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Abstract

Scheduling a sequence of tasks — in the acceptation of finding the execution times
— is not a trivial problem when the optimization criterion is irregular as for instance in
earliness-tardiness problems. This paper presents an efficient Dynamic Programming
algorithm to solve the problem with general cost functions depending on the end time
of the tasks, idle time costs and variable durations also depending in the execution
time of the tasks. The algorithm is also valid when the precedence graph is a tree and
it can be adapted to determine the possible execution windows for each task not to
exceed a maximum fixed cost.

Subject : Production/Scheduling; Sequencing; Deterministic; Single machine; Irregular criterion.
Mathematics; Piecewise linear; dynamic programming with cost functions.

1 Introduction

Just-in-Time scheduling has interested both practitioners and researchers for over a decade.
A very common idea is to recognize that a job that completes either tardily or early in a
schedule incurs extra costs. Therefore, a usual model is to introduce earliness and tardiness
penalties per time unit for each task and the objective is to minimize the sum of all the
earliness and tardiness costs.

However, such a model may be insufficient. Very often, the earliness and tardiness
costs are not linear on the whole time horizon. For example, practitioners sometimes want
to model several good time periods during which a task would preferably be processed, but
with bad time periods in between the good periods. Moreover, they also have to deal with
idle periods : in schedules minimizing the earliness-tardiness costs, periods of inactivity
are generally inserted but in practice, these periods when no work is done have an extra
cost that cannot be ignored in the model and must be penalized.

In this paper, the single-machine problem with general completion costs and idle period
penalties is studied. More precisely, we will consider the key problem where the tasks are
already sequenced. This problem is very important because most scheduling algorithms
first rank the tasks by the mean of either a (meta)heuristic or an enumeration scheme and
next determine the optimal — if possible — timing for the sequenced tasks. For example,
both the branch-and-bound algorithm by Hoogeveen and van de Velde [6] and the tabu
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search by Wan and Yen [11] are based upon this approach to solve the single machine
problem with earliness/tardiness penalties.

When the completion costs are nondecreasing — criteria such as the flow time and the
total tardiness — and when the cost of idle period is nondecreasing with the length of
the period, the problem is obvious : each task is scheduled as early as possible when its
predecessor in the sequence is completed.

The pure earliness-tardiness case (without idle time penalties) can be formulated as a
linear program [4] but this problem can be more efficiently solved in O(n log n) time by a
direct algorithm based on the blocks of adjacent tasks [5, 3, 10]. Chrétienne and Sourd [2]
presented a generalization of this algorithm when the cost functions are convex and when
the order between the tasks is only partial, that is given by an arbitrary acyclic precedence
graph between the tasks. When the minimization criterion is the maximum cost instead
of the sum of all the costs, the problem of finding optimum start times for a sequence of
tasks can be efficiently solved with general cost functions [8].

Our problem is also related to the project scheduling problem with irregular starting
time costs [9]. However, the approach adopted by Mörhing et al. [9] requires to explicitly
define the cost of each task at any time point so that the time horizon of the schedule
appears in the complexity of the algorithm.

The algorithm presented in this paper is based on dynamic programming. It is faster
than the general algorithm of Möhring et al. especially when cost functions are piecewise
linear. In such a situation, the algorithm is polynomial in the number of segments of the
cost functions given in input of the algorithm. Moreover, our algorithm is able to deal
with durations depending on the execution time of the task, which can be very useful to
model breaks or transportation activities.

Section 2 presents with more mathematical details the problem studied in the paper. It
also considers modelization questions. Section 3 is devoted to the solution of the problem
by dynamic programming; the computational complexity is studied when the cost function
are piecewise linear. Finally, in Section 4, we adapt the dynamic programming approach
to compute the possible start times of all the activities such that a fixed maximum total
cost is not exceeded.

2 Problem description

2.1 Problem definition

The problem is to find the execution times of n sequenced tasks denoted by T1, T2, · · · , Tn

that is Ti can start only after Ti−1 is completed. In a feasible schedule, Si and Ci re-
spectively denote the start time and the end time of Ti. The relationship between Si and
Ci is assumed to be known in advance, Ci − Si being the duration of Ti. More precisely,
it is assumed that Si is a continuous nondecreasing function of Ci, which is denoted by
Si = Si(Ci). In other words, the later a task starts, the later it completes and there is
only one possible start time for a given end time. Note that the function is not required
to be strictly increasing, which is of great importance to deal with breaks. However, for
simplicity of the proof, it is required to be continuous but usual non-continuous functions
can be seen as the limit of a sequence of continuous functions. We will give an example
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in § 2.3.
For each task Ti, a cost function fi depending on the completion time Ci is given. In

order to avoid situation where a task would have to be scheduled at ±∞, fi is required to
be nonincreasing on some interval (−∞, ai] and nondecreasing on some interval [bi,∞).

If Ti+1 does not start just at the completion time of Ti, there is an idle period of length
Si+1 − Ci between the two tasks. The cost of the idle period is measured by the value
wi(Si+1 − Ci), where wi is a function defined on R+. wi need not be nondecreasing on
R+ but as for functions fi, it is required to be nondecreasing on some interval [ci,+∞) to
avoid to have some tasks scheduled at ±∞. So the total cost is∑

1≤i≤n

fi(Ci) +
∑

1≤i<n

wi (Si+1 (Ci+1)− Ci) (1)

and the aim of the problem is to minimize this cost subject to the precedence constraint
Ci ≤ Si+1.

For example, in the pure earliness-tardiness case, the cost functions are defined as

fi(Ci) = max (αi (di − Ci) , βi (Ci − di))

where αi and βi are respectively the earliness and tardiness penalties per unit time.

2.2 Discontinuities in cost functions

In § 2.1, we already gave some conditions so that no task will be scheduled at ±∞. How-
ever, for any closed interval I in which a task Ti must complete, we want to be sure there
exists an end time Si such that fi(Si) = mint∈I fi(t). A sufficient condition to ensure
this property is to assume that the cost functions are continuous. But as we can see
in § 2.3, discontinuities in cost functions are interesting — for example to model breaks.
So, the following definition introduces a weaker condition on functions to ensure that the
minimum is reached at one point.

Definition 1. A function f is continuous from the minimum if, for each point of its
definition domain, it is continuous from the left or from the right. Moreover, f must have
a finite number of non-continuous points on any bounded interval and, for each t at which
f is not continuous, f must satisfy :

• if f is not continuous from the left, there is δ > 0 such that for any t′ such that
t− δ < t′ < t then f(t′) ≥ f(t).

• if f is not continuous from the right, there is δ > 0 such that for any t′ such that
t < t′ < t + δ then f(t′) ≥ f(t).

For example, the ceiling function that returns dxe is continuous from the minimum
whereas the flooring functions (bxc) is not. The main interest of using such functions is
shown in the following lemma.

Lemma 1. Let f be a function that is continuous from the minimum. For any closed and
bounded interval I, there exists some t? ∈ I such that f(t?) = mint∈I f(t).
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Figure 1: Start function Sk(Ck) in presence of a break (bmin, bmax) and its transformation
into a continuous function

Proof. Let t1, · · · , tk be the noncontinuous points of f in the interval I. Since f is con-
tinuous from the minimum, for each ti, there is an open interval Ii such that ti is an
end point of Ii and for any t′ ∈ Ii, f(t′) ≥ f(ti). Let Î = I −

⋃k
i=1 Ii. We have

that mint∈I f(t) = mint∈Î f(t). Moreover, Î is a finite union of disjoint closed and
bounded intervals and f is continuous on each interval. So there is some t? so that
f(t?) = mint∈Î f(t).

If f and g are both continuous from the minimum, the function f +g is also continuous
from the minimum. If h is continuous and is either nondecreasing or nonincreasing, f ◦h is
continuous from the minimum. But, with g that is simply continuous from the minimum,
f ◦ g may not be continuous from the minimum.

2.3 Time windows and breaks

Time window and break constraints often appear in practical models. They can be inte-
grated in our model my setting the costs to ∞ (i.e. any upper bound on the solution) on
some time intervals when the execution of the task is forbidden. For example, if task Tk is
constrained to be entirely executed in the time window [smin, emax], its minimum end time
emin is min

(
S−1

k ({smin})
)

so we set the cost function fk to∞ on intervals (−∞, smin) and
(smax,+∞). If fk is continuous from the minimum, the modified function is still contin-
uous from the minimum. In the same way, the task can be constrained to have several
possible time windows (while being again constrained to be entirely executed in only one
time windows).

A break is a time interval (bmin, bmax) during which the execution of a task can be
suspended at the break start bmin and restarted at the break end bmax. For a task Tk
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whose processing time is pk, the start function Sk is (see Figure 1) :

Sk(C) =


C − pk if C < bmin

bmin − pk if bmin ≤ C < bmax

C − pk − (bmax − bmin) if bmax ≤ C < bmax + pk

C − pk if bmax + pk ≤ C

Moreover, since Tk cannot complete during the break, its cost function fk must be set to
∞ on the interval (bmin, bmax). However, we note that the above-defined function Sk is
noncontinuous at C = bmax+pk while our mathematical model requires it to be continuous.
But we can remark that if Tk ends at bmax + pk − ε (for some small ε > 0), the fraction
ε/pk of Tk is processed just before the break, which is not desirable in practise. We can
prevent such a situation by fixing the minimum fraction αk of Tk that must be processed
before the task may be interrupted by the break. Tk can be prevented from completing
in (bmax + (1 − αk)pk, bmax + pk] by setting fk infinite on this interval and Sk can be
transformed into a continuous function by modifying it only on this interval, as shown by
Figure 1.

2.4 Constant idle time cost

When the idle time costs are linear and task-independent, that is there is some α such
that for any i ∈ {1, · · · , n}, wi(t) = αt, and when the durations of the tasks are time-
independent, that is for any i there is a constant pi such that Si = Ci − pi, the problem
can be reduced to a problem without idle time cost. Indeed, the total cost given by
Equation (1) is now ∑

1≤i≤n

fi(Ci) + α
∑

1≤i<n

Ci+1 − pi+1 − Ci

that is ∑
1≤i≤n

fi(Ci) + αCn − αC1 − α
∑

1<i≤n

pi

Since the last term is a constant, the minimization problem is equivalent to the problem
with null idle time costs in which the costs functions are :

f̂i(C) =


f1(C)− αC for i = 1
fi(C) for 1 < i < n
fn(C) + αC for i = n

We are going to see in next section that when there is no idle time the recurrence equation
of the Dynamic Program is much simpler.

3 Solving the problem by dynamic programming

We are going to show that this problem can be solved by dynamic programming. For any
k ∈ {1, · · · , n} and any t ∈ R, Pk(t) denotes the subproblem in which :

- the sequence of tasks is the subsequence T1, · · · , Tk and
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- we add the additional constraint that Tk completes at t, that is Ck = t.

Σk(t) is the minimum cost of the solutions of Pk(t). Clearly, the optimal cost of the whole
problem is mint∈R Σn(t).

3.1 Recursive relationship

We obviously have that Σ1(t) = f1(t). For any k ≥ 1, Σk+1(t) can be expressed in function
of Σk. Indeed, if Tk+1 is assumed to complete at time t then Tk must complete at some
time t′ that is less than or equal to the start time of Tk+1 that is Sk+1(t). The minimum
cost of the schedule such that Ck = t′ and Ck+1 = t is Σk(t′)+wk (Sk+1(t)− t′)+ fk+1(t).
Σk+1(t) is then given by minimizing upon all the possible values for t′ :

Σk+1(t) = min
t′≤Sk+1(t)

(
Σk(t′) + wk

(
Sk+1(t)− t′

))
+ fk+1(t) (2)

Theorem 2. For any integer k ∈ {1, · · · , n}, the function Σk is well defined and is con-
tinuous from the minimum.

Proof. We here show that for any function f that is continuous from the minimum and
nonincreasing on some interval (−∞, af ), the function g(t) = mint′≤t f(t′) is well defined,
is continuous from the minimum and is nonincreasing on some interval (−∞, ag) — this
last point is obvious. With this result, since the sum of two functions continuous from
the minimum is continuous from the minimum and since the composition by a continuous
nondecreasing function preserves the continuity from the minimum, the theorem is easily
proved by induction.
So, let us consider the function g(t) = mint′≤t f(t′). Since f is nonincreasing on the interval
(−∞, af ), for any t < af , g(t) = f(t). For any t ≥ af , [af , t] is a closed and bounded
interval of R so that there is some t? ≤ t such that g(t) = f(t?) = minaf≤t′≤t f(t′) =
mint′≤t f(t′). That shows that g(t) is well defined for any t ∈ R. Let us now define
E = {t | g(t) = f(t)}. E is a closed set. Clearly, g is continuous from the minimum at any
point of the interior of E and at any point in R − E. What is left to prove is that g is
continuous from the minimum at any point of the boundary between E and R−E. Let x
be such a point (x is in the closed set E). If f is not continuous from the right at x, this
means that f is strictly greater than f(x) on some interval (x, x + δ1) and g is constant
and for any t ∈ (x, x + δ1), g(t) = f(x) = g(x). If f is continuous from the right at x, for
any t in some interval (x, x + δ2), g(t) = minx≤t′≤t f(t′). So in both cases, g is continuous
from the right at x. As g is nonincreasing, g is continuous from the minimum at x.

From the assumption on the cost functions fi and wi, the minimum of Σn is in the
interval [mini ai − maxi ci,maxi bi + maxi ci]. So, Theorem 2 and Lemma 1 prove the
existence of some time point Cn such that Σn(Cn) = mint∈R Σn(t). This time Cn is the
completion time of Tn. To compute Cn−1, we must add the constraint that Cn−1 ≤ Sn =
Sn(Cn) : Cn−1 is a value minimizing Σn−1 on (−∞, Sn]. Cn−2, · · · , C1 are computed by
iterating this process.

Finally, we can remark that this dynamic programming approach is also valid when the
order between the tasks in not given by a complete chain but by an “intree” precedence
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graph. In this problem, each task must have at most one successor (a task without
successor is a root of the intree) and several tasks can eventually be processed at the same
time, that is there is no resource constraint (Project Scheduling Problem). The recurrence
equation is very similar. Here, Pk(t) denotes the subproblem in which the tasks are all
the predecessors of Tk that are all the tasks in the subtree of root Tk. We still have the
additional constraint that Tk completes at t, that is Ck = t. Let Πk be the set of the direct
predecessors of Tk. The recurrence equation is then :

Σk(t) =
{

fk(t) if Πk = ∅
fk(t) +

∑
i∈Πk

mint′≤Sk(t) (Σi(t′) + wik (Sk(t)− t′)) otherwise

where wij is the idle time cost between the end of Ti and the start of Tj . To run the dynamic
program associated with this equation, the tasks are to be numbered in a topological order
compatible with the precedence graph.

For an outtree precedence graph — each task has at most one predecessor — we can
use the above-described algorithm by reversing the time scale.

3.2 Piecewise linear functions

The computability and complexity of this algorithm strongly depend on the cost functions
given in input. Hereafter, we will study the — somewhat general — case where all the
functions are piecewise linear. Each piecewise linear function is supposed to be given as
an ordered segment list. For each segment in the list, five values are given corresponding
to its definition interval, its slope and the coordinates of one point in the segment. We of
course assume that the definition intervals of the segments do not overlap. So the number
of segments is a good indicator of the amount of information given in input to describe
a piecewise linear function. In this paper, the number of segments of a piecewise linear
function f is denoted by ‖f‖.

For the sake of simpler notations, if a piecewise linear function f is not defined on R,
we are going to say that for any real value t outside the definition domain, f(t) = ∞.
In other words, we transform the initial function into a piecewise linear function defined
on R with constant segments equal to ∞. Clearly, if f has n segments, the transformed
function has O(n) segments. Moreover, the transformed function has the property that
the rightmost point of a segment — if not infinite — has the same abscissa than the
leftmost point of the next segment. Such a point will be hereafter called a breakpoint
of the function. As Theorem 2 ensures that the computed functions are still continuous
from the minimum, we can avoid to wonder if the endpoints of the segments are open or
closed : for any discontinuity, the discontinuity point belongs to the segment such that the
function is continuous from the minimum.

We now present a series of lemmas about operations involving piecewise linear functions
and their computation. In these lemmas, f1 and f2 denote two arbitrary piecewise linear
functions with respectively n1 = ‖f1‖ and n2 = ‖f2‖ segments. To avoid any possible
confusion, note that in the text of the following lemmas, f1 and f2 are not the cost
functions of tasks T1 and T2 defined in Section 2.

Lemma 3. The function f(t) = f1(t)+f2(t) is a piecewise linear function with O(n1+n2)
segments. It can be computed in O(n1 + n2) time.

7



Lemma 4. The function f(t) = min(f1(t), f2(t)) is a piecewise linear function with O(n1+
n2) segments. It can be computed in O(n1 + n2) time.

Proof. Clearly, t is a breakpoint for f only if t is a breakpoint for f1 or f2 or if f1(t) = f2(t)
(and f ′1(t) 6= f ′2(t)). f1 and f2 have respectively O(n1) and O(n2) breakpoints. So there
are O(n1 + n2) breakpoints for f that are due to breakpoints for f1 and f2. Between two
such breakpoints, both f1 and f2 are linear so either these two functions are identical (and
there is no breakpoint) or there is zero or one intersection point so that f has at most
one breakpoint on this open interval. In conclusion, f has O(n1 + n2) breakpoints. It can
obviously be computed in O(n1 + n2).

Lemma 5. If f2 is continuous and nondecreasing, the function f(t) = f1(f2(t)) is a
piecewise linear function with O(n1 + n2) segments. It can be computed in O(n1 + n2)
time.

Proof. Since f2 is continuous and nondecreasing, for each breakpoint t of f1, the set of real
values St = {t′ ∈ R | f2(t′) = t} is either a single point or a closed interval depending on
the slope of f2 at t′. Let us consider the sorted list L that contains the breakpoints of f2

and for each breakpoint t of f1 the endpoints of St (that are one or two points). This list
contains O(n1 + n2) points. In the open interval between two consecutive points of L, the
function f is clearly linear as the composition of two linear functions. So f is piecewise
linear with O(n1 + n2) segments. The following algorithm, very similar to the algorithm
to merge sorted arrays, compute the sorted list in O(n1 + n2) time :

let t1 be the first breakpoint of f1

let t2 be the first breakpoint of f2

let L← ∅
while t1 or t2 exists do

if f2(t2) ≤ t1 then
add t2 to L
let t2 be the next breakpoint of f2

if f2(t2) = t1 then
let t1 be the next breakpoint of f1

else
let t such that f2(t) = t1
add t to L
let t1 be the next breakpoint of f1

So the function f can be computed in O(n1 + n2) time.

The following operation between f1 and f2 can be viewed as the composition between
f1 and f−1

2 . It will be used in Section 4.

Lemma 6. If f2 is continuous and nondecreasing, the function f(t) = mint=f2(t′) f1(t′) is
a piecewise linear function with O(n1 + n2) segments. It can be computed in O(n1 + n2)
time.
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Figure 2: f(t) = mint−δ≤t′≤t f1(t′)

Proof. The definition domain of f2, that is a priori R, can be divided into a partition
I inc ∪ Istep such that f2 is strictly increasing on I inc and is stepwise on Istep. With f inc

2

(resp. f step
2 ) being the function f2 with the definition domain restricted to I inc (resp.

Istep), we have that

f(t) = min

(
min

t=f inc
2 (t′)

f1(t′), min
t=f

step
2 (t′)

f1(t′)

)
(3)

The first term is equal to min(f1(f inc
2
−1(t)). From Lemma 5, it has O(n1 + n2) seg-

ments and can be computed in O(n1 + n2) time. We can compute in O(n1) time, all the
min

t=f
step
2 (t′)

f1(t′) corresponding to each interval of the definition domain of f step
2 . These

values eventually modify the value of the piecewise linear function given by the first term
of (3) at some of its irregular points. There is at most n2 such modifications.

Lemma 7. Let δ be a non-negative real value. The function f(t) = mint−δ≤t′≤t f1(t′) is
a piecewise linear function with at most n1 segments. It can be computed in O(n1) time.

Proof. The construction of f is illustrated by Figure 2. For each breakpoint ti (1 ≤ i < n1)
of the function f1, let hi be the constant function defined on the interval [ti, ti + δ) equal
to the value limθ→t−i

f1(θ). For any real value t, the global minimum of the function f1 on
the interval [t − δ, t] is reached either at t or at t − δ or at a local minimum of f1 in the
interval. Such a local minimum can only be a breakpoint of f1 so that we have

f(t) = min (f1(t), f1(t− δ), h1(t), h2(t), · · · , hn1−1(t))

Let h(t) be the stepwise function defined by min1≤i<n1 hi(t). Since the breakpoints of f1

are given ordered in input and since the definition intervals of all hi functions have the
same length (δ), h can be computed in O(n1) time and has O(n1) steps. Therefore, from
Lemma 4, the piecewise linear function defined by f(t) = min (f1(t), f1(t− δ), h(t)) can
be computed in O(n1) time and has O(n1) segments.
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Figure 3: f(t) = mint′≤t f1(t′)

When δ is greater than tn1 − t1, we clearly have that f(t) = mint′≤t f1(t′) which gives
the following corollary illustrated by Figure 3 :

Corollary 8. The function f(t) = mint′≤t f1(t′) is a piecewise linear function with at
most O(n1) segments. It can be computed in O(n1) time.

We can even show that the function f has at most n1 segments. The following lemma
is similar to Corollaty 8 but with two functions.

Lemma 9. The function f(t) = mint1+t2≥t f1(t1) + f2(t2) is a piecewise linear function
with O(n1n2) segments. It can be computed in O(n1n2) time.

Proof. We are going to prove that f̂(t) = mint1+t2=t f1(t1) + f2(t2) is a piecewise linear
function with O(n1n2) segments that can be computed in O(n1n2) time. Indeed, we clearly
have that f(t) = mint′≥t f̂(t′) and so f can be derived from f̂ thanks to Corollary 8 by
reversing the abscyssa axis.
Let I1, I2, · · · , In1 be the definition intervals of each segment of the piecewise linear function
f1. On each interval Ik, f1 is linear so there are αk and βk such that for all t ∈ Ik,
f1(t) = αkt + βk. We can then write f̂(t) = min1≤k≤n1 gk(t) with gk(t) = mint1∈Ik

αkt1 +
βk + f2(t− t1). So gk(t) = αkt+βk +mint1∈Ik

f2(t− t1)−αk(t− t1). From Lemmas 5 and
7, the last term of function gk has O(n2) segments and can be computed in O(n2) time.
So each function gk has O(n2) segments and can be computed in O(n2) time, which shows
that f has O(n1n2) segments and can be computed in O(n1n2) time.

We can give a simple example in which the function f̂(t) defined in Lemma 9 has
Θ(n1n2) segments. f1 is defined on the interval [0, n1n2) and f1(t) = (n1 + 1) dt/n1e.
f2 is defined on the interval [0, n1) and f2(t) = dte. f1 and f2 are continuous from the
minimum. Since they are both nondecreasing, we have f̂(t) = mint1+t2=t f1(t1) + f2(t2).
As t2 ∈ [0, n1), we have that t1 ∈ (t − n1, t]. Let α = bt/n1c and β = t − αn1 that is
a real value in [0, n1). f1(αn1) + f2(β) = α(n1 + 1) + dβe. If t1 > αn1 then f1(t1) ≥
(α + 1)(n1 + 1) ≥ f1(αn1) + f2(β). If t− n1 < t1 ≤ αn1, f1(t1) = α(n1 + 1) and, since f2

is non decreasing, f2(t− t1) ≥ f2(β). So the minimum is reached for t1 = αn1 and t2 = β
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which means that f(t) = f1(bt/n1c) + f2(t − bt/n1c) and this function has n1n2 steps of
length 1 in [0, n1n2).

3.3 Complexity analysis

Now, fi is again the cost function of task Ti. Using the lemmas of the previous subsection,
a simple induction on (2) shows that the time and space complexities of the dynamic
program when all the function given in input are piecewise linear are :

O

(
n

(
n−1∏
i=1

‖wi‖

)(
n∑

i=1

‖fi‖+
n∑

i=2

‖Si‖

))
(4)

That shows that the algorithm may not be efficient when the idle time cost are not linear.
When the idle time costs are linear, the complexity is O (n (

∑n
i=1 ‖fi‖+

∑n
i=2 ‖Si‖)).

In the pure earliness-tardiness problem, each cost function fi has two segments so that the
complexity of the algorithm is O(n2). We recall this problem can be solved in O(n log n).

When the idle time between two consecutive tasks is constrained to be in a given
interval, and the cost is linear inside the interval, we can show with Lemma 7 that the
complexity is again O (n (

∑n
i=1 ‖fi‖+

∑n
i=2 ‖Si‖)). This tractable case seems large enough

to model a great deal of practicle problems.

4 Optimal filtering algorithm

Filtering algorithms are of key importance in Constraint Programming because their role
is to remove from the domain of the variables, the values that cannot lead to a feasible
solution. Sometimes, the removal of values than cannot lead to an optimal solution can
be implemented. In constraint-based scheduling [1], a pair of variables is usually devoted
to the start and end times of each activity. In this section, we give an algorithm that
determines the possible end times for each activity so that the total cost of the schedule
is not greater than a given maximum cost. The possible start time can then be directly
determined by the functions Sk. This filtering algorithm is said to be optimal because any
possible end time rendered by the algorithm corresponds to at least one feasible schedule
with a cost not greater than the given maximum cost. In other words, an optimal filtering
algorithm keeps all the possible values but only the possible values.

4.1 Problem description

We keep the notations introduced in Section 2 and we add the notation F that represents
the maximum possible cost. Therefore, the objective criterion given by (1) is replaced by
the following hard constraint :∑

1≤i≤n

fi(Ci) +
∑

1≤i<n

wi (Si+1 (Ci+1)− Ci) ≤ F (5)

The problem is to compute, for each task Tk (1 ≤ k ≤ n), the set Ck(F ) of all the
possible completion times t such that there exists at least one feasible schedule satisfying
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the precedence constraints given in Section 2, the cost constraint (5) and the constraint
Ck = t.

4.2 Algorithm and properties

The function Σk(t) defined by relationship (2) gives the minimal cost to schedule the
initial subsequence T1, · · · , Tk such that Ck = t. Symmetrically, we define Σ̄k(t) as the
minimal cost to schedule the terminal subsequence Tk, · · · , Tn such that Tk ends at t, that
is Ck = t. We set Σ̄n(t) = fn(t) for any t. If Tk (with k < n) ends at t and Tk+1 ends at
t′ with Sk+1(t′) ≥ t, the minimum cost to schedule Tk, · · · , Tn is fk(t) + wk+1(Sk+1(t′) −
t) + Σ̄k+1(t′). So Σ̄k(t) = fk(t) + minSk+1(t′)≥t(wk+1(Sk+1(t′)− t) + Σ̄k+1(t′)).

For each task Tk, we can then define the function Σ?
k(t) that is equal to the minimum

cost to schedule all the tasks T1, · · · , Tn such that Ck = t. Clearly, we have :

Σ?
k(t) = Σk(t) + Σ̄k(t)− fk(t) (6)

So, Ck(F ) = {t|Σ?
k(t) ≤ F} = Σ?

k
−1 ((−∞, F ]). As for Σk, the function Σ̄k is continu-

ous from the minimum. Σ?
k is also continuous from the minimum since Σ̄k(t) − fk(t) is

continuous from the minimum.

Theorem 10. Ck(F ) is a closed set.

Proof. If Ck(F ) is not empty, let us consider an infinite sequence (ti) such that for each
i ∈ N, ti ∈ Ck(F ) and limi→∞ ti = t. Since Σ?

k is either continuous from the right or from
the left, we can extract from this sequence an infine sequence (t̂i) such that

(
Σ?

k(t̂i)
)

has
a limit `. Since for each i, Σ?

k(t̂i) ≤ F , we have that ` ≤ F . Since Σ?
k is continuous from

the minimum, Σ?
k(t) ≤ `. Therefore, Σ?

k(t) ≤ F and t ∈ Ck(F ).

The following theorem is useful to speed up the computation of Ck(F ) in the earliness-
tardiness case without idle time costs — or with a constant idle time cost, which is
equivalent (see § 2.4).

Theorem 11. When all the cost functions are convex and when there is no idle time
costs, Ck(F ) is an interval.

Proof. We first remark that if a function g is convex, the function f(t) = mint′≤t g(t′)
is also a convex function because f and g are equal before the minimum of g and f is
constant after the minimum of g (see Figure 4). Therefore, Σk is convex as a sum of
convex function. So the functions Σ̄k − fk and Σ?

k are also convex. The convexity of Σ?
k

proves that Ck(F ) is an interval.

The study of the computation of Ck(F ) is very similar to what was done in the previous
section. However, we must rewrite the definition of Σ̄k as

Σ̄k(t) = fk(t) + min
t′′≥t

(
wk+1(t′′ − t) + min

t′′=Sk+1(t′)
Σ̄k+1(t′)

)
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Figure 4: f(t) = mint′≤t g(t′) is convex if g is convex.

to show with Lemma 6 that the function can be computed with the same time and space
complexity than Σk+1 in § 3.3. Therefore, Σ?

k can also be computed with the same com-
plexity. Since the time to compute Ck(F ) is proportional of the number of segments of
Σ̄k, the total time to compute the sets Ck(F ) for all the tasks T1, · · · , Tn is

O

(
n

(
n−1∏
i=1

‖wi‖

)(
n∑

i=1

‖fi‖+
n∑

i=2

‖Si‖

))

which is the same complexity as the one given by (4) to compute the only optimal value of
the optimization problem. We of course have the same simplification in the formula when
the idle time costs are linear.

5 Conclusion

We presented a Dynamic Programming algorithm to schedule — ie to time — a sequence
of tasks in order to minimize the total cost, including idle time costs. The algorithm is still
valid for the project scheduling problem without resource constraint and with an intree
or outtree precedence graph. An interesting point of this algorithm is that it can be very
easily implemented. For example, the problem with piecewise linear cost functions was
implemented in a few lines of code using the piecewise linear function facilities of ILOG
Scheduler 5.2 [7]. Moreover, it seems to be very efficient for large classes of practical
instances.

This algorithm can be adapted — with no extra computational cost — to get informa-
tion on the possible execution time window for each task so that a maximum fixed cost is
not exceeded.

Both information on the minimum cost of a sequence and on the possible time windows
should be very useful to determine an optimal sequence by a branch-and-bound algorithm.
Further research will focus on such an algorithm and its use in solving shop problems.
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