
HAL Id: hal-02545696
https://hal.science/hal-02545696

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emptiness Check of Powerset Büchi Automata using
Inclusion Tests

Souheib Baarir, Alexandre Duret-Lutz

To cite this version:
Souheib Baarir, Alexandre Duret-Lutz. Emptiness Check of Powerset Büchi Automata using Inclusion
Tests. [Technical Report] lip6.2006.003, LIP6. 2006. �hal-02545696�

https://hal.science/hal-02545696
https://hal.archives-ouvertes.fr


Emptiness Check of Powerset Büchi Automata
using Inclusion Tests

Souheib Baarir and Alexandre Duret-Lutz

Technical report 2006/003
Université Pierre et Marie Curie, LIP6-CNRS, Paris 6, France
souheib.baarir@lip6.fr, alexandre.duret-lutz@lip6.fr

Abstract. A possible attack on the state explosion of the automata-theoretic approach
to model-checking is to build an automaton B whose states represent sets of states of the
original automaton A to check for emptiness. This paper introduces two emptiness checks
for Büchi automata whose states represent sets that may include each other. The first check
on B is equivalent to a traditional emptiness check on A but uses inclusion tests to direct
and further reduce the on-the-fly construction of B. The second check is impressively faster
but may return false negatives. We illustrate and benchmark both using a symmetry-based
reduction.

1 Introduction

The automata-theoretic approach to model-checking [12] uses automata on infinite words to
represent a system as well as a property to check on it. Both automata are synchronized, and
the resulting product automaton is examined by an emptiness check.

One drawback of this approach, known as the state explosion problem, lies in the large size of
the automaton used to represent the behavior of the system, and hence in the resulting size of
the product automaton that has to be explored by the emptiness check. Several techniques have
been proposed to reduce the size of both automata [11].

If the state space has a global symmetry (for example a client/server system where all clients
behave identically), it is easy to “fold” the automaton by factorizing the representations of its
symmetric states. However such globally symmetric automata are uncommon in practice.

The method of partial symmetries, introduced by Haddad et al. [6], tackles the reduction of non-
globally symmetric automata, by exploiting symmetries locally (for example if two clients have
different access priorities to a server, they are asymmetric when they access the server, but they
can still be symmetric the rest of the time). Roughly speaking, this method works by partitioning
the set of successors s1, s2, . . . , sn of a state of the original automaton, and using these partitions
as the states S1, S2, . . . , Sm of the reduced automaton. However, because this is done locally in
each state, there is no guarantee that a state s of the original automaton may be represented by
only once state S in the reduced automaton. This reduced automaton B can then be checked for
emptiness (using any mainstream emptiness check algorithm [9, 4, 5]) with the same result as if
the original automaton A had been checked (of course the idea is that B is constructed directly
from the system and the property, in such a way that we avoid the construction of A).

For instance, Fig. 1 (ignore f and g for the moment) shows two automata A and B, where B’s
states are sets of states of A. In the sequel, we will always use lowercase letters like si to denote
states of the original automaton, and uppercase letters like Si to denote states of the reduced



(A)
s0 s1

s2

s3 s4 s5

s6

s7

f

g
g

f g
f g

g

(B)

f
g

gf

g

s0 s1 s5

s3 s4 s5 s6 s7

s2 s6 s7

S0 S1 S2

S3 S4 S5

Fig. 1. An example of powerset automaton B for an automaton A, with FA = FB = {f, g}.

automaton (which are sets of states). Some states of A may appear in several states of B, and
most importantly a state of B may even be a subset of another state of B (e.g., S4 ⊆ S1).

As such, this method may well construct a “reduced” automaton that has more states that the
original automaton! Indeed, if we call A the original automaton and QA its set of states, this
technique constructs an automaton B where QB ⊆ 2QA and may have at worst 2|QA| states.
However in many practical cases we still have |QB| < |QA|.

Usually the state space is constructed on-the-fly during the emptiness check, and we show that
during this emptiness check it is possible to perform inclusion tests to limit the number of
constructed states, further reducing the complexity of the verification. Because this idea can be
useful in general (i.e., not only to symmetries), we present this new emptiness check in a general
framework of powerset automata.

Section 2 defines these automata formally, and proposes a set of 5 properties tying A to B that are
sufficient to ensure that both automata are equivalent with respect to their emptiness. Section 3
presents our emptiness check algorithm for such automata. Basically such algorithm may answer
“empty” or “not empty”. Section 4 shows a small modification that leads to a faster algorithm
that can answer “empty” or “I don’t know”, and Section 5 briefly discusses how to generate
counterexamples. The definitions and algorithms presented in the aforementioned sections are
abstract in the sense that they do not presume how B was constructed from A: in Section 6 we
adapt the technique of Haddad et al. [6] to show how to construct a B using symmetries, and
we prove that this construction satisfies the requirements of our algorithm. We benchmark this
construction in Section 7 and show that although theoretically the algorithm may still explore
2|QA| states in the worst case, in practice it improves the state space size by a good factor.

2 Definitions

We start with the definition of the automata we manipulate. We use structures that look like
Generalized Büchi Automata, but without atomic propositions and with acceptance conditions
on transitions. In the automata-theoretic approach, atomic propositions are only used for the
computation of the synchronized product and can be ignored after this operation: the emptiness
check algorithm does not need them. Putting acceptance conditions on transitions rather than on
states is motivated by the fact that it is more generic: state-based acceptance conditions can be
converted to transition-based acceptance conditions without adding states or transitions, while
the converse is not true.

Definition 1 (UTGBA). An Unlabelled Transition-based Generalized Büchi Automaton (UT-
GBA) is a Büchi automaton without any atomic propositions, but with generalized acceptance
conditions on transitions. It is a tuple A = 〈QA,Q0

A,FA,∆A〉 where

2



– QA is a finite set of elements called states,

– Q0
A ⊆ QA is a set of initial states,

– FA is a finite set of elements called acceptance conditions,

– ∆A ⊆ QA × 2FA × QA is the transition relation, where each transition carries a (possibly
empty) set of acceptance conditions of FA.

Definition 2 (Reachable states). Let A = 〈QA,Q0
A,FA,∆A〉 be a UTGBA. A state s is reach-

able if s ∈ Q0
A or if there exists a finite sequence 〈s0, F0, s1〉〈s1, F1, s2〉 · · · 〈sn−1, Fn−1, sn〉 of

transitions of ∆A, starting at an initial state s0 ∈ Q0
A, and ending on state sn = s. We denote

Reach(A) the set of all reachable states of A.

Definition 3 (Run & accepting run). Let A be a UTGBA as above. A run of A is an infinite
sequence 〈s0, F0, s1〉〈s1, F1, s2〉 · · · of transitions of ∆A, starting at an initial state s0 ∈ Q0

A. A
run is accepting if ∀f ∈ FA, ∀i > 0, ∃j > i, such that f ∈ Fj, i.e., if its transitions are labelled
by each acceptance condition infinitely often.

We denote Run(A) and Acc(A) the set of all runs and the set of all accepting runs of A.

For σ = σ(0)σ(1)σ(2) · · · ∈ Run(A), we denote σin(i), σacc(i), and σout(i) the source, the
acceptance condition, and the destination of the ith transition of σ, in other words σ(i) =
〈σin(i), σacc(i), σout(i)〉. Finally we denote σi the suffix of σ starting after the ith transition,
that is: σi = σ(i)σ(i + 1)σ(i + 2) · · · .

For instance on Fig. 1, B accepts only one run: Acc(B) = {S0S3S0S3S0S3 . . .}.

An emptiness check tells whether Acc is empty, and here we are interested in an equivalence
relation between automata that is solely based on the result of this operation.

Definition 4 (Emptiness-equivalence). Two UTGBAs A and B are ξ-equivalent iff either both
automata have an accepting run, or none have.

A
ξ
≡B iff Acc(A) = ∅ ⇐⇒ Acc(B) = ∅

Now we propose a set of 5 properties that link two UTGBA A and B such that the states of
B are sets of states of A, and B is ξ-equivalent to A. The idea is that if we know a method to
construct a B that verifies these sufficient conditions, we can run the emptiness check on B and
avoid constructing A. These properties hold in the example of Fig. 1.

Definition 5 (℘-UTGBA). Let A = 〈QA,Q0
A,FA,∆A〉 and B = 〈QB,Q0

B,FB,∆B〉 be two
UTGBAs. B is a ℘-UTGBA (powerset UTGBA) over A if it satisfies the following properties:

QB ⊆ 2QA \ {∅} (1)
FB = FA (2)⋃

S∈Q0
B

S = Q0
A (3)

∀〈s, F, s′〉 ∈ ∆A, ∀S ∈ Reach(B),
s ∈S =⇒ ∃S′ ∈ QB such that s′ ∈ S′, and 〈S, F, S′〉 ∈ ∆B

(4)

∀〈S, F, S′〉 ∈ ∆B, ∀s′ ∈ S′, ∃s ∈ S, such that 〈s, F, s′〉 ∈ ∆A (5)

Proposition 1. Let A = 〈QA,Q0
A,FA,∆A〉 and B = 〈QB,Q0

B,FB,∆B〉 be two UTGBAs such

that B is a ℘-UTGBA over A. Then A
ξ
≡B.

3



Proof. We want to show that ∃σ ∈ Acc(A) ⇐⇒ ∃σ′ ∈ Acc(B).
(=⇒) Let σ = 〈s0, F0, s1〉〈s1, F1, s2〉 · · · ∈ Acc(A). Since s0 ∈ Q0

A we can use (3) and find an
S0 ∈ Q0

B such that s0 ∈ S0. Since S0 is reachable in B and contains s0, we can use (4) to find
an S1 ∈ QB such that s1 ∈ S1 and 〈S0, F0, S1〉 ∈ ∆B. Likewise, because S1 is reachable in B
and contains s1 by construction, we can use (4) again to find an S2 ∈ QB such that s2 ∈ S1 and
〈S1, F1, S2〉 ∈ ∆B. Iterating (4) we can construct a sequence σ′ = 〈S0, F0, S1〉〈S1, F1, S2〉 · · · ∈
Run(B) such that si ∈ Si for all i. Since FB = FA (2) and σ′ visits each acceptance condition as
often as σ, σ′ ∈ Acc(B).
(⇐=) Let σ′ = 〈S0, F0, S1〉〈S1, F1, S2〉 · · · ∈ Acc(B). Let’s build a tree whose nodes (except the
root) are states of A. Let’s call ⊥ the root of the tree at depth 0. The nodes of depth n > 0
are exactly the states in Sn−1. The father s of any node s′ at depth n > 1 is chosen among the
nodes of depth n− 1 such that 〈s, Fn−1, s

′〉 ∈ ∆A; (5) guarantees that such a node s exists. The
father of any node at depth 1 is ⊥. All edges of this tree, expect those leaving the root node,
correspond to transitions of ∆A.
The set of nodes at depth n > 0 is a subset of QA, which is finite, so although this tree is
infinite it has a finite degree. By König’s lemma it contains an infinite branch. The sequence
constructed by following the edges of this infinite branch and ignoring the first edge (leaving ⊥)
〈s0, F0, s1〉〈s1, F1, s2〉 · · · is an accepting run of A. Indeed it is a run of A (s0 ∈ Q0

A) that visits
each acceptance conditions as often as σ′.

We now develop two propositions that introduce the emptiness check algorithm. Both proposi-
tions use the following notation.

Definition 6 (Substitution of initial states). Let A = 〈Q,Q0,F ,∆〉 be a UTGBA, and T ⊆ Q
a set of states of A. We denote A[T ] the automaton sharing the same structure as A but using
the set T as initial states. In other words A[T ] = 〈Q, T,F ,∆〉.

The next proposition can be observed on Fig. 1: since no run that traverses state S1 is accepting,
then neither are the runs that traverse state S4 because S4 ⊆ S1.

Proposition 2. Let B = 〈QB,Q0
B,F ,∆B〉 be a ℘-UTGBA over A = 〈QA,Q0

A,F ,∆A, 〉 and
consider two states T and D of QB such that D ⊆ T . We have

Acc(B[{T}]) = ∅ =⇒ Acc(B[{D}]) = ∅

Proof. We prove the contraposition: Acc(B[{D}]) 6= ∅ =⇒ Acc(B[{T}]) 6= ∅. Consider σ =
〈D0, F0, D1〉〈D1, F1, D2〉 · · · ∈ Acc(B[{D}]). Using (5) in the same way as we did in the proof of
the (⇐=) part of proposition 1, we can find a sequence σ′ = 〈d0, F0, d1〉〈d1, F1, d2〉 · · · such that
∀i > 0, di ∈ Di. Consider the first transition of σ′: 〈d0, F0, d1〉. Since D ⊆ T , we have d0 ∈ T ,
therefore we can apply proposition (4) to find a set T1 such that d1 ∈ T1 and 〈T, F, T1〉 ∈ ∆B.
Then because d1 ∈ T1 we can apply proposition (4) again to find 〈T1, F, T2〉 ∈ ∆B. And iterating
this operation we construct an accepting run σ′′ = 〈T, F0, T1〉〈T1, F1, T2〉 · · · of B[{T}].

The following proposition allows us to split a transition 〈R,F, T 〉 into a set of transitions
〈R,F, T1〉, . . . , 〈R,F, Tn〉 with T1 ∪ · · · ∪ Tn = T , while preserving ξ-equivalence. Doing so might
require adding new states and transitions to the automaton. Basically we want to substitute T
by an automaton C that has T1, . . . , Tn as initial states, and that is ξ-equivalent to A[T ]. Fig. 2
illustrates this proposition. It will prove useful to apply such a decomposition if some Ti states
have already been visited.

4



R

F

T

(B)

s1

s3

s2

s4

(C)

R

F F F

T1 T2 T3

(B′)

s1 s3 s2 s1 s4

Fig. 2. Example of decomposition of a transition 〈R, F, T 〉 using proposition 3.

Proposition 3 (Decomposition of a transition in a ℘-UTGBA). Let B = 〈QB,Q0
B,F , ∆B〉 be

a ℘-UTGBA over A = 〈QA,Q0
A,F ,∆A〉. Consider a transition 〈R,F, T 〉 ∈ ∆B and let C =

〈QC ,Q0
C ,F ,∆C〉 be a ℘-UTGBA over A[T ]. The automaton B′ = 〈QB ∪QC ,Q0

B′ ,F ,∆B′〉 where

Q0
B′ =

{ (
Q0
B \ {T}

)
∪Q0

C if T ∈ Q0
B

Q0
B otherwise

∆B′ =(∆B \ {〈R,F, T 〉}) ∪ {〈R,F, T ′〉 | T ′ ∈ Q0
C} ∪∆C

is a ℘-UTGBA over A.

Proof. By definition B′ satisfies properties (1) and (2) of definition 5. We have to prove that B′
also satisfies properties (3) to (5).

(3) We should show that
⋃

S∈Q0
B′

S = Q0
A. Since B is a ℘-UTGBA over A, we have

⋃
S∈Q0

B
S =

Q0
A. If T 6∈ Q0

B we have Q0
B′ = Q0

B and prop. (3) holds. Otherwise, because C is a ℘-UTGBA
over A[T ] we have

⋃
S∈Q0

C
S = T , so (3) holds too.

(4) Let 〈s, F, s′〉 ∈ ∆A be a transition of A, and S ∈ Reach(B′) such that s ∈ S. To prove (4)
we must exhibit a transition 〈S, F, S′〉 ∈ ∆B′ such that s′ ∈ S′. We distinguish three cases
that cover all possible states of Reach(B′):

• If S ∈ (Reach(B) \ {R}) ∨ (S = R ∧ s′ 6∈ T ) then because B is a ℘-UTGBA over A its
property (4) guarantees the existence of such a transition.

• If S = R ∧ s′ ∈ T , because C is a ℘-UTGBA over A[T ] its property (3) ensures that
∃T ′ ∈ Q0

C such that s′ ∈ T ′, therefore 〈S, F, T ′〉 ∈ ∆B′ by definition of B′.

• Finally, if S ∈ Reach(C) then because C is a ℘-UTGBA over A[T ] its property (4)
guarantees the existence of such a transition.

(5) To prove (5) we must check all tuples 〈S, F, S′〉 of ∆B′ and ensure that ∀s′ ∈ S′, ∃s ∈
S, 〈s, F, s′〉 ∈ ∆A. Since B is a ℘-UTGBA over A this property holds for any transition
〈S, F, S′〉 in ∆B. Similarly because C is a ℘-UTGBA over A[T ], (5) is true for any tuple
in ∆C . Only the following set of transition remains to be checked: {〈R,F, T ′〉 | T ′ ∈ Q0

C}.
However because (5) was true for 〈R,F, T 〉 it also holds for all these transitions.

5



(B1)

F

se
a
rc

h
st

a
ck s1 s2

s1 s2
s6 s7 s8

D

R

T

(B2)

F F

F

se
a
rc

h
st

a
ck s1 s2

s6 s7

s8

D

R

T1

T2

Fig. 3. Inclusions checks in the search stack. We rewrite B1 to B2.

3 Emptiness Check of ℘-UTGBA

A generalized Büchi automaton can accept a run (i.e., is nonempty) if it contains a strongly
connected component (SCC) reachable from some initial state, and in which all acceptance
conditions appear. Checking the emptiness of an automaton amounts to checking for the existence
of such an SCC. Several algorithms have been designed with this aim (we refer the reader to
Couvreur et al. [4] for an extensive bibliography on this subject) and the one we present here is
derived from that of Couvreur [2].

Original algorithm. The idea is to enumerate all the maximal strongly connected components
(MSCC) of an automaton. Any graph contains at least one MSCC without outgoing arc, so to
list all MSCCs, we should find such a terminal MSCC, remove it from the graph, and list all
MSCCs of the resulting graph. To do so, the algorithm performs a depth-first search (DFS) of
the automaton. While doing so, it maintains a stack of SCCs traversed by the DFS stack. As new
transitions are visited, the SCC stack may be augmented or compacted. When an SCC is popped
off the stack, meaning it is terminal in the above sense, we check whether it is accepting: if that
is the case, the algorithm terminates, otherwise all the states of this component are marked as
“removed” so that whenever the DFS hits one of them again it can ignore it.

Adaptation to ℘-UTGBA. The new algorithm differs from the original in two points. First,
the check of removed states above is generalized: any removed state D can indeed be ignored by
the DFS, but so can any state T ⊆ D! This is thanks to proposition 2.

Fig. 3 illustrates the second difference. Consider automaton B1 where the DFS is examining the
transition 〈R,F, T 〉 going to a new state T . Notice that there exists a state D in the search stack
(or more generally in any SCC on the search stack) such that D ⊆ T . From the point of view
of the underlying automaton it means some states in R can reach those in D and vice-versa,
so they all belong to the same SCC. For the emptiness check it would be beneficial to split the
transition 〈R,F, T 〉 as on B2: it explicits the loop on the SCC and reuses previously seen states.
Such a decomposition is correct thanks to proposition 3, but it has additional constraints we now
formalize.

Let B = 〈QB,Q0
B,F ,∆B〉 be a ℘-UTGBA over some A. Decomp(B, 〈S, F, T 〉, D) is an operation

that should perform a decomposition like in proposition 3. Besides B and 〈S, F, T 〉, which have

6



the same purpose as in the definition, the argument D is a state of B that is also a subset of T .
Decomp should build the required automaton C with two additional constraints:

– we want D ∈ Q0
C (and the other states of Q0

C will by definition complete T ),

– and ∆C should not add transitions to the states of B, in other words {〈S, F, S′〉 ∈ ∆C | S ∈
Reach(B)} ⊆ ∆B.

Decomp returns a pair B′,Q0
C : the new automaton, and the initial states of C. (Since in practice

we build B on the fly, as needed by the emptiness check, what really matters is that Decomp
doesn’t add any transition to the part of B already seen by the emptiness check, so it can continue
from the result of Decomp as if it had started from it.)

The complete algorithm presented on Fig. 4 requires three operations on the structure of the
states: tests for equality and inclusion, and the decomposition. We denote them respectively, =,
⊆ and Decomp. These operations are the only steps of the algorithm that have to be tailored to
the encoding of the states.

Correctness of this algorithm. We use the following notations in the proof. At any point of
the execution we denote the contents of the todo and SCC stacks as follows:

todo =〈state0, succ0〉〈state1, succ1〉 · · · 〈statem, succm〉
SCC =〈root0, la0, acc0, rem0〉〈root1, la1, acc1, rem1〉 · · · 〈rootn, lan, accn, remn〉

todo is a DFS stack of pairs 〈state, succc〉 where succ is the set of outgoing transitions of state
that haven’t been considered yet. We call state0 . . . statesm the search path.

Each tuple in SCC represents a strongly connected component traversed by the search path.
rooti is the number of the first state of the component visited by the algorithm, and together
with H (a map that numbers each visited state) it allows to define the set Si of states belonging
to the ith SCC as follows:

Si ={s ∈ QB | rooti 6 H[s] < rooti+1} for 0 6 i < n

Sn ={s ∈ QB | rootn 6 H[s]}

acci is the set of acceptance conditions traversed by transitions between states of Si. lai are
the acceptance conditions on the transition between the (i − 1)th and the ith components. The
resulting chain of SCC is depicted by Fig. 5. Finally remi is a set of states to be removed when
the component is popped, as we will see later.

The states of the automaton B being checked are partitioned into three sets:

– The active states are those which are keys of H and have a nonzero value,

– the removed states are those which are keys of H and have a value of 0,

– finally the unexplored states are those that are not keys of H.

Initially, all states are unexplored. The function “DFSpush” is the only place a state can move
from the unexplored set to the active set, and the function “DFSpop” is the only place where it
can move from the active set to the removed set.

To prove the correctness of the algorithm we show that the following invariants are preserved at
every line of “main”:

7



1 // Let B = 〈QB,Q0
B,F , ∆B〉 be the input automaton to check.

2 todo: stack of 〈state ∈ QB, succ ⊆ ∆B〉
3 SCC: stack of 〈root ∈ N, la ⊆ F , acc ⊆ F , rem ⊆ QB〉
4 H: map of QB 7→ N
5 max ← 0
6

7 main():
8 forall S0 ∈ Q0

B
9 DFSpush(∅, S0)

10 while ¬todo.empty()
11 if todo.top().succ = ∅
12 DFSpop()
13 else
14 pick one 〈R, F, T 〉 off todo.top().succ
15 if ∃D ∈ H.keys() such that (T ⊆ D) ∧H[D] = 0
16 continue
17 elsif T 6∈ H
18 if ∃D ∈ H.keys() such that D ⊆ T ∧H[D] > 0
19 B,Q0

C ← Decomp(B, 〈R, F, T 〉, D)
20 todo.top().succ ← todo.top().succ ∪ {〈R, F, D〉} ∪ {(R, F, T ′) | T ′ ∈ Q0

C}
21 else
22 DFSpush(F , T )
23 elsif H[T ] > 0
24 if merge(F , H[T ]) = F
25 return ⊥
26 return >
27

28 DFSpush(F ⊆ F , S ∈ Q):
29 max ← max + 1
30 H[S] ← max
31 SCC.push(〈max, F, ∅, ∅〉)
32 todo.push(〈S, {〈R, F, T 〉 ∈ ∆B |R = S}〉)
33

34 DFSpop():
35 〈S, 〉 ← todo.pop()
36 SCC.top().rem.insert(s)
37 if H[S] = SCC.top().root
38 forall R ∈ SCC.top().rem
39 H[R] ← 0
40 SCC.pop()
41

42 merge(F ⊆ F , n ∈ N):
43 r ← ∅
44 while (n < SCC.top().root)
45 F ← (F ∪ SCC.top().acc ∪ SCC.top().la)
46 r ← r ∪ SCC.top().rem
47 SCC.pop()
48 SCC.top().acc ← SCC.top().acc ∪ F
49 SCC.top().rem ← SCC.top().rem ∪ r
50 return SCC.top().acc

Fig. 4. Emptiness check of a ℘-UTGBA.

8



acci−1 acci acci+1 accn

lai−1 lai lai+1 lan
F

Fig. 5. The meaning of la and acc in SCC.

Proposition 4. m > n (in the above notation for todo and SCC) and there exists a strictly in-
creasing function f such that ∀i 6 n, rooti = H[statef(i)]. In other words, root0, root1, . . . , rootn
is a subsequence of H[state0],H[state1], . . . , H[statem]. (I.e., the roots of the strongly connected
components are on the search path of the depth-first search, and in the same order.)
Proposition 5. For any i 6 n the subgraph induced by the states of Si is a SCC. Further-
more there exists a cycle in this SCC that visits all the acceptance conditions of acci. Finally
S0, S1, · · · , Sn is a partition of the set of active states.
Proposition 6. ∀i < n,∃s ∈ Si, 〈s, lai+1, statef(i+1)〉 ∈ ∆.
Proposition 7. For any i < n, remi holds all states of Si not on the search path.
Proposition 8. For any removed states q, Acc(B[{q}]) = ∅.

The first two propositions guarantee that if the algorithm finds an i such that acci = F , it
corresponds to a reachable (prop. 4) accepting component (prop. 5). The last proposition justifies
that no accepting run exists if the algorithm has removed all the states.

Proof. All propositions 4-8 hold when line 10 is first reached. There is only one element on todo
and SCC and the way it has been pushed by “DFSpush” guarantees prop. 4. S0 contains only
one states, so prop. 5 holds. Since n = m = 0, prop. 6 and 7 are trivially true. No state have
been removed yet so prop. 8 is true too.

When a transition 〈S, F, T 〉 is picked off succm, we fall in one of the following cases:

– H[T ] = 0 means that T is a removed state (lines 15–16). Because of prop. 8 neither T nor
any of its descendants can be part of an accepting run: T can be safely ignored from the
search. Since no data structure is altered, prop. 4-8 are preserved.

– ∃D,H[D] = 0∧T ⊆ D. There exists a removed state D that contains T (lines 15–16). Using
prop. 2 we can ignore T as above, and prop. 4-8 are preserved.

– T 6∈ H and ∃D,H[D] > 0 ∧ D ⊆ T . There exists an active state D that is included in the
current destination T , and T hasn’t been visited yet (lines 17–20).

Since we have already seen D we would like to avoid that part of T . We therefore apply
Decomp to split T into D plus several other (possibly new) states that completes T . Since
this operation does not add any transitions to states that exist in B (this is a constraint we
stated on Decomp) and does not remove any visited state or transition, we can overwrite
B with the automaton produced by Decomp without affecting the DFS. We simply replace
〈S, F, T 〉 that have been removed from succm by the list of transitions to the D and Q0

C .

This case is a no-op for the whole algorithm, as if it had worked with the new automaton
since the beginning. Prop. 4-8 are unaffected.

– T 6∈ H and we didn’t find an active D included in T (lines 21–22). T is a trivial SCC, we
number it in H, stack it onto SCC as a new root, and push it onto the DFS stack todo.
Doing so guaranties prop. 4-6 and does not affect prop. 7-8.

9



– H[T ] > 0, i.e., T is an active state (lines 23–25). Let rooti be the greatest root such that
rooti < H[T ], we denote ri = statef(i) the associated state. Because of prop. 5, ri and T
are in the same SCC. Moreover, because of ri and R are on the depth-first search path, ri

can reach R. Since we are considering the transition 〈R,F, T 〉, we conclude that ri, R, and
T belong to the same SCC.

We therefore merge all SCCs above rooti. The new SCC is the union of Si, . . . , Sn, and inside
this SCC these exists a cycle that traverses the acceptance conditions acci, . . . , accn of any
former SCC, as well as the those lai+1, . . . , lan of the intervening transitions. Fig. 5 depicts
the situation before the merge, showing acceptance conditions in and between the SCCs.

The function “merge” takes care of merging these acceptance conditions to preserve prop. 5
and also merges all the removed states to preserve prop. 7. The other three propositions are
not affected by this operation.

The “merge” operation returns the acceptance conditions of the merged SCC. If this is F
then the algorithm can answer negatively immediately (line 25).

We now consider the case where succm = ∅ (lines 11-12). The properties of the DFS imply the
algorithm has explored all the successors of statem and their descendants.

statem is popped off the search path on line 35, and to preserve prop. 7 it is added to remn on
line 36. Popping statem will not affect prop. 4 as long as this state is not the root of a SCC. If
it is, the SCC has to be popped too. Doing so does not affect prop. 6 but to preserve prop. 5 we
should also remove the states of Si from the active set. At this point we know that the top-most
SCC is maximal:

– no unexplored state can be part of the SCC because we have explored all the descendants of
this state,

– no active states from a lower SCC can be part of this one, because we would have merged
them if a descendant of statem, could reach it,

– no removed state can belong to this SCC thanks to prop. 8.

We also know that this maximal SCC doesn’t contain any accepting cycle, otherwise the algorithm
would have stopped on line 24 when adding this cycle. Therefore ∀q ∈ Si,Acc(B[q]) = ∅, and
we can mark all these states as removed without invalidating prop. 8. Because of prop. 7 at line
38 remn contains all the states of Si, so this loop actually removes all the states of the SCC as
required by prop. 5.

If the algorithm ends line 26, the todo stack is empty. By prop. 4 this means that SCC is empty
too, and by prop. 5 it means that the active set is empty. Since the DFS has explored all the
reachable states of the automaton, we conclude that all reachable states have been removed,
which, because of prop. 8 implies that Acc(B) = ∅.

We have shown that if the algorithm terminates on line 25 there exists an accepting run, and
if the algorithm terminates on line 26 there does not. The algorithm is guaranteed to terminate
because it performs a DFS on a finite automaton. Because of its use of Decomp the algorithm
can explore more than QB states, but it cannot explore more than 2QA states if we denote QA
the number of states of A (recall the automaton being checked is a ℘-UTGBA over A).

We conclude that the algorithm returns ⊥ iff B contains an accepting run.

10



(B3)

F
se

a
rc

h
st

a
ck

s1 s2

s1 s2

s3 s4

D

R

T

(B4)

F

se
a
rc

h
st

a
ck

s1 s2

s3 s4

D

R

Fig. 6. Inclusions checks in the search stack. We rewrite B3 to B4.

4 Approximative Emptiness Check

Consider Fig. 3 again. In the previous section we have seen that at lines 18–21 the algorithm of
Fig. 4 takes the situation depicted by automaton B1, where the emptiness check reaches a state
T ⊇ D such that D belongs to the search stack, and translates that into B2 to reuse existing
states and build SCCs as soon as possible. We proved that this transformation preserves the
result of the emptiness check (B1 ξ-equivalent to B2).

We now turn to the situation B3 on Fig. 6, where the emptiness check examines a transition
〈R,F, T 〉 such that T ⊆ D and D is in the search stack. We can rewrite this transition as
〈R,F, D〉, as depicted by B4, by replacing lines 18–20 of Fig. 4 by:

18 if ∃D ∈ H.keys() such that T ⊆ D ∧H[D] > 0
19 // Note the order of T and D above.
20 todo.top().succ ← todo.top().succ ∪ {〈R, F, D〉}

Assume that B3 is a ℘-UTGBA over some A. Note that the above transformation breaks prop-
erty (5) of definition 5, because s3 and s4 have no predecessor in R; so B4 is not a ℘-UTGBA
over A. However by adding some transitions to A to please property (5) it is possible to derive
an A′ such that B4 is a ℘-UTGBA over A′.

Therefore if the emptiness check algorithm finds an accepting component in B4, there is an
accepting run in A′ but not necessarily in A. However since runs of A are also runs of A′, if the
algorithm does not find any accepting component in B4, no accepting run exists in A and A′.

In other words, this modified algorithm returns “empty” or “I don’t know”. As we will show in
Section 7 this transformation is a lot faster than the other (“correct”) one presented in Section 3.
Since model-checking is mainly interested in ensuring that some automaton is empty, it makes
sense to try this semi-decision procedure first and fall back to the “correct” if the answer isn’t
“empty”.

Note by the way that if the modified algorithm return ⊥ but no inclusion have been done in
the stack (one could count the number of time line 20 has been executed), then the automaton
actually is nonempty.

11



5 Counterexamples

When verifying a model by the automata theoretic approach, the presence of an accepting run
means that there exist an execution of the modeled system that invalidates the property being
checked, i.e., a counterexample of the property. Therefore whenever the emptiness check exits
with ⊥, meaning the automaton has an accepting run, the user usually wants to see such a run
to debug the model (or the property).

Unlike mainstream emptiness checks working with nested depth-first search on non-generalized
Büchi automata [9] whose search stacks directly provide an accepting run on exit, SCC-based
emptiness checks can only describe the counterexample in term of SCCs. To produce a genuine
accepting run from the stack of SCCs, these SCCs have to be searched again [4]. First, one should
compute an accepting cycle inside the top-most SCC, and then try to reach it from the initial
state. All these searches are localized, because the states we explore necessarily belong to the
the SCCs in the stack.

Our algorithm can produce such a stack of SCCs on failure (this is the SCC stack), but our case
is worsened by the use of inclusions and decompositions. The algorithm described by Couvreur
et al. [4] could be used only with guarantee that during its new exploration of these SCC it
would visit the same states that the emptiness check visited. Doing so seems hard because the
computation of the successors of a state using inclusion and decomposition depend on the value
of H.keys() which has evolved. Besides, it would only give a counterexample using states of B
while the user will prefer a counterexample using states of A.

Our suggestion is that once the emptiness check of B has failed, we search a counterexam-
ple in A, but using the data structures computed by the emptiness check of B to narrow
the search. Computing the set of states of each SCC is easily done by unwinding the todo
and SCC search stacks: the set of states that belong to the top-most SCC is Sn = remn ∪
{statef(rootn), statef(rootn)+1, . . . , statem}. The set of states from the previous SCC are then
Sn−1 = remn−1 ∪ {statef(rootn−1), statef(rootn−1)+1, . . . , statef(rootn)−1}, etc. Checking whether
a state s ∈ QA belongs to the ith SCC then amounts to testing whether ∃S ∈ Si such that s ∈ S.
It is thus possible to constraint the search in A to remain inside these SCCs.

6 Symmetries and ℘-UTGBA

In this section we show how to exploit symmetries to construct a UTGBA B that is a ℘-UTGBA
over some automaton A. We first define A, the synchronized product of a transition system T ,
representing the behavior of a system, and a Transition-based Generalized Büchi Automaton P,
representing the property to check.

Definition 7 (Labelled transition system).
A labelled transition system is a tuple T = 〈QT ,Q0

T , Σ,∆T 〉, where

– QT is a finite set of states,

– Q0
T ⊆ QT is the set of initial states,

– Σ = 2AP is an alphabet, where AP is the set of atomic propositions,

– ∆T ⊆ QT × Σ × QT is a transition relation such that ∀〈s1, p1, d1〉, 〈s2, p2, d2〉 ∈ ∆T , p1 =
p2 ⇐⇒ (s1, d1) = (s2, d2).

12



The set of reachable states Reach(T ) is defined as usual. The latter condition on ∆T means
that each transition is uniquely defined by its label (it is always possible to add more atomic
propositions to the system to verify this constraint).

Definition 8 (Transition-based Generalized Büchi Automaton). A TGBA is a Büchi automaton
with labels and generalized acceptance conditions on transitions. It is defined as a tuple P =
〈QP ,Q0

P , Σ,F ,∆P〉, where

– QP is a finite set of states,

– Q0
P ⊆ QP is a set of initial states,

– Σ = 2AP is an alphabet,

– F is a finite set of acceptance conditions,

– ∆P ⊆ QP × Σ × 2F × QP is the transition relation, where each transition is labelled by a
letter of Σ and a set of acceptance conditions of F .

Definition 9 (Synchronized product). The synchronized product between T = 〈QT ,Q0
T , Σ,∆T 〉

and P = 〈QP ,Q0
P , Σ,F ,∆P〉 is the UTGBA A = T ⊗P defined by A = 〈QA,Q0

A,F ,∆A〉, where

– QA = QT ×QP is the set of states,

– Q0
A = Q0

T ×Q0
P is the set of initial states,

– ∆A ⊆ QA × 2F ×QA is the transition relation between states such that
∃
〈
〈s, q〉, F, 〈s′, q′〉

〉
∈ ∆A iff ∃〈s, p, s′〉 ∈ ∆T ,∃〈q, p′, F, q′〉 ∈ ∆P and p = p′.

6.1 Symmetry-based Construction of a ℘-UTGBA

Now we construct B, a ℘-UTGBA over A = T ⊗ P, using a technique introduced by Haddad
et al. [6] but adapted to transition-based automata. The idea is to exploit the symmetries of T
in addition to those of the arcs of P, to gather sets of nodes of A.

Since these symmetries sit on group theory, we recall some elementary notions.

Definition 10. Let (G, ◦) be a group with a neutral element id, and let E be a set.

– An action of G over E is a mapping G × E 7→ E such that the image (g, e) denoted by g.e
fulfills ∀e ∈ E : id .e = e and ∀g, g′ ∈ G, (g ◦ g′).e = g.(g′.e).

– The isotropy subgroup GE′ of a subset E′ ⊆ E is defined by GE′ = {g ∈ G | ∀e ∈ E′, g.e ∈
E′}.

– For a subgroup H of G (denoted H < G), the orbit H.e of e ∈ E under H is defined by
H.e = {g.e | g ∈ H}.

– An action g of G can be straightforwardly extended to the powerset of E. For any E′ ⊆ E,
g.E′ = {g.e | e ∈ E′}.

We can now characterize a symmetric transition system with respect to a group.

Definition 11 (Symmetric transition system with respect to a group). Let T = 〈QT ,Q0
T ,

Σ,∆T 〉 be a transition system and G be a group acting on AP. T is said to be symmetric with
respect to G iff every transition of T has a “symmetric” transition with respect to any element of

13



G and the action of G is congruent with respect to the transition relation: ∀g ∈ G, ∀〈s1, p1, d1〉 ∈
∆T ,∃〈s2, p2, d2〉 ∈ ∆T such that


s1 ∈ Q0

T ⇐⇒ s2 ∈ Q0
T

p2 = g.p1 and
∀〈s′1, p′1, d′1〉 ∈ ∆T , s′1 = d1,∃〈s′2, p′2, d′2〉 ∈ ∆T , s′2 = d2 and p′2 = g.p2

The action of the group on AP is extended to Reach(T ) by denoting g.s the unique s2 such that
∀g ∈ G, ∀〈s1, p1, d1〉 ∈ ∆T , s1 = s,∃d2 ∈ QT , 〈s2, g.p1, d2〉 ∈ ∆T . (The uniqueness is due to the
constraint on ∆T in definition 7.)
Because G is group, a consequence of this definition is that G.Q0

T = Q0
T .

These definitions allows us to give a possible construction of a B.

Definition 12 (Symbolic Synchronized Product). Let T = 〈QT ,Q0
T , Σ,∆T 〉 be a transition sys-

tem symmetric w.r.t. a group G, P = 〈QP ,Q0
P , Σ,F ,∆P〉. The Symbolic Synchronized Product

of T and P is a UTGBA B = 〈QB,Q0
B,F ,∆B〉 where:

– Q0
B = {〈G, G.s, q〉 | s ∈ Q0

T , q ∈ Q0
P}

– QB = Q0
B ∪ V where V is the set of tuples of the form 〈H,O, q〉 such that H < G, O ⊆

Reach(T ), q ∈ QP , and H.O = O.

– ∆B is defined by construction as follows:
〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B iff

∃(s, s′, p, p′, F ) ∈ O × O′ × Σ × Σ × 2F such that 〈s, p, s′〉 ∈ ∆T , 〈q, p′, F, q′〉 ∈ ∆P , and
p = p′. Then O′ = (H ∩Gp′).s′ and H ′ ⊆ GO′ .

If A = T ⊗ P = 〈QA,Q0
A,F ,∆A〉, any state 〈H,O, q〉 ∈ QB of B represents the set {〈x, q′〉 ∈

QA | x ∈ O ∧ q′ = q} of states of A. Hence we can write 〈x, q′〉 ∈ 〈H,O, q〉, and we will prove
that B is a ℘-UTGBA over A.

For this construction to make sense (memory-wise), the set O of a state 〈H,O, q〉 must never
be stored explicitly. In our implementation this is achieved by using a modified version of the
symbolic representation of Well Formed Petri-Nets [1].

6.2 Correctness of the construction

We now prove that the symbolic synchronized product B is a ℘-UTGBA over A, as per defini-
tion 5.

– Since any state 〈H,O, q〉 ∈ QB represents the set {〈x, q′〉 ∈ QA | x ∈ O ∧ q′ = q}, we have
QB ⊆ 2QA and condition (1) holds.

– Property (2) holds by definition of B.

– Property (3) holds because:⋃
S∈Q0

B

S = {〈x, q′〉 | s ∈ Q0
T , x ∈ G.s, q′ ∈ Q0

P} = (G.Q0
T )×Q0

P = Q0
T ×Q0

P = Q0
A

14



– Property (4) translates as follows:

∀
〈
〈s, q〉, F, 〈s′, q′〉

〉
∈ ∆A, ∀〈H,O, q〉 ∈ Reach(B), 〈s, q〉 ∈ 〈H,O, q〉 =⇒

∃〈H ′, O′, q′〉 ∈ QB, 〈s′, q′〉 ∈ 〈H ′, O′, q′〉,
〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B

Let
〈
〈s, q〉, F, 〈s′, q′〉

〉
∈ ∆A. By the definition of A, there exists two matching transitions

〈s, p, s′〉 ∈ ∆T , and 〈q, p′, F, q′〉 ∈ ∆P where p = p′. Let 〈H,O, q〉 ∈ Reach(B) such that
〈s, q〉 ∈ 〈H,O, q〉. By definition of ∆B, there exists

〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B where

O′ = (H ∩Gp′).s′ and H ′ ⊆ GO′ . And then 〈s′, q′〉 ∈ 〈H ′, O′, q′〉.

– Finally property (5) translates as:

∀
〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B, ∀〈s′, q′〉 ∈ 〈H ′, O′, q′〉, then

∃〈s, q〉 ∈ 〈H,O, q〉, such that
〈
〈s, q〉, F, 〈s′, q′〉

〉
∈ ∆A

Let
〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B, and 〈s′, q′〉 ∈ 〈H ′, O′, q′〉. By definition of ∆B, we have

∃
〈
〈x, q〉, F, 〈x′, q′〉

〉
∈ ∆T such that 〈x, q〉 ∈ 〈H,O, q〉 and 〈x′, q′〉 ∈ 〈H ′, O′, q′〉. Since 〈x′, q′〉

and 〈s′, q′〉 belong to 〈H ′, O′, q′〉, there exists g ∈ H ′ such that g.x′ = s′. Because H ′ < G
which is congruent with respect to the transition relation, we have

〈
〈g.x, q〉, F, 〈g.x′, q′〉

〉
=〈

〈g.x, q〉, F, 〈s′, q′〉
〉
∈ ∆A.

6.3 Operations needed by the emptiness check

Let T = 〈H1, O1, q1〉 and D = 〈H2, O2, q1〉 be two states of B. Since the sets Oi are not stored
explicitly we cannot compare states with different Hi unless they are expanded into the set of
states of A they represent. To avoid this explicit expansion we introduce the following operation
that we can use to unify the Hi.

The refinement of 〈H1, O1, q1〉 w.r.t. H2 is the finite set Ref(〈H1, O1, q1〉,H2) = {〈H1∩H2, Oi, q1〉 |
i ∈ N} such that ∀i, (H1 ∩H2).Oi = Oi, and

⋃
i Oi = O1.

This allows us to check the inclusion of two states as follows: 〈H1, O1, q1〉 ⊆ 〈H2, O2, q1〉 iff
Ref(〈H1, O1, q1〉,H2) ⊆ Ref(〈H2, O2, q1〉,H1).

Seeking visited states that include others (as on lines 15 and 18 of Fig. 4) can be sped up using
a two level hash-table. Let G be the group acting on AP such that ∀p ∈ AP , G.p = AP . For a
state 〈H1, O1, q1〉, pick an s ∈ O1: G.s is the coarsest equivalence class in which s can belong.
We use G.s as a key for our first-level hash table and q1 as a key for the second level. Therefore
when looking for states that include 〈H1, O1, q1〉, we only need to look through the states that
share the same G.s and q1.

Decomp(B, 〈R,F, T 〉, D) is achieved using the refinement above. T is refined with respect to
D’s H2, and D is refined with respect to H1, so we can compute the difference: {Ti}i =
Ref(〈H1, O1, q1〉,H2) \ Ref(〈H2, O2, q1〉,H1). (The algorithm is improved by grouping some of
these Tis.)

15



SP+TEC SSP+TEC SSP+NSIEC SSP+IEC SSP+AEC
model n st. tr. T st. tr. T st. tr. T st. tr. T st. tr. T

WCS3 28

n
o
n
em

p
ty

p
ro

d
.

28 80 0.05 25 58 0.06 26 51 0.06 24 45 0.05 21 39 0.05
WCS4 28 78 250 0.06 77 202 0.14 66 176 0.17 43 96 0.10 29 57 0.06
WCS5 28 290 979 0.13 416 1309 2.76 294 1118 6.44 106 287 0.95 39 82 0.07
PO22 18 252 431 0.13 690 1307 0.95 738 1505 1.10 738 1505 1.10 738 1505 1.10
PO23 18 292 511 0.17 770 1441 1.48 750 1550 1.69 750 1550 1.69 750 1550 1.69
PO32 22 1173 2235 0.65 2184 4730 7.40 1400 3031 3.75 1400 3031 3.75 1392 2982 3.71

WCS3 22

em
p
ty

p
ro

d
u
ct

s 99 279 0.06 94 255 0.13 91 250 0.14 73 194 0.13 30 70 0.07
WCS4 22 434 1485 0.13 602 2063 1.60 568 1980 2.17 297 940 1.07 64 177 0.15
WCS5 22 1889 7430 0.60 4224 17744 144 3905 16719 107 1370 4815 23.7 136 428 0.46
PO22 32 2484 5482 0.91 866 1817 2.16 864 1814 2.14 865 1814 2.14 864 1813 2.14
PO23 32 3253 7200 1.56 952 2030 3.68 868 1830 3.08 868 1831 3.09 868 1830 3.08
PO32 28 4617 10651 2.48 1334 2848 4.97 1294 2784 4.78 1294 2784 4.78 1294 2783 4.79

Table 1. States (st.) and transitions (tr.) explored by each algorithm on different models, and seconds
(T) taken. All averaged on n properties.

6.4 Handling Asymmetric Transition Systems

The method, as described here, is heavily dependent on the global symmetries of the transition
system T (i.e., on the group G). The bigger G is, the better the achieved reduction is. On a
transition system mostly asymmetric, G will be very small, maybe the identity (i.e., no symme-
tries at all), and consequently the subgroups H < G computed for each node will allow even less
reductions.

There is one way to handle an asymmetric transitions system T with this method: it is to
rewrite the it as a composition TS ⊗ C where TS is globally symmetric w.r.t. a large G and C
is a constraint automaton such that TS ⊗ C = T . Now, instead of constructing the symbolic
synchronized product method of T ⊗P, we can construct it for TS ⊗PC where PC = C ⊗PC . In
other words, we shifted all asymmetries from the system automaton to the property automaton.
This works because the method does not require a symmetric property automaton.

Haddad et al. [6] show one way to construct Ts and C from T , while we are using a more optimal
transition-based construction which is yet unpublished.

7 Performance

The symbolic synchronized product of definition 12 has been implemented using the core of
GreatSPN1 [1], and the emptiness checks we presented are implemented in Spot2. Connecting
the two tools allowed us to compare different techniques.

Table 1 presents some measurements on two parametrized models: WCS [1] and PO [8]. In both
cases increasing the parameter increases the number of states of system. Each of these models
was synchronized against 50 property automata: the table has been split to average the cases
were the resulting product is empty separately from the cases were it is not. The reason is that
the emptiness check has to check all states of an empty product, but can abort early if it is
nonempty. The column n shows how much of the 50 cases were empty or not.
1 http://www.di.unito.it/∼greatspn/ 2 http://spot.lip6.fr/

16



The abbreviations in the headers refer to how the product was constructed and checked for
emptiness. SP is the synchronized product of definition 9 while SSP designates the symbolic
synchronized product of definition 12. SP’s state are not sets, so it is checked with a traditional
emptiness check (TEC) similar to the one of Fig. 4 but without any inclusion check or decompo-
sition. IEC designates the emptiness check of Fig. 4. NSIEC is the same algorithm without lines
18–21 (i.e., No Stack Inclusion). Finally, AEC designates the approximative emptiness check of
Section 4.

We observe that although SP is a lot faster than SSP, it visits many more states and hence
requires a lot more memory. The different versions of our emptiness check algorithm can be
compared in the four SSP columns: on the WCS model, adding inclusion checks in the removed
states (NSIEC) reduce the size of the explored automaton (compared to TEC), and adding
inclusion checks in the search stack (IEC) reduces the automaton further. Therefore, although
the decomposition operation is costly (time-wise) it really helps reduce the memory footprint of
the model-checking. The last column shows that approximation is indeed faster and constructs
less states than all others methods. It is worth noting that it yielded no false negatives in these
experiments! On the PO model, the new emptiness check algorithms are not significantly better
because the model offers little occasion for inclusion; still it can be seen that they do no incur
any overhead.

8 Conclusion

In this paper, we presented two novel emptiness check algorithms dealing with automata whose
states are sets, and exploiting inclusions between these sets. Because there exists multiple meth-
ods to build such “set automata”, we tried not to tie these algorithms to any specific method by
providing a set of formal constraints that the automaton must verified to apply the emptiness
check algorithms. We are now considering how it could be applied to techniques like unfolding
graphs [3], observation graphs [7].

The results we obtained on the symmetry-based construction indicate that using inclusion and
decomposition reduces the number of states by a great factor to the detriment of the time.
Actually, the loss of time is due to the way the states are encoded. Because this technique calls
for a representation of sets that allow fast inclusion checks and decomposition, we expect that
encoding sets with BDDs or DDDs [10] would improve the situation.

Bibliography

[1] S. Baarir, S. Haddad, and J.-M. Ilié. Exploiting partial symmetries in well-formed nets for
the reachability and the linear time model checking problems. In Proc. of WODES’04, pages
223–228, Sept. 2004.

[2] J.-M. Couvreur. On-the-fly verification of temporal logic. In Proc. FM’99, volume 1708 of
LNCS, pages 253–271. Springer-Verlag, Sept. 1999.

[3] J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Designing a LTL model-checker based on
unfolding graphs. In Proc. of the ICATPN’00, volume 1825 of LNCS. Springer-Verlag, June
2000.

17



[4] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks for general-
ized Büchi automata. In Proc. of SPIN’05, volume 3639 of LNCS, pages 143–158. Springer-
Verlag, Aug. 2005.

[5] J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with Tarjan’s algo-
rithm. Theoretical Computer Science, 345(1):60–82, Nov. 2005. Conference paper selected
for journal publication.

[6] S. Haddad, J.-M. Ilié, and K. Ajami. A model checking method for partially symmetric
systems. In Proc. of FORTE/PSTV’00, volume 183 of IFIP Conference Proceedings. Kluwer,
Oct. 2000.

[7] S. Haddad, J.-M. Ilié, and K. Klai. Design and evaluation of a symbolic and abstraction-
based model checker. In Proc. of ATVA’04, volume 3299 of LNCS, pages 198–210. Springer-
Verlag, Oct. 2004.

[8] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Barrir, and T. Vergnaud. On the
formal verification of middleware behavioral properties. In Proc. of FMICS’04, volume 133
of ENTCS, pages 139–157. Elsevier, Sept. 2004.

[9] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Proceedings of the
11th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’05), Lecture Notes in Computer Science. Springer-Verlag, Apr. 2005.
To appear.

[10] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. A symbolic symbolic state space represen-
tation. In Proc. of FORTE’04, volume 3235 of LNCS, Sept. 2004.

[11] A. Valmari. The state explosion problem. In Lectures on Petri Nets 1: Basic Models, volume
1491 of LNCS, pages 429–528. Springer-Verlag, 1998.

[12] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of Banff’94,
volume 1043 of LNCS, pages 238–266. Springer-Verlag, 1996.

18


