
HAL Id: hal-02545582
https://hal.science/hal-02545582v2

Preprint submitted on 21 Apr 2020 (v2), last revised 12 May 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-complexity Computational Units for the
Local-SOVA Decoding Algorithm - Under Review,

Submitted to PIMRC’20 WS - ETTCOM
Stefan Weithoffer, Rami Klaimi, Abdel Charbel, Norbert Wehn, Catherine

Douillard

To cite this version:
Stefan Weithoffer, Rami Klaimi, Abdel Charbel, Norbert Wehn, Catherine Douillard. Low-complexity
Computational Units for the Local-SOVA Decoding Algorithm - Under Review, Submitted to
PIMRC’20 WS - ETTCOM. 2020. �hal-02545582v2�

https://hal.science/hal-02545582v2
https://hal.archives-ouvertes.fr

Low-complexity Computational Units for the
Local-SOVA Decoding Algorithm

Stefan Weithoffer†, Rami Klaimi†, Charbel Abdel Nour†, Norbert Wehn∗, Catherine Douillard†
∗Department of Electrical and Computer Engineering, Technische Universität Kaiserslautern

Email: ∗wehn@eit.uni-kl.de, †{stefan.weithoffer, rami.klaimi, charbel.abdelnour, catherine.douillard}@imt-atlantique.fr
†IMT Atlantique, Department of Electronics, Lab-STICC - UMR 6285

Abstract—Recently the Local-SOVA algorithm was suggested
as an alternative to the max-Log MAP algorithm commonly
used for decoding Turbo codes. In this work, we introduce new
complexity reductions to the Local-SOVA algorithm, which allow
an efficient implementation at a marginal BER penalty of 0.05
dB. Furthermore, we present the first hardware architectures for
the computational units of the Local-SOVA algorithm, namely the
add-compare select unit and the soft output unit of the Local-
SOVA for radix orders 2, 4 and 8 were proposed.

We provide place & route implementation results for 28nm
technology and demonstrate an area reduction of 46 − 75% for
the soft output unit for radix orders ≥ 4 in comparison with the
respective max-Log MAP soft output unit. These area reductions
compensate for the overhead in the add compare select unit,
resulting in overall area saving of around 27 − 46% compared
to the max-Log-MAP. These savings simplify the design and
implementation of high throughput Turbo decoders.

Keywords—Local-SOVA, Turbo codes, Soft-input soft-ouput
decoding, Soft-ouput Viterbi algorithm, High-radix decoding

I. INTRODUCTION

Today the interest in increased connectivity goes well
beyond entertainment applications towards population-wide
distance learning and home office programs. The associated
requirements for reliable communications call for efficient
Forward Error Correction (FEC).

Turbo codes [1] were adopted as FEC codes in 3G and
4G standards and will continue to be part of 5G through the
evolution of LTE [2] complementing the 5G New Radio. A
Turbo decoder consists in its basic structure of two component
decoders, an interleaver Π and a de-interleaver Π−1 connected
in an iterative loop in which the two component decoders
exchange extrinsic information Λe [3]. For the component de-
coding, the BCJR algorithm (named after Bahl-Cocke-Jelinek
and Raviv) [4] is used. However, in order to support efficient
hardware implementation, its counterpart in the logarithmic
domain, the Log-MAP algorithm, and its simplified version
max-Log MAP (MLM) algorithm [5] are typically used in
conjunction with a scaling of the extrinsic information with
an extrinsic scaling factor (ESF, [6]) to avoid an overestimate
of the calculated extrinsics.

The BCJR and its derivatives are inherrently serial in nature
due to the recursive calculation of state metrics (see II), which
limits the decoder throughput. In order to achieve a throughput
in the order of Gb/s, decoder architecture archetypes achieve
a high throughput by employing either spatial parallelism
[7]–[9] or functional parallelism [10]–[13] at decoder level.

The code trellis is split into smaller sub-trellises, which are
then decoded in parallel on several sub-decoder cores (spatial
parallelism) or in a pipeline (functional parallelism). Decoding
with a higher radix is an essential technique for increasing
the decoder throughput [14]. Higher radices process several
consecutive trellis steps in parallel, which leads to a reduction
in decoding latency, which in turn, increases the decoder
throughput. Furthermore the state metric memory is reduced
which translates into an area reduction.

For teraherz applications, a very high throughput towards
Tb/s is required [15]. This throughput requirement is par-
ticularly challenging for Turbo decoders and requires im-
provements from architecural and algorithmic side. From an
architectural perspective high radix decoding has a particu-
lar impact on fully pipelined iteration unrolled decoders as
demonstrated in [12], [13], [16]. There, a higher radix reduces
the length of the decoder pipeline, thereby reducing the area
overhead in the pipelines, in turn allowing for larger frame
sizes. Therefore, a high radix decoding is highly desirable.
However, the increased complexity and long critical path for
higher radix orders make radix orders ≥ 8 inefficient and
Turbo decoders typically use radix-2 or radix-4 computations.

To this end, in [17], the Local-SOVA algorithm was recently
proposed as a path based formulation of the forward and
backward recursions of the MLM algorithm together with
the extrinsic update rules of Hagenauer [18] and Battail [19]
inspired by their use in the modified Soft Output Viterbi Algo-
rithm (SOVA) [20]. The path based state metric recursion and
the computation of the extrinsics using the update rules yield
the same extrinsic value as the MLM. For radix orders ≥ 2,
the Local-SOVA was shown to exhibit a lower computational
complexity compared to the MLM. The complexity analysis,
however, was only performed in terms of the number of
additions and comparisons which does not directly translate
to hardware implementation.

In this work, we present new complexity reductions to the
Local-SOVA algorithm as well as the first hardware architec-
tures and implementation results for Local-SOVA computa-
tional units with radix orders ∈ {2, 4, 8}. The implementation
results are then compared with their respective MLM coun-
terparts. Our results show an area complexity reduction of up
to 75%, well beyond the 28 − 46% predicted in [17]. The
rest of this paper is structured as follows: First, section II and
III recount the MLM and Local-SOVA algorithms. Then, we

present our proposed new algorithmic complexity reductions
in section IV along with BER simulation results. The efficient
hardware architectures and the placement & routing results of
the implementations are described and discussed in sections
V and VI before section VII concludes the paper.

II. MAP ALGORITHM

In the following, we will focus on the MLM algorithm, but
the results are equally applicable to the Log-MAP and BCJR
algorithms. In the MLM algorithm, a forward state metric αsi ,
backward state metric βs

′

i+1 and a branch metric γs,s
′

i,i+1 are
assigned to each state s, s′ and the branch (s, s′) respectively.
The forward and backward metrics are calculated recursively:

αi+1 = min
∀s

(αi + γi,i+1) (1)

βi = min
∀s′

(βi+1 + γi,i+1) . (2)

Note that for better readability in the following, we will
sometimes omit the explicit labeling via s, s′ and (s, s′). From
these metrics, an a Posteriori Probability (APP) Logarithmic
Likelihood Ratio (LLR) Λi is calculated by considering the
”best” branch carrying the hard decision u = 0 and the best
branch carrying the hard decision u = 1:

Λi = min
∀(s,s′)

(
γu=0
i,i+1 + αi + βi+1

)
− min
∀(s,s′)

(
γu=1
i,i+1 + αi + βi+1

)
.

(3)

Processing k trellis steps at the same time, referred to as radix-
2k decoding [14], reduces the state metric memory and the
decoding latency.

III. LOCAL-SOVA ALGORITHM

Local-SOVA algorithm [17] operates on paths in the trellis
diagram stretching along k trellis steps i, i+ 1, . . . i+ (k− 1)
for a radix order R = 2k. A path in the trellis is defined
as a 3-tuple consisting of a real-valued path metric M , a
set of binary hard decisions u = {ui, ui+1, . . . , ui+(k−1)}
and a set of positive real-valued reliability values L =
{Li, Li+1, . . . , Li+(k−1)} (see also Fig. 1):

P = {M,u,L} ∈ R× {0, 1}k × (R+)k. (4)

The path metric M along a branch (s, s′) in a radix-2k trellis
is composed of α and β state metrics which themselves are
calculated following Eq. 1 and 2 as well as the branch metrics:

M = αk(s) + γk(s, s′) + βk+1(s′). (5)

The hard decisions u correspond to the data bit carried by
the corresponding trellis branches in the trellis diagram (0
for a dashed line or 1 for a solid line in Figure 1). The
reliabilities L associated with the respective hard decision
are initialized to ∞ (or the largest quantization) value [17].
Based on the path structure, the Local-SOVA defines a merge
operation, which merges two paths Pa = {Ma,u

a,La} and

Pa = {Ma, {0, 0, 0}, {Lai , Lai+1, L
a
i+2}

Pb = {Mb, {0, 1, 1}, {Lbi , Lbi+1, L
b
i+2}

Figure 1: Two radix-8 (k = 3) paths in the trellis (Eq. 4)

Pb = {Mb,u
b,Lb} into one path Pc = {Mc,u

c,Lc} by three
functions:

Mc = f0(Ma,Mb) = max(Ma,Mb) (6)

uc = f1(ua,ub) =

{
ua , if f0(Ma,Mb) = Ma

ub , if f0(Ma,Mb) = Mb

(7)

Lc =
{
Lci |Lci = f2(Lai , L

b
i)
}
. (8)

If all paths at a trellis stage are merged through application of
f0 and f1, the resulting path Pc is considered the maximum
likelihood (ML) path and it carries the hard decision provided
by the decoder. The update of the reliability values L through
f2 is performed on the basis of the Hagenauer rule (HR) [18]
and the Battail rule (BR) [19], [21]. Following [17], let Pa and
Pb be two paths to be merged and Mp and Mp′ be defined as

Mp = max(Ma,Mb) Mp′ = min(Ma,Mb). (9)

The metric difference between Pa and Pb is then defined as
∆p,p′ = Mp −Mp′ and is always positive. Then the updates
on Lci are performed as follows:

Lci =f2(Lai , L
b
i)

=

{
min

(
Lip′ ,∆p,p′

)
, if uai 6= ubi (HR)

min
(
Lip′ ,∆p,p′ + Lip

)
, if uai = ubi (BR).

(10)

Using a Dirac measure δ(uai , u
b
i), Eq. 10 can be written as

Lci =φ(Lp
′

i , L
p
i , u

a
i , u

b
i)

= min
(
Lip′ ,∆p,p′ + δ(uai , u

b
i · Lip

)
, (11)

with: δ(uai , u
b
i) =

{
1 , if uai = ubi
0 , if uai 6= ubi .

With Eqs. 6, 7 and 11, the MLM algorithm can be expressed
on the basis of paths and the merge operation. For each trellis
stage i, for the set of paths carrying ui = 0 and the set of paths
carrying ui = 1, the respective ML paths P 0,i

ML and P 1,i
ML are

found via a tree of merge operations. Note that this always
requires the use of BR for the update of the reliability values
L. Then P 0,i

ML and P 1,i
ML are merged together, which gives the

hard decision of the MLM algorithm for trellis step i, ui as
well as its reliability value Li via HR:

Li = min (∞, |M1 −M0|) . (12)

Note, that the left operand of the min-operation in Eq. 12 is
∞, since all reliability values are initialized to ∞. From the
hard decision ui and its reliability value Li, we can calculate
the output LLR for trellis step i:

Λk = (2 · uk − 1) · Lk. (13)

In [17] the commutativity and associativity of the merge
operation were proven which allows merging in an arbitrary
order. In particular, the merges can be rearranged so that
paths with the same ending state are merged first. The merge
operation for two paths Pa and Pb then yields the path metric

Mc = max (Ma,Mb)) (14)

= max
(
αs0k + γs0,s

′

k,k+1 + βs
′

k+1, α
s1
k + γs1,s

′

k,k+1 + βs
′

k+1

)
= max

(
αs0k + γs0,s

′

k,k+1, α
s1
k + γs1,s

′

k,k+1

)
+ βs

′

k+1 (15)

=αs
′

k+1 + βs
′

k+1, (16)

The reordering of merges leads to an implicit computation of
the forward state metrics, as can be seen from Eqs. 15 and 16.
Thus, the forward recursion can be performed through merges
via Eqs. 6, 7 and 11. This first phase of merges uses the sum of
forward state metrics and branch metrics as preliminary path
metrics, yielding one resulting path for each trellis state. In the
following, we will speak of this first phase as Add-Compare-
Select (ACS) phase. Note, however, that in this phase (and
different from Eq. 1), also updates of u and L are performed.
In the second phase Soft Output Unit phase (SOU phase), the
remaining paths are merged in a tree-like fashion after the
preliminary path metrics for each state have been summed
up with the corresponding backward state metric to compute
the ML path, the according hard decisions and soft outputs.
Here, the amount of merge tree layers solely depends on the
memory length ν of the underlying convolutional code. Thus,
for a memory length ν, the SOU merges require a binary tree
of 2ν+1 − 1 layers (see Figure 2). This is independent of the
radix order, since for each trellis state one path is output from
the ACS phase. In the case of R = 2, the ACS operation of

P0

P1

P2

P3

P4

P5

P6

P7

Merge

Merge

Merge

Merge

Merge

Merge

Merge Soft output &
Hard output

From ACS Layer 1 Layer 2 Layer 3

Figure 2: SOU phase example for a ν = 3.

the Local-SOVA merges for any state in each trellis step i two
paths which are guaranteed to carry a different hard decision,
allowing reliability updates solely using the HR. For a radix

order k, however, there are 2k paths to be merged for each
state in the radix-2k trellis. Then, it is no longer guaranteed
that paths intended to be merged carry different hard decisions.
It was also proposed in [17] to use an arrangement of path
merges in the ACS operation that minimizes the computational
complexity for R ≥ 4. In this ordering, which is illustrated

P0 = 400
∞,∞

P1 = 701
∞,∞

∆01 = 3 701
∞,3

(–, HR)

P2 = 310
∞,∞

P3 = 811
∞,∞

∆23 = 5 811
∞,5

(–, HR)

∆13 = 1 811
1,4

(HR, BR)

Figure 3: Radix-4 ACS merge operation example.

with an example for R = 4 in Fig. 3, the use of BR is
minimized, since through the path ordering, in the first layer
the BR update of the reliability value L for the second bit
can be omitted (i.e. min(∞,∞ + 3) = ∞ for the merging
of P0 and P1), while for the first bit a simplified HR can be
used (i.e. min(∞, 3) = 3 for the merging of P0 and P1). It
becomes obvious, however that the use of BR cannot entirely
be avoided by a mere reordering of merges.

IV. NEW COMPLEXITY REDUCTIONS

Consider the update of the reliability value for the first bit
in the second merge layer in Fig. 3:

LML
0 = min

|3− 8|︸ ︷︷ ︸
∆23=5

, |min (4, 7)−min (3, 8)|︸ ︷︷ ︸
∆13=1

+ |4− 7|︸ ︷︷ ︸
∆01=3

Here, BR needs to be used, since in the first merges P1 and
P3 were selected which carry the same hard decision for the
first bit. Therefore ∆13 alone does not give us information
about the reliability. By adding to it ∆01, we get the reliability
of the hard decision in relation to the ”challenging hard
decision” of path P0. This sum is then compared to the
reliability w.r.t. the challenging hard decision of P2, i.e. ∆23.
In other words, the BR allows to get a reliability w.r.t. the
challenging path from the other sub-tree at the cost of one
addition. This addition, however, lies in the critical path of the
ACS operation. Moreover, for large R, updates via nested BR
cannot be avoided, which further increases the critical path.

A. ACS Phase

In order to avoid a long critical path resulting from the
nesting of BR updates, we propose a modified ACS operation.
As outlined in the previous paragraph, finding the individual
reliability values LML

i for the hard decisions uML carried by
the ML path PML surmounts to finding the best challenging
path w.r.t. this bit, i.e. the best path which has a different
hard decision from the ML path for this bit. Therefore, it
is enough to find for each bit the best-0 path and the best-
1 path and selecting this path as preliminary reliability or
challenging metric value lML

i . The full reliability value can

then be generated by calculating LML
i = |MML− lML

i | in the
SOU phase. Consequently, the ACS operation uses a slightly
modified ACS-Path definition PACS = {M,u, l} where the
set of reliability values L is replaced with the set of best
challenging metrics l, which are calculated by

lML
i =

{
M best−0 , if uML

i = 1

M best−1 , if uML
i = 0,

(17)

where M best−0 and M best−1 are given by

M best−0 = max{Mp|ui = 0} (18)

M best−1 = max{Mp|ui = 1}. (19)

Eqs. 6 and 7 remain unchanged. Note, that Eqs. 6, 18 and 19
can not only be processed in parallel as opposed to the original
nested calculations, but also share a number of comparisons.
Thus, they can be obtained as a side-result of Eq. 6 with
minimal overhead (see Section V).

B. SOU Phase

First, the path metrics Ms′ have to be summed up with
the respective βs′ and, due to the changed ACS update rule
(Eq. 17), the reliability values have to be computed via Ls

′

i =
|Ms′ − ls

′

i |. As discussed in Section III, the merges of the
SOU phase are then processed in a binary tree. In contrast to
the ACS phase, however, the merges cannot be reordered to
avoid the use of BR since it is not known beforehand which
hard decisions are carried by the ACS paths. In [17], it was
therefore proposed to force the use of HR

Lci = min
(
Lip′ ,∆p,p′

)
. (20)

This resulted in a reduction of complutational complexity of
about 10% at the cost of a BER performance loss of 0.3dB
at BER 10−6. This degradation stems from the fact, that by
forcing the HR for merges of paths carrying the same hard
decision the real competing reliability is not recovered leading
on an over estimation of the reliability value. Therefore, we
propose a reliability update that replaces the application of the
BR by keeping the previous reliability value of the winning
path:

Lci =

min

(
Lip′ ,∆p,p′

)
, if uai 6= ubi (HR)

Lia , if uai = ubi and Ma > M b

Lib , if uai = ubi and M b > Ma

(21)

This simplification is intuitively motivated by the reasoning
that the paths arriving to the SOU phase are already the result
of the merging of 2k paths for a radix-k. Thus, the reliability
values resulting from the updates in the ACS phase already
provide close estimates and therefore only need to be updated,
if a merge with a contending path is performed in the SOU
phase. Note, however, that this simplified update also only
estimates the reliability value. Moreover, if applied to a tree
of merges, highly reliable contending paths originating from a
different bracket of the SOU merge tree might not get consid-
ered for the update of the reliability values. However, we can

explicitly consider them with a HR update. This is illustrated
in Fig. 4, where four paths are merged (corresponding, for
example to the first two layers in the SOU phase for an 8-
state code). With the explicit consideration of all contending

P0 = 1300
6,7

P1 = 811
3,2

∆01 = 5 1300
5,5

(BR∗, BR∗)

P2 = 1011
2,1

P3 = 1200
3,5

∆23 = 2 1200
2,2

(HR, HR)

∆03 = 1 1300
5,5

(BR∗, BR∗)
∆02 = 2

∆02 = 2

(HR, HR)

1300
5,5

1011
2,1

Explicitly consider P2: 1300
2,2

Figure 4: Merge tree for 4 paths. BR∗ corresponds to the
simplified update via Eq. 21.

paths (i.e. paths with different hard decision), we can define
the merge operation for k paths P0, . . . , Pk−1 into one output
path PC :

M c =max(M0, . . . ,Mk−1) (22)
uc =up, if M c = Mp (23)

Lc
i = min

(
Lpi , min
∀P j :uj

i 6=u
p
i

{∆jp}

)
(24)

Equations 22 and 23 directly correspond to Eqs. 6 and 7 for
nested merging of multiple paths. Note that the number of ∆jp

terms considered for the individual reliability updates can vary
depending on i and the carried hard decisions of the paths
arriving at the SOU phase. However, some ∆jp terms will
generally occur in more than one reliability update. In Fig. 3,
for example, ∆02 is used to update the reliability values for
both bits, since min(∆01 = 5,∆02 = 2) = 2.

C. Simulation results

This complexity reduction can be applied to the whole
merge tree or to sub-trees (i.e. a subset of layers in Fig. 2),
Figure 5 shows the fixed-point BER performance simulation
results for 8-state LTE Turbo codes with frame sizes K ∈
{128, 512, 1024} in comparison with the MLM. The number
of decoding iterations was fixed to 6, a windowed decoding
with a window size of 32 and a channel value quantization of
6 bits were used. Applying the simplifications on the whole
merge tree (L-SOVA I) leads to a penalty of about 0.2 dB at a
BER of 10−7 in comparison to the MLM. Using Eq. 11 for the
last merge (Layer 3 in Fig. 2) and performing a low complexity
merging of the first two layers (L-SOVA II), however, shows
a negligible performance penalty of < 0.05 dB.

V. PROPOSED ARCHITECTURES

A. ACSU

In comparison to the MLM ACSU, which only computes
the maximum state metric for each state, the Local-SOVA
ACSU additionally outputs the best contending metrics for
each hard decision. To achieve a short critical path, the ACSU

Figure 5: BER performance of the proposed low complexity
Local-SOVA decoding for different LTE-A Turbo codes.

for the MLM can be implemented by performing
∑j=R−1
j=0 j

comparisons and then selecting the maximum out of R = 2k

(i.e. radix-2k) inputs based on a table lookup [22]. This is
illustrated in Table I for the example of radix-4, where the
maximum selection can be performed based on six comparison
results. The li can be found based on the same comparison

max a− b a− c a− d b− c b− d c− d
a - - - ? ? ?
b + ? ? - - ?
c ? + ? + ? -
d ? ? + ? + +

Table I: Lookup table for maximum selection of four values.

results together with the carried hard decisions. Figure 6 shows
the resulting hardware architecture schematic for radix order
2k. Marked in blue are the lookup tables and multiplexers that
have to be added to for the Local-SOVA ACSU.

sgn(M0 −M1)

sgn(M0 −M2)

...

sgn(M0 −M2k−1)

sgn(M1 −M2)

...

sgn(M2k−2 −M2k−1)

max-
LUT

contender
LUT bit 0

contender
LUT bit 1

. . .

contender
LUT bit 2k − 1

sel.
max

sel.
l0

...

sel.
l2

k−1

M = M + γ

Figure 6: Schematic of the ACS unit.

B. SOU
The architecture of the SOU is illustrated in Fig. 7. It can be

separated into three functional blocks: The simplified merging

of the upper and lower sub-tree, the merge of the last tree layer
and the calculation of the extrinsic output including scaling
(with an ESF of 0.75 [6]). After the summation of MACS

s′ +βs′ ,

Upper
subtree
merges

Lower
subtree
merges

MUXesMACS + β

Calc
∆s

max
LUT

min∆
LUTs

li

MACS

u, max

Calc Li

Eq. 24

min∆
MUX

MUXes

MACS + β

Calc
∆s

max
LUT

min∆
LUTs

li

MACS

u, max

Calc Li

Eq. 24

min∆
MUX

Mu −M l

Last
layer
merge

ML
path

MUX

Eq. 11
or

Eq. 24

Extr.
scaling

Figure 7: Schematic of the SOU.

the simplified merging of the subtrees realizes in the first step
Eqs. 22 and 23 via table lookup and multiplexers (MUXes)
in the same way as the ACSU. In addition, the ACS path
metric MACS and the preliminary reliabilities of the li and
the ∆ values calculated for the maximum selection are kept
for the next step. In the second step, the contender reliability
values for the respective ML path for the upper and lower
subtrees are computed. This further reduces the complexity,
since it avoids calculating reliability values for the loosing
paths, which would then be discarded. Then, follows an update
of the reliabilities via Eq. 24, for which the minimum ∆
corresponding to a contender with a different hard decision
is chosen via lookup. In parallel, the difference of the path
metrics of the winning paths from the upper and lower subtrees
is already computed. In the last steps, the winning paths from
upper and lower subtrees are merged via Eq. 24 (L-SOVA I)
or Eq. 11 (L-SOVA II), and calculation and scaling of the
extrinsics are performed.

VI. IMPLEMENTATION RESULTS

We implemented the hardware architectures presented in
Section V in VHDL for radix orders 2, 4 and 8 for the LTE
Turbo code with a channel value quantization over 6 bits. The
designs were placed & routed alongside the MLM ACSU and
SOU with Synopsis IC Compiler for a 22 nm process under
worst case PVT (Process/Voltage/Temperature) constraints and
a target clock frequency of 833 MHz. For comparison with
the MLM, the respective ACSU and SOU were as well
implemented, placed & routed. The results are listed in Table
II, where the area complexity is given as cell area consumption
in [µm2]. For the radix-2 case, the area complexity of ACSU
and SOU is almost identical for the MLM and the Local-SOVA
which is in line with the complexity analysis of [17]. For the

MLM L-SOVA I L-SOVA II Area Saving
ACSU Cell area [µm2] [%]

Radix-2 826 870 -5.33
Radix-4 1572 1917 -21.95
Radix-8 4101 5245 -27.90

SOU Cell area [µm] LSOVA I LSOVA II

Radix-2 1718 1598 1680 6.98 2.21
Radix-4 4259 2127 2295 50.06 46.11
Radix-8 10548 2658 2904 74.80 72.47

Sum Cell area [µm]
Radix-2 2544 2468 2550 2.99 -0.24
Radix-4 5831 4043 4212 30.66 27.77
Radix-8 14649 7947 8149 45.75 44.37

Table II: Post place & route cell area comparison in 22nm
technology @ 833MHz target frequency.

higher radixes, there is a overhead of 21.95% for the radix-4
ACSU and an area overhead of 27.9% for the radix-8 ACSU on
the side of the Local-SOVA. This increase is attributed to the
increased complexity of the table lookup for the contenders.
On the other hand, an area reduction of 72 − 75% can be
observed for the radix-8 case of the SOU and for the radix-4
configuration of the SOU, the area complexity is still halved
in comparison to the respective MLM SOU. Comparing the
sum of ACSU and SOU, area savings of 27−31% and around
46% are achieved for the radix-4 and radix-8 case respectively.

VII. CONCLUSION

In this work, we proposed additional new complexity re-
ductions for decoding with the Local-SOVA algorithm for
radix orders ∈ {2, 4, 8}. The proposed simplifications result
in a marginal loss in BER performance of 0.05dB if Eq. 11
is used in the last merge layer of the SOU. The proposed
corresponding efficient hardware architectures demonstrated a
reduction of the area complexity of the soft output computation
by around 50% for the radix-4 case and up to 76% for the
radix-8 case in comparison with the respective max-Log-MAP
units. These area savings outweigh the area overhead in the
Local-SOVA ACSU of around 22% and 28% and thus lead
to an overall area saving of up to 46% in comparison with
the max-Log-MAP. In this work (as in [17]), we applied the
Local-SOVA algorithm to the decoding of Turbo codes. Here,
our results show it to be on par with the MLM, which is used
in SoA, while exhibiting a significantly lower computational
and implementation complexity. Moreover, the complexity
reductions become even more interesting for convolutional
codes with ≥ 8 states. There, the Local-SOVA is contending
with the SOVA, which is used for demodulation, decoding,
equalization, etc. and has been widely applied in a range of
communication and storage systems [23]. With a higher num-
ber of trellis states, the area savings through Eq. 21 become
more pronounced. Moreover, the absence of a traceback in the
Local-SOVA can lead to a reduced decoding latency compared
to the SOVA.

ACKNOWLEDGMENT

We gratefully acknowledge financial support by the EU
(project-ID: 760150-EPIC)

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding and decoding: Turbo-codes. In Proceedings of
ICC ’93 - IEEE Intern. Conf. on Commun., volume 2, pages 1064–1070
vol.2, May 1993.

[2] Third Generation Partnership Project. LTE; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP
TS 36.213 version 13.1.0 Release 13) , April 2016.

[3] C. Berrou and A. Glavieux. Near optimum error correcting coding and
decoding: turbo-codes. IEEE Trans. on Commun., 44(10):1261–1271,
Oct 1996.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate. IEEE Trans. on Inf. Theory,
IT-20:284–287, March 1974.

[5] P. Robertson, E. Villebrun, and P. Hoeher. A Comparison of Optimal and
Sub-Optimal MAP decoding Algorithms Operating in the Log-Domain.
In Proceedings of ICC ’95 - IEEE Intern. Conf. on Commun., pages
1009–1013, Seattle, Washington, USA, June 1995.

[6] J. Vogt and A. Finger. Improving the max-log-MAP turbo decoder.
Electronics Letters, 36(23):1937–1939, Nov 2000.

[7] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn. A 2.15GBit/s turbo code
decoder for LTE advanced base station applications. In Int. Symp. on
Turbo codes and iter. proc. (ISTC), pages 21–25, Aug 2012.

[8] R. Shrestha and R. P. Paily. High-Throughput Turbo Decoder With
Parallel Architecture for LTE Wireless Communication Standards. IEEE
TCAS I: Regular Papers, 61(9):2699–2710, Sep. 2014.

[9] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo. VLSI Implementation of Fully Parallel LTE Turbo Decoders.
IEEE Access, 4:323–346, 2016.

[10] S. Weithoffer, F. Pohl, and N. Wehn. On the applicability of trellis
compression to Turbo-Code decoder hardware architectures. In Int.
Symp. on Turbo codes and iter. proc. (ISTC), pages 61–65, Sep. 2016.

[11] M. May, T. Ilnseher, N. Wehn, and W. Raab. A 150Mbit/s 3GPP LTE
Turbo code decoder. In Design, Autom.and Test in Eu. Conf. (DATE),
pages 1420–1425, March 2010.

[12] S. Weithoffer, C. Abdel Nour, N. Wehn, C. Douillard, and C. Berrou.
25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s. In Int. Symp.
on Turbo codes and iter. proc. (ISTC), pages 1–6, Dec 2018.

[13] S. Weithoffer, O. Griebel, R. Klaimi, C. Abdel Nour, and N. Wehn.
Advanced hardware architectures for turbo code decoding beyond 100
Gb/s, accepted at WCNC 2020. preprint, October 2019.

[14] G. Fettweis and H. Meyr. Parallel Viterbi algorithm implementation:
breaking the ACS-bottleneck. IEEE Trans. on Commun., 37(8):785–
790, Aug 1989.

[15] EPIC Project. Enabling Practical Wireless Tb/s Communications with
Next Generation Channel Coding (EPIC), 2020. https://epic-h2020.eu/.

[16] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard.
Fully Pipelined Iteration Unrolled Decoders – The Road to Tb/s Turbo
Decoding. In ICASSP 2020 : 45th Int. Conference on Acoustics, Speech,
and Signal Processing, Barcelona, Spain, May 2020.

[17] V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard. Revisiting
the Max-Log-Map Algorithm With SOVA Update Rules: New Simpli-
fications for High-Radix SISO Decoders. IEEE Trans. on Commun.,
68(4):1991–2004, 2020.

[18] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision
outputs and its applications. In 1989 IEEE Global Telecomm. Conf. and
Exhibition ’Commun. Techn. for the 1990s and Beyond’, pages 1680–
1686 vol.3, Nov 1989.

[19] Gérard Battail. Pondération des symboles décodés par l’algorithme de
Viterbi. In Annales des telecommunications, volume 42, pages 31–38.
Springer, 1987.

[20] M. P. C. Fossorier, F. Burkert, Shu Lin, and J. Hagenauer. On
the equivalence between SOVA and max-log-MAP decodings. IEEE
Communications Letters, 2(5):137–139, 1998.

[21] Lang Lin and R. S. Cheng. Improvements in SOVA-based decoding for
turbo codes. In Proceedings of ICC’97 - Intern. Conf. on Commun.,
volume 3, pages 1473–1478 vol.3, June 1997.

[22] W. Byun and J. Kim. High-speed radix-4 Add-Compare-Select unit for
next generation communication systems. In 2013 Int. SoC Design Conf.
(ISOCC), pages 1–2, 2013.

[23] Q. Huang, Q. Xiao, L. Quan, Z. Wang, and S. Wang. Trimming
Soft-Input Soft-Output Viterbi Algorithms. IEEE Trans. on Commun.,
64(7):2952–2960, 2016.

