
HAL Id: hal-02545640
https://hal.science/hal-02545640v1

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Validation of ZCSP with SPIN
Vincent Beaudenon, Emmanuelle Encrenaz, Jean-Lou Desbarbieux

To cite this version:
Vincent Beaudenon, Emmanuelle Encrenaz, Jean-Lou Desbarbieux. Design Validation of ZCSP with
SPIN. [Research Report] lip6.2002.025, LIP6. 2003. �hal-02545640�

https://hal.science/hal-02545640v1
https://hal.archives-ouvertes.fr


Design Validation of ZCSP with SPIN

Vincent BEAUDENON, Emmanuelle ENCRENAZ, Jean-Lou DESBARBIEUX
UPMC - LIP6 - ASIM

12, rue Cuvier,
75252 PARIS Cedex 05 - FRANCE

email: {Vincent.Beaudenon, Emmanuelle.Encrenaz, Jean-Lou.Desbarbieux}@lip6.fr

Abstract— We consider the problem of specifying a
model of the Zero Copy Secured Protocol for the purpose
of LTL verification with the SPIN Model Checker. ZCSP
is based on Direct Memory Access. Data is directly
read/written in user space memory, decreasing latency
and saving processor computing time. We first introduce
the ZCSP protocol before analysing different ways of
modelling it.

Two main steps were performed: A finite and a non-
finite sequences model. The first model gave us an overview
of the protocol robustness. The second allowed us to test
realistic properties. We also describe LTL properties that
were checked with the SPIN model checker.

Unfortunately the size of the system was frequently
prohibitive. Thus, we explain all minimization steps we
had to perform: Variables’ domains restriction, interleav-
ing reduction, realistic environnement representation by
fairness constraints.

I. I NTRODUCTION

In this paper we consider the problem of specifying
the model of ZCSP protocol [1] in order to apply LTL
verification with the SPIN model checker. Readers can
find a brief description of SPIN in [2], and of protocol
validation using this tool in [3]. SPIN is a generic veri-
fication system that supports the design and verification
of systems represented as a collection of asynchronous
processes. Interaction between processes can be specified
with rendezvous primitives, with asynchronous messages
passing through typed buffered channels, through shared
variables or any combination of these [2]. SPIN accepts
design specifications written in the verification language
ProMeLa (a Process Meta Language), and it accepts
correctness claims specified in the syntax of standard
Linear Temporal Logic (LTL) [4].

To perform verification, SPIN takes a correcteness
claim that is specified as a temporal logic formula,
converts this formula into a B̈uchi automaton, and com-
putes thesynchronousproduct of this claim and the
automaton representing the global state space. The result
is again a B̈uchi automaton. A B̈uchi automatonaccepts

a system execution if and only if that execution forces
the automaton to pass infinitely often through one or
more of its accepting states. We call such behaviors
acceptance cycles. SPIN performs the translations from
LTL to Büchi automaton with a tableau-based algorithm
geared towards “on-the-fly” model checking [5]. Once a
desired behavior has been specified in LTL, SPIN searchs
for a counterexample related to an acceptance cycle in
the transition-based synchronous product of the system
and the B̈uchi automaton corresponding to the negated
formula.

We take aim at proving some temporal properties of a
Zero-Copy Secured Protocol, and describe our modeling
experience. The paper is organized as follows: In the first
part we shall describe the Zero-Copy Secured Protocol,
then we shall expose two main kinds of models, explain
all choices and results. Finally, we propose modeling
rules and property assumptions, and we will discuss on
resource difficulties that we have encountered.

II. Z ERO-COPY SECUREDPROTOCOL

A. Utility

Clusters of PCs are a very attracting solution for
low cost parallel computing. In these machines, the
performance strongly depends on the communication
protocols. A basic idea to improve network performance
is to avoid multiple copies of data. In classical com-
munication protocols such as TCP/IP, the transmitted
data is copied several times from memory to memory on
both the source processor node and the target processor
node. With gigabit/s (and faster) networks, those multiple
copies are not anymore negligible in terms of latency and
introduce processor overhead. Zero copy communication
protocols are based on direct memory access: the sender
node’s network interface controller (NIC) reads the data
directly from user space memory and the receiver node’s
NIC writes data directly in user space memory, without
the processor’s intervention or copying any byte of data.



The zero copy behavior decreases latency and saves pro-
cessor computing time, thus, enabling more computing
while communication occurs.

B. Behavior

The messages are the communication units between
processes of an application. At our level each message is
split into packets which are the elementary transfer units
between an emitter and a receiver. The good reception
of a message by a receiver is signaled to the emitter by
sending back a special packet named acknowledgement.

1) Principle: A packet is the smallest piece of data
transmitted atomically through the network. In addition,
each packet contains the target node number, the physical
address in the remote memory, and the message iden-
tifier. In most networks, a corrupted packet is simply
discarded by the network. So we make the assumption
that any transmission error will simply result in one or
several packet losses. The last packet of a message has
to be acknowledged. The packets must be received in
the sequential order they were sent while the message
acknowledgements may be received in another order. On
the sending node, the NIC starts a timer when the last
packet of a message is sent. It can then transmit other
messages or acknowledgements to the same or other des-
tinations. When the NIC receives the acknowledgement
packet, the sending process is notified and the timer is
stopped. If the acknowledgement packet is not received
after the given time, the timer fires a timeout signal, and
the sender node goes into error recovery mode.

2) Error Recovery:In error recovery mode, the NIC
tries to send the whole message again, as a “bis” mes-
sage, and it will not send any further message until the
expected acknowledgement packet is received. For each
transmitted packet to a given receiver node, the sender
NIC adds a sequence number. The receiver NIC checks
the sequence number and writes the packet into memory
only when the packet has the expected sequence number.

If the last packet of a message is accepted and written
to memory, then the whole message has been written to
memory. Hence the acknowledgement packet can be sent
back to the sender, and the message may be signaled to
the software on the receiving node. All arriving packets
with a wrong sequence number are discarded and the
acknowledgement packet is not generated. In this last
case, the sender will timeout and will re-send the whole
message as a “bis” message. On retransmission of a “bis”
message, the sender reinitializes its sequence number for
transmission, so that the message is transmitted with the
same sequence numbers as the first time. Packets that

were already received and written into memory will be
discarded by the receiver, because they do not have the
expected sequence number.

C. Examples

An example is given in Figure 1. We consider the
sending of two messages between an emitter and a
receiver. The first message (A) contains two packets. The
second message (B) contains three packets. The current
sequence number is 4. The receiver is awaiting packet
4, then 5, etc. Packet 5 is the last packet of message A,
and packet 6 is the first of B. In the left-hand side of
figure 1 we can see a correct transmission of these two
messages. Arrows represents packets transmitted, and in
the right column (receiver) we can seeexpectedpackets.
The sender may send Bbefore receiving the acknowl-
edgement of A. We can see this type of transmission in
the center of figure 1. If the packet 5 is lost, the receiver
will discard all other packets. The Sender will time out
and send the whole message A in “bis” mode. After
packet “A#4”, the receiver expects “A#5” packet even if
message B was perfectly transmitted. Thus, B will have
to be re-sent later.

This mechanism also handles the loss of an acknowl-
edgement packet. Each acknowledgement is bound to
a unique message. If network contention causes the
acknowledge packet to reach the sender too late, or if the
acknowledge packet is lost, the sender node will timeout
and send a ”bis” message. The receiver will simply drop
all packets of the “bis” message, and send again an
acknowledgement packet when receiving the last data
packet. We can see this type of transmission in the right-
hand side of Figure 1. The “bis mode” transmission
of A is only used to force the receiver to re-emit
an acknowledgement. We therefore have to introduce
another counter, maintained on each node for each peer
node: the Expected Recovery Sequence Number that is
used only for ”bis” messages.

D. Remark

Reader may find similarities between ZCSP and Slid-
ing Window protocol [6]. The main difference resides
in the order of acknowledgements. In the right hand of
Figure 1 we can see that message “B” is acknowledged
beforemessage “A”, while in the Sliding Window pro-
tocol acknowledgements must be received in the order
the messages were sent. For this reason, we had to use
a table to describe awaiting-acknowledgement messages,
contrary to Sliding Window protocol formal specification
for the purpose of verification [2], [7].



Timeout

Sender Receiver

A#5

A#4

A#4

A#5

B#6

B#7

B#8

A#5

A#5

A#5

A#5

A#5

Ack A

A#4 bis

A#5 bis

Ack A bis

Timeout

Sender Receiver

Ack A

Ack B

B#8

B#7

B#6

A#5

A#4

A#4

A#5

B#6 Ack A

Ack B

B#7

B#8

Sender Receiver

A#5

A#4

A#4

A#5

B#6

B#7

B#8

A#4 bis

A#5 bis

Ack A bis

Ack A

B#6

B#7

B#8

"bis" mode
Message A

Ack B

Ack B

Ack A bis

Fig. 1. Three executions of ZCSP

III. T HE FINITE SEQUENCES MODEL

The first question we wanted to ask is “For a given set
of messages, are we sure that all desired acknowledge-
ments will arrive if the network is not broken?”. The
meaning of “not broken” will be explained in section
III-C.1 This question is answered by a first model that
does not include all implementation details of ZCSP. A
more realistic model will be presented in section IV.

A. Specifying the system

1) Data: The finite set of messages to be sent is
described in a table. Each message has a given set of
packets and a boolean variable indicating if the message
was correctly acknowledged. Each packet contains the
following information:

• Its sequence number:Sqnr .
• The number of the related message:Msg.
• A bit indicating wether it is a “bis” packet:Bis .
• A bit meaning if it is the last packet of the message:

Last .

An Acknowledgement contains the number of the
related message. The sender uses a table which contains
the state of each message (not sent, sent and acknowl-
edged).

2) Specification Scheme:We have three differents
components: The sender, the receiver and the network.To
model the timeout signals’ order, we record them in a
FIFO. The global scheme can be resume as in figure 2.

ReceiverSender���
���
���
���

���
���
���
���

Timeouts

Network

Fig. 2. Global Scheme of the finite model

The Network Interface Controler is described in section
III-A.3.

3) Communications:Each communication channel is
split into three parts: a buffer with a given size, a
process which reads in this buffer and writes in an
output channel for a rendez-vous communication. In
each of these processes, we can insert flags which can
inform the LTL property manager about the quality of all
communications as we will see in section III-C.1. Note
that the LTL property manager is a part of the model
checker SPIN, and it doesn’t require any modeling, save
the checked LTL formula.

B. Processes

1) Receiver:The receiver’s behavior is described in
figure 3. We can see a difference between this model and
the real implementation in the case of “bis messages”.
In the real system, the domain of each variable is finite.
Thus, to avoid any confusion between two different
messages, an acknowledgment is discarded if it doesn’t



Last ?

Recept

Bis ?

Already Ack ? Send Ack

Send Ack

Last ?

Update

Init

yes

no yes

yes

yes

yes

no

no

no

no

Sqnr ?

Fig. 3. the finite sequences receiver’s model

have the same re-emission number as the one of the
linked message. In our model, we suppose that this
method works and the receiver re-send an acknowledge-
ment iff it receives the last packet of a “bis” message
allready acknowledged. This choice was made under the
assumption that the receiver always recognizes the real
nature of any message.

2) Sender: The sender’s behavior is described in
figure 4. The most important part in this model is the
“select” state. The choice between each branch means a
different scenarioand is non-deterministic.

• The “ack” guard means that an acknowledgement
may be read.

• The “msg” guard means that a new message may
be sent respecting the size of emission window.

• The “timeout” guard means that a timeout may be
extracted from the FIFO. This may happen even
if no message is waiting for an acknowledgement.
The SOS step reads the “timeout” and the “valid”
test verifies that it corresponds to a not allready
acknowledged message. In such a case, the pro-
cess enters in “bis” mode (bottom-right part in the
scheme).

When sending message in “bis mode”,timeouts on other
messages are not considered (The process doesn’t read
the FIFO), but only acknowledgements are. This means
that no timeout may arrivebefore the corresponding
acknowledgement, when the sender works in “bis mode”.
This will be corrected in section IV.

Init

All Ack

Select

End

SOSSendUpdate

ValidSend Bis

Select Update

Valid

�������
�������
�������
�������

����������������

ack

timeout

true

yes
no

yes

no

Timeouts

acktrue

no yes

msg

Fig. 4. the finite sequences sender’s model

C. Validation

1) Assumptions:The SPIN model-checker can con-
struct all possible executions of the specified system.
Obviously, there is a class of scenarii that performs
uninteresting behaviors. There is a set of trivial counter-
examples (for example, considering that each packet or
each acknowledgement is lost) which doesn’t perform
any realistic execution. Then we must construct assump-
tions related to a “good” behavior of the network. We
introduce a new property on messages’ progression.

We are sure that the receiver will progress if it receives
an incremental suite of sequence numbers from the first
to the last packet. For a set of four sequence numbers
like {0, 1, 2, 3}, the suite0, 1, 2, 3 obviously works, but
the suite0, 1, 1, 3, 2, 3 works also; in this case the second
occurence of “1” and the first occurence of “3” will be
discarded. For this set of sequence number, any suite
works if it can be written like this:

S0, 0, S1, 1, S2, 2, S3, 3, S4

where eachSi is a finite suite of{0, 1, 2, 3}∗. This is
modeled by a counter namedExpectedN . Let Ex-
pectedN be the expected sequential number. For each
packetp, if p.Sqn = ExpectedN thenExpectedN
<- ExpectedN+1 . Initialy, ExpectedN = 0 ; when
ExpectedN = N we are sure thatp.Sqn made a
progressing suite from0 to N-1 .

We introduce an analog value for acknowledgements
and then, we have a good sight on system’s progression.
These progression flags are implemented in the network



acceptinit
p.e e

Fig. 5. Inverted B̈uchi automaton forProgress⇒ F(AllAck)

processes. In this section we just assume that these
variables reachs an expected value. In this finite sequence
model, the progression of emissions induces fairness
between processes.

2) LTL formula: The LTL formula that has been
tested for this system isprogress ⇒ F(AllAck). The
Büchi automaton for this first formula is showed in
figure 5. In this figure,p means “sending progression” as
described in III-C.1 is verified,e means that “End State”
is reached in the sender. Each state of the synchronised
product may be linked to a unique state of the Büchi
automaton.

3) Results:The SPIN Model Checker doesn’t find any
counter-exemple, thus, the property is true.

But, as we can see in figure 4, the sender has a state for
the begining and a state for the end of any execution that
respects assumptions in section III-C.1. The validation
tool checked about 20 millions states. This very small
value is due to the progress assumption. And twenty
minutes were sufficient to reach the end of the validation
on a 1GHzintel Pentium IIIprocessor with 1 GB RAM.

Although these results are encouraging, conclusions
on a finite model are not sufficient. Moreover, we noted
a crippling defect in section III-B.2 about considering
acknowledgements in “bis mode”.

In section IV we will see how to deal with a non-finite
sequences system.

IV. T HE INFINITE SEQUENCES MODEL

A. A more realistic model

In this section, we presents a more realistic model of
ZCSP. The data structures described in ProMeLa and
the algorithms are those of the real implementation of
ZCSP. As ZCSP has to transmit an undefined number of
messages, the verification must be performed on a model
representing these non-finite execution sequences. The
real implementation uses modulo arithmetic. Considering
the finite domain of each variable, each infinite sequence
is ω-regular (a finite prefix followed by a cyclic regular
expression) and the LTL verification will terminate.

In section IV-C we will reduce each variables’ domain
to the smallest size that recreates all pertinent scenarii.

B. Specification Scheme

1) The System:The global scheme of the system is
shown on figure 6. As we saw in section II-D, there is no
assumption on acknowledgement ordering. Thus, we use
a message-entries table and variables to memorize the
set of sent-but-not-yet acknowledged messages. These
variables are:

• Eld P: Index pointing the elder awaiting acknowl-
edgement (or timeout) message.

• FF: Index pointing the “First Free” entry in the
table.

• FT: Index pointing the index of the first timeout
received. This information allows us to take care of
timeouts received when sending a “bis message”, in
these cases the boolean “ToBis” is set to True.

All question marks in figure 6 represent non-deter-
ministic behaviors. The “network processes” previously
described in section III are directly implemented in the
Sender and Receiver. We just replaced the action of send-
ing with a two-guards select. Each branch may always be
visited. One of them receives/sends a packet. The other
throws it down. There is no difference for the global
behavior but it reduces unexpected interleaving. The
necessity of this kind of reduction shows the limitations
of Partial Order Methods [8], [9] as we will see in section
IV-D.3.

The non-deterministic behavior of the “update” pro-
cess is more decisive as we will see in section IV-B.4. In
the figure 6 we can see a reachable state of the message-
entries’table: The “first free” column is empty. There
are three messages awaiting their acknowledgement, in
order 3,0,1, (remember that messages 0 was sendedafter
message 3). A timeout occured for message 0 (FT = 0)
during the first re-emission of message 3 (R[3]=1) , and
message 1 was acknowledged (Ack[1]=1).

2) Sender: Despite the possibility to throw down a
packet, this process has now a deterministic behavior.
All choices are made on global variables. the sender’s
automaton is described in figure 7.

Any message emission (in “end new Message” and
“Send Bis”) is performed in an atomic sequence.

3) Receiver:This new process uses reemission num-
bers and is described in figure 8. In state “Recept” the
receiver reads a unique packet from the Sender in the
“Packets” channel. In State “AckE” the receiver emits
an acknowledgment (or throw it down) to the update
process.

4) Update: This is the most specific process of the
entire system. Its behavior combined with the Sender’s



Sender

Receiver

Update

?

FT FF Eld_P Packets

Acks

?

?

FF,Eld_P,FT

FT,Eld_P

FF

FT,Eld_ P

R

Ack

Size

First

0 1 2 3

0

0

0

0

5

2

0

1

7

1

0

0

8

3

0

1

No Msg

Fig. 6. The infinite sequences model’s global scheme

FT=Eld_P ?

Bis<−Eld_P
Send Bis

ToBis ?

Eld_P=Bis ?

Send new
Message

Tobis<−0
FF++

Tobis<−0

yes no

no
yes

noyes

Fig. 7. The infinite sequences model’s Sender

Last ?

b++

First ? Bis ?

Recept

AckE

Last ?

n++

yes

yes

yes

yes

yes

yes

yes

no

no no

no

no

no

no

b=p.Sqnr ? b<−p.Sqnr

n=p.Sqnr ?

n=p.Sqnr ?

Fig. 8. The infinite sequences model’s Receiver

automaton models the real implementation. The sender
reacts on any scenario constructed by Update. Update
process is described in figure 9.

The unique significant “Select” in the system resides
in this process. It constructs all scenarii that we can en-
counter, by creating ordered timeouts signals or reading
acknowledgements. A “good acknowledgement” con-
tains the same re-emission number as in message-entries

Select

Good AckFF!=Eld_P

Table[n].Ack<−1
FT=n => FT++

Eld_P= #Ack

Reset Table[Eld_P]
EldP++

FT=FF

ToBis<−1

FT++

yes

yes

no

no

Fig. 9. The infinite sequences model’s Update process

table. In other case “Good Ack” guard is not considered.
Precisely, a “bad” acknowledgement is simply discarded
and the process returns to select state. IfToBis = 1,
FF = FT andFT 6= Eld P , there is a cycle that may
accept a lot of uninteresting properties. We will see in
section IV-D.1 how to avoid this kind of phenomenon.

C. System’s minimization

Even if the real implementation uses modulo arith-
metic, the promela model cannot have the same variables
domains as the real implementation since the generated
state space would be too big to achieve verification.
We have to find the smallest definition domain for each
variable that preserves the set of pertinent scenarii.

1) Table: We reduce the table size at three entries.
There are two places for awaiting acknowledgement
messages plus an empty one. In the real model this table
memorizes 31 messages but has 32 entries. Thus, EldP,
FF and FT are defined onZ/3Z.

2) Messages:There are three kinds of packet: The
first packet of the message, the last one, and an interme-
diary one. Thus there are three kinds of message:



• One-packet message, this packet is both the first and
the last packet.

• Two-packets message, the first packet and the last
one.

• Three-packets message, the first packet, the inter-
mediary one and the last one.

The “Size” field of empty entries is set to zero. Thus,
all size fields are defined onZ/(3 + 1)Z.

3) Packets: There are two awaiting messages, each
of them may contain three packets. Therefore, at least
six differents sequential numbers must be used. As in
message-entries table, where “FF” leads to a non-existent
message, we wished to separate the first sequential
number of a new message from the first of the last ac-
knowledged message. In the worst case (two messages of
three packets), six different sequential numbers wouldn’t
be sufficient.

Analog phenomenon is noted in formal verification of
the Sliding Window protocol [7].

Thus, all Sequence Numbers are defined on
Z/(2× 3 + 1)Z.

4) Channels:The channel between the sender and the
receiver is buffered with a size of three packets, to allow
atomic emission of a three-packets message. The channel
between the sender and the update process is buffered
with a size of one acknowledgement to avoid any syn-
chronization imposed by rendez-vous communication.

5) Remark:For a better understanding, figure 6 shows
a table of four messages. But the validation finishes
only if all the variables are defined as above. When
increasing the size of only one variable’s domain, SPIN
runs systematically to an “out of memory” error. Thus,
we had to avoid exceeding the model checker’s limits.

D. Validation

1) Fairness: Assumptions or injonctions?:There are
two problems related to exhaustive search on the com-
plete scenarii set.

The first difficulty is to avoid any uninteresting sce-
nario: When a data is systematicaly thrown-down during
transmission. In section III we saw how to build a valid
suite of sequence numbers or acknowledgements. But
in this non-finite model, we only must consider the
progression of the sequence number and the reemission
number may reach values that induce a prohibitive size
of the search domain. As scenarii that perform more
than one “bis emission” for a given message are not
significant (since they aren’t linked to a new scenario),
we introduced a threshold of reemission to force a good
emission to occur when this threshold is reached.

Init S1

Accept

true

p. f

p

p.f

p

Fig. 10. Inverted B̈uchi automaton for Liveness property

This fairness problem may be solved in two ways:

• Forcing good emission when a threshold is reached.
• Ignoring emissions that overtakes this threshold.

In very small systems, we saw an increasing of the search
size by 20% when using the second way; and this value
may be greater in taller problems. One the one hand, a
fairness assumption in LTL formulae causes new states in
Büchi automaton. On the other hand, even if a sequence
is not considered as anacceptance cycle, all its states
must be checked and this induces useless operations.
Consequently, fairness must be expressed in expected
behavior only if it can’t be expressed in the model.

Another difficulty is due to potential cycles in pro-
cesses. As we saw in section IV-B.4, if update is the only
working process, a cycle is found but it doesn’t represent
any real behavior of ZCSP. But if we force the system
to let other processes to work infinitely often, this cycle
will be simply avoided. We impose the sender to work
infinitely often (This is the only process that can force
the update process to get out of the cycle). This property
must be expressed independently from other processes’
behaviors. Thus we had to add a fairness property (f ) in
our LTL formula.

2) LTL properties and generated Büchi automata:
We propose to answer two questions:

• Is it possible to send new messages infinitely often
(Liveness property)?

• If no new message is sended, will the table in-
evitably become empty (Ending property)?

tout mettre dans les eqThe first question is translated
into the LTL formula

GF(fairness between processes)

⇒ GF(sending progress)

The second question is translated in the LTL formula



Accept

Init

S1p

p

p
et et

p

.p

et .pf.

et .pf.

S2

true

f.p

p.f.

Fig. 11. Inverted B̈uchi automaton for Ending property

(FG not(sending progress)

and GF(fairness between processes))

⇒ FG(empty table)

The related B̈uchi automaton is given in Figure 11.
According to the size of this automaton, the reader

may be surprised to know that the set of transitions found
in the validation search is increased by “only” 83%. But
as we can see, there is only one condition to get out of
the unique accepting state in the Büchi automaton (and
eventualy return into it later), and this condition is very
strict. All values that are used in the LTL formula are
implicated. Thus, a great majority of accepting states in
the synchronous product are no longer considered.

3) Verification Results:We present the results ob-
tained for the verification of the liveness of ending
properties in table I. All values are brought by the
SPIN model checker after validation. We used a 1Ghz
intel pentium 3 CPU with 1Go RAM. We experimented
some of the SPIN options and report the results in this
table. Concerning the liveness property, the first column
presents the results when no partial order reduction is
used contrary to the second one. For the ending property,
only the results with partial order reduction are shown.
For each column, “Transitions” represents the sum of
stored and matched states during all the verification
process. It also represents the total number of fired tran-
sitions during the traversal of thesynchronous productof
the system and the B̈uchi automaton. The depth reached
is the longest path even explored in thesynchronous
product. The memory needed represent the number of
MB that SPIN would have needed if the compression
option were not used (This number is extrapolated by
SPIN from the results obtain when the compression is
set). In our case, the compression option was mandatory.

Property Liveness Liveness Ending

PO Reduction no yes yes
Transitions(106) 1928 455 835
Depth Reached 160265 68948 68948

Memory Needed (Mbyte) 39521 18392 27589
Memory Used (Mbyte) 115 232 243

Compression % 0,29% 1,26% 0,88%
CPU time 35h09 12h55 19h25

Validation Result Valid Valid Valid

TABLE I

STATISTICS ON SPIN VALIDATIONS

The memory used entry represents the effectively used
memory when compression is set. The compression entry
represents the ration between these two last lines. CPU
times shows the elapsed time for each verification and
the last line shows that both properties are verified.

The most recommanded option in SPIN is partial order
reduction. Reader may find informations in [8], [9]. We
can see the efficiency of this method with experimental
results: In our problem the number of states stored
and matched was divided by four! This option reduces
interleaving but as we saw in section IV-B, it is not
sufficient: “Network processes” described in section III-
A.3 led to useless transitions and internal variables which
increased the size of the system. Nevertheless, partial
order reduction aims at avoiding this kind of useless
transitions.

Bitstate Hashing option can be used to find an error
but, in case of “valid” simulation, the results can’t be
exploited: Hash-conflict may occur between an already
checked state (out of any acceptance cycle) and a never
checked state which could lead to an acceptance cycle.

Reader may note some interesting values, comparing
performances with and without Partial Order Reduction.

But we can see that memory usedwithout Partial Or-
der Reduction is the smallest. The set of matched states
is greater but the compression ratio is most impressive.
CPU times’ line shows the importance of combining
these two options. Thus, model checkers’users must have
to deal with main options separately, according to the
machine’s performances (CPU and memory), particularly
when memory used is too close of (or greater than)
available memory.

V. CONCLUSION

The paper describes a verification experiment of a
communication protocol close to the well known Sliding
Window protocol. The description level presented here
is closer to the real implementation as the related works



concerning the verification of the SW and the main
differences concerns the lack of ordering constraints for
the acknowledgement messages; this imposes us to use
a message-entries table that complicates the protocol.

We have encountered the major difficulty of modeling
a real system for verification purpose that fit in the model
checker. We investigated different solutions to reduce
the size of our model but steel capture all the pertinent
behaviors: Variables’ domains reduction, interleaving
reduction, fairness constraints added into the model or
into the LTL formula.

The properties were verified and we have a good
confidence level in our model since it is realistic and the
implementation choices are represented but it was not so
easy and it could have been impossible to perform the
verification for a bigger system unless being an expert
in both the system to be verified and the verification
tool used. We are convinced that a close collaboration
between these actors is mandatory to achieve the formal
verification of complex systems even when the verifica-
tion method used is quite easy to apprehend.

REFERENCES

[1] A. Greiner, E. Dreyfus, J.L. Desbarbieux, F. Wajsburt, “A Se-
cured protocol for high speed interconnexion networks providing
a remote DMA communication primitive,”Internal report of
LIP6, 2002.

[2] G. J. Holzmann, “The Model Checker Spin,”IEEE Trans. on
Software Engineering, vol. 23, no. 5, pp. 279–295, May 1997,
special issue on Formal Methods in Software Practice.

[3] ——, Design and Validation of Computer Protocols. Englewood
Cliffs, New Jersey: Prentice-Hall, 1991.

[4] A. Pnueli, “The Temporal Logic of Programs,” in18th IEEE
Symp. Foundations of Computer Science, 1977, pp. 46–57.

[5] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, “Simple On-
the-fly Automatic Verification of Linear Temporal Logic,” in
IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verifi-
cation (PSTV95). Chapmann & Hall, 1995, pp. 3–18.

[6] N. Stenning, “A data transfer protocol,” inComputer Networks,
vol. 1(2), 1976, pp. 99–110.

[7] D. Chkliaev, J. Hooman, and E. de Vink, “Formal verification
of an improved sliding window protocol,” inProc. of the 3d
PROGRESS Workshop on Embedded Systems, 2002.

[8] D. Peled, “Combining partial order reductions with on-the-
fly model-checking,” inProc. Sixth Int Conf. Computer Aided
Verification (CAV94), 1994, pp. 377–390.

[9] P. Wolper and P. Godefroid, “Partial-order methods for temporal
verification,” in CONCUR’93, August 1993.


