
HAL Id: hal-02545629
https://hal.science/hal-02545629v1

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The continuous assignment problem and its application
to preemptive and non-preemptive scheduling with

irregular cost functions
Francis Sourd

To cite this version:
Francis Sourd. The continuous assignment problem and its application to preemptive and non-
preemptive scheduling with irregular cost functions. [Research Report] lip6.2002.019, LIP6. 2002.
�hal-02545629�

https://hal.science/hal-02545629v1
https://hal.archives-ouvertes.fr

The continuous assignment problem and its application to

preemptive and non-preemptive scheduling with irregular

cost functions

Francis Sourd
CNRS-LIP6

4, place Jussieu 75252 Paris Cedex 05, France
Francis.Sourd@lip6.fr

Abstract

It is with the aim of solving scheduling problems with irregular cost functions that
this paper focuses on the continuous assignment problem. It consists in partitioning a
region of Rd into subregions of prescribed volumes so that the total cost is minimized.
The dual problem of the continuous assignment problem is an unconstrained maximi-
sation of a non-smooth concave function. The preemptive variant of the scheduling
problem with irregular cost functions corresponds to the one-dimensional continuous
assignment problem and a lower bound for the non-preemptive variant can be derived.
It is computationally tested in a branch-and-bound algorithm.

1 Introduction

Just-in-Time (JIT) Scheduling Problems play a key role in a lot of modern scheduling
models. However, they are very difficult because there is no good lower bound that can be
efficiently computed, even in the simple case when all the tasks are executed on a single
machine and when each task has a single due date, an earliness penalty and a tardiness
penalty. The lower bound presented by Sourd and Kedad-Sidhoum for this one machine
problem with earliness and tardiness penalties [22] is based on the decomposition (or
preemption) of each task into unary operations, that is a task of duration pi is decomposed
into pi operations of duration 1. These unary operations are then assigned to the integer
time slots. It is shown that assignment costs can be chosen such that the minimal cost
assignment is a lower bound for the initial problem. Even if the resulting branch and
bound algorithm is more efficient than the method previously proposed by Hoogeveen and
Van de Velde [11], the main drawback of this approach is that the size of the relaxed
problem is pseudopolynomial since the number of unary operations is equal to the sum of
the durations of all the tasks of the non relaxed problem.

In this paper, we present an alternative approach motivated by the objective of getting
a polynomial lower bound for the earliness-tardiness problem. In this new approach, the
tasks are not decomposed into operations of unit duration but into operations of infinites-
imal duration. In other words, instead of assuming that the tasks can be interrupted
only at integer times, we are going to assume that each task can be interrupted at any

1

http://www-poleia.lip6.fr/~sourd
http://www.cnrs.org
http://www.lip6.fr/index-eng.html
mailto:Francis.Sourd@lip6.fr

moment. The problem can then be seen as the minimum cost assignment between the
infinitely small parts of the tasks and the time interval in which these tasks are to be
processed. The problem can be generalized by replacing the one-dimensional time interval
by a d-dimensional compact set. We call this problem the continuous assignment problem
(CAP). Its mathematical formulation is indeed very similar to the mathematical formula-
tion of the “discrete” linear assignment problem (see e.g. [1]) in which some discrete sums
have been changed into continuous sums (or integrals).

Section 2 presents the problem — and its dual — as well as the related literature and
Section 3 is devoted to solving the dual problem. Section 4 eventually presents how the
lower bound for the JIT single machine scheduling problem is derived from CAP and also
presents some computational results.

2 Problem description

2.1 The primal problem

The operations of the set J = {0, · · · , n} are to be scheduled on a single machine between
time 0 and time T =

∑
i∈J pi where pi > 0 denotes the processing time of task i. The

execution of any task i can be interrupted at any moment. The schedule function of i,
δi : T → {0, 1}, indicates when i is executed by the machine : δi(t) = 1 if i is executed
at time t and δi(t) = 0 otherwise. For obvious practical reasons, we assume that each
function δi has a finite number of segments in [0, T]. For any task i ∈ J , in order that
the task is completely scheduled, we must have

∫ T
0 δi(t)dt = pi. A cost function fi is

attached to each task i. For an infinitesimal duration dt, fi(t)dt is the cost for processing
i between t and t + dt. Hence, the total execution cost of task i is

∫ T
0 δi(t)fi(t)dt. The

one-dimensional continuous assignment problem 1-CAP is to schedule all the operations
of J such that the total cost is minimized.

inf
∑

i∈J
∫ T
0 δi(t)fi(t)dt (1)

s.t.
∫ T
0 δi(t)dt = pi ∀ i ∈ J (2)∑

i∈J δi(t) = 1 ∀ t ∈ [0, T] (3)
δi(t) ∈ {0, 1} ∀ i ∈ J ∀ t ∈ [0, T] (4)

Equation (3) says that at any time t, one and only one task is executed. A feasible
solution of CAP is a vector δδδ(t) = (δ0(t), · · · , δn(t))T of n + 1 functions that map [0, T] to
{0, 1} and that satisfy the constraints (2) and (3). δδδ is searched for in the space of piecewise
constant function with values in {0, 1}n+1 with a finite number of discontinuities, that is
preemptions. We do not a priori know whether there exists such a δδδ that minimizes the
cost function, so we use “inf” rather than “max” in the formulation of the problem.

Precision must be given about the regularity of the given cost functions. Clearly, each
function fi must be integrable on each segment of [0, T] but we will see in Section 3.2 that,
even if all the cost functions are continuous, we could have optimal schedule functions with
an infinite number of preemptions. In this paper, we are going to assume that the cost
functions are piecewise linear. We are going to show that this assumption is sufficient
to have a primal optimum δδδ with a finite number of breakpoints. Moreover, piecewise
linear functions can computationally be represented by an ordered list of segments. Let

2

‖fi‖ denotes the number of segments of the function fi. Hence, the size of the input of
the problem is O(

∑
‖fi‖) that is O(n max ‖fi‖). CAP will be shown to be solvable in

polynomial time in the size of this input.
We can immediately define the d-dimensional generalization of the problem by assum-

ing that all the functions fi and δi are defined on a compact set T of Rd. For simplicity,
we will assume that T is delimited by hyperplanes. The problem d-CAP (or simply CAP)
is then

inf
∫
T δδδ(t)Tfff(t)dt

s.t.
∫
T δδδ(t)dt = ppp∑
i∈J δi(t) = 1 ∀ t ∈ T

δδδ(t) ∈ {0, 1}n+1 ∀ t ∈ T

where fff = (f0, · · · , fn)T and ppp = (p0, · · · , pn)T . When d > 1, we will not talk about tasks
that are to be scheduled but about agents with capacities pi that are to be assigned to
regions of T — these regions being to be determined — and the solution function δδδ is
called the assignment function. We also assume that each function fi is piecewise linear,
that is

1. there is a partition σ(fi) of T into a finite number of cells. Let ‖fi‖ denotes the
number of cells;

2. the partition σ(fi) is defined by the arrangement of a finite number of hyperplanes
that are called the break hyperplanes by reference to the breakpoints when d = 1.
Let ‖σ(fi)‖ denotes the number of cells in the arrangement;

3. fi is affine on the interior of each cell.

When manipulating piecewise linear functions in this paper, we are going to use the
following :

• Each cell c of σ(fi) is a polytope. Since the dimension d of the problem is considered
to be a constant, the d-volume of c, denoted by vol(c), can be computed in polynomial
time.

• Let σ(f0, · · · , fn) be the common partition to the partition of f0, · · · , fn, that is the
arrangement resulting of the union of all the hyperplanes of σ(f0), · · · , σ(fn). We
refer to general books of algorithmic geometry (see for example [8] to compute and
represent the common partition. For shorter notations, σ(f0, · · · , fn) will simply be
denoted by σ when there is no possible confusion. In general, the number of cells
‖σ‖ is exponential in the number of cells of σ(f0), · · · , σ(fn) but in practice, we can
imagine that for particular instances we have σ(f0) = · · · = σ(fn) = σ. Moreover, in
the one-dimensional problem (d = 1), we always have that ‖σ‖ is O(

∑
i ‖fi‖). The

complexity of the algorithms presented in Section 3 will be expressed in function of
‖σ‖.

d-CAP is related to well-known computational geometry problems of space partition-
ing, such as the (weighted) Voronoi diagrams [8] and the power diagrams [2]. A closely

3

related problem is the capacity constrained least square assignment problem in which the
space has to be partitioned into a given number of regions of prescribed volumes. As
shown by Aurenhammer et al. [3], these theorems are related to a theorem by Minkowski
(see e.g. [10]) about the existence of a convex polytope subject to some constraints on its
facets. In Section 3.4, we will show the relation between d-CAP and Minkowski’s theo-
rem. We however remark that geometric partitioning usually deals with connected regions
whereas d-CAP generally derives non-connected regions.

d-CAP is a linear program in infinite dimension — see for example [16, Chapter 10]
but, unfortunately, the problem is not defined in a Hilbert space. When d = 1, the problem
is a continuous linear program, this class of problem was introduced by Bellman [4, 5].
More interestingly, it also belongs to the class of the separated continuous linear programs
that can be used to model a variety of optimal control problems but also some scheduling
problems [6, 7] and that was extensively studied. In particular, Pullan [18] presented a
duality theory for these problems and practical algorithms exist to solve them [14, 17].

2.2 The dual problem

Here we show that the strong duality still holds for d-CAP even when d > 1. The dual
problem d-DCAP (or simply DCAP) is :

sup uuuTppp +
∫
T v(t)dt (5)

s.t. ui + v(t) ≤ fi(t) ∀ i ∈ J , ∀ t ∈ T (6)

A feasible solution of the dual problem is given by the pair (uuu, v) where uuu = (u0, · · · , un)
is a vector in Rn+1 and v is a function mapping T to R — the definite integral

∫
T v(t)dt

is also assumed to exist. If δδδ is a feasible solution of CAP and (uuu, v) is a feasible solution
of DCAP, the weak duality is obvious :

uuuTppp +
∫
T

v(t)dt =
∑
i∈J

ui

(∫
T

δi(t)dt

)
+
∫
T

(∑
i∈J

δi(t)

)
v(t)dt

=
∑
i∈J

∫
T

δi(t) (ui + v(t)) dt

≤
∑
i∈J

∫
T

δi(t)fi(t)dt (7)

The cost of any dual feasible solution is less than or equal to the cost of any primal feasible
solution. In particular, the dual optimum is less than or equal to the cost of the primal
problem CAP. In fact, the following theorem, which is based on the strong duality for
linear programming, shows that the strong duality also holds for CAP and DCAP.

Theorem 1. The optimal solutions of CAP and DCAP have the same value.

Proof. The proof is based on a discretization of CAP which leads to a discrete linear
program, for which strong duality holds. So, we will be able to build feasible solutions for
DCAP that are as closed as wanted to the optimum of CAP.

In order to discretize CAP, we consider a “partition” c = {c1, · · · , cK} of T in which
each cell ci is a closed and connected subset of T , the intersection ci ∩ cj is empty for

4

i 6= j and T =
⋃K

j=1 cj . For each cost function fi, we define the discretized cost function
f c

i associated to fi as the piecewise constant function that is constant on each cell cj ∈ c
and that is equal to the minimum of fi on the cell. This minimum, denoted by f c

ij =
inft′∈cj

fi(t′) exists because fi is bounded. In other words, f c
i (t) = f c

ij for the only j such
that cj 3 t. Since fi is bounded, f c

i is also bounded. Moreover, by definition, f c
i ≤ fi.

Let CAPc denotes the continuous assignment problem associated to the cost functions f c
i .

Since f c
i is constant on each cell of c, it can be rewritten as follows :

inf
∑

i∈J
∑K

j=1 f c
ijxij

s.t. xij =
∫
cj

δi(t)dt∑K
j=1 xij = pi ∀i ∈ J∑
i∈J δi(t) = 1 ∀ t ∈ T

δδδ(t) ∈ {0, 1}n+1 ∀ t ∈ T

Clearly, each feasible solution δδδ of CAPc, determines a feasible solution of the following
(discrete) transportation problem TPc between the agents in J and the cells of c :

min
∑

i∈J
∑K

j=1 f c
ijxij

s.t.
∑K

j=1 xij = pi ∀i ∈ J∑
i∈J xij = vol(cj) ∀ 1 ≤ j ≤ K

where vol(cj) denotes the volume of the cell cj . Conversely, we can derive from any feasible
solution of TPc a feasible solution for CAPc. So, the optimum of TPc gives the optimum
for CAPc. The dual of TPc is the linear program DTPc :

max uuuTppp + vvvT vol(c)
s.t. ui + vj ≤ f c

ij ∀i ∈ J ∀ 1 ≤ j ≤ K

with vol(c) = (vol(c1), · · · , vol(cK)) and uuu ∈ Rn and vvv ∈ RK . We can then build the
function v that is piecewise constant and equal to vj on the cell cj . Since f c

i ≤ fi, (uuu, v)
is a feasible solution of DCAP. Moreover, it has the same cost as the optimum of CAPc.

By taking partitions c with smaller cells, we can clearly get the optimum of CAPc as
closed to the optimum of CAP as desired. With the above result, that means that we can
get a feasible solution of DCAP as closed to the optimum of CAP as desired. So, there is
no gap between the optima of CAP and DCAP.

3 Solving the dual problem

In this section, an algorithm to solve the problem is presented. This algorithm is dual-
based, which means that at each step a feasible dual solution (and hence a lower bound
for the problem) is computed. Hence, this dual approach will be useful in Section 4 where
the algorithm is used to compute a lower bound in a branch-and-bound method.

3.1 Existence of a dual solution

We first present two obvious remarks related to the dual problem :

5

Remark 1. When the vector uuu is fixed in Rn+1, the function v that maximizes DCAP
is given by vuuu(t) = mini∈J

(
fi(t)− ui

)
. So, any dual solution (uuu, vuuu) will be conveniently

referred to as the dual solution uuu.

Remark 2. If (uuu, v) is dual feasible, for any λ ∈ R, because of the assumption that∑
i pi = vol(T), (uuu + (λ, · · · , λ), v − λ) is also dual feasible and has the same dual cost as

(uuu, v).

In consequence of Remark 2, we can add the constraint u0 = 0 to DCAP without
changing the solution. From now on, unless otherwise stated, we assume that the con-
straint u0 = 0 holds. So, for the sake of simpler notations, the vector uuu will denote either
(u0 = 0, u1, · · · , un)T ∈ Rn+1 or (u1, · · · , un)T ∈ Rn. These two above remarks help
us to reformulate DCAP as the minimization of an unconstrained function in Rn. Let
q : Rn → R be the function defined by

q(uuu) = uuuTppp +
∫
T

(
min

0≤i≤n
fi(t)− ui

)
dt

DCAP is then supuuu∈Rn q(uuu). Moreover, from the definition of q, we immediately show
that :

Lemma 2. q is concave.

We however note that q is not smooth, even if all the fi functions are smooth. For
example, with n = 1 and T = [0, 2], let f0(t) = 0 and f1(t) = 0 for t ≤ 1 and f1(t) = (t−1)2

for t ≥ 1. Then q(u1) = p1u1 for u1 < 0 and q(u1) = p1u1 −
∫ 1
0 u1dt +

∫ 1+
√

u1

1 ((t− 1)2 −
u1)dt = (p1 − 1)u1 − 2(u1

√
u1)/3. So, unless p1 = 1, q is not smooth at u1 = 0.

Lemma 3. For some uuu? ∈ Rn, q(uuu?) = supuuu∈Rn q(uuu) = maxuuu∈Rn q(uuu).

Proof. We show that uuu? must be in a compact whose volume depends on the functions fi

given in input. For any i ∈ [1, n], let Ui = supt∈T |fi(t)− f0(t)|. Ui exists — ie is finite —
because both fi and f0 are bounded on T . We are going to show that uuu must be in the
ball B =

∏
i[−Ui, Ui].

For any ui such that ui < −Ui and for any t ∈ T , fi(t) − ui > fi + Ui ≥ f0(t),
which means that fi − ui does not contribute to v, that is, more formally, vuuu(t) =
minj (fj(t)− uj) = minj 6=i (fj(t)− uj). Therefore,

q(u1, · · · , ui, · · · , un) = q(u1, · · · ,−Ui, · · · , un) + (ui + Ui)pi

≤ q(u1, · · · ,−Ui, · · · , un)

Symmetrically, when ui > Ui, we have, for any t, fi(t) − ui < fi(t) − Ui ≤ f0(t). Since
vuuu(t) ≤ fi(t)− ui, we have that vuuu(t) < f0(t)− (ui−Ui). Therefore, with δ = ui−Ui > 0,
we have :

q(u1, · · · , ui, · · · , un) = q(u1 − δ, · · · , ui − δ, · · · , un − δ) + δ

(∑
i>0

pi

)
−
∫
T

δdt

= q(u1 − δ, · · · , Ui, · · · , un − δ)− δp0

≤ q(u1 − δ, · · · , Ui, · · · , un − δ)
≤ q(max(−U1, u1 − δ), · · · , Ui, · · · ,max(−Un, un − δ))

6

These inequalities show that for any vector uuu outside B there is a vector uuu′ ∈ B such that
q(uuu′) ≥ q(uuu). So the maximum of q is reached inside the compact set B.

The assumption that the cost functions fi are piecewise linear has not been used so far.
The previous lemma is in fact valid in a more general context provided that the functions
are integrable and bounded. We are going to use the assumption on the regularity of
the cost functions in the next section to prove that there exists a primal feasible solution
corresponding to uuu? with a finite — and even polynomial — number of preemptions.

3.2 Optimal primal solution

We present here an algorithm that, given a vector uuu, returns whether uuu maximizes the
function q or not. Interestingly, if the answer is “yes”, the algorithm builds an optimal
feasible assignment δδδ for the primal problem CAP.

Let us consider a primal feasible solution δδδ and a dual feasible solution uuu (with the
associated function v = vuuu). Clearly, if the primal and dual solutions satisfy the following
condition

∀i ∈ J ,
[
δi(t) = 1 =⇒ fi(t)− ui = v(t)

]
(8)

then the inequality of the weak duality (7) becomes an equality, which means that δδδ is
optimal. Assuming that uuu is given — and optimal — we show how to build a function δδδ
that satisfies (8). This will yield a necessary and sufficient condition for uuu to be optimal.

The contruction of the continuous assignment function δδδ relies on a discretization of
T in order to obtain a network flow problem. We first introduce, for any t ∈ T , the
subset Juuu(t) ⊂ J that indicates the agents that can be assigned to t, that is Juuu(t) =
{i ∈ J | fi(t)− ui = vuuu(t)}. Conversely, we will be interested in the regions on which each
agent can be assigned. For any subset of agents J ⊆ J , we are going to refer to the set
J −1

uuu (J) = {t | Juuu(t) = J}. By this definition, any point in J −1
uuu (J) must be assigned to an

agent in J . Since vuuu is the minimum of a finite number of piecewise linear functions, vuuu is
a concave function on each cell of σ so that vuuu is piecewise linear with at most O(n‖σ‖)
cells (for any uuu). When d = 1, we easily show that vuuu has O(

∑
i ‖fi‖) segments. Clearly,

we do not mind how to build δδδ on the break hyperplanes because the value of δδδ on this
set with empty interior has no effect on the objective function of CAP. So, we will only
build δδδ on the set of the points for which vuuu is locally linear (the closure of this set is
of course T). Let us call the region of J , denoted by Tuuu(J), the set J −1

uuu (J) from which
the points belonging to the break hyperplanes of vuuu are removed. Tuuu(J) is the finite and
disjoint union of cells of vuuu, its volume is the sum of the volume of the cells.

We now define the network flow problem, the construction is illustrated by Figure 1
for an instance of 1-CAP with 3 tasks. The network, denoted by N (uuu), has the following
nodes :

• the source and the sink ;

• the n + 1 agents in J ;

• the (non-empty) regions Tuuu(J) for each non-empty J ⊂ J .

In N (uuu), each agent i ∈ J has an incoming arc from the source with a maximal capacity
pi and each region has an outgoing arc to the sink with a maximal capacity equal to the

7

p2

0 t1 t2 t3 t4 T Sink

Source

t1 t4 − t3

(t3, t4)
0

1

2

0 1 2

(0, t1) (t2, t3)(t1, t2) ∪ (t4, T)

p0 p1

Figure 1: Network flow to assign the tasks to intervals

volume of the region. There is an arc (with no capacity constraints) between agent i and
region Tuuu(J), if and only if i ∈ J . Figure 1 represents an instance of 1-CAP with n = 2.
On the left side, the three functions fi− ui are pictured for a given uuu. The corresponding
network N (uuu) is on the right side.

Theorem 4. The dual feasible solution uuu is optimal if and only if the maximum flow in
N (uuu) is vol(T).

Proof. If the flow through N (uuu) is equal to vol(T), for any non-empty J ⊂ J , the flow
traversing the region Tuuu(J) is equal to the volume of the region. If agent i 6∈ J , we set
δi(t) = 0 on the whole region. We then partition the region of J in |J | parts, denoted by
IJ,i (i ∈ J), such that the volume of IJ,i is equal to the flow of the ingoing arc between
operation i and the region of J . We then define for any t in the region δi(t) = 1 if t ∈ IJ,i

and δi(t) = 0 otherwise. Clearly, δδδ satisfies (2), (3) and (8) so that uuu is optimal.
Conversely, we can exhibit an ascending direction for q by using the minimum cut

(S, T) — whose size is denoted by MINCUT(N (uuu)) — corresponding to the maximum
flow in N (uuu). S contains the source and T contains the sink. Since the cut is less than
vol(T), J ∩ S and J ∩ T is a partition of J such that none of the two sets is empty.
We are going to mainly consider the part of the cut that does not contain the agent 0,
namely let us define U = J ∩ S if 0 ∈ T or U = J ∩ T if 0 ∈ S. Let us now define the
direction ddd = (d1, · · · , dn)T as follows. For each i ∈ {1, · · · , n}, di = 1 if i ∈ U and di = 0
otherwise. The following lemma gives the approximation of q in the neighborhood of uuu
along the direction ddd.

Lemma 5. For small ε ≥ 0, q(uuu+εddd) = q(uuu)+
(∑

i∈U pi −
∑

J∩U 6=∅ vol(Tuuu(J))
)

ε+O(ε2).

Proof. Let w(t) = mini∈U (fi(t)− ui) and w′(t) = mini6∈U (fi(t)− ui). We have then

q(uuu + εddd) = pppTuuu +

(∑
i∈U

piε

)
+
∫
T

min(w(t)− ε, w′(t))dt.

8

t40 T

T ε
3

T ε
2

T ε
1

{0}Regions {1} {1, 2} {2} {1}

f2 − u2

f0

f1 − u1 − ε

f1 − u1

t1 t2 t3

Figure 2: Partition of T into T ε
1 ∪ T ε

2 ∪ T ε
3

Clearly, |min(w(t)− ε, w′(t))−min(w(t), w′(t))| ≤ ε and we can partition T into the three
sets

T ε
1 = {t ∈ T | min(w(t)− ε, w′(t)) = min(w(t), w′(t))}
T ε

2 = {t ∈ T | min(w(t)− ε, w′(t)) = min(w(t), w′(t))− ε}
T ε

3 = T − (T ε
1 ∪ T ε

2)

Figure 2 depicts such a partition for the instance represented in Figure 1 with U = {1}.
So, ddd = (1, 0)T , w(t) = f1(t)− u1 and w′(t) = min(f0(t), f2(t)− u2).

If t ∈ T ε
3 , we can easily prove that |w(t)−w′(t)| ≤ ε — otherwise, t would be either in

T ε
1 or in T ε

2 . So, for a sufficiently small ε, t is very near from the hypersurface H = {t′ ∈
T |w(t′) = w′(t′)} (in Figure 2, H = {t1, t3, t4}). More precisely, the distance between H
and t is less than ε/m where m = mint′∈H ‖∇w(t′)−∇w′(t′)‖. By construction, m cannot
be null because H is included in the break hyperplanes of vuuu. Since, any point of T ε

3 is at
a distance O(ε) of a hypersurface H (whose (d− 1)-volume is bounded), the d-volume of
T ε

3 is in O(ε). As a consequence∫
T

min(w(t)− ε, w′(t))−min(w(t), w′(t))dt

=
∫
T ε
2 ∪T ε

3

min(w(t)− ε, w′(t))−min(w(t), w′(t))dt

= − vol(T ε
2)ε + vol(T ε

3)O(ε)
= − vol(T ε

2)ε + O(ε2)

In order to estimate vol(T ε
2), we remark that if t ∈ T ε

1 , then Juuu(t) do not contain any
element of U (that is Juuu(t)∩U = ∅) and, symmetrically, if t ∈ T ε

2 , then Juuu(t) must contain
at least one element of U (that is Juuu(t) ∩ U 6= ∅). Since T ε

1 , T ε
2 and T ε

3 are a partition of

9

T , we have that
T ε

2 ⊂
⋃

J∩U 6=∅

Tuuu(J) ⊂ T ε
2 ∪ T ε

3

So, vol(T ε
2) =

∑
J∩U 6=∅ vol(Tuuu(J)) + O(ε), which finally proves that q(uuu + εddd) = q(uuu) +(∑

i∈U pi −
∑

J∩U 6=∅ vol(Tuuu(J))
)

ε + O(ε2).

Similarly, we have (the proof is omitted) :

Lemma 6. For small ε ≥ 0, q(uuu− εddd) = q(uuu)−
(∑

i∈U pi −
∑

J⊆U vol(Tuuu(J))
)

ε + O(ε2).

If U = S ∩ J , since
∑

i∈J pi = vol(T), according to Lemma 5, we have that for small
ε ≥ 0,

q(uuu + εddd) = q(uuu) +

vol(T)−
∑
i6∈U

pi −
∑

J∩U 6=∅

vol(Tuuu(J))

 ε + O(ε2)

= q(uuu) + (vol(T)−MINCUT(N (uuu))) ε + O(ε2)

Since, we clearly have that MINCUT(N (uuu)) < vol(T), d/‖d‖ is an ascending direction of
q at uuu.

Similarly, if U = T ∩J , we use Lemma 6 and the equality
∑

J⊆J vol(Tuuu(J)) = vol(T)
to prove that −d/‖d‖ is an ascending direction.

Corollary 7. There is an optimal solution of CAP that has O(n2‖σ‖) regions, a region
being a maximal connected subset of T that is assigned to a single agent.

We remark that when the regions Tuuu(J) for |J | > 1 are empty, the assignment process
is obvious. In order that uuu be optimal, the measure of Tuuu({i}) must be pi for any i ∈ J ,
and the agent i is assigned to the whole region Tuuu({i}). It is not hard to see that, for any
uuu and for any ε, there is a vector uuu′ such that |uuu′ − uuu| < ε and vol(Tuuu′(J)) = 0 for any J
with |J | ≥ 2. Moreover, we can observe that a condition to have vol(Tuuu({i, j})) > 0 for
some uuu is that fi and fj are parallel — that is the difference fi − fj is a constant Cij —
on at least one cell of σ and uuu satisfies ui − uj = Cij . So, the vectors uuu that lead to a
non trivial problem N (uuu) are in a set D1 that is a finite union of hyperplanes. This set is
called the set of the degenerated dual solutions.

For some uuu inside a cell between the hyperplanes of D1, we easily have, with the proof
of Lemma 5, that

∂q

∂ui
(uuu) = pi − vol(Tuuu({i})).

Moreover, uuu 7→ vol(Tuuu({i})) is clearly continuous in the neighborhood of uuu. So, q is smooth
inside each cell of the arrangement of the hyperplanes of D1.

For uuu ∈ D1, a subgradient ggg can be computed as the limit limj→∞∇q(uuuj) where uuuj 6∈
D1 and limj→∞uuuj = uuu [13]. For example, we can choose uuuj = uuu + (1/j, 2/j, · · · , n/j)T ;
when j is large enough, uj 6∈ D1 because none of the hyperplanes in D1 contains the
vector (1, 2, . . . , n)T . Interestingly, ggg can be efficiently computed. Indeed, gn = pn −∑

{n}⊂J⊆J vol(Tuuu(J)) because if n ∈ J and t ∈ Tuuu(J) then fn(t)−un−n/j < fi(t)−ui−i/j.

10

t

f0 = f1

3

8

f2 = f3

Figure 3: Example of the nonsmoothness of q

More generally, if {i, i′} ⊆ J with i < i′ and t ∈ Tuuu(J) then fi′(t)−ui′−i′/j < fi(t)−ui−i/j
so that we have

gi = pi −
∑

{i}⊆J⊆{0,1,···i}

vol(Tuuu(J))

So, when vuuu is computed for some uuu, ggg can be computed by the following algorithm :

for each i ∈ {1, · · · , n} do gi ← 0
for each cell on which vuuu is linear do

let i be the greatest index such that fi − ui = vuuu on the cell
if i > 0 then increase gi by the volume of the cell

return (g1, · · · , gn)

It is well known that the subgradient is not necessarily an ascending direction at a nons-
mooth point [13] but an ascending direction can be obtained by the proof of Theorem 4.
For example (see Figure 3), with T = [0, 8] (d = 1), we can define f0(t) = f1(t) = t
and f2(t) = f3(t) = 6 − t and pi = 2 for any i ∈ J = {0, 1, 2, 3}. The vector uuu =
(u1, u2, u3)T = 0 corresponds to a degenerated dual solution with Tuuu({0, 1}) = (0, 3) and
Tuuu({1, 2}) = (3, 8). We have{

limε→0+(q(ε, 0, 0)− q(0))/ε = p1 − vol(Tuuu({0, 1}) = −1
limε→0−(q(ε, 0, 0)− q(0))/ε = p1 = 2{
limε→0+(q(0, ε, 0)− q(0))/ε = p2 − vol(Tuuu({2, 3}) = −3
limε→0−(q(0, ε, 0)− q(0))/ε = p2 = 2{
limε→0+(q(0, 0, ε)− q(0))/ε = p3 − vol(Tuuu({2, 3}) = −3
limε→0−(q(0, 0, ε)− q(0))/ε = p3 = 2

The above algorithm renders the subgradient ggg = (p1−vol(Tuuu({0, 1}), p2, p3−vol(Tuuu({2, 3}))T =
(−1, 2,−3)T so that

lim
ε→0+

(q(εggg)− q(0))/ε = (pppTggg)− vol(Tuuu({2, 3})g2 = −14

The partial derivates and the computed subgradient do not find any ascending direction
but the algorithm of Theorem 4 finds the direction ddd = (0,−1,−1). Since

lim
ε→0+

(q(εddd)− q(0))/ε = (pppTddd)− vol(Tuuu({2, 3}) max(g2, g3) = 1

11

d is well an ascending direction for q.
When the size of σ is polynomial in n (eg d = 1), we are able, for any uuu ∈ Rn, to

compute q(uuu) and a subgradient at uuu in polynomial time. Since q is concave, DCAP
— and therefore CAP — can be solved in polynomial time by the ellipsoid algorithm of
Shor-Khachian [16, 23, 21, 12].

Remark 3. By perturbating the cost function fi and replacing them by fi + iε for some
small ε > 0, we can build an instance of the problem such that there is no cell of the
common support σ(f0, · · · , fi + iε, · · · , fn +nε) on which fi−fj +(i−j)ε is constant. As a
consequence, D1 is empty and q is smooth. It can easily be shown that when ε gets closer to
0, the optimum of the perturbated problem becomes equal to the non-perturbated problem.
However, if q is nonsmooth for the non-perturbated problem, it is of course ill-conditioned
in the perturbated problem.

Remark 4. When D1 is empty, each cell on which vuuu is linear is assigned to only one
agent, which improves the result of Corollary 7. In particular, for the one-dimensional
problem 1-CAP, we have an optimal solution with at most

∑
‖fi‖ regions — or preemp-

tions, if we use the scheduling terminology. With the previous remark, we can show that
even if D1 is not empty, by perturbating the problem, we can get a solution with at most∑
‖fi‖ regions that is as close as wanted to the solution of the non-perturbated problem.

We can then show that when ε→ 0, the (unique) optimal solution of the perturbated prob-
lems converge to an optimal solution of the non-perturbated problem with at most

∑
‖fi‖

regions.

3.3 Hessian of q in the one-dimensional problem

In the one-dimensional problem 1-CAP, the graph of the piecewise linear function fi− ui,
that is the set {(t, y) ∈ T × R|y = fi(t)− ui}, is a list of segments, for any 1 ≤ i ≤ n. It
is the same for the graph of vuuu. Any regions is the finite union of some intervals included
in T = [0, T].

We are going to analyse the Hessian of q when it exists. For that, we are going to
assume that uuu is such that the position of the functions is general, that is uuu 6∈ D1 and
there is no intersection point between segments of the graphs of more than two functions
and we assume that any intersection point is inside a segment, that is we do not want the
endpoint of a segment to be in the segment of the graph another function. The set of the
vectors that do not satisfy these conditions will be denoted by D2 and a vector uuu ∈ D2

will be said to be 2-degenerated. Clearly, D1 ⊂ D2.
When uuu 6∈ D2, the coordinates of all the intersection points between the graphs of

the functions fi − ui are locally linear in the neighborhood of uuu (and no point appears or
disappears in this neighborhood). This can be shown by noting that the abscissa of the
intersection point between any two straight lines{

y = λ1x + µ1

y = λ2x + µ2

is x = −µ2−µ1

λ2−λ1
, that is x is linear in µ1 and µ2. As a consequence, for any task i, since

the endpoints of each interval of Tuuu({i}) is the intersection between two pieces of straight

12

lines, the function uuu 7→ vol(Tuuu({i})) is locally linear. Let π be the function:

π : Rn → Rn

uuu 7→ (vol(Tuuu({1})), · · · , vol(Tuuu({n}))T

π is then locally linear. Note that, for simpler notations, we will also use the notation
π0(uuu) = T −

∑
i>0 πi(uuu) = vol(Tuuu({0})).

Lemma 8. D2 is included in a finite set of hyperplanes

Proof. There are two kinds of 2-degenerated vectors uuu. The first one is when a breakpoint
of a curve is also a point of another curve. Let xik be the abscissa of the kth breakpoint
of fi. If this breakpoint is also a point of the curve of fj − uj , we must have

ui − uj = fi(xik)− fj(xik)

which is the equation (in uuu) of a hyperplane, the second member of the equation being a
constant. O(n

∑
i |fi|) hyperplanes are so defined.

The second one is when three different function graphs are concurrent at some point.
The point with coordinates (x, y) ∈ R2 is a common point to the three curves of the
functions fi − ui, fj − uj and fk − uk (i < j < k ∈ J) if and only if y = fi(x) − ui,
y = fj(x)−uj and y = fk(x)−uk. So the set of the vectors uuu such that the three functions
fi−ui, fj −uj and fk−uk are concurrent is the hypersurface of Rn parameterized by the
n− 1 real values x, y, u` for ` ∈ {1, · · · , n} − {i, j, k} :

ui = −y + fi(x)
uj = −y + fj(x)
uk = −y + fk(x)
u` = u` if ` 6∈ {i, j, k}

Note that if i = 0 the first equation is y = f0(x) and the n−1 parameters are x, u` for ` ∈
{1, · · · , n}−{j, k}. The hypersurface is piecewise linear and is the union of |fi|×|fj |×|fk|
pieces of hyperplanes. Such a hypersurface is defined for each 0 ≤ i < j < k ≤ n, that is
there are O(n3) hypersurfaces.

So D2 divides Rn into cells and π is linear on each cell. So we will say that π is piecewise
linear. Inside each cell, ∇q(uuu) = ppp−π(uuu) is linear so that q is piecewise quadratic. Inside a
cell c containing a vector uuuc, we can write for uuu staying in c that π(uuu) = Ac(uuu−uuuc)+π(uuuc).
The n× n matrix Ac has the following form :

Ac =

∑
j∈J−{1}

α1j −α12 · · · −α1j · · · −α1n

−α21
. . . −αij

...
...

. . .
...

−αi1 −αij

∑
j∈J−{i}

αij −αin

...
. . .

...
−αn1 −αn2 · · · −αnj · · ·

∑
j∈J−{n}

αnj

13

where αij ≥ 0 for any i ∈ J − {0}, j ∈ J such that i 6= j. Note that αi0 is included
in the sum defining the ith diagonal element. αij is the relative decrease of πi(uuu) (resp.
πj(uuu)) with the increase of uj (resp. ui). This value depends on the variations of the
intersection points between fi− ui and fj − uj that belong to vuuu. We have already shown
in the begining of the section that these variations are linear and they are derived from
the slopes of the two functions at the intersection points. Clearly for i, j > 0, αij = αji.
The ith diagonal element of Ac, namely

∑
j 6=i αij , is the relative increase of πi(uuu) with

the increase of ui and with all the other uj (j 6= i) constant. All these relative linear
increases and decreases are of course local : they are not valid unless uuu remains in the
cell c. Moreover, we remark that Gershgorin’s criterion (see e.g. [15]) shows that Ac is
positive semidefinite.

Remark 5. Lemma 3 shows that for any vector ppp such that
∑n

i=1 pi < T then there exists
uuu such that π(uuu) = ppp. Note that a sufficient and necessary condition for a continuous
piecewise linear function to be bijective (that is to be a homeomorphism) were given by
Schramm [19].

3.4 Linear cost functions and Minkowski’s theorem

The cost functions fi are assumed to be linear in this section and, for simplicity, we assume
that there is no pair of parallel functions. The graphs of the functions fi − ui — whose
equations are y = fi(t) − ui are hyperplanes in Rd+1. The lower envelope of these n + 1
hyperplanes forms an unbounded (d + 1)-polyhedron. The orthogonal projection of this
polyhedron on the hyperplane y = 0 gives the partitioning of T (which is included in the
hyperplane y = 0) into regions. This shows that, for each i ∈ J , the region Tuuu({i}) is
convex if T is connected.

Minkowski’s theorem can be stated as follows (this the formulation given by Auren-
hammer et al. [3]). Let V be a collection of n + 1 non-zero non-parallel vector that span
Rd+1 and sum up to zero. Then, there exists a (d+1)-polytope with n facets in one-to-one
correspondance with vectors of V so that each facet is normal to its corresponding vector
and has d-volume equal to the vector length.

In our problem, the orientation of the hyperplanes is determined by the cost functions
fi. For each facet fi, the facet orientation being fixed and the d-volume of its projection
being fixed to pi, the d-volume of fi is fixed. Thus, CAP shows that there exists a
polyhedron whose facets have prescribed orientation Vi/‖Vi‖ and d-volume ‖Vi‖ within
the prism T × R always exists when the absolute value of the last coordinate of

∑
i vi is

equal to the d-volume vol(T). Thus, this result — which was previously stated in [3] —
can be seen as a projective variant of Minkowski’s theorem.

4 Application to earliness-tardiness scheduling

4.1 Computing a lower bound

We are now back to the one-machine scheduling problem with earliness and tardiness
penalties (ETSP) and we present how 1-CAP can be used to compute a lower bound for
ETSP. In ETSP, each task i ∈ [1, n] has a cost ET i(Ci) depending on the completion time

14

Ci of i in the schedule :

ET i(Ci) = max (αi(di − Ci), βi(Ci − di)) .

di is the due date, αi is the earliness penalty and βi is the tardiness penalty. Each task has
a processing time pi and the machine can process at most one task at any time. The sum
of all the costs

∑
i ET i(Ci) has to be minimized. Note that, unlike 1-CAP, preemption of

tasks is not allowed.
We now define an instance of 1-CAP that is a relaxation of ETSP. First, T is defined as

[0, T] with T = maxi di+
∑

i pi, this value being an obvious upper bound for the makespan
of at least one optimal solution of ETSP. To each task i ∈ [1, n] of ETSP, we associate a
task in 1-CAP with the same duration pi. The cost functions fi must be defined so that
the cost of any task scheduled without preemption in 1-CAP has a cost not greater than
its costs in ETSP when it is scheduled at the same time, namely :∫ Ci

Ci−pi

fi(t)dt ≤ ET i(Ci) ∀Ci ∈ [pi, T] (9)

The task 0 of 1-CAP represents the idleness period that is the period when no task of
ETSP is scheduled. Its duration is p0 = T −

∑
i>0 pi and its cost function is f0(t) = 0 ∀t.

We check that any feasible solution for ETSP is also a feasible solution for 1-CAP and the
cost in 1-CAP is not greater than the cost in ETSP. So the minimum cost for 1-CAP is a
lower bound for ETSP.

In order to have a lower bound as good as possible, we would like to have the equality
for inequality (9). With the equality, we would have{ ∫ Ci

Ci−pi
fi(t)dt = βi(Ci − di) ∀Ci ≥ di∫ Ci

Ci−pi
fi(t)dt = αi(di − Ci) ∀Ci ≤ di

And by derivation, we must have :{
fi(Ci) = fi(Ci − pi) + βi ∀Ci ≥ di

fi(Ci) = fi(Ci − pi)− αi ∀Ci ≤ di

That shows that unless αi = βi = 0, fi has no derivate at Ci = di. Moreover, these
equations shows that if t is a breakpoint for fi, all the points t + kpi with k ∈ Z are also
breakpoints. So, if we want the number of segments of fi to be independent of T and
pi, we know that (9) cannot be an equality for each Ci. However, in order to have the
equality satisfied when Ci ≥ di + pi, the above equation shows that the slope of fi must
be βi/pi. Similarly, the slope for Ci ≤ di − pi must be −αi/pi. So we must have :{

fi(Ci) = βi/2 + βi/pi(Ci − di) ∀Ci ≥ di

fi(Ci) = αi/2− αi/pi(Ci − di − pi) ∀Ci ≤ di − pi

There are several ways to build fi on the remaining interval [di − pi, di]. For example,
it can be set to be null. If we want fi to be be continuous, we must add (at least) one
breakpoint inside the interval. If we add only one breakpoint (x, y), basic calculations show
the condition (9) is satisfied as soon as the coordinates satisfy x = θi(di − pi) + (1− θi)di

and y ≤ −θiβi/2− (1− θi)αi/2.
Figure 4 represents the function for θi = 1/2. Then fi is such that

15

fi

di − pi di

di − pi/2

pi

αi

βi

(αi + βi)/4

f step
i

Figure 4: Cost function in the 1-CAP relaxation for ETSP

• the slope on (−∞, di − pi] is −αi/pi,

• the slope on [di,+∞) is βi/pi

• the three irregular points are fi(di − pi) = αi/2, fi(di − pi/2) = −(αi + βi)/2 and
fi(di) = βi/4.

Clearly, this instance of 1-CAP is O(n), so it is polynomial in the size of ETSP. We
observe that when θi = 0 or θi = 1, the cost function has only two segments (instead of
four when 0 < θi < 1) but it does not seem to make the algorithm run faster in practice.
The choice of θi does not seem to have a great impact upon the quality of the lower bound
but the choice θi = 0 when αi > βi and θi = 1 otherwise seems a good heuristic choice.
Moreover, we easily check that such a choice guarantees that

∫ Ci

Ci−pi
fi(t)dt ≥ 0 for any

Ci. An “optimized” approach for choosing θi would be to consider it as a variable (or
a parameter) of CAP and DCAP. So, the maximization of q would depend on both uuu
and θθθ = (θ1, · · · , θn). However, since the influence of θθθ seems quite limited, we did not
implemented this idea.

In Figure 4, the stepwise curve represents a function f step
i such that (9) is always an

equality. It has of course a pseudopolynomial number of segments Θ(T/pi). Since this
function is constant on each interval (t, t + 1) when t is integer, we observe that, if all
the cost functions have this form, an optimal solution can be obtained by an assignment
between the jobs in J and the integer time points 0, 1, · · · , T − 1 where the cost for
assigning j ∈ J to time point t — representing the time interval (t, t + 1) — is cit =∫ t+1
t f step

i (t′)dt′ = f step
i (t). This lower bound is the lower bound introduced in [22]. Even

if (9) reaches the equality with f step
i , we have that f step

i (t) < fi(t) for some t, so we cannot
a priori say which lower bound is the best one.

4.2 Lower bound for a partial schedule

In order to use the lower bound in a branch-and-bound algorithm, the computation must
be able to deal with the existence of a partial schedule. We show in this section that the
results for the lower bound based on discrete assignment [22] can be adapted to this CAP
based lower bound.

We assume that the branching scheme of the branch-and-bound algorithm ranks the
tasks from the first one to the last one. At the root node, there are as many branches as
operations. The ith descendant subtree of the root node represents the set of schedules
whose first task is task i. More generally, a node at depth k — the root node being at

16

���������
���������
���������
���������

���������
���������
���������

�
�
�
�

�
�
�

�����������
�����������
�����������
�����������

�����������
�����������
�����������

f0(t) = `′(t)

t0P

`(t)

T

0 0

Sequenced tasks

s ∈ S

ETSP

1-CAP

Figure 5: Lower bound for a partial schedule

depth 0 — represents a partial schedule in which the first k tasks are fixed and ordered.
The remaining n − k tasks are assumed to be unordered and must be executed after the
k ranked tasks.

We consider a partial schedule at depth k. Then we have k sequenced tasks and n− k
nonsequenced tasks. Let S be the set of all the schedules compatible with this partial
schedule and completing before T . Let P be the sum of the durations of all the sequenced
tasks. For t > P , let `(t) be the minimum cost for scheduling the k sequenced tasks so that
they complete before time t. The function ` : [P, T] → R can be computed in O(k log k)
by using the algorithm of Garey et al. [9]. We once again refer to [22] for more details. `
is a convex nonincreasing function. Moreover, it is piecewise linear with O(k) segments.
` is constant after some value of t, ` is then equal to the cost of scheduling the sequence
of k tasks without makespan constraint.

A lower bound taking into account both the ranked and unranked tasks can be derived
from the following instance of 1-CAP defined on the interval [P, T] with n− k + 1 tasks.
n − k tasks correspond to the nonsequenced tasks, their cost functions being computed
as described in the previous section. The last task, indexed by 0, corresponds to the idle
periods we set f0 = `′ as its cost function. We observe that the size of this instance is still
polynomial in the size of ETSP.

We show that the optimum of this instance is a lower bound for S by constructing a
feasible solution of 1-CAP from any schedule s in S (see Figure 5). The schedule of each
task of 1-CAP is derived from the schedule of its counterpart in s — this task in s is a
nonsequenced task of the partial schedule and is clearly scheduled after P . The “idle”
task 0 is scheduled in the remaining intervals. By construction, the cost of any non-idle
task i > 0 is

∫ T
P δi(t)fi(t) ≤ ET i(t). The cost of the idle task 0 is given by∫ T

P
δ0(t)f0(t)dt =

∫ T

P
δ0(t)`′(t)dt ≤

∫ t0

P
δ0(t)`′(t)dt

By denoting by t0 the start time of the first nonsequenced task in s, we have δ0(t) = 1 for

17

any t < t0 so that : ∫ T

P
δ0(t)f0(t)dt ≤

∫ t0

P
`′(t)dt = `(t0)− `(P)

As a consequence, the minimum of the instance of 1-CAP is less than(
`(t0) +

∑
i>0

ET i(Ci(s))

)
− `(P)

with Ci(s) denoting the completion time of task i in schedule s. In s, all the sequenced
tasks complete before t0 so `(t0) is by definition a lower bound for the cost of all the
sequenced task in s. That proves that by adding the constant `(P) to the minimum of
1-CAP, we get a lower bound for s, that is for any element of S.

4.3 Implementation and computational results

We implemented several subgradient algorithms among them presented in Minoux’ book
[16]. The one that seems the most efficient is Shor’s method with space dilatation [20].
We used several classical tricks in order to limit the computation time of the lower bound :

• At each iteration of the subgradient method, the value q(uuu) is a lower bound of
the optimum of 1-CAP so it is a fortiori a lower bound for ESTP. So the optimal
value of 1-CAP is not required and we can stop the algorithm before the end of the
convergence.

• In particular, as soon as the algorithm find some q(uuu) greater than the best known
upper bound, the subgradient algorithm is stopped.

• Except at the root node, the vector uuu0 from which the subgradient method starts
can be build from the vector uuu? resulting from the lower bound computation for the
ascendant node. The dimension of uuu? is one greater than the dimension of uuu0. uuu0

is build by removing the coordinate of uuu? that corresponds to the task that has just
been ranked.

The domination rules and the branching heuritics are exactly the same as the ones
used in the implementation of Sourd and Kedad-Sidhoum [22]. We compared this code
with the implementation of Sourd and Kedad-Sidhoum [22]. In fact, the two algorithms
only differ in their lower bound : the one relies on a continuous assignment, the other on
a discrete assignment. The tested instances are those generated in [22], the generation
scheme being based on [11]. In particular the processing times are drawn in the interval
[10, 100].

The main result is that the “continuous lower bound” is in general better than the
discrete one. It can be explained by the following experimental observation : in the optimal
discrete assignment, the unitary tasks are often assigned to time intervals (t, t + 1) such
that f step

i (t) < fi(t) (see Figure 4). Moreover, the subgradient method quickly finds a
vector uuu such that q(uuu) is better than the discrete lower bound. As a consequence, even
if we limit the number of step in the subgradient algorithm, the number of nodes in the

18

branch and bound algorithm is greatly reduced. Typically, the number of nodes is divided
by 5 for instances with 20 and 30 tasks, but, by allowing more steps in the subgradient
phase (which makes the algorithm slower), the number of nodes can be divided by a factor
up to 20.

However, we have not obtained a real decrease for the computation time. The two
algorithms roughly require the same computation time depending on the instances, the
number of steps allowed for the subgradient optimization and, quite surprisingly, the
compiler. Indeed, the implementation of the discrete lower bound is more efficient with
Microsoft Visual C++ whereas the continuous lower bound is at its best when compiled
with gcc. In brief, a few seconds are required to solve a problem with 20 tasks whereas a
problem with 30 tasks is solved within a few minutes on a PC Pentium III 1GHz.

We eventually tested the influence of the time scale by multiplying by 10 all the
processing times and all the due dates of an instance. We noted that the computation
time is multiplied by about 8 for the discrete lower bound algorithm whereas it is multiplied
by 2 for the continuous lower bound. As expected, the continuous lower bound, because
it is not pseudopolynomial, is more robust when processing times become larger.

5 Conclusion

This paper has presented the continuous assignment problem and has shown that it can
efficiently be solved by solving its dual that is an unconstrained concave maximization
problem. An important application of this result is the computation of a lower bound for
the one-machine scheduling problem with earliness and tardiness penalties. Even if the
resulting branch-and-bound algorithm do not dominate the existing algorithms (but is not
dominated by them), the point is that this lower bound is very good and the search tree
has significantly less nodes. So we expect that this approach will efficiently be generalized
for harder problems such as machines with capacities and shop environment, and that
more efficient heuristics — or even approximation algorithms with performance guarantee
— can be derived.

We also expect to find applications of 2-CAP in sectoring problems.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall Professional Technical Reference, 1993.

[2] Franz Aurenhammer. Power diagrams: properties, algorithms, and applications.
SIAM Journal on Computing, 16:78–96, 1987.

[3] Franz Aurenhammer, Friedrich Hoffmann, and Boris Aronov. Minkowski-type theo-
rems and least-squares clustering. Algorithmica, 20:61–76, 1998.

[4] R. Bellman. Bottleneck problem and dynamic programming. Proceedings of the
National Academy of Sciences of the USA, 39:947–951, 1953.

[5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

19

[6] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithms for job shop
scheduling and packet routing. Journal of Algorithms, 33:296–318, 1999.

[7] D. Bertsimas and J. Sethuraman. From fluid relaxations to practical algorithms for
job shop scheduling: the makespan objective. Mathematical Programming, Serie A,
92:61–102, 2002.

[8] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic geometry. Cambridge
University Press, UK, 2001.

[9] M.R. Garey, R.E. Tarjan, and G.T. Wilfong. One-processor scheduling with symmet-
ric earliness and tardiness penalties. Mathematics of Operations Research, 13:330–348,
1988.

[10] B. Grünbaum. Convex polytopes. Interscience, New York, 1967.

[11] J.A. Hoogeveen and S.L. van de Velde. A branch-and-bound algorithm for single-
machine earliness-tardiness scheduling with idle time. INFORMS Journal on Com-
puting, 8:402–412, 1996.

[12] L.G. Khachian. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20:191–194, 1979.

[13] C. Lemaréchal. Nondifferentiable optimization. In G.L. Nemhauser, A.H.G. Rinnooy
Kan, and M.J. Todd, editors, Optimization, volume 1 of Handbooks in Operations
Research and Management Science, chapter VII. North-Holland, 1989.

[14] X. Luo and D. Bertsimas. A new algorithm for state-constrained separated continuous
linear programs. SIAM Journal on Control Optimization, 37:177–210, 1998.

[15] M. Marcus and H. Ming. A survey of matrix theory and matrix inequalities. Allyn
and Bacon, Inc., Boston, 1964.

[16] M. Minoux. Mathematical Programming: Theory and Algorithms. Wiley & Sons,
1986.

[17] A.B. Philpott and M. Craddock. An adaptative discretization algorithm for a class
of continuous network programs. Networks, 26:1–11, 1995.

[18] M.C. Pullan. A duality theory for separated continuous linear programs. SIAM
Journal on Control Optimization, 34:931–965, 1996.

[19] R. Schramm. On piecewise linear functions and piecewise linear equations. Mathe-
matics of Operations Research, 5:510–522, 1980.

[20] N.Z. Shor. Convergence of a gradient method with space dilatation in the direction
of the difference between two successive gradients. Kibernetika, 11:48–53, 1975.

[21] N.Z. Shor. Cutt-off methods with space extension in convex programming problems.
Cybernetics, 13:94–96, 1977.

20

[22] F. Sourd and S. Kedad-Sidhoum. The one machine problem with earliness and tar-
diness penalties. Journal of Scheduling, 2002. Revised version submitted.

[23] S.A. Vavasis. Convex optimization. In M.J. Atallah, editor, Algorithms and Theory
of Computation Handbook, chapter 33. CRC Press, 1998.

21

	Introduction
	Problem description
	The primal problem
	The dual problem

	Solving the dual problem
	Existence of a dual solution
	Optimal primal solution
	Hessian of q in the one-dimensional problem
	Linear cost functions and Minkowski's theorem

	Application to earliness-tardiness scheduling
	Computing a lower bound
	Lower bound for a partial schedule
	Implementation and computational results

	Conclusion

