
HAL Id: hal-02545601
https://hal.science/hal-02545601

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JAC Milestone 2001
Lionel Seinturier, Renaud Pawlak, Laurence Duchien, Gérard Florin

To cite this version:
Lionel Seinturier, Renaud Pawlak, Laurence Duchien, Gérard Florin. JAC Milestone 2001. [Research
Report] lip6.2001.025, LIP6. 2001. �hal-02545601�

https://hal.science/hal-02545601
https://hal.archives-ouvertes.fr

JAC Milestone 2001

Lionel Seinturier�, Renaud Pawlak��, Laurence Duchien���, G�erard Florin��

� Universit�e Paris 6, Lab. LIP6, 4 place Jussieu, 75252 Paris cedex 05, France
�� CEDRIC-CNAM, 292 rue Saint-Martin, 75141 Paris cedex 03, France
��� USTL-LIFL, Bâtiment M3, 59655 Villeneuve d'Ascq cedex, France

Lionel.Seinturier@lip6.fr, fpawlak, oring@cnam.fr, Laurence.Duchien@li.fr

Abstract

JAC (Java Aspect Components) is a framework for aspect-oriented programming in Java.

It is developed as a joint research project between the CEDRIC-CNAM and LIP6 computer

science laboratories. This report gives a snapshot of the project as of September 2001.

Unlike languages such as AspectJ which are mostly class-based, JAC is object-based and

does not require any language extensions to Java. It uses the Javassist class load-time MOP.

An aspect program in JAC is a set of aspect objects that can be dynamically deployed and

undeployed on top of running application objects. Aspect objects may de�ne three kinds of

aspect methods: wrapping methods (that wrap application methods and provide the ability to

run code before and after the wrapped methods), role methods (that add new functionalities

to application objects), and exception handlers. The aspects composition issue is handled

through a well-de�ned wrapping controller that speci�es for each wrapped object at wrap-

time, runtime or both, the execution order of aspect objects.

1 Introduction

Separation of concerns in software engineering has always been a very natural means to handle
complexity of software developments [Par72]. However, modularizing concerns can be a very tricky
task for the programmer and rise some issues such as performance, crosscutting, or redesigning
when the software is used in a context that is quite di�erent from the overseen one. By handling
crosscutting within the language or system, the recent approach of Aspect-Oriented Programming
(AOP) [KLM+97] seems to be a very promising way for helping developers to handle separation
of concerns and to overcome the drawbacks of traditional design approaches.

However, if AOP introduces a new programming paradigm that complements existing ones, it is
clear that it brings a new bunch of diÆcult problems. The composition of an aspect to an applica-
tion (the aspect is said to be woven) is one of them. Several approaches exist: AspectJ [KHH+01]
which is a general language for AOP, the composition �lter object model [BA01] where aspects
are de�ned as �lters applied upon application objects, aspectual components [LLM99] that de-
�ne patterns of interaction with roles and connectors to map these roles to application objects,
subject-oriented programming [HO93][OKH+95] which decomposes an application into subjects
and provides composition rules to recompose them, domain speci�c languages to de�ne crosscut-
ting concerns based on patterns of events [DMS01]. We review some of them in the related works
section of this paper.

Nevertheless, when several aspects have to be composed to an application, a given aspect
not only crosscuts the application, but may also crosscut others aspects. Indeed, aspects may
not be orthogonal to each others. We call this issue the inter-aspects composition aspect. Some
solutions exist, e.g. precedence rules in AspectJ [KHH+01] or composed connectors in aspectual
components [LLM99] (see section 6 for a discussion of these features), but as far as we know, this

1

is still an open issue for the AOP community. Most of the time aspect programmers still have
to invent some ad hoc means to handle it. This problem deeply a�ects the potential power of
AOP by making aspects less re-usable that they should be and dramatically limits the simplicity
of using a set of aspects.

In this paper, we present a framework called JAC (for Java Aspect Components) [JAC] that
is a proposal to cleanly deal with inter-aspects composition within an aspect-oriented application,
making by this way aspects more reusable. JAC is the continuation of A-TOS [PDF+00], a
previous work developed in Tcl. The paper is structured as follows. First, we point out that one
of the main problem in AOP is to be able to easily compose several aspects coming from di�erent
sources, during the development process, and while the application is running. In section 3, we
present JAC and the way we deal with the inter-aspects composition issue at weave-time and at
runtime. Section 4 presents a case study. Section 5 discusses JAC performances. We compare
JAC with other related works in section 6. Finally, section 7 concludes this paper and presents
some future works.

2 Important issues in AOP

When programming aspects with an aspect-oriented language, framework, or system (AOS) the
main problems programmers have to face is to handle the consistent composition of aspects.
In a general development process, aspects can be programmed by di�erent programmers and
can conict if nothing is done to avoid it. We call this problem the inter-aspects composition

issue [PDF99]. This issue can occur at weave-time but also at runtime and can be split in several
sub-problems of di�erent natures. The following list shortly depicts some of the most currently
encountered. Most of them remain open issues that are discussed in the AOP community. We
don't assume an AOS to handle them automatically. We rather think that a neatly designed AOS
should provide solutions (e.g. API, language constructs, ...) to support programmers in addressing
them.

2.1 Weave-time issues

The weave-time issues occur when the weaver weaves the aspects (or a particular aspect) into the
base program. Depending on the AOS, weaving can be at compile-time or at runtime (when an
aspect is dynamically added or removed from the application). We name the weave-time issues
WIn to be able to refer them later.

2.1.1 Checking for aspect compatibility with the application (WI1)

Assuming that we know that our application should never contain a given aspect, the underlying
AOS should be able to check its type (assuming the aspect programmer provides a formal or semi-
formal type system) and refuse to weave it. For instance, if the base program already implements
an authentication policy (by choice or because you add some aspect to an existing application),
then you should add a composition constraint that prevents an authentication aspect to be woven.

2.1.2 Checking for inter-aspect compatibility (WI2)

If we know that two aspects are incompatible (e.g. some redundancy and fault tolerance algo-
rithms) the program can refuse to weave one aspect if the other is already woven.

2.1.3 Checking for inter-aspect dependence (WI3)

If an aspect is woven and needs another aspect (e.g. a binding aspect may need a naming aspect),
the AOS should be able to automatically weave the needed one (or report an error).

2

2.1.4 Checking for aspect redundancy (WI4)

If we know that two aspects implement the same concern in two di�erent ways (e.g. two di�erent
authentication algorithms or two di�erent persistence implementations), then the program can
refuse to weave one of both aspects or unweave the previous one to replace it by the new one.

2.1.5 Ordering the aspects at weave-time (WI5)

Regarding a join point (a location in the base program where a set of aspects can intercess their
behaviors), some aspects must always be called before others (e.g. authentication) and some must
always be called after others (e.g. persistence). The AOS should place the di�erent aspects so
that they are correctly ordered and so that the aspect programmer does not care anymore about
the others.

For the �ve above described issues, the AOS must be able to de�ne some checking and/or
ordering rules. This code can be seen as an aspect that rules how aspects behave regarding each
others at weave-time. In several works, this aspect has been called a composition aspect. At

weave-time, the weaver will refer the composition aspect to decide how to weave an aspect to an
application program.

2.2 Runtime issues

By runtime issues, we mean the issues that may occur when the aspect is already woven, and that
can arise when the execution of a join-point that is intercessed by the aspect occurs. In some
cases, the set of advices that is de�ned in the aspects for a given join-point may change regarding
the context. Since it depends on the execution context, the weave-time composition aspect can
hardly deal with the runtime issues. Using a few examples, we will show that the AOS can take
advantage of using a runtime composition aspect to deal with these issues. We name the runtime
issues RIn to be able to refer them later.

2.2.1 Checking for intra-aspect consistency (RI1)

Some aspects need to perform context-dependent tests to remain semantically consistent. Let
take the example of a counting aspect, that counts the number of calls to a given method. The
following pseudo code is inspired from the AspectJ [KHH+01] syntax. It increments the counter

variable before each execution of method A.m1.

aspect CountingAspect {

private int counter;

joinpoint jp1 = (class A, method m1);

before jp1 advice1 {

counter++;

}

}

Now imagine that method m2 calls m1 10 times. The aspect programmer (that is aware of the
base program code) can optimize the application by adding another before advice for method m2.

aspect WrongOptimizedCountingAspect {

private int counter;

joinpoint jp1 = (class A, method m1);

joinpoint jp2 = (class A, method m2);

before (jp1) advice1 {

counter++;

}

3

before (jp2) advice2 {

counter += 10;

}

}

However, this aspect is wrong because, if the user of class A calls method m2, then the counter
will be incremented by 20 (�rst by 10 by advice2, and next 10 times by 1 by advice1) instead of 10.
Thus, the aspect code needs to perform a contextual test to skip the �rst before advice when the
second has already been applied (this is informally expressed in the following pseudo code by the
advice2.alreadyApplied() method call that returns true if advice2 has already been applied).

aspect OptimizedCountingAspect {

private int counter;

joinpoint jp1 = (class A, method m1);

joinpoint jp2 = (class A, method m2);

before (jp1) advice1 {

if (advice2.alreadyApplied()) { skip }

counter++;

}

before (jp2) advice2 {

counter += 10;

}

}

These kinds of aspects has been pointed out in [BMV00]. Brichau and al. call them "jumping

aspect" since the join points seems to be jumping around the code depending on the context in

which a component is used. This aspect code supposes that the aspect system is able to memorize
the aspect advices that have been already applied (note that AspectJ [KHH+01] can support this
feature with CFlows). The skip operation means that the current advice is skipped. We will see
later on that this solution is not totally satisfying.

2.2.2 Skipping an aspect (RI2)

Depending on the state of the application (and of the context), some aspects may be skipped for
optimization matters. This can be a generic optimization, e.g. a persistence aspect may be called
only one time out of ten so that the objects states are saved less often; or an authentication aspect
may be skipped if we know that the client has already been authenticated. It can also be a more
application semantics dependent optimization. For example, the GUI aspect could be skipped if
we know that the action performed on the base object will not a�ect its graphical representation.

The following pseudo code skips a persistence aspect advice when the load of the system goes
over a given threshold.

after (jp) advice1 {

if (System.getLoad() > THRESHOLD) { skip }

// serialize and write...

}

2.2.3 Choosing an aspect (RI3)

We previously talked about checking for aspect redundancy. On the other hand the application
programmer could deliberately weave several aspects that implement the same concern so that,
depending on the program context, the AOS could use the aspect that seems to be the most
eÆcient. For instance, we can choose a di�erent image compression algorithm whether the client
is locally or remotely connected or whether s/he asked for a real-time QoS.

Similarly to previous examples a simple means to deal with this issue is to apply some contex-
tual tests.

4

aspect CompressionAspect {

before (jp) advice1 {

if (Network.getLoad() > THRESHOLD) {

// low quality compress...

} else {

// high quality compress...

}

}

}

2.2.4 Ordering the aspects at runtime (RI4)

In some cases (that most of the time depend on the application semantics) the aspect ordering is
not known at weave-time. In these cases, the AOS should be able to re-order the aspects for a given
join point and a given context within the runtime system. Let us take the example of a logging
aspect that can switch from a verbose mode to a very verbose one. In the verbose mode, the log
traces only the successfully authenticated access to an object, and in the very verbose mode, the
log traces also the non authenticated access tries. A simple way to implement the verbose mode is
to apply the authentication aspect before the logging aspect, whilst the very verbose mode implies
that the authentication aspect is applied after. Moreover, the application programmer may want
to be in verbose mode for a set of trusted client hosts and in very verbose mode for all the other
hosts. As a consequence, the aspect ordering depends on some runtime contextual information
and the AOS should provide features to help the programmer to deal with this in a clean way.

This issue can be overcome by using two di�erent advices with contextual tests so that it does
not seem to be a problem anymore (here, we assume that the weave-time composition aspect order
the advices so that advice1 is before the authentication advices, and advice2 is after).

aspect LoggingAspect {

private boolean veryVerbose;

joinpoint jp = (class A, getAllMethods);

before (jp) advice1 {

if (! veryVerbose) { skip }

write (logFile);

}

after (jp) advice2 {

if (advice1.allreadyApplied()) { skip }

write (logFile);

}

}

2.2.5 Inter-aspect dependence at runtime (RI5)

Assuming that we can skip an aspect at runtime, the WI3 issue is also applicable at runtime. For
instance, if we skip a tracing aspect, all the aspects that depend on it must also be skipped.

2.3 Discussion

As one can see in �gure 1, the aspect composition issue is a critical point in Aspect-Oriented
Programming. In most of the existing languages or systems that more or less support aspect-
orientation, handling these issues is mostly part of the aspect programmer task (like shown in the
previous examples). This is a very important limitation to AOP since the composition issue is a
crosscutting concern in the sense that some code should be added in the whole set of aspects to
deal with it, especially when the composition problem can not be entirely solved at weave-time
but must also be handled at runtime.

5

Aspects with composition and optimization

Hardly maintanable. Application dependent.
rules croscutting. Hardly re-usable.

no composition or
optimization rules
plugged into.

Weaver

simple weaver with

Weaver

rules croscutting. Easily re-usable.

optimization rules
plugged into.

composition and

Hard to maintain.
Hard to reuse.

Possible aspect-oriented systems designs
without a Composition Aspect

Simple aspects with no composition and optimization

Complex weaver with

Even worse, you can get a mix of them

Application dependent.

with a Composition Aspect

no composition or
optimization rules
plugged into.

Weaver

rules croscutting. Easily re-usable.

Composition Aspect
composition
rules

dependent but
easy to maintain
Easy to understand

Externalized

Simple weaver with

Simple aspects with no composition and optimization

A JAC-like aspect-oriented system design

May be application

Figure 1: With or without a Composition Aspect ?

To illustrate this, let us take again the counting aspect depicted in section 2.2.1. The applied
optimization (incrementing the counter by 10 when m2 is called) skips the default increment.
However, for other base programs, such optimization can be applied for several other kinds of
join-points. Thus the skipping test is diÆcult to generalize and the aspect can hardly be reused
as this. Moreover, another aspect could use the same kind of contextual test (for instance, a
security aspect that also needs to count the calls to m1). The same problem occurs for the other
examples when the aspects check the system or network loads to know if they have to be applied.
Regarding this, it becomes clear that the contextual tests crosscut the aspects and make them
hardly maintainable and reusable. In addition, since the same contextual tests may appear in a
set of aspects for the same join-point, they can �nally lead to performance issues.

For us, the only way to solve the runtime issues is to externalize the contextual tests into a
well-modularized inter-aspect composition aspect. If we can do this, the AOS can apply a global
contextual test for each join point and handles all the contextual tests at once. As shown in
�gure 1, the aspects remain free from runtime issues pollution and are more eÆcient and easier to
maintain in comparison with other approaches without contextual part and aspect composition.
Regarding our examples, it appears that we can classify the runtime issues into two categories: the
issues that involve only one aspect (RI1, RI2, and RI3), and the ones that involve several aspects
(RI4, RI5).

In the next section, we present our framework called JAC (for Java Aspect Components). With
JAC, programmers develop applications in an aspect-oriented fashion and have support for the
composition issue so that they are able to solve most of the previously described issues. Indeed,

6

JAC programmers can cleanly describe how the composition of the aspects will be handled by the
application within a well-bounded part of the program called a wrapping controller.

3 The JAC framework

This section presents our framework. Section 3.1 gives an overview. The four software entities of
an JAC aspect-oriented program are introduced. Each of them is described with more details in
the remaining subsections. Section 3.6 presents some additional elements from the JAC API.

3.1 Overview

JAC is a Java framework that provides support for dynamic aspect-oriented applications. By
dynamic, we mean that an aspect can be woven and unwoven at runtime. An aspect-oriented
program in JAC is entirely written in regular Java and is composed of four main parts.

3.1.1 Base program

A JAC base program is composed of a set of Java objects that implement the core functionalities
of the application. These objects run on a regular JVM.

3.1.2 Aspect programs

A concern that re�nes or modi�es the base program behavior is implemented in an aspect program
that can be woven to the base program. An aspect program is implemented by a set of aspect
objects (also called dynamic wrappers) that can hold three kinds of aspect methods wrapping

methods, role methods, and/or exception handlers. Contrary to AspectJ [KHH+01] that mixes
join-points de�nitions and advice de�nitions within the same aspect code, we separate the core
functionalities of the aspects within independent aspect objects that can be compared to pure
advice sets. The join points are de�ned by the weaver and the link between a join-point and a
pure advice is done at weave-time. This choice makes the advices more reusable and, for instance,
several aspects can reuse the same advice (for instance, a counting advice can be reused for a
security or for a debugging aspect). This design choice is similar to the one made by aspectual
components [LLM99]. Compared to this approach, a JAC aspect program corresponds to an
aspectual component, and a JAC aspect object corresponds to a participant.

� Wrapping methods: A wrapping method can wrap any method of any base object and
seamlessly executes some code before and after this method (they are thus equivalent to
the before, after, and around advices of AspectJ and to the replace keyword of aspectual
components). A base method can be wrapped by as much wrapping methods as needed and
a wrapping method can be added and removed at runtime (contrary to regular wrappers,
JAC wrappers do not change the base object reference when wrapping it and implement the
wrapping by using an internal and dedicated MOP).

� Role methods: A role method can be attached to one or many base objects at runtime
and extend the base object interface (similarly to the introduce statement in AspectJ and to
the participant methods of aspectual components). A role method can be invoked by calling
the invokeRoleMethod on a base object.

� Exception handlers: An exception handler is a method that is noti�ed when an exception
is raised within (or from) the base object method it is attached to. For instance, this is very
useful when the invoked object is wrapped by a wrapping method that raises an exception
that is not de�ned by the base object.

7

3.1.3 Weaver

The weaver is responsible for deploying the aspect objects on the appropriate base objects so that
a set of functionalities crosscut the base program and implement a new concern. The weaving code
implicitly de�nes pointcuts and links the advices (wrapping methods, role methods and exception
handlers) to them. Since the composition rules are externalized within the composition aspect,
the weaver does not take this issue into account. The weaving process is con�gured by a property
�le that says where and when aspect objects are to be deployed. This �le is described in more
details in section 3.4.

3.1.4 Composition aspect

This part de�nes rules about how the di�erent aspects of the program are composed at weave-time
(to solve WI1, ..., WI5) or at runtime (to solve RI1, RI2, RI3). The composition aspect provides an
WrappingController interface that is a MOP dedicated to aspect composition and that is implicitly
upcalled by the system each time some composition issue can occur. For performance issue, the
composition MOP is not activated by default (since it is sometimes not needed). The weaver is
responsible for activating the composition MOP for a given base object.

Figure 2 sums up the architecture of JAC programs. Table 1 compares the JAC programming

model with the AspectJ [KHH+01] and the aspectual components [ML98] ones. Contrary to these
two examples, the JAC model externalizes the Runtime composition rules so that the aspects are
more reusable. Only AspectJ integrates its pointcut de�nition within the aspect entities. Thus,
reusing aspects implies the de�nition of abstract aspect classes.

3.2 Base objects

Base objects are regular Java objects whose classes are automatically adapted to be able to dy-
namically add a wrapper, attach a role object, or an exception handler. This translation is done at
class load-time with the Javassist [Chi00] tool. Since Javassist works on the bytecode and during
load-time, the source code is not needed and the class �les of the program are never changed on
disk. Programmers can still use them to build regular Java applications.

Figure 3 zooms on a JAC object that has been translated by the JAC class loader and that ini-
tially o�ers two methods m1 and m2. The Javassist meta-classes we developped add the following
elements:

� a wrapping chain (a vector of references to wrapping methods) for each initial method,

� a set of references to exception handling methods (methods called if the kind of exception
they catch is raised) for each initial method,

� a �eld that contains a reference to the wrapping controller (upcalled to handle the compo-
sition, as it will be explained later),

� a vector that contains references towards the role objects attached to the JAC object.

These data are manipulated by the weaver that uses the JAC Object Manipulation Interface
that is also added at load-time and that furnishes methods to manipulate wrappers (wrap, un-
wrap, nextWrapper), role objects (addRoleObject, rmvRoleObject, invokeRoleMethod), exception
handlers (addExceptionHandler, rmvExceptionHandler).

In the example of �gure 3, the con�guration applied by the weaver (at runtime) is the following:
m1 is wrapped by fao1, wm1g and fao1, wm2g, it is attached to one exception handling method
fao1, h1g while m2 is wrapped by fao2, wm3g and is attached to fao1, h1g and fao2, h2g.

8

base object is
wrapped and
implement a
given composition
policy

notify when a has to start
tell when the weaving

has to be translated
to become Jac objects

tell what classes

Aspect 1 Aspect N

notify when a new
instance is created

jac.prop file

The base program (regular Java
objects translated at load-time
by Javassist)

add role objects
add exception handlers

wrap

The weaver (deploys the
aspect objects so that the
aspect program crosscuts
the base program)

The composition aspect
(wrapping controllers that
can perform contextual
operation on the wrapping
chains at runtime)

The optimization aspect
(specialize the composition
aspect to perform wrappers
aggregation when possible)

Aspect objects with: wrapping methods, role methods, exception handlers

use for weaving

Figure 2: JAC applications architecture.

Features JAC AspectJ Aspectual Components

Aspect de�-
nitions

aspect programs aspect classes aspectual components

Aspect enti-
ties

aspect objects aspect classes participants

Aspect enti-
ties members

OO model members,
wrapping methods,
role methods, excep-
tion handlers

OO model members,
pointcuts, advices (be-
fore / after / around /
introduce)

OO model members, re-
place

Pointcut def-
initions loca-
tions

weavers aspect classes connectors

Weave-time
composition

wrapping controllers
(before/afterWrap)

precedence rules composite connectors

Runtime
composition

wrapping controllers
(getNextWrapper)

aspect classes
(CFlows)

Table 1: Comparison of JAC, AspectJ, and aspectual components programming models.

9

ao1

ao2

beforeWrap
afterWrap

beforeUnwrap
afterUnwrap

getNextWrapper

beforeNewRoleObject
afterNewRoleObject

beforeNewExceptionHandler
afterNewExceptionHandler

private method

java object

java class
public method
added at class load-time

public method or role method exception handling method

wrapping method

field

reference

wm2

wm1

get/setObject

pushFrame

popFrame

peekFrame
JacObject (informations on
the running system) other Jac objects

m1 _org_m1

m1 wrapping
chain

m1 exception
handlers

m2 exception
handlerschain

m2 wrapping

_org_m2

role objects

wc (WrappingController)

wrapping controller

h1

h2

r2

r1

wm3

aspect object 1

aspect object 2

(JacObject)
a base program object

m2

wrap
unwrap

addRoleObject

nextWrapper

rmvRoleObject

rmvExceptionHandler
addExceptionHandler

invokeRoleMethod

setWrappingController

Figure 3: A JAC object overview.

3.3 Aspect objects

As described in section 3.1.2, aspect objects in JAC are containers for wrapping methods and/or
role methods and/or exception handlers. There is no dedicated declaration nor con�guration
needed to distinguish between these three types. They are dynamically infered and checked from
the method signature. When trying to use a method as a wrapping method, either the signature
comply to the one of a wrapping method and the binding is accepted, either it does not and in
this case, an exception is raised. The process is the same for role methods and exception handlers.
This section presents the three legal signatures for aspect methods.

3.3.1 Wrapping methods

Wrappers in JAC are not like regular wrappers. Instead of sharing the same interface as the
wrappees, all JAC wrappers has the same MOP-like interface with a reference to the base and an
array of parameters. Nevertheless, they are not meta-objects in the sense that:

� their granularity is method-based (instead of object-based for meta-objects),

10

� several wrapping methods (de�ned in the same or di�erent classes) can wrap a given base
method,

� a wrapping method can wrap one or several base methods (de�ned in the same or di�erent
classes).

A wrapping method is required to be public and to return an Object instance. This object
will be in most cases the one returned by the base method. Nevertheless, its value can be changed
if any post treatments are part of the wrapper semantics. Its class can also be changed even if this
situation should be less common. Indeed, from a client point of view, the wrapping mechanism
must remain transparent. Thus, if on the server object side, a wrapper modi�es the return
parameter class, then on the client object side, another wrapper will be required to restore the
expected class.

public Object wrappingMethodExample

(Wrappee wrappee, String methodName, Object[] methodArgs, int rank);

The �rst argument of a wrapping method is a Wrappee reference. This is the reference of

the base object currently wrapped by these wrappers. Note that this value may change during
the life of a wrappee as wrappers can be dynamically attached and removed from a base object.
The Wrappee interface corresponds to the JAC Object Manipulation Interface mentionned in
section 3.2. The second argument of a wrapping method is the wrapped method name. The
third one is the array of arguments that are to be transmitted to the base method. As for the
return argument, these values can be changed provided that the base method can retrieve some
semantically correct values from them. The last argument gives the rank of the wrapper in the
wrapping chain.

Apart for logging purpose, the value of the rank argument is mainly used when calling the
nextWrapper method of the Wrappee interface. This method either calls the next wrapper in the
chain, or the base method if the current wrapper is the last one in the chain. Note that this default
behavior provided by the wrapping controller that can be rede�ned. Note also that the call to
nextWrapper is optional: if omitted, the execution returns to the caller without going neither
through the rest of the chain, nor the base method. In most cases, the call to nextWrapper looks
like the following:

Object ret = wrappee.nextWrapper(methodName, methodArgs, rank);

The four above described arguments are automatically set by JAC whenever a wrapping
method is called. A wrapping method signature can also contain any list of exceptions required
by the wrapper semantics.

3.3.2 Role methods

The only thing that is required for a method to qualify as a role method is to be public. The
return type may be an object, a basic type (such as int), or void. Programmers can de�ne any
number of arguments in its signature. If the �rst one class is Wrapppee, it will be interpreted by
JAC as a reference to the wrappee object to whom this role method is attached. Role methods
can also raise exceptions.

public Object roleMethodExample(Wrappee baseObject, ...);

Role methods are invoked with the invokeRoleMethod method provided by the Wrappee in-
terface. The signature of the invokeRoleMethod method is the same as the java.lang.reect.Me-

thod.invoke method (ie a string for the name of the role method to invoke and some arguments as
an array of objects). A typical call will look like:

aWrappee.invokeRoleMethod("aMethodName", new Object[]{ /** some arguments */});

11

3.3.3 Exception handlers

Exception handling methods must be public and return void (they can return something else
but this is useless as this value will be discarded in all cases). They require as an argument
an object that represent the exception raised. The class of this object is usually a subclass of
java.lang.Exception although JAC does not require it (ie any class will �t).

public void catchExample(ExException e);

The following sample sums up the signatures of the three possible aspect method types with
JAC.

public class AspectObjectExample {

/**

* Wrapping method example.

* All arguments are set by JAC.

*/

public Object wrappingMethodExample

(Wrappee wrappee, String methodName, Object[] methodArgs, int rank)

throws ExException {

/** before code ... */

if ([...]) { throw new ExException(); }

/**

* Call to the next wrapper or

* to the base object if there is no more wrappers.

*/

Object ret = wrappee.nextWrapper(methodName, methodArgs, rank);

/** after code ... */

}

/**

* Role method example.

* The first (optional) parameter is automatically set by JAC

* as a reference on the base object.

* The method can contain any list of user specified parameters.

*/

public Object roleMethodExample(Wrappee baseObject, ...) {

/* ... */

}

/**

* Exception handler example.

* ExException is the class of the exception caught by this method.

* Usually this is a subclass of java.lang.Exception

* although JAC does not require it (ie any class will fit).

*/

public void catchExample(ExException e) {

/* ... */

}

}

12

3.4 Weavers

Weavers are responsible for deploying aspect objects and wrapping controller on top of running
base objects. A weaver must extend the jac.core.Weaver class and rede�ne the

public void weave();

method. Section 4.2 gives a running example of such a weaver. The way the weave method is
upcalled during the base program execution is de�ned in a property �le (jac.prop) that resides
in the current working directory. Two properties are required:

� jac.weaver: gives the weaver class (ie the subclass of jac.core.Weaver that provides the
customized weave method,

� jac.startWeavingPlace: de�nes where and when the weaver must be called. The value of
this property is a space-separated list of four arguments.

From a generic point of view, a weaver can be called whenever a method is called on a JAC base
object1. The �rst two arguments de�ne which class and which method within this class is to be
monitored. The any keyword is a shortcut to monitor all the methods of the class. Polymorphic
methods are not distinguished. The remaining two arguments of the jac.startWeavingPlace

property are numbers: the �rst one is an instance count, and the second one a method call count.
Both are 0-starting counters and allow to specify policies such as "upcall the weaver on the ith
call to method m on the jth instance of class c". Instances are considered in the order in which
they are created in the base program. The following sample upcalls the weave method of class
AgendaWeaver on the �rst call of any method on the �rst instance of the AgendaClient class:

jac.weaver: AgendaWeaver

jac.startWeavingPlace: AgendaClient any 0 0

Other more complex policies may also be speci�ed. For instance:

jac.startWeavingPlace: AgendaClient printAll 1 5

upcalls the weave method of class AgendaWeaver on the 2nd call of any method on the 6th
instance of the AgendaClient class. As a weaver must deploy aspect objects on top of running
application objects, one of its key characteristics is to be able to access them. Unfortunately there
is no standard way of doing this with the reection API of Java (eg there is no such thing as
accessing all the instances of a given class). To solve this issue, JAC provides a API that does just
that. Basically, a shadow reference to each new JAC object instance is automatically registered
in a hashtable. Then, method

public static Object[] getObjects(Class c);

in class JacObject returns an array of references to instances of class c.

3.5 Wrapping controllers

Wrapping controllers are JAC software entities that deal with the composition aspect both at
weave-time and at runtime. A default wrapping controller is provided but can be customized
by subclassing jac.core.WrappingController. Any base object can be attached to a dedicated
wrapping controller, or the same controller can be shared among several base objects. Section 4.3
gives a running example of a wrapping controller.

The important point to notice is that wrapping controller externalize the composition issue of
aspect-oriented programs. Thus aspect and base programs can stay free of dependancies resolving
code between aspects (that occur at weave-time) and of contextual tests on the e�ective running
of an aspect (that occur at runtime).

1Although this could seem to be a limitation (eg a weaver can not be called when a object reads a variable),
this is a rather fair compromise as most of the important stu� in an object-oriented program is supposed to happen
through method calls. More complex triggering scheme (eg groups of methods calls, code patterns, ...) could also
be envisioned but are out of the scope of this document.

13

3.5.1 Weave-time issues

Weave-time issues mentionned in section 2.1 are adressed by reifying the wrapping mechanism.
Thus each time the wrap method is invoked on a JAC object the call is intercepted by the following
method of the wrapping controller:

public int beforeWrap(Wrappee wrappee, String wrappee_method_name,

Wrapper wrapper, String wrapper_method_name,

int default_rank);

Solutions to weave-time issues can be implemented by saying that either a wrapper must be
rejected (ie not wrapped), or inserted at a given position in the wrapping chain. The beforeWrap

method is called with the reference of the object to be wrapped (so called wrappee), the method
name to be wrapped, the wrapper and the wrapping method name. The last argument default rank
is the position at which the wrapper will be inserted in the chain if nothing is done to change it
(by default at the end of the chain). This method returns an integer which is the e�ective position
(the same or a new one) choosen for this wrapper. By default, the beforeWrap method does
nothing (more precisely it simply returns default rank). This mechanism allows us to implement
precedence rules (WI5). Since rank -1 means that the wrapper must not be added, we can also
implement exclusion rules (WI1 to WI4).

A afterWrap method with the same signature than beforeWrap is also available in the Wrap-

pingController interface. This method is upcalled after the e�ective insertion of the wrapper in the
chain and gives the ability to implement any post-treatment required. beforeUnwrap, afterUnwrap,
beforeNewExceptionHandler, afterNewExceptionHandler, beforeNewRoleObject, afterNewRoleOb-
ject methods are also available. They perform the same job for respectively the unwrapping
mechanism, the adding of an exception handler, and the adding of a role method.

3.5.2 Runtime issues

Section 2.2 shows that the execution of a wrapper is subject to some contextual tests. To produce
better maintainable code, we think that a good design principle is to externalize these tests so
that they do not crosscut and pollute the aspect codes.

This externalization is adressed by reifying the dispatch mechanism between each wrapper
of the chain and between the wrappers and the base object. Thus each time the nextWrapper

method is invoked on a JAC object the call is intercepted by the following method of the wrapping
controller:

public int getNextWrapper(Wrappee wrappee, String wrappee_method_name,

Object[] wrappers, Object[] methods,

int default_rank);

Solutions to runtime issues can be implemented by saying that either a wrapper must be
executed at its current rank in the chain, skipped or executed later. The getNextWrapper method
is called with the reference of the wrapped object, the wrapped method name, the array of wrappers
of the chain, and the array of wrapping methods of the chain. The last argument default rank is
the position of the wrapper in the chain. This method returns an integer which is the rank of
the next wrapper to e�ectively run. By default, the getNextWrapper method does nothing (more
precisely it simply returns default rank).

The sequence diagram shown in �gure 4 sums up the dispatch process and focuses on the
objects interactions within the JAC system when a method is called. This protocol allows the
wrapping controller to entirely control the way wrappers are applied at runtime. The �gure shows
the (simpli�ed) case of a method m that is called on a base object o and that is wrapped by two
wrapping methods (wm1 and wm2). One can see that the wrapping controller is called when the
wrapping method has �nished its before work and calls the next wrapper. Thus, the wrapping
controller can choose the next wrapper (in this example, it chooses to call wm1 before wm2).

14

(WrappingControler)
o w1 w2 wc

getNextWrapper(...)

wm1(...)

nextWrapper(...)

wm2()

nextWrapper(...)

getNextWrapper(...)

(Wrapping methods)(Wrappee)

m(...)

_org_m(...)

Figure 4: The wrapping control mechanism.

3.6 Additional JAC API

JAC introduces two additional sets of API to handle the execution stack and the execution context
of a Java program. These features are not directly related to aspect-oriented programming. Rather
they are general features that for many reasons (among other performance) should be included in
the core API of the JDK. As they are not and as JAC aspect programs use them extensively, we
felt the need to provide them.

3.6.1 Program stack

The idea here is to be able to query the execution stack of a Java thread. Each frame on this
stack contains three elements: the called object, the called method, and the execution context (see
section 3.6.2). These data are automatically pushed by JAC. Obviously, the �rst frame pushed
onto the stack corresponds to the �rst method called on the �rst JAC object of the program. The
stack can be queried with the following static method of the jac.core.JacObject class:

public static Object[] peekFrame(int index);

The index is an integer value between 0 and 2 corresponding to the three above mentioned
elements pushed onto the stack. This method returns the elements pushed as an array of objects.
Hence, JacObject.peekFrame(1) returns the chain of called method names as an array of objects
(elements then need to be casted to strings by programmers).

Note that some kind of stack management is provided in the API of JDK 1.4. Nevertheless
its use is a bit cumbersome as it requires to raise and catch an exception before calling the
getStackTrace method on the exception object.

15

3.6.2 Execution context

Execution contexts in JAC are hashtables that map attribute names to values. They are thread
dependant and allow us to propagate data along a call graph. The JAC API provides methods to
get the current context (method getContext), and to add (method addAttribute) and get (method
getAttribute) attributes. Each attribute is a pair composed of a key string and of value (that can
be any Java object).

/** The following method is defined in the jac.core.Jacobject class */

public static jac.core.Context getContext();

/** The following methods are defined in the jac.core.Context class */

public void addAttribute(String name, Object att);

public Object getAttribute(String name);

public void setAttribute(String name, Object att);

4 Case study

This section presents the way an aspect-oriented application is developped with JAC. In a �rst
step for clarity sake, we will not externalize the composition code. It will be done in section 4.3.
We take the simple example of a agenda application. In this application, the agenda class is
de�ned as follows:

public class Agenda {

/** The agenda ID (must be unique) */

public String id;

/** The appointment list */

public Vector appointments = new Vector();

/** The repository for the agendas */

public static AgendaRepository repository;

/** Creates a new agenda and registers it into the repository */

public Agenda(String id, AgendaRepository repository) {...}

/** Make an appointment with other users */

public void makeAppointment(

String agenda_id, String date, String object, String[] with) {

// resolve the agendas of the with array with the repository

// call the makeAppointment method on all these agendas

}

/** Print the appointments */

public void printAppointments() {

System.out.println("** Appointment list for " + id + ":");

for (int i = 0; i < appointments.size(); i++) {

printAppointment(i);

}

}

/** Print an appointment */

public void printAppointment(int i) {

16

System.out.println(i + 1 + ". " + appointments.get(i));

}

}

It is easy to �gure out that the agenda repository class implements some methods to register and
to resolve agenda with a string ID. We also assume that an AgendaClient class that calls Agenda
instances is de�ned. Thus, a client program of an agenda can, for example, use amakeAppointment

method that takes an ID and that can be implemented as follows:

public class AgendaClient {

/** The repository for the agendas */

public static AgendaRepository repository;

/** Make an appointment with other users */

public void makeAppointment(

String agenda_id, String date, String object, String[] with) {

Agenda a = repository.resolve(agenda_id);

a.makeAppointment(date, object, with);

}

// Same principles can be applied

// to the printAppointments methods ...

}

4.1 Aspects

4.1.1 Counting aspect

This aspect illustrates the RI1 issue of section 2.2.1. The idea is to be able to count the number
of times the printAppointments by the printing methods of the method is called. As depicted in
section 2.2.1, a simple but not optimized way is to create a wrapper that simply increments a
counter.

public class CountingWrapper {

int counter;

public Object incr(Wrappee wrappee, String meth, Object[] args) {

counter++;

return wrappee.nextWrapper(meth, args);

}

}

In this example, incr is the wrapping method. Notice, that, at this stage, you do not specify
that the incr method will wrap the printAppointment method. This will be de�ned later in the
weaver. For this reason, our aspect objects can be regarded as pure advices that can be reused
for several aspects.

As depicted in section 2.2.1, this wrapper can be optimized to avoid several calls (one for each
agenda) to the incr wrapping method when the printAppointments method is called. The following
aspect de�nes two wrapping methods: incr for printAppointment like methods, and multiIncr for
printAppointments like methods. incr takes advantage of the JAC API (call to JAC.peekFrame

method) and checks whether the client calling method is printAppointments. If so, nothing is
done as the update of counter is handled elsewhere. If not, printAppointment has been directly
called and counter needs to be incremented. multiIncr increases the value of counter depending
of the number of agendas in the application object (we use the Java reection API to introspect
the wrappee �elds). The �eld and callingMethod �elds connect this aspect to a base program.

17

public class CountingWrapper {

int counter;

// The following fields allow the wrapper to be generic and

// customizable regarding the base program class it has to count.

String field, callingMethod;

public CountingWrapper(String field, String callingMethod) {

this.field = field;

this.callingMethod = callingMethod;

}

public CountingWrapper() {

field = "appointments";

callingMethod = "printAppointments";

}

public Object incr(Wrappee wrappee, String meth, Object[] args, int rk) {

// we increment the counter only

// if the calling method is "printAppointments".

if (! (JacObject.peekFrame(1)[0] == wrappee &&

JacObject.peekFrame(1)[1] == method))

counter++;

return wrappee.nextWrapper(meth, args, rk);

}

public Object multiIncr(Wrappee wrappee, String meth, Object[] args, int rk) {

counter += wrappee.getClass().getDeclaredField(field).get(wrappee);

return wrappee.nextWrapper(meth, args, rk);

}

}

4.1.2 Authentication aspect

A simple means to implement an authentication aspect is to wrap the AgendaClient instances
with a client-side wrapper that adds the agenda ID in the context and to wrap the agendas with a
server-side authentication wrapper that will read the context to check if the client accesses the right
agenda. Notice that the server-side authentication wrapper throws an exception in the case the
authentication fails. This is a good example to illustrate the use of (1) exception handlers (de�ned
here at the client-side), and (2) contexts. The following class de�nes the addAuthInfos wrapping
method and the catchAuthenticationException exception handler for AgendaClient instances.

public class ClientAuthenticationWrapper {

public Object

addAuthInfos(Wrappee wrappee, String meth, Object[] args, int rk) {

JacObject.getContext().addAttribute("clname", args[0]);

return wrappee.nextWrapper(method, args, rk);

}

public void catchAuthenticationException(AuthenticationException e) {

System.out.println(e.printStackTrace());

}

}

18

At the server-side, another RI1 issue type occurs. Indeed, since the Agenda class also calls the
makeAppointment method to notify the other agendas that a common appointment has been taken,
it implies that the server-side authentication wrapper must be skipped if the makeAppointment is
called by an agenda. Once this has been done by the checkAuthInfos wrapping method we check
whether the clName attribute is present in the context transmitted by the Agenda client and if so,
if the client is authorized to access this agenda. If not, we throw an exception that will be catch
by the exception handler de�ned previously.

public class ServerAuthenticationWrapper {

public Object

checkAuthInfos(Wrappee wrappee, String meth, Object[] args, int rk)

throws AuthenticationException {

if (! (JacObject.peekFrame(1)[0] instanceof Agenda)) {

Object clientName = JacObject.getContext().getAttribute("clname");

if (clientName == null ||

! clientName.equals(wrappee.getFieldValue("id"))) {

throw new AuthenticationException(

clientName+" is not authorized to access "+meth);

}

return wrappee.nextWrapper(method, args, rk);

}

}

4.2 Weaver

The weaver is the part of a JAC program that weaves the aspects to the base program, i.e. deploys
the aspect objects on the base objects. For example, the following weaver weaves the counting
and the authentication aspects to a base program that contains several instances of the Agenda

and AgendaClient classes.

public class AgendaWeaver extends Weaver {

// Some information to parameterize the join-points

String calledMethod = "printAppointment";

String callingMethod = "printAppointments";

String field = "appointments";

String authenticatedMethods =

{ "makeAppointment", "printAppointment", "printAppointments" };

String clientMethods = { "makeAppointment" };

public void weave() {

Object[] agendas = JacObject.getObjects(Agenda.class);

Object[] clients = JacObject.getObjects(AgendaClient.class);

// create a server authentication wrapper

ServerAuthenticationWrapper saw = new ServerAuthenticationWrapper();

// create a server authentication wrapper

ClientAuthenticationWrapper caw = new ClientAuthenticationWrapper();

19

// wrap the agendas to add authentication and counting

for (int i=0 ; i < agendas.length ; i++) {

// create one counting wrapper per agenda

CountingWrapper cw = new CountingWrapper(calledMethod, callingMethod, field);

agendas[i].wrap(cw, "incr", calledMethod);

agendas[i].wrap(cw, "countWithField", callingMethod);

agendas[i].wrap(saw, "checkAuthInfos", authenticatedMethods);

}

// wrap the clients to add authentication

for (int i=0 ; i < clients.length ; i++) {

agendas[i].wrap(caw, "addAuthInfos", clientMethods);

}

}

}

Furthermore, we specify with the following con�guration �le that the weaving is to be done
on the �rst method call on the �rst instance of the AgendaClient class (see section 3.4 for details
about this property �le).

jac.weaver: AgendaWeaver

jac.startWeavingPlace: AgendaClient any 0 0

4.3 Composition aspect

In most common cases, the authentication must be applied �rst. Indeed, it is quite clear that
any request to an object must be authenticated before any job is perform and even before any
other aspect is runned. Thus we need to implement a rule that forces the authentication aspect to
be called before any other aspect. The wrapping controller that performs this weave-time check
follows (see method beforeWrap). It also checks that the authentication wrapper is applied only
once to the same base object.

This wrapping controller also externalizes the counting wrapper optimization rule described
in section 4.1.1. By this way, we let the aspect code free from any pollution and the composition
policy can be centralized within a well-bounded software entity.

public class MyWrappingController extends WrappingController {

/** beforeWrap deals with weave-time issues related to the composition aspect */

public int beforeWrap(Wrappee wrappee, String wrappee_method_name,

Wrapper wrapper, String wrapper_method_name,

int default_rank) {

if (wrappers.length > 0 &&

wrappers[0].getClass() == ServerAuthenticationWrapper.class) {

// refuse to wrap authentication twice !

if (wrapper.getClass() == ServerAuthenticationWrapper.class) {

return -1;

}

// put the new wrapper after the authentication wrapper

return 1;

}

return default_rank;

20

}

/** getNextWrapper deals with runtime issues related to the composition aspect */

String calledMethod = "printAppointment";

String callingMethod = "printAppointments";

public int getNextWrapper(Wrappee wrappee, String wrappee_method_name,

Object[] wrappers, Object[] methods, int rank) {

// check if the calling method is "print"

if (wrappee_method_name == calledMethod &&

JacObject.peekFrame(1)[0] == wrappee &&

JacObject.peekFrame(1)[1] == callingMethod &&

wrappers[rank] instanceof CountingWrapper))

// skip the wrapper!

return rank + 1;

else

return rank;

}

}

5 Performance issues

We now present some performance measurements about JAC. Section 5.2 discusses about an
ongoing development that aims at speeding up the execution of an aspect-oriented program with
JAC.

5.1 JAC performance measurements

This section studies the cost of running an aspect-oriented program with JAC. As illustrated in
�gure 4, we need one regular invocation to the wrapping controller before choosing each wrapper
and two invocations per wrapping method (one to call it, and one when the nextWrapper method
is called by the wrapper).

The following trace is the output of a benchmark program that creates an object and calls
100 times an empty method on it. It runs under JVM2 and Linux with a Pentium 300 MHz
processor. The program performs nothing, objects are regular Java objects, they are not translated
by Javassist, and there is no weaving by JAC. We just run it to get the amount of time taken by
the JVM to do this job.

>>> start time: 981972594672 ms

>>> end of class loading: +639 ms [duration: 639 ms]

>>> end of benchmark: +1242 ms [duration: 588 ms]

To test the overload due to the wrapping mechanism, we implement an empty aspect that
wraps the base object with 10 empty wrappers and adds a wrapping controller that is upcalled
but does not change the wrappers ordering. Note that 10 wrappers is quite a huge number and
we don't expect such a case to be encountered (1, 2 or 3 aspects seems to be a more adequate case
for the near future). The same program running with JAC produces the following trace.

>>> start time: 981973419075 ms

>>> end of class loading/translating: +1484 ms [duration: 1484 ms]

21

>>> end of weaving: +1586 ms [duration: 102 ms]

>>> end of benchmark: +6249 ms [duration: 4663 ms]

The overhead of the dynamic application of 10 wrappers (even empty) when the base method
is called 100 time is huge: 4663 ms against 588 ms. This is no surprise as we replaced calls to 1
base object with calls that go through 10 wrapper objects and 1 base object. This roughly gives
us an overhead of 4 ms per base call per wrapper. The �rst duration gives the time needed to load
the classes and adapt them with Javassist. Compared to the previous case where the classes where
loaded with the standard classloader of the JVM, the duration is multiplied by 2.4. To reduce
it, JAC proposes a starting option that writes the result of the class translation in a temporary
directory so that, at the next start of the application, the class will not be translated anymore
(unless we explicitly require it). When the translated classes are stored, the result is almost the
same than when no translation occurs (655 ms against 639 ms).

>>> start time: 981973903301 ms

>>> end of class loading/translating: +655 ms [duration: 655 ms]

>>> end of weaving: +755 ms [duration: 100 ms]

This gives us a simple mean to optimize class translation. The second overhead already men-
tioned (4663 ms against 588 when 10 wrappers are inserted before 100 calls to 1 base object) can
only be overcome if fewer wrappers are used. We are in the process of working on a mechanism
that we call wrapper aggregation that dynamically aggregates the whole wrapping chain and the
wrappee into one unique object. Each method of this aggregation is constructing by inlining the
bytecode of wrapping methods and of the wrapped method (note that it also aggregates the states
of the wrappers and of the base object; this mechanism induces some state consistency issues
between the aggregations and the regular objects but we will not enter into details here). By this
way, we can expect the cost of running a application weaved by 10 aspects to be greatly improved.

Next section explains how we can deal with the second overhead (which comes from the wrap-
ping mechanism).

5.2 Optimizing aspects with JAC

To deal with the performance issue, we currently work on proposing a mechanism that we call
wrapper aggregation and that dynamically aggregates the whole wrapping chain and the wrappee
into one unique object. Each method of this aggregation is composed by inlining the bytecode
of the set of the wrapping methods and of the wrapped method (note that it also aggregates the
states of the wrappers and of the base object; this mechanism induces some state consistency
issues between the aggregations and the regular objects but we will not enter into details here).

When an aggregation is available, the only reective call is the one that delegates the work to
the aggregation. Moreover, contrary to regular wrappers that use the java.lang.reect package,
the aggregation wrappers perform direct access to the wrappee state and thus run more eÆciently.
The aggregation creation mechanism is eÆcient since it does not require any bytecode loading
because all the involved bytecodes are already loaded within the VM (we store them in our JAC
class loader).

Since the JAC framework cleanly separates the composition aspect from the other aspects,
these optimizations can be context-sensitive and be really eÆcient. For example, if it appears in
the wrapping controller that the wrappers order does not depend on the context, then we can
aggregate the wrapping chain once and never use the dynamic wrapping mechanism any more. Of
course, if the wrapping chain changes at runtime (in this case the wrapping controller is noti�ed
thanks to the beforeWrap method) then the aggregation should be replaced by a new one.

The following code shows how to optimize the document example. Depending on the context
(whether the calling method is printAll or not), the whole wrapping chain is replaced by an
aggregation that contains or not the counting wrapper. With this method, the context test is done
only once and the appropriate aggregated wrapping chain is called very eÆciently (an aggregate
does not perform reective invocations and does not upcall the wrapping controller anymore).

22

Notice that this kind of optimization would not have been possible if the composition aspect
was not centralized within the wrapping controller. Indeed, if the composition information is
hardcoded within the aspect codes, then the context-sensitive tests would be always performed
for all the aspects even if not needed.

public class EfficientCountingWrappingController

extends CountingWrappingController {

Object noSkipAggregate = null;

Object skipAggregate = null;

public int getNextWrapper (

Wrappee wrappee, String wrappee_method_name,

Object[] wrappers, Object[] methods, int rank) {

if (skipAggregate == null) {

// create the aggregate and memorize it in the wrappee

skipAggregate = wrappee.createAggregate(

getWrappersWithSkip(wrappers, CountingWrapper.class));

}

if (noSkipAggregate == null) {

// create the aggregate and memorize it in the wrappee

noSkipAggregate = wrappee.createAggregate(

getFullWrappingChain(wrappers));

}

// check if the calling method is "print"

if (wrappee_method_name == calledMethod &&

JacObject.peekFrame(1)[0] == wrappee &&

JacObject.peekFrame(1)[1] == callingMethod) {

// call the aggregate (this stops the current wrapping

// chain evaluation)

wrappee.callAggregate(skipAgregate);

} else {

wrappee.callAggregate(noSkipAgregate);

}

}

}

The following trace is for the same benchmark as the one described in section 5.1 but we have
added a wrapping controller that aggregates the wrapping chain of the ten wrappers into one
unique aggregation2. It shows that the overhead (one regular call to the wrapping controller, one
reective call and one aggregation creation) makes the JAC program less than one and a half
slower than the pure Java version. This is, to us, an excellent tradeo� regarding the exibility
JAC furnishes at runtime (moreover, once the aggregations are created, their creation overhead is
not sensible any more).

>>> start time: 981983417636 ms

>>> end of class loading: +648 ms [duration: 648 ms]

>>> end of weaving: +747 ms [duration: 99 ms]

>>> end of aggregation creation: 848 ms [duration: 101 ms]

>>> end of benchmark: +1543 ms [duration: 695 ms]

2Note that our aggregating system is currently a work in progress and is not yet available. However, the program
we made is a quite faithful simulation of what will happen when an aggregation occurs.

23

6 Related works

In [BW00], B�uchi and Weck designed a mechanism called generic wrappers. Generic wrappers
are type safe and support modular reasoning. Their focus is oriented towards the de�nition of
reusable and composable components implemented by di�erent vendors. Type soundness is one
of their main concerns. Multiple wrappers for a single wrappee can be de�ned in their approach.
Nevertheless, their system does not dynamically manage the execution order of wrappers in a
wrapping chain as our wrapping control does.

The composition �lter object model [BA01] (CFOM) is an extension to the conventional object
model where input and output �lters can be de�ned to handle sending and receiving of messages.
This model is implemented for several languages, including Smalltalk, C++ and Java [Wic99].
The latter implementation is an extension to the regular Java syntax where keywords are added
to declare, for instance, �lters attached to classes. The goals of this model and ours are rather

similar: to handle separation of concerns at a meta level. Nevertheless, JAC does not require any
language extension (i.e. wrappers and wrappees are written in regular Java).

AspectJ [KHH+01] is a powerful language that provides support for the implementation of
crosscutting concerns through pointcuts (collections of principle points in the execution of a pro-
gram), and advices (method-like structures attached to pointcuts). Precedence rules are de�ned

when more than one advice apply at a join point. In many features (e.g. pointcuts de�nition)
AspectJ has a rich and vast semantics. Nevertheless, we argue that in many cases that we have
studied, simple schemes such as the wrapping technique proposed by JAC are suÆcient to imple-
ment a broad range of solutions dealing with separation of concerns.

Aspectual components [LLM99] and their direct predecessors adaptative plug and play com-
ponents [ML98][MSL01] de�ne patterns of interaction, called participant graphs (PG), that im-
plement aspects for applications. PGs contain participants roles (e.g. publishers and subscribers
in a publish/subscribe interaction model) that, (1) expect features about the classes upon which
they will be mapped, (2) may reimplement features, and (3) provide some local features. PGs are
then mapped onto class graphs with entities called connectors, that de�ne the way aspects and
classes are composed. Aspectual components can be composed by connecting part of the expected
interface of one component to part of the provided interface of another. Nevertheless, it seems
that by doing so, the de�nition of the composition crosscuts the de�nition of the aspects, loosing
by this way the expected bene�ts of AOP. The approach taken in JAC consists in modularizing
this crosscuting concern (i.e. inter-aspects composition) in the so-called wrapping controller (see
section 4.3).

Subject oriented programming [HO93][OKH+95] (SOP) and its direct successor the Hyper/J
tool [TOHS99], provide the ability to handle di�erent subjective perspectives, called subjects,
on the problem to model. Subjects can be composed using correspondence rules (specifying the
correspondences between classes, methods, �elds of di�erent subjects), combination rules (giving
the way two subjects can be glued together, and correspondence-and-combination rules that mix
both approaches. Prototype implementations of SOP for C++ and Smalltalk exist, and a more
recent version for Java called Hyper/J is available. This latter tool implements the notion of
hyperspace [OT01] that permits the explicit identi�cation of any concerns of importance.

JAC also shares some caracteristics with other research projects. [Bus00] propose an ev-
ent/action model to compose aspects in a CORBA environment. Still related to the event/action
paradigm, Douence & al. [DMS01] are interested in formalizing the notion of crosscut. [BSLR98]
studies the notion of compatibility between aspects and meta-classes. The JavaPod [BR01] plat-
form for adaptable components o�ers an heritance like mechanism to extend object with non-
functional properties.

We think that JAC covers a �eld that, up to our knowledge, is not fully and cleanly addressed
by any of these solutions: dynamic ordering of aspect programs and context-sensitive optimizations
within the composition aspect. JAC is widely inspired from the Lasagne abstract model [TVJ+01]
that de�nes some concepts to achieve dynamic and context-sensitive selection of collaboration
re�nements depending on the client of the application (but that is less exible since it does not
allows runtime reordering of the wrapping chain).

24

7 Conclusion and future works

Separation of concerns is one of the major requirements for modern applications. Flexibility and
dynamic evolution are also needed most of the time. In this paper, we present the JAC framework
that meets both needs by using the notion of wrapping controller to implement a composition
aspect. To �x the ideas, �gure 2 summed up how all the JAC parts interoperate when building
an aspect-oriented application. JAC takes advantage of the Javassist [Chi00] load-time MOP to
transparently implement the needed glue between aspect and application programs.

It is to notice that, contrary to AspectJ [KHH+01] that focuses on the pointcuts expression
with a new language, we mainly focus on the de�nition of a generic architecture for AOP. We
believe that we have reached many of the desirable properties needed by aspect-oriented system
and languages and that our framework can be later on coupled with a more high-level language in
order to facilitate the programmer task. The following list summarizes the main features provided

by JAC.

� The base program is written in regular Java, can be launched independently from the aspects,
and the source code is not needed for the weaving.

� Aspect programming does not require any syntactical extension. Aspect objects with JAC
contains methods that can be either wrapping methods (that provides the ability to run
before, after, and around code), role methods (that introduce new features in application
objects), or exception handlers. Compared to AspectJ they can be seen as pure advice
entities. Aspect objects in JAC remain free from any deployment or composition issues that
are completely handled by the weaver and the wrapping controller. In our sense, this makes
aspect programs more generic and more reusable.

� The weaver is a regular Java program that uses introspection features so that any kind of
crosscutting schemes can be implemented. The weaver is responsible for deploying aspect
objects onto application objects. So it de�nes the way aspects are composed with appli-
cations. Several wrapping methods can wrap a given application method creating by this
way, wrapping chains. Several role methods and exception handlers can also be attached
to a given application object. Furthermore, the weaver is noti�ed when a new instance of
a base class is created so that the aspect can be extended in the mean time of the base
program extension. Assuming some transactional features, aspects could also be smoothly
added and removed at runtime, without stopping the application. The weaving mechanism
is object-based and is well-�tted to distributed programming since the modi�cation of a
given instance do not necessary a�ect the other class instances (thus allowing heterogenous
environments).

� The wrapping controller is a regular Java program that externalizes aspect composition.
It allows context-sensitive modi�cations of the wrapping chains. This composition aspect
should be programmed by a programmer that knows about the whole set of aspects that
can be woven to the application. The main advantages of this feature are to greatly simplify
the programming of the weaver (that just handles the deployment of aspect objects) and of
aspect objects (that just perform core functionalities). This last property allows the aspect
programmer to produce much more generic and reusable aspect code than it would be if
s/he had to deal with the aspect composition issue.

The JAC framework is used by the "Ecole Centrale de Lille" Laboratory to implement the
software part of the CarVia application that consists in controlling electronic devices via the
power-line network. JAC is currently under evaluation by Alcatel Research to implement a security
aspect within a network management platform. JAC has also been used to implement the Lasagne
abstract model [TVJ+01] and a distributed agenda management application. These concrete
projects tend to prove that the JAC framework allows the programmer to produce high quality
and easily maintainable code. During the development process of these applications, the bene�ts
of AOP are fully used and the concerns are developed independently from each other.

25

In the future, we will focus on the aggregation optimization so that JAC can be as eÆcient
as less dynamic aspect-oriented frameworks. We will also study the composition aspect to �nd
out some recurrent patterns and useful abstractions so that we can propose a more high-level
programming interface to deal with this issue. The purpose of this work is to make the composition
process as automatic as possible.

References

[BA01] L. Bergmans and M. Aksit. Software Architectures and Component Technology: The

State of the Art in Research and Practice, chapter Constructing Reusable Components
with Multiple Concerns Using Composition Filters. Kluwer Academic Publishers, 2001.

[BMV00] J. Brichau, W. De Meuter, and K. De Volder. Jumping aspects. Presented at the
ECOOP 2000 workshop on Aspects and Dimensions of Concerns, June 2000.
http://trese.cs.utwente.nl/Workshops/adc2000/.

[BR01] E. Bruneton and M. Riveill. Experiments with javapod, a platform designed for the
adaptation of non-functional properties. In Procedings of Reection'01, volume 2192
of Lecture Notes in Computer Science, pages 52{72. Springer, September 2001.

[BSLR98] N. Bouraqadi-Saadani, T. Ledoux, and F. Rivard. Safe metaclass programming. In
Proceedings of the 13th Conference on Object-Oriented Programming: Systems, Lan-

guages and Applications (OOPSLA'98), volume 33 of SIGPLAN Notices. ACM Press,
October 1998.

[Bus00] L. Bussard. Towards a pragmatic composition model of corba services based on aspectj.
In Workshop on the Aspects and Dimensions of Concerns at ECOOP'2000, June 2000.
http://trese.cs.utwente.nl/Workshops/adc2000/.

[BW00] M. Buchi and W. Weck. Generic wrappers. In Proceedings of the 14th European

Conference on Object-Oriented Programming (ECOOP'00), volume 1850 of Lecture
Notes in Computer Science, pages 201{225. Springer, June 2000.

[Chi00] S. Chiba. Load-time structural reection in Java. In Proceedings of the 14th European

Conference on Object-Oriented Programming (ECOOP'00), volume 1850 of Lecture
Notes in Computer Science, pages 313{336. Springer, June 2000.

[DMS01] R. Douence, O. Motelet, and M. Sudholt. A formal de�nition of crosscut. In Procedings

of Reection'01, volume 2192 of Lecture Notes in Computer Science, pages 170{186.

Springer, September 2001.

[HO93] W. Harrison and H. Ossher. Subject-oriented programming (A critique of pure objects).
In Proceedings of OOPSLA'93, volume 28 of SIGPLAN Notices, pages 411{428. ACM
Press, October 1993.

[JAC] JAC. The JAC project home page. http://cedric.cnam.fr/caolac/jac/.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In Proceedings of the 15th European Conference on Object-

Oriented Programming (ECOOP'01), volume 2072 of Lecture Notes in Computer Sci-

ence, pages 327{353. Springer, June 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the 11th European Confer-

ence on Object-Oriented Programming (ECOOP'97), volume 1241 of Lecture Notes in
Computer Science, pages 220{242. Springer, June 1997.

26

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components.
Technical Report NU-CCS-99-01, Northeastern University's College of Computer Sci-
ence, April 1999.

[ML98] M. Mezini and K. Lieberherr. Adaptative plug-and-play components for evolutionary
software development. In Proceedings of OOPSLA'98, volume 33 of SIGPLAN Notices,
pages 96{116. ACM Press, 1998.

[MSL01] M. Mezini, L. Seiter, and K. Lieberherr. Component integration with pluggable com-
posite adapters. In L. Bergmans and M. Aksit, editors, Software Architectures and

Component Technology: The State of the Art in Research and Practice. Kluwer Aca-
demic Publishers, 2001.

[OKH+95] H. Ossher, K. Kaplan, W. Harrison, A. Matz, and V. Kruskal. Subject-oriented com-
position rules. In Proceedings of OOPSLA'95, volume 30 of SIGPLAN Notices, pages
235{250. ACM Press, 1995.

[OT01] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace
approach. In Software Architectures and Component Technology: The State of the Art

in Research and Practice. Kluwer Academic Publishers, 2001.

[Par72] D. Parnas. On the criteria to be used in decomposing systems into modules. Commu-

nications of the ACM, 15(12):1053{1058, 1972.

[PDF99] R. Pawlak, L. Duchien, and G. Florin. An automatic aspect weaver with a reective
programming language. In Proceedings of Reection'99, volume 1964 of Lecture Notes
in Computer Science. Springer, July 1999.

[PDF+00] R. Pawlak, L. Duchien, G. Florin, Laurent Martelli, and Lionel Seinturier. Distributed
separation of concerns with Aspect Components. In Proceedings of TOOLS Europe

2000, June 2000.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the International Conference on

Software Engineering (ICSE'99), pages 107{119, 1999.

[TVJ+01] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, Joergensen, and N. Bo. Dynamic
and selective combination of extensions in component-based applications. In Proceed-

ings of ICSE'01, 2001.

[Wic99] K. Wichman. ComposeJ: The development of a preprocessor to facilitate composition
�lters in the Java language. Master thesis, Dept of Computer Science, University of
Twente, December 1999.
http://trese.cs.utwente.nl/publications/paperinfo/

wichman.thesis.pi.ref.htm.

27

Contents

1 Introduction 1

2 Important issues in AOP 2

2.1 Weave-time issues . 2
2.1.1 Checking for aspect compatibility with the application (WI1) 2
2.1.2 Checking for inter-aspect compatibility (WI2) 2
2.1.3 Checking for inter-aspect dependence (WI3) 2
2.1.4 Checking for aspect redundancy (WI4) . 3
2.1.5 Ordering the aspects at weave-time (WI5) 3

2.2 Runtime issues . 3
2.2.1 Checking for intra-aspect consistency (RI1) 3
2.2.2 Skipping an aspect (RI2) . 4
2.2.3 Choosing an aspect (RI3) . 4
2.2.4 Ordering the aspects at runtime (RI4) . 5
2.2.5 Inter-aspect dependence at runtime (RI5) 5

2.3 Discussion . 5

3 The JAC framework 7

3.1 Overview . 7
3.1.1 Base program . 7
3.1.2 Aspect programs . 7
3.1.3 Weaver . 8
3.1.4 Composition aspect . 8

3.2 Base objects . 8
3.3 Aspect objects . 10

3.3.1 Wrapping methods . 10
3.3.2 Role methods . 11
3.3.3 Exception handlers . 12

3.4 Weavers . 13
3.5 Wrapping controllers . 13

3.5.1 Weave-time issues . 14
3.5.2 Runtime issues . 14

3.6 Additional JAC API . 15
3.6.1 Program stack . 15
3.6.2 Execution context . 16

4 Case study 16

4.1 Aspects . 17
4.1.1 Counting aspect . 17
4.1.2 Authentication aspect . 18

4.2 Weaver . 19
4.3 Composition aspect . 20

5 Performance issues 21

5.1 JAC performance measurements . 21
5.2 Optimizing aspects with JAC . 22

6 Related works 24

7 Conclusion and future works 25

28

List of Figures

1 With or without a Composition Aspect ? . 6
2 JAC applications architecture. 9
3 A JAC object overview. 10
4 The wrapping control mechanism. 15

List of Tables

1 Comparison of JAC, AspectJ, and aspectual components programming models. . . 9

29

