α| . ( 18 
)
iii) The estimate is immediate on |v| ≤ 1 because A(v) is a positive definite symmetric matrix and A = B T B. For |v| > 1, using Lemma 2.1 , we have

a ij (v)η i η j = ℓ 1 (v)|P v η| 2 + ℓ 2 (v)|(I -P v )η| 2 v γ |η| 2 cos 2 (v, η) + v γ+2 |v ∧ η| 2 |v| 2 v γ |η| 2 cos 2 (v, η) + v γ |v ∧ η| 2 + v γ |η| 2 sin 2 (v, η) v γ (|η| 2 + |v ∧ η| 2 ),
on the other hand, we have

a ij (v)η i η j = ℓ 1 (v)|P v η| 2 + ℓ 2 (v)|(I -P v )η| 2 v γ |η| 2 + v γ+2 |v ∧ η| 2 |v| 2 v γ (|η| 2 + |v ∧ η| 2 ).
Hence the proof of (iii). Using Lemma 2.5 , we can rewrite A in the form

A = v • ∇ x + (B(v)∇ v ) * • B(v)∇ v + F (v), (19) 
where (B(v

)D v ) * = D v B(v) T , is the formal adjoint of B(v)D v .

Study of the operator P.

In this part, we will study the following problem:

∂ t f + Pf = 0 f |t=0 = f 0 , ( 20 
)
we show that the above problem is well-posed in the space L 2 (R 3 x × R 3 v ) in the sense of semi-groups. By Hille-Yosida Theorem, it is sufficient to show that A is maximal accretive in the space L 2 (R 3

x × R 3 v ), then using the Bounded Perturbation Theorem in [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]Theorem 1.3], we get that the operator P is a generator of a strongly continuous semigroup (for more details on the semi-group theory see also [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). First, we start by recalling the basic definition of hypoellipticity. Definition 2.6. Let P be a differential operator with C ∞ coefficients in an open set Ω ⊂ R n . We say that P is a hypoelliptic operator on Ω, if, for any open ω ⊂ Ω, any u ∈ D ′ (Ω), such that P u ∈ C ∞ (ω) belongs to C ∞ (ω). Lemma 2.7. Let A be the operator defined in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF]. Then, A is a hypoelliptic operator.

Proof. Using formula [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], we can rewrite A in the following form:

A = v • ∂ x X 0 + 3 j=1 b 1,j (v)∂ v j * 3 j=1 b 1,j (v)∂ v j X * 1 X 1 + 3 j=1 b 2,j (v)∂ v j * 3 j=1 b 2,j (v)∂ v j X * 2 X 2 + 3 j=1 b 3,j (v)∂ v j * 3 j=1 b 3,j (v)∂ v j X * 3 X 3 +F (v) = X 0 + 3 i=1 X * i X i + F (v).
In addition, the coefficients b ij (v) and F (v) are of class C ∞ , taking the vector field square brackets we get

Y k = [X k , X 0 ] = 3 j=1 b k,j (v)∂ x j , for k ∈ {1, 2, 3} .
From the above, A is a "type II Hörmander's operators" (see for example [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF], [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]). Moreover, the vector fields X i , Y i , i = 1, . . . , 3 generate all the space tangent to R 6

x,v so A is hypoelliptic operator. Theorem 2.8. Let γ ∈ [-3, 1] and A be the operator defined in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF]. Then, its closure A on the space S(R 6

x,v ) is maximally accretive.

Proof. We adapt here the proof given in [9, page 44]. We apply the abstract criterion by taking H = L 2 (R 6 x,v ) and the domain of A defined by D(A) = S(R 6 x,v ). First, we show the accretivity of the operator A. We want to prove that ℜe (Au, u) H ≥ 0 for u ∈ D(A). Indeed, from ( 19)

ℜe (Au, u) H = ℜe (v • ∇ x u, u) H =0 since v•∇x is skew-adjoint -ℜe (∇ v • (A(v)∇ v u), u) H + ℜe (F (v)u, u) H = B(v)∇ v u 2 H + F (v)u 2 H ≥ 0.
Since A is an accretive operator then its closure A exists and it is accretive (see [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF]Proposition 5.3]). Let us now show that there exists λ 1 > 0 such that the operator

T = A + λ 1 Id has dense image in H. We take λ 1 = 1. Let f ∈ H satisfy (f, T u) H = 0, ∀u ∈ D(A). ( 21 
)
we want's to prove that f = 0, Since T is a differential operator then his formal adjoint T ♯ exists (in the sense of distributions). According to [START_REF] Strain | Exponential decay for soft potentials near Maxwellian[END_REF] we obtain

T ♯ f = -∇ v • A(v)∇ v + F (v) + 1 -X 0 f = 0, in D ′ (R 6 ). (22) 
Using Lemma 2.7 , we have [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF]Chapter 2]). Now we introduce the family of truncation functions ζ k defined by

-∇ v • A(v)∇ v + F (v) + 1 -X 0 is a hypoelliptic operator, so f ∈ C ∞ (R 6 ) (see
ζ k (x, v) = ζ x k 1 ζ v k 2 , ∀k = (k 1 , k 2 ) ∈ (N * ) 2 ,
where ζ is a C ∞ function satisfying the following conditions:

         0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1), supp ζ ⊂ B(0, 2), ζ is a radial function. The expression of T ♯ (ζ k f ) is T ♯ (ζ k f ) = -∇ v • A(v)∇ v (ζ k f ) + F (v) + 1 ζ k f -X 0 (ζ k f ) = -∇ v • A(v)([∇ v ζ k ]f ) -∇ v ζ k • A(v)∇ v f -X 0 (ζ k )f -ζ k T ♯ f,
by using [START_REF] Wang | Solving linearized Landau equation pointwisely[END_REF], we obtain

T ♯ (ζ k f ) = -∇ v • A(v)([∇ v ζ k ]f ) -∇ v ζ k • A(v)∇ v f -X 0 (ζ k )f. ( 23 
)
We note that T ♯ (ζ k f ) ∈ H, taking the scalar product with ζ k f we obtain

T ♯ (ζ k f ), ζ k f H = - ∇ v • A(v)([∇ v ζ k ]f ) ζ k f dxdv - X 0 (ζ k )ζ k |f | 2 dxdv - ∇ v ζ k • A(v)∇ v f ζ k f dxdv,
By doing an integration by parts, we obtain

T ♯ (ζ k f ), ζ k f H = |B∇ v (ζ k )f | 2 dxdv - X 0 (ζ k )ζ k |f | 2 dxdv.
On the other hand, using [START_REF] Wang | Solving linearized Landau equation pointwisely[END_REF], we obtain

T ♯ (ζ k f ), ζ k f H = |B∇ v (ζ k f )| 2 dxdv + F (v) + 1 |ζ k f | 2 dxdv - X 0 (ζ k f )ζ k f dxdv =0 since X 0 is skew-adjoint = |B∇ v (ζ k f )| 2 dxdv + F (v) + 1 |ζ k f | 2 dxdv.
Using the fact that

|B∇ v (ζ k f )| 2 dxdv ≥ 0,
we obtain

F (v) + 1 |ζ k f | 2 dxdv ≤ |B∇ v (ζ k )f | 2 dxdv (i) - X 0 (ζ k )ζ k |f | 2 dxdv (ii) . (24)
Estimate of (i): Using Lemma 2.1 -(b)-(d) and taking into account that the function ζ is a radial function we obtain

|B∇ v (ζ k )f | 2 dxdv = ℓ 1 (v)|P v ∇ v ζ k | 2 |f | 2 dxdv + ℓ 2 (v)|(I -P v )∇ v ζ k | 2 |f | 2 dxdv =0 since v is parallel to ∇vζ k ≤ C 0 k 2 2 v γ Φ k |f | 2 dxdv,
where

C 0 > 0 and Φ k = ζ( x k 1 )ζ ′ ( v k 2 )
. Using the fact that γ ∈ [-3, 1] and the fact that Φ k is a bounded function we have the existence of a constant C 1 > 0 such that,

|B∇ v (ζ k )f | 2 dxdv ≤ C 1 1 k 2 2 + 1 k 2 f 2 .
Esimate of (ii): we have

X 0 (ζ k )ζ k |f | 2 dxdv ≤ 1 k 1 |v| Φk ζ k |f | 2 dxdv, where Φk = ζ ′ ( x k 1 )ζ( v k 2 )
. Now, taking into account that the functions Φk and ζ k are bounded, we have the existence of a constant C 2 > 0 such that,

X 0 (ζ k )ζ k |f | 2 dxdv ≤ C 2 k 2 k 1 f 2 .
Finally, coming back to ( 24 ) we obtained the existence of a constant C > 0 such that,

|ζ k f | 2 dxdv ≤ C 1 k 2 2 + 1 k 2 + k 2 k 1 f 2 , ∀k. (25) 
Taking

k 1 → +∞ in ( 25 ) we obtain |ζ( v k 2 )f | 2 dxdv ≤ C 1 k 2 2 + 1 k 2 f 2 , ( 26 
)
and taking k 2 → +∞ in ( 26 ) we obtain

|f | 2 dxdv = 0, then f = 0.
From now on, we write A for the closure of the operator A.

Corollary 2.9. Let γ ∈ [-3, 1] and P be the operator defined in [START_REF] Degond | Dispersion relations for the linearized Fokker-Planck equation[END_REF]. Then, -P is a generator of a semi-group S(t)

t≥0 strongly continuous on H = L 2 (R 6 x,v ) verifying S(t) ≤ e K t for t ≥ 0, ( 27 
)
where K the operator defined in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF].

Proof. Using ( 9), the operator -P is written as follows

-P = -A -K.
According to Theorem 2.8 , A is a maximally accretive operator. According to the Hille-Yosida Theorem, -A is a generator of a strongly continuous semi-group of contraction. On the other hand, -K is a bounded operator in H (we have L 2 a compact operator and Mχ R is bounded). Using the Bounded Perturbation Theorem in [7, Theorem 1.3], we have that -P is a generator of a semi-group S(t) t≥0 strongly continuous on H, moreover we have

S(t) ≤ e K t for t ≥ 0. ( 28 
)
3 Hypoelliptic estimates for the operator with parameters

In the following discussion, we work with γ ∈ [0, 1]. In this section, we will study the operator acting on the velocity variable v:

A ξ = iv • ξ + (B(v)∇ v ) * • B(v)∇ v + F (v), ( 29 
)
where ξ is the parameter in R 3 . The operator A ξ is obtained by the partial Fourier transformation in x. The goal of studying the operator A ξ and considering ξ as a parameter, is to obtain estimates of the velocity variables v uniformly with respect to ξ. Then by using the inverse Fourier transform with respect to x, we can obtain global estimates in all variables. We note that the operator A ξ verifies for all u ∈ S(R 3 v ),

B(v)∇ v u 2 L 2 + F (v)u 2 L 2 ≤ ℜe (A ξ u, u) L 2 . ( 30 
)
Notations. Throughout this section, we will use • L 2 to denote the norm in the space L 2 (R 3 v ) and ξ is a parameter. We use p Wick to denote the Wick quantization of p in the variables (v, η) (for more details on Wick quantization see [START_REF] Lerner | Some facts about the Wick calculus[END_REF] and Appendix A.3 ). The main result in this section is Proposition 3.19 and Proposition 3.20 .

Pseudo-differential parts

In this part, we will show several lemmas concerning pseudo-differential symbols. We need to build these symbols, who verify assumptions of Theorem A.6 , such that the pseudo-differential operator associated to these symbols has good properties. These operators play an important role in hypoellipic estimates. The standard concepts on pseudo-differential calculus are explained in Appendix A . We define for (v, η) ∈ R 6 the following symbols, they depend on the parameter ξ but we do not mention it in our notations since ξ is seen as a parameter.

λ(v, η) = v γ 1 + |v| 2 + |η| 2 + |ξ| 2 + |v ∧ η| 2 + |v ∧ ξ| 2 1/2 , (31) a(v, η) = 1 + |v| 2 + |η| 2 + |ξ| 2 + |v ∧ η| 2 + |v ∧ ξ| 2 , (32) g 1 (v, η) = 1 + v + η , ( 33 
)
g 2 (v, η) = 1 + ξ 1/3 + η , ( 34 
)
g 3 (v, η) = 1 + ξ 2/3 + η 2 . ( 35 
)
Lemma 3.1. The above symbols are admissible weights in the sense of Definition A.1 uniformly with respect to the parameter ξ in R 3 .

Proof. We have to check λ is an admissible weight. It is sufficient to verify that there exists two constants N and C, both depending only on γ, such that for all

Y = (v, η), Y ′ = (v ′ , η ′ ), we have λ(Y ) ≤ Cλ(Y ′ ) (1 + Γ(Y -Y ′ )) N ,
where Γ is the metric defined by Γ = dv 2 + dη 2 . We have

λ 2 (v, η) λ 2 (v ′ , η ′ ) = v γ v ′ γ 1 + |v| 2 + |η| 2 + |ξ| 2 + |v ∧ η| 2 + |v ∧ ξ| 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 . ( 36 
)
We now use Peetre's inequality

y τ ≤ 2 |τ | 2 y ′ τ y -y ′ |τ | , τ ∈ R, (37) 
to get

v γ v ′ γ ≤ 2 γ v -v ′ γ .
Using ( 37 ), we obtain

1 + |v| 2 + |η| 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 ≤ v 2 v ′ 2 + η 2 η ′ 2 ≤ 4 ( v -v ′ + η -η ′ ) 2 and |ξ| 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 ≤ 1 ≤ ( v -v ′ + η -η ′ ) 2 .

Using the relation

v ∧ ξ = (v -v ′ ) ∧ ξ + v ′ ∧ ξ, we obtain |v ∧ ξ| 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 ≤ 1+ v -v ′ 2 ξ 2 ξ 2 ≤ 2 ( v -v ′ + η -η ′ ) 2 .
Moreover using the relation

v ∧ η = (v -v ′ ) ∧ (η -η ′ ) + (v -v ′ ) ∧ η ′ + v ′ ∧ (η -η ′ ) + v ′ ∧ η ′ , we compute |v ∧ η| 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 ≤ 4|v -v ′ | 2 |η -η ′ | 2 + 4|v -v ′ | 2 |η ′ | 2 + 4|v ′ | 2 |η -η ′ | 2 + 4|v ′ ∧ η ′ | 2 1 + |v ′ | 2 + |η ′ | 2 + |ξ| 2 + |v ′ ∧ η ′ | 2 + |v ′ ∧ ξ| 2 ≤ 4|v -v ′ | 2 |η -η ′ | 2 + 4|v -v ′ | 2 + 4|η -η ′ | 2 + 4 ≤ 10 ( v -v ′ + η -η ′ ) 4 .
Combining the above inequalities, we get

λ(Y ) λ(Y ′ ) ≤ C γ (1 + Γ(Y -Y ′ )) 4+γ 2 ,
so λ is an admissible weight. The proof will be the same for a, g 1 , g 2 and g 3 .

Lemma 3.2. For m ∈ R, λ m ∈ S(λ m , Γ),
uniformly with respect to the parameter ξ in R 3 , where

S(λ m , Γ) is defined in Defini- tion A.2 in Appendix A.1 .
Proof. We can rewrite λ as follows

λ(v, η) = v γ 2 a 1 2 (v, η).
To prove the wanted result, we use induction on |α + β| to prove that for any k ∈ R and any |α + β| ≥ 0,

|∂ α v ∂ β η a k (v, η)| a k (v, η), ( 38 
)
which obviously holds for |α + β| = 0. Now suppose |α + β| ≥ 1, then we have either |α| ≥ 1 or |β| ≥ 1, and suppose |β| ≥ 1 without loss of generality. So we can write

∂ β η = ∂ β η ∂ η j with | β| = |β| -1 and thus ∂ α v ∂ β η a k (v, η) = ∂ α v ∂ β η ka k-1 2η j + 2(v ∧ η)∂ η j (v ∧ η) ,
which along with Leibniz' formula and the induction assumption yields

|∂ α v ∂ β η a k (v, η)| a k-1 1 + |η| + |v||η| + |v||v ∧ η| + |v| 2 a k (v, η),
on the other hand, we have for all k ∈ R,

v k ∈ S( v k , Γ). ( 39 
)
Finally, using ( 38 ), ( 39 ) and Leibniz' formula we conclude for all |α + β| ≥ 0,

|∂ α v ∂ β η λ m (v, η)| ≤ C α,β λ m (v, η). ( 40 
) Lemma 3.3. For m ∈ R, |ξ • ∂ η λ m | λ m ,
uniformly with respect to the parameter ξ in R 3 .

Proof. Lemma 3.3 follows directly from ( 31 ) and the fact that

|ξ • ∂ η λ 2 | = λ v γ 2 a -1/2 |ξ • η + v ∧ ξ • v ∧ η| λ 2 ,
we can conclude that for all m ∈ R,

|ξ • ∂ η λ m | λ m ,
uniformly with respect to the parameter ξ in R 3 .

Lemma 3.4. We have

g i ∈ S(g i , Γ), for i = 1, . . . , 3,
uniformly with respect to the parameter ξ in R 3 .

Proof. Using the fact that for all m ∈ R,

v m ∈ S( v m , Γ), η m ∈ S( η m , Γ) we obtain ∀α, β ∈ N 3 , |∂ α v ∂ β η g i (v, η)| ≤ C α,β g i , uniformly with respect to the parameter ξ in R 3 . Lemma 3.5. For all ε > 0, i) ∂ η λ ∈ S(ελ + ε -1 v γ 2 +1 , Γ), ii) ∂ η g 1 ∈ S(εg 1 + ε -1 , Γ), iii) ∂ η g 2 ∈ S(εg 2 + ε -1 v γ 6 +1 , Γ), iv) ∂ η g 3 ∈ S(εg 3 + ε -1 v γ 3 +1 , Γ);
uniformly with respect to the parameter ξ in R 3 .

Proof. We have

|∂ η g 1 (v, η)| = |∂ η 1 + v + η | |η| η -1 g 1/2 1 , |∂ η g 2 (v, η)| = |∂ η 1 + ξ 1/3 + η | |η| η -1 g 1/2 2 v γ 12 + 1 2 , |∂ η g 3 (v, η)| = |∂ η 1 + ξ 2/3 + η 2 | η g 1/2 3 v γ 6 + 1 2 .
Using Young's inequality we get for all ε > 0,

|∂ η g 1 (v, η)| εg 1 + ε -1 , |∂ η g 2 (v, η)| εg 2 + ε -1 v γ 6 +1 , |∂ η g 3 (v, η)| εg 3 + ε -1 v γ 3 +1 ,
then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂ α v ∂ β η ∂ η g 1 (v, η)| εg 1 + ε -1 , |∂ α v ∂ β η ∂ η g 2 (v, η)| εg 2 + ε -1 v γ 6 +1 ,
and

|∂ α v ∂ β η ∂ η g 3 (v, η)| εg 3 + ε -1 v γ 3 +1 .
Regarding the symbol λ, we have

|∂ η λ(v, η)| = v γ 2 a -1/2 η + (v ∧ η)∂ η (v ∧ η) v γ 2 a -1/2 |η| + |v||v ∧ η| v γ 4 + 1 2 λ 1/2 .
Using Young's inequality we get for all ε > 0,

|∂ η λ(v, η)| ελ + ε -1 v γ 2 +1 ,
then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂ α v ∂ β η ∂ η λ(v, η)| ελ + ε -1 v γ 2 +1 .
From the above, we have shown that the symbols g 1 , g 2 , g 3 and λ verify the hypotheses of Theorem A.6 , so we can apply the results of Theorem A.6 to the following operators

g w 1,K = g 1 + K w , ( 41 
)
g w 2,K = g 2 + K v γ 6 +1 w , ( 42 
)
g w 3,K = g 3 + K v γ 3 +1 w , ( 43 
)
λ w K = λ + K v γ 2 +1 w , ( 44 
)
where K the fixed constant given by Theorem A.6 . In Section 3.2, we will apply the results of Theorem A.6 on the operators above.

Let ψ be a

C ∞ 0 (R, [0, 1]) function such that ψ = 1 on [-1, 1], supp ψ ⊂ [-2, 2]. (45) 
Definition 3.6. Define the real-valued symbol

g = - B(v)ξ • B(v)η λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 , ( 46 
)
where λ is the symbol defined in ( 31 ).

Lemma 3.7 (Lemma 3.3 in [12]

). We have

ψ |B(v)η| 2 + F (v) λ 2/3 ∈ S(1, Γ),
uniformly with respect to the parameter ξ in R 3 .

Lemma 3.8. The symbol g belongs to the class S(1, Γ) uniformly with respect to the parameter ξ in R 3 .

Proof. Notice from ( 45 ) that

|B(v)η| 2 + F (v) ≤ 2λ 2/3 , ( 47 
)
on the support of the function

ψ |B(v)η| 2 + F (v) λ 2/3 . ( 48 
)
By recalling ( 31 ) and using [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], we obtain

|B(v)ξ| v γ 2 |ξ| + v γ 2 |v ∧ ξ| λ. ( 49 
)
We deduce from the Cauchy-Schwarz inequality that one can estimate

|B(v)ξ • B(v)η| |B(v)ξ||B(v)η| λ 4/3 , ( 50 
)
on the support of ψ. The symbol g is therefore a bounded function uniformly with respect to the parameter ξ in R 3 . Using ( 14) and ( 15), we can estimate

|∂ α v B(v)ξ| v γ 2 |ξ| |B(v)ξ| λ (51)
where α ∈ N 3 with |α| ≥ 1. Using again ( 14) and ( 15), we can estimate

|∂ α v B(v)η| v γ 2 |η| |B(v)η| λ 1/3 (52)
on the support of ψ. Morever, one can estimate from above the modulus of all the derivatives of the term B(v)η by a constant times λ 1/3 on the support of the function

ψ |B(v)η| 2 + F (v) λ 2/3 .
Using Leibniz's formula, Cauchy-Schwarz inequality ( 51 ), ( 52 ) one can estimate from above the modulus of all the derivatives of the term B(v)ξ • B(v)η by a constant times λ 4/3 on the support of the fonction ψ. According to Lemma 3.2 and Lemma 3.7 , this proves that the symbol g belongs to the class S(1, Γ) uniformly with respect to the parameter ξ in R 3 .

Lemma 3.9. We have

ξ • ∂ η ψ |B(v)η| 2 + F (v) λ 2/3 1 + |B(v)η| 2 + F (v),
uniformly with respect to the parameter ξ in R 3 .

Proof. Let ω = |B(v)η| 2 +F (v) λ 2/3
. We may write

ξ • ∂ η [ψ(ω)] = ψ ′ (ω) 2B(v)ξ • B(v)η λ 2/3 + |B(v)η| 2 + F (v) (ξ • ∂ η )(λ -2/3 ) .
Notice from ( 31 ) and ( 45)

2B(v)ξ • B(v)η λ 2/3 |B(v)ξ||B(v)η| λ 2/3 λλ 1/3 λ 2/3 λ 2/3 |B(v)η| 2 + F (v),
on the support of the function ψ ′ (ω). One can then deduce Lemma 3.9 from Lemma 3.3 .

Hypoelliptic estimates

We shall consider the multiplier G = g Wick defined by the Wick quantization of the symbol g. We refer the reader to Appendix A.3 on Wick calculus. We begin by noticing from ( 133 ) that there exists a real-valued symbol g belonging to the class S(1, Γ) uniformly with respect to the parameter ξ in R 3 such that

G = g Wick = gw ; ( 53 
)
where gw denotes the operator obtained by the Weyl quantization of the symbol g given by

(g w u)(v) = 1 (2π) 3 R 6 e i(v-v ′ )•η g v + v ′ 2 , η u(v ′ ) dv ′ dη. ( 54 
)
We shall sometimes closely follow [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF] and refer to appendix (Section A ) for the main features of the Wick and the Weyl quantizations. We begin by a series of Lemmas whose proof is exactly the same as the one in [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF].

Lemma 3.10. There exists

c 1 > 0 such that for all u ∈ S(R 3 v ), | (F (v)u, Gu) L 2 | + | (∇ v • (A(v)∇ v u), Gu) L 2 | ≤ c 1 ℜe (A ξ u, u) L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Proof. See Lemma 3.7 in [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF]. Lemma 3.11. There exists c 2 > 0 such that for all u ∈ S(R 3 v ),

B(v)∇ v u 2 L 2 + F (v)u 2 L 2 -[4π 2 |B(v)η| 2 + F (v)] Wick u, u L 2 ≤ c 2 ℜe (A ξ u, u) L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Proof. See Lemma 3.11 in [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF].

Let δ be a positive parameter such that 0 < δ ≤ 1. We use a multiplier method and write that

ℜe (A ξ u, (1 -δG)u) L 2 = B(v)∇ v u 2 L 2 + F (v)u 2 L 2 -δℜe (iv • ξu, Gu) L 2 + δℜe (∇ v • (A(v)∇ v u), Gu) L 2 -δℜe (F (v)u, Gu) L 2 . ( 55 
)
Lemma 3.12. We have for any s ∈ R

B(v)ξ s (1 -δG)u L 2 B(v)ξ s u L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Proof. See Lemma 3.8 in [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF].

Proposition 3.13. There exists C > 0 such that for all u ∈ S(R 3 v ),

((λ 2/3 ) Wick u, u) L 2 ≤ C ℜe(A ξ u, u) L 2 + ℜe(A ξ u, (1 -δG)u) L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Proof. Using ( 55 ), we have for 0 < δ ≤ 1 and u ∈ S(R 3 v ),

B(v)∇ v u 2 L 2 + F (v)u 2 L 2 -δℜe (iv • ξu, Gu) L 2 = ℜe (A ξ u, (1 -δG)u) L 2 -δℜe (∇ v • (A(v)∇ v u), Gu) L 2 + δℜe (F (v)u, Gu) L 2 , (56)
uniformly with respect to the parameter ξ in R 3 . Recalling ( 53 ) and noticing from ( 133 ) and ( 134 ) that v Wick = v, we may rewrite ( 56 ) as

B(v)∇ v u 2 L 2 + F (v)u 2 L 2 -δℜe iξ • v Wick u, Gu L 2 = ℜe (A ξ u, (1 -δG)u) L 2 -δℜe (∇ v • (A(v)∇ v u), Gu) L 2 + δℜe (F (v)u, Gu) L 2 . ( 57 
)
Using Lemma 3.10 , we deduce that there is a constant c 3 > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R 3 v ),

B(v)∇ v u 2 L 2 + F (v)u 2 L 2 -δℜe iξ • v Wick u, Gu L 2 ≤ c 3 ℜe (A ξ u, u) L 2 + ℜe (A ξ u, (1 -δG)u) L 2 , ( 58 
)
uniformly with respect to the parameter ξ in R 3 . We deduce from Lemma 3.8 and ( 135 ) that

-δℜe iξ • v Wick u, Gu L 2 = -δℜe g Wick (iξ • v) Wick u, u L 2 = δ 1 4π {ξ • v, g} Wick u, u L 2 . ( 59 
)
Using ( 46 ) with a direct computation of the Poisson bracket gives that

{ξ • v, g} = (B(v)ξ • B(v)η)(ξ • ∂ η (λ -4/3 ))ψ |B(v)η| 2 + F (v) λ 2/3 + |B(v)ξ| 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 + B(v)ξ • B(v)η λ 4/3 ξ • ∂ η ψ |B(v)η| 2 + F (v) λ 2/3 . ( 60 
)
We notice from Lemma 3.3 , Lemma 3.9 , ( 46 ) and ( 50 ) that

{ξ • v, g} - |B(v)ξ| 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 1 + |B(v)η| 2 + F (v), (61) 
uniformly with respect to the parameter ξ in R 3 . It follows from ( 59), ( 58 ) and the fact that the Wick quantization is a positive quantization ( 132 ) that there exists constante c 4 > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R 3 v ),

δ 4π   |B(v)ξ| 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 Wick u, u   L 2 + B(v)∇ v u 2 L 2 + F (v)u 2 L 2 ≤ c 3 ℜe (A ξ u, u) L 2 + ℜe (A ξ u, (1 -δG)u) L 2 + δc 4 1 + |B(v)η| 2 + F (v) Wick u, u L 2 , ( 62 
)
uniformly with respect to the parameter ξ in R 3 . It follows from Lemma 3.11 that there exists c 5 > 0 such that for all 0 < δ ≤ 1 and

u ∈ S(R 3 v ) δ   |B(v)ξ| 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 Wick u, u   L 2 + (4π 2 |B(v)η| 2 + F (v) Wick u, u) L 2 + u 2 L 2 ≤ c 5 ℜe (A ξ u, u) L 2 + ℜe (A ξ u, (1 -δG)u) L 2 , ( 63 
)
uniformly with respect to the parameter ξ in R 3 . Notice from ( 31 ), ( 45) and ( 15) that

δ |B(v)ξ| 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 + 4π 2 |B(v)η| 2 + F (v) + 1 ≥ δ |B(v)ξ| 2 + |B(v)η| 2 + F (v) + 1 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 + (|B(v)η| 2 + F (v) + 1) 1 -ψ |B(v)η| 2 + F (v) λ 2/3 δ λ 2 λ 4/3 ψ |B(v)η| 2 + F (v) λ 2/3 + δλ 2/3 1 -ψ |B(v)η| 2 + F (v) λ 2/3 δλ 2/3 , when 0 < δ λ 4/3 ≤ 1; since |B(v)η| 2 + F (v) ≥ λ 2/3 ,
on the support of the function

1 -ψ |B(v)η| 2 + F (v) λ 2/3 .
By using again that the Wick quantization is a positive quantization ( 132 ), we deduce that there exists C > 0 such that for all 0 < δ ≤ 1 and u ∈ S(R 3 v ),

((λ 2/3 ) Wick u, u) L 2 ≤ C ℜe(A ξ u, u) L 2 + ℜe(A ξ u, (1 -δG)u) L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Lemma 3.14.

There exists C > 0 such that for all v ∈ R 3 and ξ ∈ R 3 ,

B(v)ξ 1/3 ≤ Cm(v, ξ), with m(v, ξ) = R 3 B(v + ṽ)ξ 2/3 π -3 e -|ṽ| 2 dṽ 1/2 .
Proof. We have that

m(v, ξ) 2 R 3
(1 + |B(v + ṽ)ξ| 2/3 )π -3 e -|ṽ| 2 dṽ, therefore by using [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], we obtain that

m(v, ξ) 2 R 3
(1 + v + ṽ γ/3 |ξ| 2/3 + v + ṽ γ/3 |(v + ṽ) ∧ ξ| 2/3 )π -3 e -|ṽ| 2 dṽ, and using Peetre's inequality ( 37 ), we have

v γ/3 ṽ γ/3 v + ṽ γ/3 , so we get m(v, ξ) 2 1 + v γ/3 |ξ| 2/3 + R 3 v γ/3 ṽ γ/3 |(v + ṽ) ∧ ξ| 2/3 π -3 e -|ṽ| 2 dṽ 1 + v γ/3 |ξ| 2/3 + B(0,1) v γ/3 ṽ γ/3 |(v + ṽ) ∧ ξ| 2/3 π -3 e -|ṽ| 2 dṽ
where B(0, 1) stands for the closed unit ball in R 3 . By noticing that we have

|(v + ṽ) ∧ ξ| ≥ |v ∧ ξ| -|ṽ ∧ ξ| ≥ |v ∧ ξ| -|ξ| ≥ 1 2 |v ∧ ξ|, when |ṽ| ≤ 1 and 2|ξ| ≤ |v ∧ ξ|, it follows that R 3 v γ/3 ṽ γ/3 |(v + ṽ) ∧ ξ| 2/3 π -3 e -|ṽ| 2 dṽ v γ/3 |v ∧ ξ| 2/3 , when 2|ξ| ≤ |v ∧ ξ|. Since v γ/3 |ξ| 2/3 v γ/3 |v ∧ ξ| 2/3
when 2|ξ| ≥ |v ∧ ξ|. Based on the above and using [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], we obtain

m(v, ξ) 2 1 + v γ/3 |ξ| 2/3 + v γ/3 |v ∧ ξ| 2/3 1 + |B(v)ξ| 2/3 B(v)ξ 2/3 . Lemma 3.15. For all u ∈ S(R 3 v ), v 5γ 6 +2 u 2 L 2 + v γ 3 +1 B(v)D v u 2 L 2 A ξ u 2 L 2 + u 2 L 2 . ( 64 
)
Proof. See Lemma 3.3 in [START_REF] Hérau | Global hypoelliptic estimates for Landau-type operators with external potential[END_REF].

For the rest, we need to improve this estimate. We have the following Lemma.

Lemma 3.16. For all

u ∈ S(R 3 v ), v γ+2 u 2 L 2 + v γ 2 +1 B(v)D v u 2 L 2 A ξ u 2 L 2 + u 2 L 2 . ( 65 
)
Proof. We will start by estimating the term

A ξ , v γ 2 +1 u, v γ 2 +1 u L 2 . Let u ∈ S(R 3 v ), we have A ξ , v γ 2 +1 u, v γ 2 +1 u L 2 ≤ B(v) D v , v γ 2 +1 u, B(v)D v v γ 2 +1 u L 2 + B(v)D v u, B(v) D v , v γ 2 +1 v γ 2 +1 u L 2 ≤ B(v) D v , v γ 2 +1 u, B(v) D v , v γ 2 +1 u L 2 + B(v) D v , v γ 2 +1 u, v γ 2 +1 B(v)D v u L 2 + B(v)D v u, B(v) D v , v γ 2 +1 v γ 2 +1 u L 2 ,
using the fact that the symbol of the operator D v , v γ 2 +1 belongs to the class S( v γ 2 , Γ) uniformly with respect to the parameter ξ and using the following notations

H 1 = B(v) D v , v γ 2 +1 v -γ-1 ∈B(L 2 ) , H 2 = v -γ 2 -1 B(v) D v , v γ 2 +1 v -γ 2 ∈B(L 2 )
, we obtain

A ξ , v γ 2 +1 u, v γ 2 +1 u L 2 ≤ H 1 v γ+1 u, H 1 v γ+1 u L 2 + H 1 v γ+1 u, v γ 2 +1 B(v)D v u L 2 + v γ 2 +1 B(v)D v u, H 2 v γ 2 +1 u L 2 ,
using the fact that γ + 1 ≤ 2 + 5γ 6 and Lemma 3.15 , we obtain for all ε > 0

A ξ , v γ 2 +1 u, v γ 2 +1 u L 2 ε( v γ+2 u 2 L 2 + v γ 2 +1 B(v)D v u 2 L 2 ) + C ε ( A ξ u 2 L 2 + u 2 L 2 ).
On the other hand, we have

A ξ v γ 2 +1 u, v γ 2 +1 u L 2 ≤ A ξ u, v γ+2 u L 2 + A ξ , v γ 2 +1 u, v γ 2 +1 u L 2 and A ξ u, v γ+2 u L 2 ≤ ε v γ+2 u 2 L 2 + C ε A ξ u 2 L 2 .
Now using ( 30 ), we can write

v γ+2 u 2 L 2 + v γ 2 +1 B(v)D v u 2 L 2 ≤ v γ 2 +1 v γ 2 +1 u 2 L 2 + B(v)D v v γ 2 +1 u 2 L 2 + B(v) D v , v γ 2 +1 u 2 L 2 ≤ A ξ v γ 2 +1 u, v γ 2 +1 u L 2 + B(v) D v , v γ 2 +1 u 2 L 2 .
For the last term, we have

B(v) D v , v γ 2 +1 u 2 L 2 ≤ H 1 v γ+1 u 2 L 2 ε v γ+2 u 2 L 2 + C ε ( A ξ u 2 L 2 + u 2 L 2 ).
Finally, taking ε small enough, we obtain for all u ∈ S(R 3 v ),

v γ+2 u 2 L 2 + v γ 2 +1 B(v)D v u 2 L 2 A ξ u 2 L 2 + u 2 L 2 . ( 66 
)
Proposition 3.17. There exists C > 0 such that for all u ∈ S(R 3 v ),

v γ 3 |ξ| 2/3 u 2 L 2 ≤ C A ξ u 2 L 2 + u 2 L 2 ,
uniformly with respect to the parameter ξ in R 3 .

Proof. We deduce from Proposition 3.13 , Lemma 3.14 and Lemma 3.12 that

B(v)ξ 1/3 u L 2 B(v)ξ -1/3 A ξ u 2 L 2 B(v)ξ 1/3 u L 2 ,
uniformly with respect to the parameter ξ in R 3 . By substituting B(v)ξ 1/3 u to u in this estimate, we obtain that

B(v)ξ 2/3 u 2 L 2 B(v)ξ -1/3 A ξ B(v)ξ 1/3 u L 2 B(v)ξ 2/3 u L 2 , ( 67 
)
uniformly with respect to the parameter ξ in R 3 . First, we have

B(v)ξ -1/3 D v • A(v)D v , B(v)ξ 1/3 = B(v)ξ -1/3 3 j,k=1 D v j • a jk (v) D v k , B(v)ξ 1/3 + B(v)ξ -1/3 3 j,k=1 D v j , B(v)ξ 1/3 • a jk (v)D v k = B(v)ξ -1/3 3 j,k=1 D v j a jk (v) D v k , B(v)ξ 1/3 + B(v)ξ -1/3 3 j,k=1 a jk (v) D v k , B(v)ξ 1/3 D v j + B(v)ξ -1/3 3 j,k=1 a jk (v)D v j D v k , B(v)ξ 1/3 + B(v)ξ -1/3 3 j,k=1 D v j , B(v)ξ 1/3 • a jk (v)D v k .
Symbolic calculus shows that

D v , B(v)ξ 1/3 = 1 i ∇ v ( B(v)ξ 1/3 ),
and using the following notations

H 3 = B(v)ξ -1/3 ∂ v j a jk (v)∂ v k B(v)ξ 1/3 v -γ-1 ∈B(L 2 ) , H 4 = B(v)ξ -1/3 a jk (v)∂ v j ∂ v k B(v)ξ 1/3 v -γ-2 ∈B(L 2 ) , H 5 = B(v)ξ -1/3 b ik (v)∂ v k B(v)ξ 1/3 v -γ 2 -1 ∈B(L 2 ) , H 6 = B(v)ξ -1/3 b ij (v)∂ v j B(v)ξ 1/3 v -γ 2 -1 ∈B(L 2 )
, where we used the fact that A(v) = B T (v)B(v). Then, going back to ( 67 ), we have

B(v)ξ 2/3 u 2 L 2 B(v)ξ -1/3 A ξ B(v)ξ 1/3 u L 2 B(v)ξ 2/3 u L 2 , B(v)ξ -1/3 A ξ , B(v)ξ 1/3 u 2 L 2 + A ξ u 2 L 2 , A ξ u 2 L 2 + H 3 v γ+1 u 2 L 2 + H 4 v γ+2 u 2 L 2 + 3 i=1 H 5 3 j=1 v γ 2 +1 b ij (v)D v j u 2 L 2 + 3 i=1 H 6 3 k=1 v γ 2 +1 b ik (v)D v k u 2 L 2 , A ξ u 2 L 2 + v γ+1 u 2 L 2 + v γ+2 u 2 L 2 + v γ 2 +1 B(v)D v u 2 L 2
We finally conclude from Lemma 3.16 that for all u ∈ S(R 3 v ),

B(v)ξ 2/3 u 2 L 2 A ξ u 2 L 2 + u 2 L 2 .
This ends the proof of Proposition 3.17 .

Lemma 3.18. Let λ K be the symbol defined in ( 44 ). Then for any ε > 0 there exists a constant C ε, such that for all u ∈ S(R 3 v ),

ℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + C ε A ξ u 2 L 2 + u 2 L 2 . ( 68 
)
Proof. As a preliminary step we firstly show that for any ε, ε > 0 there exists a constant C ε,ε , such that ℜe A ξ , λ

1/3 K w u, a w λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + C ε,ε A ξ u 2 L 2 + u 2 L 2 + ε ℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 , ( 69 
)
where a is an arbitrary symbol belonging to S(1, Γ) uniformly with respect to the parameter ξ. Using the notation

Z 1 = D v • A(v)D v , λ 1/3 K w u, a w λ 1/3 K w u L 2 .
We have

Z 1 = 3 i,j,k=1 b ik (v)D v k , λ 1/3 K w u, b ij (v)D v j a w λ 1/3 K w u L 2 + 3 i,j,k=1 b ik D v k u, λ 1/3 K w , b ij (v)D v j a w λ 1/3 K w u L 2 .
Using the fact that

B(v)D v , λ 1/3 K w u = B(v) D v , λ 1/3 K w u -λ 1/3 K w , B(v) D v u,
we obtain

|Z 1 | ≤ 3 i,j,k=1 b ik (v) D v k , λ 1/3 K w u, b ij (v)D v j a w λ 1/3 K w u L 2 + 3 i,j,k=1 λ 1/3 K w , b ik (v) D v k u, b ij (v)D v j a w λ 1/3 K w u L 2 + 3 i,j,k=1 b ik (v)D v k u, b ij (v) D v j , λ 1/3 K w a w λ 1/3 K w u L 2 + 3 i,j,k=1 b ik (v)D v k u, λ 1/3 K w , b ij (v) D v j a w λ 1/3 K w u L 2 ≤ |Z 1,1 | + |Z 1,2 | + |Z 1,3 | + |Z 1,4 |. Estimate of Z 1,1 : Observing a ∈ S(1, Γ), ∂ v λ 1/3 K ∈ S( v γ/6 g 2,K
, Γ) and using ( 14) with symbolic calculus shows that

D v j , a w ∈ Ψ(1, Γ), [b ij (v), a w ] ∈ Ψ( v γ 2 , Γ) and D v k , λ 1/3 K w ∈ Ψ( v γ 6 g 2,K , Γ)
uniformly with respect to the parameter ξ, where g w 2,K the operator defined in ( 42 ). Now using the following notation

H 7 = b ik (v) D v k , λ 1/3 K w g w 2,K -1 v -γ/6 v -γ 2 -1 ∈B(L 2 )
, we obtain

|Z 1,1 | ≤ 3 i,j,k=1 H 7 v 2γ 3 +1 g w 2,K u, b ij (v) D v j , a w v -γ 2 -1 v γ 2 +1 λ 1/3 K w u L 2 + 3 i,j,k=1 H 7 v 2γ 3 +1 g w 2,K u, [b ij (v), a w ] v -γ 2 v γ 2 D v j λ 1/3 K w u L 2 + 3 i,j,k=1 H 7 v 2γ 3 +1 g w 2,K u, a w b ij (v)D v j λ 1/3 K w u L 2 C ε v γ+2 u 2 L 2 + v γ+1 D v u 2 L 2 + v γ 3 |ξ| 2/3 u 2 L 2 + εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 .
Moreover using Lemma 3.16 and Proposition 3.17 , we obtain

|Z 1,1 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε A ξ u 2 L 2 + u 2 L 2 . Estimate of Z 1,2 : Observing ∂ η λ 1/3 K ∈ S( v γ 6 + 1 
3 , Γ) and using ( 14) with symbolic calculus shows that the symbol of the commutator λ

1/3 K w , b ik (v) belongs to S( v 2γ 3 + 1 3 , Γ)
uniformly with respect to the parameter ξ. Now using the following notation

H 8 = λ 1/3 K w , b ik (v) v -2γ 3 -1 3 ∈B(L 2 ) , we obtain |Z 1,2 | ≤ 3 i,j,k=1 H 8 v 2γ 3 + 1 3 D v k u, b ij (v) D v j , a w v -γ 2 -1 v γ 2 +1 λ 1/3 K w u L 2 + 3 i,j,k=1 H 8 v 2γ 3 + 1 3 D v k u, [b ij (v), a w ] v -γ 2 v γ 2 D v j λ 1/3 K w u L 2 + 3 i,j,k=1 H 8 v 2γ 3 + 1 3 D v k u, a w b ij (v)D v j λ 1/3 K w u L 2 C ε v γ+1 D v u 2 L 2 + εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 ,
moreover using Proposition 3.17 , we obtain

|Z 1,2 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε A ξ u 2 L 2 + u 2 L 2 .
Estimate of Z 1,3 : Using the following notation

H 9 = v -γ 2 -1 b ij (v) D v j , λ 1/3 K w a w g w 2,K -1 v -γ/6 ∈B(L 2 )
, we obtain

|Z 1,3 | ≤ 3 i,j,k=1 v γ 2 +1 b ik D v k u, H 9 v γ 6 g w 2,K λ 1/3 K w u L 2 3 i,j,k=1 v γ 2 +1 b ik D v k u, v γ 6 g w 2,K λ 1/3 K w u L 2 ε v γ 6 λ 1/3 K w u 2 L 2 + v γ 6 D v λ 1/3 K w u 2 L 2 + v γ 6 |ξ| 1/3 λ 1/3 K w u 2 L 2 + C ε v γ 2 +1 B(v)D v u 2 L 2 ,
moreover using Lemma 3.16 and Proposition 3.13 , we obtain

|Z 1,3 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + εℜe A ξ (λ 1/3 K ) w u, (1 -δG)(λ 1/3 K ) w u L 2 + C ε A ξ u 2 L 2 + u 2 L 2 .
Estimate of Z 1,4 : Using the following notations

H 10 = v -γ 3 -1 λ 1/3 K w , b ij (v) D v j , a w v -γ 3 ∈B(L 2 )
,

H 11 = v -γ 3 -1 λ 1/3 K w , b ij (v) a w v -γ 3 ∈B(L 2 )
, we obtain

|Z 1,4 | ≤ 3 i,j,k=1 v γ 3 +1 b ik D v k u, H 10 v γ 3 λ 1/3 K w u L 2 + 3 i,j,k=1 v γ 3 +1 b ik D v k u, H 11 v γ 3 D v j λ 1/3 K w u L 2 ε v γ 3 λ 1/3 K w u 2 L 2 + v γ 3 D v λ 1/3 K w u L 2 + C ε v γ 3 +1 B(v)D v u 2 L 2 ,
Moreover using Lemma 3.15 , we obtain

|Z 1,4 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε A ξ u 2 L 2 + u 2 L 2 ,
so using the estimates of Z 1,n for n = 1, . . . , 4, we obtain

|Z 1 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε A ξ u 2 L 2 + u 2 L 2 .
Let's look now

Z 2 = F (v), λ 1/3 K w u, a w λ 1/3 K w u L 2 , observing the symbol ∂ η λ 1/3 K ∈ S( v γ 6 + 1
3 , Γ), and using Lemma 2.4 with symbolic calculus shows that the symbol of the commutator F (v), λ

1/3 K w belongs to S( v 3γ 2 +2 , Γ)
uniformly with respect to the parameter ξ. Now using the following notation

H 12 = v -γ 2 -1 F (v), λ 1/3 K w v -γ-1 ∈B(L 2 )
, we obtain

|Z 2 | ≤ v γ 2 +1 H 12 v -γ-1 v γ+1 u, a w λ 1/3 K w u L 2 ≤ H 12 v γ+1 u, a w v γ 2 +1 λ 1/3 K w u L 2 + H 12 v γ+1 u, v γ 2 +1 , a w v -γ 2 -1 v γ 2 +1 λ 1/3 K w u L 2 ,
in addition, we have that the symbol of the commutator v γ 2 +1 , a w belongs to S( v γ 2 +1 , Γ) and using Lemma 3.16 , we obtain

|Z 2 | εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε ( A ξ u 2 L 2 + u 2 L 2 ). ( 70 
)
Let's look now

Z 3 = iv • ξ, λ 1/3 K w u, a w λ 1/3 K w u L 2
, using Lemma 3.3 with symbolic calculus shows that the symbol of the commutator iv • ξ, λ 1/3 K w belongs to S(λ 1/3 K , Γ) uniformly with respect to the parameter ξ. Now using the following notation

H 13 = λ 1/3 K w (a w ) * iv • ξ, λ 1/3 K w λ 2/3 K w -1 ∈B(L 2 )
, we obtain

|Z 3 | ≤ H 13 λ 2/3 K w u, u L 2 ε λ 2/3 K w u 2 L 2 + C ε A ξ u 2 L 2 + u 2 L 2 . ( 71 
)
From the above, using the estimates of Z l for l = 1, . . . , 3, we obtain ( 69 ). Next we prove ( 68 ), we have the following relation

ℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 = ℜe A ξ u, λ 1/3 K w λ 1/3 K w u L 2 + ℜe A ξ , λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ u, λ 1/3 K w (1 -δG) λ 1/3 K w u L 2 + ℜe A ξ , λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 = ℜe A ξ u, λ 1/3 K w λ 1/3 K w λ 2/3 K w -1 λ 2/3 K w u L 2 + ℜe A ξ , λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ u, λ 1/3 K w (1 -δG) λ 1/3 K w λ 2/3 K w -1 λ 2/3 K w u L 2 + ℜe A ξ , λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2
gives, with ε > 0 arbitrary,

ℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + C ε A ξ u 2 L 2 + u 2 L 2 + ℜe A ξ , λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ , λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 .
We could apply ( 69 ) with a = 1 and a = 1 -δg to control the last term in the above inequality; this gives, with ε, ε > 0 arbitrarily small,

ℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + ℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + εℜe A ξ λ 1/3 K w u, λ 1/3 K w u L 2 + C ε,ε ( A ξ u 2 L 2 + u 2 L 2 ) + εℜe A ξ λ 1/3 K w u, (1 -δG) λ 1/3 K w u L 2 .
Letting ε small enough yields the desired estimate ( 68 ).

Proposition 3.19. Let λ K be the symbol defined in ( 44 ). Then there exists C 0 > 0 such that for all u ∈ S(R 3 v ),

λ 2/3 K w u 2 L 2 ≤ C 0 A ξ u 2 L 2 + u 2 L 2 . ( 72 
)
Proof. Using Proposition 3.13 , we have for all u ∈ S(R 3 v ), ((λ

2/3 K ) Wick u, u) L 2 ℜe(A ξ u, u) L 2 + ℜe(A ξ u, (1 -δG)u) L 2 , ( 73 
)
uniformly with respect to the parameter ξ in R 3 . By substituting λ 1/3 K w u to u in the above estimate, we obtain that for all ε > 0,

λ 2/3 K Wick λ 1/3 K w u, λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + C ε A ξ u 2 L 2 + u 2 L 2 . ( 74 
)
Notice from ( 133 ) that we may write (λ

2/3 K ) Wick = (λ 2/3 K ) w + r w , (75) with r(v, η) = 1 0 R 6 (1 -θ)(λ 2/3 K ) " (Y + θY 1 )Y 1 • Y 1 e -|Y 1 | 2 dY 1 dθ,
where Y, Y 1 ∈ R 6 and (λ

2/3 K ) " (Y ) is the Hessian of λ 2/3 K at the point Y . Define r 1 = π -3 1 0 R 6 (1 -θ)∇ 2 η (λ 2/3 K )(Y + θY 1 )η 1 • η 1 e -|Y 1 | 2 dY 1 dθ, r 2 = π -3 3 j,k=1 1 0 R 6 (1 -θ)∂ v j ∂ η k (λ 2/3 K )(Y + θY 1 )(v 1j η 1 k + v 1k η 1 j )e -|Y 1 | 2 dY 1 dθ,
and

r 3 = π -3 1 0 R 6 (1 -θ)∇ 2 v (λ 2/3 K )(Y + θY 1 )v 1 • v 1 e -|Y 1 | 2 dY 1 dθ.
Using Lemma 3.5 with symbolic calculus shows that the symbol

∇ 2 η (λ 2/3 K ), ∇ v ∇ η (λ 2/3 K ) ∈ S( v γ+2 , Γ),
uniformly with respect to the parameter ξ, then r 1 , r 2 belong to S( v γ+2 , Γ). Using the following notations

H 14 = λ 2/3 K w -1 λ 1/3 K w r w 1 λ 1/3 K w v -γ-2 ∈B(L 2 )
,

H 15 = λ 2/3 K w -1 λ 1/3 K w r w 1 λ 1/3 K w v -γ-2 ∈B(L 2 )
, we obtain for all ε > 0,

r w 1 λ 1/3 K w u, λ 1/3 K w u L 2 + r w 2 λ 1/3 K w u, λ 1/3 K w u L 2 ≤ H 14 v γ+2 u, λ 2/3 K w u L 2 + H 15 v γ+2 u, λ 2/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + Cε A ξ u 2 L 2 + u 2 L 2 .
Taking into account that the symbol ∇ 2 v (λ

2/3 K ), belongs to S( v γ 3 g 3,K
, Γ) uniformly with respect to the parameter ξ, where g 3,K the operator defined in ( 43 ), then the symbol r 3 belongs to S( v γ 3 g 3,K , Γ). Using the following notation

H 16 = λ 2/3 K w -1 λ 1/3 K w r w 3 λ 1/3 K w g w 3,K -1 v -γ 3 ∈B(L 2 )
, we obtain

r w 3 λ 1/3 K w u, λ 1/3 K w u L 2 ≤ H 16 v γ 3 g w 3,K u, λ 2/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + Cε A ξ u 2 L 2 + u 2 L 2 .
From the above, using the estimates of r l for l = 1, . . . , 3, we obtain

r w λ 1/3 K w u, λ 1/3 K w u L 2 ε λ 2/3 K w u 2 L 2 + Cε A ξ u 2 L 2 + u 2 L 2 . ( 76 
)
By applying Theorem A.6 with p = λ, we obtain

λ 2/3 K w λ 1/3 K w u, λ 1/3 K w u L 2 ∼ λ 1/3 K w 2 u 2 L 2 ∼ λ 2/3 K w u 2 L 2 , ( 77 
)
uniformly with respect to the parameter ξ. Using ( 76 ), then taking ε small enough, we get for all ε > 0,

λ 2/3 K w u 2 L 2 ε λ 2/3 K w u 2 L 2 + Cε A ξ u 2 L 2 + u 2 L 2
, now taking ε small enough, we obtain that there is a constant C 0 > 0 such that for all u ∈ S(R 3 v ),

λ 2/3 K w u 2 L 2 ≤ C 0 A ξ u 2 L 2 + u 2 L 2 . ( 78 
)
Proposition 3.20. Let λ K be the symbol defined in ( 44 ). Then there exists C 0 > 0 such that for all u ∈ S(R 3 v ),

A ξ u 2 L 2 ≤ C 0 λ 2 K w u 2 L 2 . ( 79 
)
Proof. We denote by σ the symbol of the operator A ξ . We will show that σ belongs to S(λ 2 , Γ) uniformly with respect to the parameter ξ. Using Lemma 3.11 in [START_REF] Hérau | Anisotropic hypoelliptic estimates for Landau-type operators[END_REF], we can write σ as follows

σ = iv • ξ + |B(v)η| 2 + F (v) + R 1 + R 2 ,
where R 1 (resp R 2 ) is a symbol belongs to S( v γ+1 η , Γ) (resp S( v γ , Γ)) uniformly with respect to the parameter ξ.

For iv • ξ: Taking into account the fact that γ ≥ 0, we have

For |α| = 0, |iv • ξ| |v| 2 + |ξ| 2 v γ+2 + v γ |ξ| 2 λ 2 , for |α| = 1, |∂ α v (iv • ξ)| = |ξ| v γ/2 |ξ| λ 2 , for |α| ≥ 2, |∂ α v (iv • ξ)| = 0.
For |B(v)η| 2 : Using ( 14), we have

for |α| ≥ 1, |∂ α v B(v)η| 2 v γ |η| 2 |B(v)η| 2 , ( 80 
)
then, using Cauchy-Schwarz we get

∀α ∈ N 3 , |∂ α v (|B(v)η| 2 )| |B(v)η| 2 λ 2 . ( 81 
)
On the other hand, also using ( 14), we have

pour |α| = 0, |B(v)η| 2 λ 2 , pour |α| = 1, |∂ α η (|B(v)η| 2 )| |B(v)||B(v)η| λ 2 , pour |α| = 2, |∂ α η (|B(v)η| 2 )| |B T (v)B(v)| λ 2 , pour |α| ≥ 3, |∂ α η (|B(v)η| 2 )| = 0, so we get ∀α ∈ N 3 , |∂ α η (|B(v)η| 2 )| λ 2 . ( 82 
)
Moreover, one can estimate from above the modulus of all the derivatives of the term |B(v)η| 2 by a constant times λ 2 .

For F (v): Using Lemma 2.4 , we have

∀α ∈ N 3 , |∂ α v F (v)| v γ+2-|α| λ 2 , ( 83 
)
which gives that F (v) ∈ S(λ 2 , Γ) uniformly with respect to the parameter ξ.

In addition, we have that R 1 , R 2 ∈ S(λ 2 , Γ). From the above, we can deduce that σ belongs to S(λ 2 , Γ) uniformly with respect to the parameter ξ. Using the following notation

H 17 = A ξ λ 2 K w -1 ∈B(L 2 )
, Then there exists C 0 > 0 such that

H 17 ϕ 2 L 2 ≤ C 0 ϕ 2 L 2 ∀ϕ ∈ L 2 (R 3 v ), (84) 
uniformly with respect to the parameter ξ, which implies for all u ∈ S(R 3 v ),

A ξ u 2 L 2 ≤ C 0 λ 2 K w u 2 L 2 . ( 85 
)
4 Hypoelliptic estimates for the whole linearized Landau operator

In this section, we show hypoelliptic estimates with respect to the velocity and position variables for the Landau operator P. These estimates allow us to locate the spectrum and estimate the resolvent of the Landau operator. We denote by Λ K the operator associated to the symbol λ K by considering the inverse Fourier transform with respect to the variable x.

Theorem 4.1. There exists C > 0 such that for all u ∈ S(R 6 x,v ),

Λ 2/3 K u 2 L 2 x,v ≤ C Pu 2 L 2 x,v + u 2 L 2 x,v . ( 86 
)
Proof. Using Theorem A.6 , we have for all u ∈ S(R 3 v ),

λ 2/3 K w u 2 L 2 v ∼ λ w K 2/3 u 2 L 2
v , so using the Proposition 3.19 , there exists a constant C 1 > 0 such that for all u ∈ S(R 3 v ),

λ w K 2/3 u 2 L 2 v ≤ C 1 A ξ u 2 L 2 v + u 2 L 2 v , ( 87 
)
uniformly with respect to the parameter ξ. By integrating the previous inequality with respect to the parameter ξ in R 3 and considering the inverse Fourier transform with respect to the variable x, we obtain for all u ∈ S(R 6 x,v ),

Λ 2/3 K u 2 L 2 x,v ≤ C 1 Au 2 L 2 x,v + u 2 L 2 x,v . ( 88 
)
Using ( 9), the operator P is written as follows

P = A + K.
Consequently, using ( 88 ), we have

Λ 2/3 K u 2 L 2 x,v ≤ C 1 (A + K -K)u 2 L 2 x,v + u 2 L 2 x,v ≤ C 1 Pu 2 L 2 x,v + Ku 2 L 2 x,v + u 2 L 2
x,v and using the fact that K is a bounded operator, we obtain that there exists a constant C > 0 such that for all u ∈ S(R 6 x,v ),

Λ 2/3 K u 2 L 2 x,v ≤ C Pu 2 L 2 x,v + u 2 L 2 x,v . ( 89 
)
By adding a term iκ to P with κ ∈ R, the proof doesn't change due to the never changing of the real part of P as mentionned crucially in Remark 2.2 in [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF]. So Theorem 4.1 admits the following extension.

Theorem 4.2.

There exists C > 0 such that for all u ∈ S(R 6 x,v ),

∀κ ∈ R, Λ 2/3 K u 2 L 2 x,v ≤ C (P -iκ)u 2 L 2 x,v + u 2 L 2 x,v . ( 90 
)
Theorem 4.3. There exists C > 0 such that for all u ∈ S(R 6 x,v ),

Pu 2 L 2 x,v ≤ C Λ 2 K u 2 L 2 x,v . ( 91 
)
Proof. Using Theorem A.6 , we have for all u ∈ S(R 3 v ),

λ 2 K w u 2 L 2 v ∼ λ w K 2 u 2 L 2 v ,
so using the Proposition 3.20 , there exists a constant C 1 > 0 such that for all u ∈ S(R 3 v ),

A ξ u 2 L 2 v ≤ C 1 λ w K 2 u 2 L 2 v , ( 92 
)
uniformly with respect to the parameter ξ. By integrating the previous inequality withrespect to the parameter ξ in R 3 and considering the inverse Fourier transform with respect to the variable x, we obtain for all u ∈ S(R 6 x,v ),

Au 2 L 2 x,v ≤ C 1 Λ 2 K u 2 L 2 x,v . (93) 
Using ( 9), the operator P is written as follows

P = A + K.
Consequently, using ( 93 ), we have

Pu 2 L 2 x,v ≤ Au 2 L 2 x,v + Ku 2 L 2 x,v ≤ C 1 Λ 2 K u 2 L 2 x,v + C 2 u 2 L 2
x,v , with C 2 > 0. Using the fact that the operator Λ 2 K ≥ Id (see for instance Theorem A.6 in the Appendix A.2 ), we obtain that there exists a constant C > 0 such that for all u ∈ S(R 6

x,v ),

Pu 2 L 2 x,v ≤ C Λ 2 K u 2 L 2 x,v . ( 94 
)
We srongly think the estimate in ( 86) is optimal in term of the index 2/3 appearing in the left hand side, although we don't prove that. This index 2/3 is classical for kinetic model. We refer for example to Proposition 5.22 in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF], partial results in this direction in the Fokker-Planck case.

Localisation of the spectrum for the Landau operator

In all that follows, we denote by σ(P) the spectrum of the operator P, ρ(P) The resolvent set of P and • L 2 to denote the norm in the space L 2 (R 6

x,v ). The following lemma holds for any maximally accretive operator. Proof. See Proposition B.1 in [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF].

Proof of Theorem 1.2.

Proof. The proof will be divided into two steps. First step: Using ( 90 ) and the triangle inequality we therefore get for all z = ν + iκ ∈ C, with ν = ℜe z ≥ -1/2 and u ∈ S(R 6

x,v ),

Λ 2/3 K u 2 L 2 ≤ C( (P -iκ)u 2 L 2 + u 2 L 2 ). ≤ C( (P -iκ -ν + ν)u 2 L 2 + u 2 L 2 ) ≤ C(2 (P -z)u 2 L 2 + (2ν 2 + 1) u 2 L 2 ).
But we have ν ≥ -1/2 implies 2ν + 2 ≥ 1, so we get

Λ 2/3 K u 2 L 2 ≤ C(6 (P -z)u 2 L 2 + 6(ν + 1) 2 u 2 L 2 ) ≤ 6C( (P -z)u 2 L 2 + (ν + 1) 2 u 2 L 2 ),
By taking C = 6C, we finally obtain the following estimate

Λ 2/3 K u 2 L 2 ≤ C (P -z)u 2 L 2 + (ℜe z + 1) 2 u 2 L 2 , ( 95 
)
for all u ∈ S(R 6 x,v ) and z ∈ C with ℜe z ≥ -1 2 .

Second step:

First, we will show that there exists a constant C1 such that for all u ∈ S(R 6

x,v ), we have

0 ≤ (A + 1) * (A + 1)u, u L 2 ≤ C1 Λ 4 K u, u L 2 , ( 96 
)
where A the operator defined in [START_REF] Helffer | Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians[END_REF]. Indeed, let u ∈ S(R 6

x,v ), we have

(1 + A) * (1 + A)u, u L 2 = (1 + A)u, (1 + A)u L 2 = (1 + A)u 2 L 2 ≥ 0.
On the other hand, we have

(1 + A) * (1 + A)u, u L 2 = (1 + A)u 2 L 2 ≤ Au 2 L 2 + u 2 L 2 .
Using ( 9), the operator P is written as follows

P = A + K, we obtain (1 + A) * (1 + A)u, u L 2 ≤ Pu 2 L 2 + Ku 2 L 2 + u 2 L 2 ,
finally, using the fact that K is a bounded operator, Λ K ≥ Id and the estimate ( 91 ), we obtain

(1 + A) * (1 + A)u, u L 2 ≤ (1 + ν 0 ) Λ 2 K u 2 L 2 + C Λ 2 K u 2 L 2 ≤ (1 + ν 0 + C) Λ 2 K u 2 L 2 ,
where ν 0 > 0. By taking C1 = (1 + ν 0 + C), we obtain the estimate ( 96 ).

According to the monotonicity of the operator functional

A -→ A α for α ∈ [0 , 1], in particular with α = 1 3 , we obtain 0 ≤ ((1 + A) * (1 + A)) 1/3 u, u L 2 ≤ C2/3 1 Λ 4/3 K u, u L 2 .
According to Theorem 2.8 , A is maximally accretive, then by applying Lemma 5.1 with η = 1 3 , for ℜe z ≥ -1/2 and u ∈ S(R 6 x,v ), we obtain

|z + 1| 2/3 u 2 L 2 ≤ 4 ((1 + A) * (1 + A)) 1/3 u, u L 2 + 4 (A -z)u 2 L 2 ≤ 4 C2/3 1 Λ 4/3 K u, u L 2 + 4 (A -z)u 2 L 2 ≤ 4 C2/3 1 Λ 2/3 K u 2 L 2 + 4 (A -z)u 2 L 2 ≤ 4 C2/3 1 Λ 2/3 K u 2 L 2 + 4 (P -z)u 2 L 2 + 4ν 1 u 2 L 2 .
With the inequality ( 95 ), we obtain

|z + 1| 2/3 u 2 L 2 ≤ (4 C2/3 1 C + 4) (P -z)u 2 L 2 + (4 C2/3 1 C + 16ν 1 )(ℜe z + 1) 2 u 2 L 2 .
By taking

C P = 8(4ν 1 + C2/3 1 C), Q P = 8(1 + C2/3 1 C) we finally get ∀z ∈ C, ℜe z ≥ -1/2, ∀u ∈ S(R 6 x,v ), |z + 1| 2/3 u 2 L 2 ≤ Q 2 P 2 (P -z)u 2 L 2 + C 2 P 2 (ℜe z + 1) 2 u 2 L 2 . ( 97 
)
Now let z / ∈ S P such that ℜe z ≥ -1/2, so according to the definition of S P given in ( 6 ) we have

(ℜe z + 1) 2 ≤ 1 C 2 P |z + 1| 2/3 , then for all u ∈ S(R 6 x,v ), inequality ( 97 ) implies |z + 1| 2/3 u 2 L 2 ≤ Q 2 P (P -z)u 2 L 2 , ( 98 
)
we deduce that P -z is injective, moreover we can replace P -z by (P -z) * in ( 98 ), which gives (P -z) * is injective and consequently P -z is bijective with dense image in L 2 , therefore z ∈ ρ(P). By taking v = (P -z)u in the estimate ( 98 ) we get

(P -z) -1 v 2 L 2 ≤ Q 2 P |z + 1| -2/3 v 2 L 2 ∀v ∈ L 2 ,
then we obtain the resolvent estimate [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF].

On the other hand, we have that if z ∈ σ(P) then z ∈ S P and taking into account that the numerical range of the operator P is the half plan {ℜe z ≥ 0}, we deduce that the spectrum σ(P) satisfies σ(P) ⊂ S P ∩ {ℜe z ≥ 0}.

Concerning estimate ( 8 ), we have

ℜe ((P -z)u, u) L 2 ≥ -ℜe z u 2 L 2 with ℜe z ≤ - 1 2 < 0, which implies that (z -P) -1 B(L 2 
x,v ) ≤ |ℜe z| -1 . The proof is then complete.

A Appendix

A.1 Weyl-Hörmander calculus

We recall here some notations and basic facts of symbolic calculus, and refer to [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] and [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] for detailed discussions on the pseudo-differential calculus. We introduce on R 2n the following metric Γ = dv 2 + dη 2 . Definition A.1. Let m ≥ 1 be a C ∞ function on R 2n . We say that m is an admissible weight for Γ if there exist two constants C > 0 and N > 0 such that

∀X, Y ∈ R 2n , m(X) ≤ C X -Y N m(Y ). ( 99 
)
Definition A.2. Let m be an admissible function. We denote by S(m, Γ) the symbol class of all smooth functions p(v, η) (possibly depending on parameter ξ) satisfying

∀α, β ∈ N n , ∃ C α,β > 0; ∀(v, η) ∈ R 2n , |∂ α v ∂ β η p(v, η)| ≤ C α,β m(v, η).
The space of symbols S(m, Γ) endowed with the semi-norms

p k;S(m,Γ) = sup |α+β|≤k sup (v,η)∈R 2n |m(v, η) -1 ∂ α v ∂ β η p(v, η)| ; k ∈ N (100) 
becomes a Fréchet space.

For such a symbol p in S(m, Γ) we may define its Weyl quantization p w by

∀u ∈ S(R n ), (p w u)(v) = 1 (2π) n R 2n e i(v-v ′ )•η p v + v ′ 2 , η u(v ′ ) dv ′ dη. ( 101 
)
The Weyl quantization of S(m, Γ) is denoted by Ψ(m, Γ).

Theorem A.3. (Calderon-Vaillancourt)

Let p w be an operator in Ψ(1, Γ). We have p w a continuous operator on L 2 (R n ) and

∀u ∈ L 2 (R n ), p w u L 2 ≤ C p N ;S(1,Γ) u L 2 , ( 102 
)
where C > 0 and a positive integer N depending only on the dimension.

Proof. See Section 18 in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF].

Theorem A.4. Let p w be an invertible operator in Ψ(m, Γ), then its inverse [p w ] -1 belongs to Ψ(m -1 , Γ).

Proof. See Lemma A.2 in [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF].

Definition A.5. Let p w ∈ Ψ(m, Γ). We say that p w is an elliptic operator if there exists C > 0 such that |p| ≥ Cm.

Let us also recall here the composition formula of Weyl quantization. Let a ∈ S(m 1 , Γ) and b ∈ S(m 2 , Γ), the compositions of the pseudo-differential operators a w and b w are pseudo-differential operators whose symbol, denoted a♯b, belongs to S(m 1 m 2 , Γ) and has the following development:

a♯b = ab + 1 0 e -iσ(Y -Y 1 ,Y -Y 2 )/(2θ) i 2 σ(∂ Y 1 , ∂ Y 2 )a(Y 1 )b(Y 2 )dY 1 dY 2 dθ/(θ) 2n , ( 103 
)
where σ is the symplectic form in

T * R n = R 2n given by σ(Z, Z ′ ) = n j=0 ζ j z ′ j -z j ζ ′ j . ( 104 
)
As we work with pseudo-differential operators which belong to classes associated to the metric Γ, all operators will be defined as continuous operators of

S(R n ) to S(R n ) or from S ′ (R n ) to S ′ (R n ).

A.2 Basic theorem

This theorem aims at giving a uniform statement for Weyl Hörmander tools with a large parameter K. This theorem gives very important results which can use these results to establish estimates which requires pseudo-differential operators. Part (I) in the theorem below has been shown in [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF] with τ = 1, but here we have improved this result for all τ ∈ R. In general, these results give a general and robust framework to techniques already used as well for work that requires these kinds of properties.

Theorem A.6. Let p, q ≥ 1 be two symbols which verify the following hypotheses: i) p is an admissible weight.

ii) p ∼ q.

iii) p, q ∈ S(p, Γ).

iv) There exists M ∈ R such that for all ε > 0 we have ∂ η p, ∂ η q ∈ S(εp+ε -1 v M , Γ).

We define the symbols p K , q K as p K = p + K v M and q K = q + K v M . Then there exists K 0 such that for all K ≥ K 0 :

I) For all τ ∈ R, (p τ K ) w and (q τ K ) w are invertible. II) For all τ ∈ R, [(p τ K ) w ] -1 and [(q τ K ) w ] -1 are pseudo-differential operators that belong to Ψ(p -τ K , Γ) uniformly in K. III) For all τ ∈ R
and for all κ ≥ 0, [(p κ K ) w ] τ and [(q κ K ) w ] τ are pseudo-differential operators belong to Ψ(p κτ K , Γ) uniformly in K. IV) For all τ ∈ R and for all κ ≥ 0, ∀u ∈ S(R n ), we have

[(p κ K ) w ] τ u 2 L 2 ∼ (p κτ K ) w u 2 L 2 ,
uniformly in K.

V) For all τ ∈ R, ∀u ∈ S(R n ), we have

(p w K ) τ u 2 L 2 ∼ (p τ K ) w u 2 L 2 ∼ (q τ K ) w u 2 L 2 ∼ (q w K ) τ u 2 L 2 ,
uniformly in K.

VI) ∀u ∈ S(R n ), we have (p w K u, u) L 2 ∼ (q w K u, u) L 2 , uniformly in K.

VII) If M ≥ 0, we have p w K , q w K ≥ Id.

Proof. Let K > 0 and let p and q two symbols and M ∈ R such that the hypotheses from (i) to (iv) are verified. For simplification, we will prove (I, II, III) just for the operator (p τ K ) w , and we reason in the same way for (q τ K ) w .

I. We will show that (p τ K ) w is invertible for all τ ∈ R. We note that p K is an admissible weight (p is an admissible weight). We have p K ∈ S(p K , Γ) uniformly in K. Indeed, using (iii) we have for all α, β ∈ N n ,

|∂ α v ∂ β η p K | ≤ |∂ α v ∂ β η p| + |∂ α v ∂ β η K v M | ≤ C α,β p + KC α,β,M v M ≤ C α,β,M p K .
More generally we can show, by induction on |α| and Leibnitz's formula that for τ ∈ R,

∀α ∈ N 2n , |∂ α v,η p τ K | ≤ C α,β,τ p τ K ,
which gives p τ K ∈ S(p τ K , Γ) uniformly in K. Using formula ( 103 ), we may write

(p τ K ) w (p -τ K ) w = Id -R w K , ( 105 
)
where , where the semi-norm . k;S(M,Γ) is defined by ( 100 ). Moreover, using (iv), we have ∂ η p ∈ S(εp + ε -1 v M , Γ), by taking ε = K -1/2 , we obtain ∂ η p ∈ S(K -1/2 p K , Γ). By writing ∂ η p τ K = τ p τ -1 K ∂ η p, we obtain

R K = - 1 0 (∂ η p τ K )♯ θ ∂ v (p -τ K ) dθ + 1 0 (∂ v p τ K )♯ θ ∂ η (p -τ K ) dθ with
|∂ η p τ K | ≤ C N K -1/2 p τ K .
Then arguing as above we can use induction on |α| + |β| to obtain, for |α| + |β| ≥ 0,

|∂ α v ∂ β η ∂ η p τ K | ≤ C N K -1/2 p τ K ,
which gives ∂ η p τ K ∈ S(K -1/2 p τ K , Γ) uniformly in K, moreover we have (∂ η p τ K ) l N ;S(p τ K ,Γ) ≤ C N K -1/2 . On the other hand we have p -τ K ∈ S(p -τ K , Γ), and thus

∂ v (p -τ K ) l N ;S(p -τ K ,Γ) ≤ C N ,
with C N a constant depending only on N but independent of K. As a result, 

(∂ η p τ K )♯ θ ∂ v (p -τ K ) N ;S(1,Γ) ≤ C N C 2 N K -1/2 . ( 107 
[(p κ K ) w ] τ u = - sin(πτ ) π ∞ 0 s τ 1 (2π) n R 2n e i(v-v ′ ).η b K,s ( v + v ′ 2 , η)u(v ′ ) dv ′ dη ds, = 1 (2π) n R 2n e i(v-v ′ ).η - sin(πτ ) π ∞ 0 s τ b K,s ( v + v ′ 2 , η) ds u(v ′ ) dv ′ dη.

A.3 Wick quantization

Finally let us recall some basic properties of the Wick quantization, which is also called anti-Wick in [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF]. The importance in studying the Wick quantization lies in the facts that positive symbols give rise to positive operators. Let Y = (v, η) be a point in R 6 . The Wick quantization of a symbol q is given by q Wick = (2π) -3

R 6 q(Y )Π Y dY,
where Π Y is the projector associated to the Gaussian ϕ Y which is defined by ϕ Y (z) = π -3/4 e -1 2 |z-v| 2 e iz•η/2 , ∀z ∈ R 3 .

The main property of the Wick quantization is its positivity, i.e., q(v, η) ≥ 0, ∀(v, η) ∈ R 6 implies q Wick ≥ 0.

(132)

According to Theorem 24.1 in [START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF], the Wick and Weyl quantizations of a symbol q are linked by the following identities

q Wick = q * π -3 e -|•| 2 w = q w + r w (133) with r(Y ) = π -3 1 0 R 6 (1 -θ)q"(Y + θY 1 )|Y 1 | 2 e -|Y 1 | 2 dY 1 dθ, (134) 
where q"(Y ) is the Hessian of q at the point Y . Therefore, according to ( 102 ), if q ∈ S(1, Γ) then q Wick is a bounded operator in L 2 . We also recall the following composition formula obtained in the proof of Proposition 3.4 in [START_REF] Lerner | The Wick calculus of pseudo-differential operators and some of its applications[END_REF] q Wick 1 q Wick 2 = [q 1 q 2 -q ′ 1 • q ′ 2 + 1 i {q 1 , q 2 }] Wick + T, (

with T a bounded operator in L 2 (R 6 ) and q ′ is the gradient of q with respect to Y , when q 1 ∈ L ∞ (R 6 ) and q 2 is a smooth symbol whose derivatives of order ≥ 2 are bounded on R 6 . The notation {q 1 , q 2 } denotes by the Poisson bracket defined by

{q 1 , q 2 } = ∂q 1 ∂η • ∂q 2 ∂v - ∂q 1 ∂v • ∂q 2 ∂η . ( 136) 
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Similarly,

Using the estimates ( 107 ), ( 108 ) we will estimate the semi-norm R K N ;S(1,Γ) . Indeed,

, and thus by ( 102 )

with C a constant depending only on the dimension. Taking

we get for all

this implies Id -R w K is invertible in the space B(L 2 ). In addition, its inverse is given by

Based on ( 105 ) we obtain

Similarly we can find a RK ∈ S(1, Γ) such that

Based on the above (p τ K ) w is invertible and its inverse [(p τ K ) w ] -1 is written in the form

We have proved the conclusion in (I).

II. According to (I), we have [(p

By taking H K = (Id -R w K ) -1 and using ( 109 ), we have H K is a continuous operator in L 2 uniformly in K. So based on Theorem A.4 , we have H K is a pseudo-differential operator. We note by δ(H K ) its symbol. We have δ(H K ) belongs to S(1, Γ) uniformly in K. From the above, we have [(p τ K ) w ] -1 is a pseudo-differential operator (compositions of pseudo-differential operators). We denote h K its symbol, h K has the form h K = p -τ K ♯δ(H K ) and belongs to S(p -τ K , Γ) uniformly in K. We have proved the conclusion in (II). III. Using the Theorem A.4 , we have [ p κ K w ] -1 is a pseudo-differential operator. Taking into account that the composition of the pseudo-differential operators is a pseudodifferential operator, we obtain

Now consider the case of the exponents τ ∈ R. By pseudo-differential calculus the problem will be reduced to

where I an open interval of R. Note that the operator (p κ K ) w is self-adjoint because its symbol p κ K is real. Now we will show that (p κ K ) w is a positive operator for K sufficiently large, wich is equivalent to show that

Using again the formula ( 103 ), we can write

where

with g♯ θ h defined in ( 106 ). Based on the proof of (I), we have

Then, using the following formula (see for example [START_REF] Yosida | Analytical Theory of Semi-groups[END_REF]) we can write

First, s + (p κ K ) w is a pseudo-differential operator and its symbol a K,s verifies ∀s ∈ (0, 1), a K,s ∈ S(p κ K , Γ)

with C 2 some constant independent of K.

Then based on ( 110 ), ( 114 ) we obtain for all τ ∈ I,

IV. We will show that

otherwise we will show that there are two constants c, C > 0 independent of K such that for all u ∈ S(R n ), we have:

We will start with inequality ( 121 ), using the conclusion (III), we have that

Using the Theorem A.3 , we have (

) uniformly in K, hence the inequality ( 121 ). Similarly, using the fact that [(

u, we get the inequality ( 122 ), so the estimate ( 120 ) is true.

V. We will first show that

otherwise we will show that there are two constants

We will start with inequality ( 125 ), using hypothesis (iii) we have that (q τ K ) w ∈ Ψ(p τ K , Γ) uniformly in K. Using the conclusion (II), we have (q τ K ) w is an invertible operator, moreover its inverse [(q τ K ) w ] -1 belongs to Ψ(p -τ K , Γ) uniformly in K.

Using the Theorem A.3 , we have (p τ K ) w [(q τ K ) w ] -1 ∈ Ψ(1, Γ) ֒→ B(L 2 ) uniformly in K, hence the inequality ( 127 ).

Similarly, using the fact that (q τ K ) w [(p τ K ) w ] -1 ∈ Ψ(1, Γ) ֒→ B(L 2 ) uniformly in K, then taking v = [(p τ K ) w ] -1 u, we get the inequality ( 126 ), so the estimate ( 124 ) is true. In the same way we have

Finally, using conclusion (IV) with κ = 1, we get that

VI. We will show that

using the result (IV) with τ = 1 2 , we obtain that

So the estimate ( 130 ) is true.

VII. We will show that

Indeed, let u ∈ S(R n ) (p w K u, u) L 2 = (p w K-1 u, u)

based on the proof of ( 111 ), we can show that there exists a positive constant K 3 such that for all K ≥ K 3 we have (p w K-1 u, u) L 2 ≥ 0, Which gives

With the condition M ≥ 0 we finally obtain

Finally, for a symbol p which verifies the hypotheses of Theorem A.6 , we can fix

and we apply the results of Theorem A.6 to the operator p w K .