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Abstract5

This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected6

to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such7

a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system8

into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein9

transformation on the finite-dimensional system to remove the delay in the control. Using our abstract10

result, we can prove new results for the stabilization of parabolic systems with constant delay: the N -11

dimensional linear reaction-convection-diffusion equation with N > 1 and the Oseen system. We end the12

article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by13

proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.14
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1 Introduction23

Time delay phenomena appear in many applications, for instance in biology, mechanics, automatic control24

or engineering and are inevitable due to the time-lag between the measurements and their exploitation. For25

instance in control problems, one need to take into account the analysis time or the computation time. We26

aim at showing that, under quite general hypotheses, one can deduce the exponential stabilization with delay27

of a parabolic system from its exponential stabilization without delay. One of the first article devoted to the28

parabolic case is [23] with a backstepping method (see [13] for a similar method for the wave equation). We29

can also quote [12], [28], where the approach is to construct a feedback by a predictor approach. Several works30

have considered different extensions to this problem: the case of non constant delay (see, for instance, [9], [29])31
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or the case of multiple delay (see, for instance, [10]). Note that in the context of stability problems for partial1

differential equations with delay, some particular features can appear for hyperbolic systems: a small delay in2

the feedback mechanism can destabilize a system (see for instance [16, 15]) and a delay term can also improve3

the performance of a system (see for instance [1]). It is not known if these phenomena occur also for parabolic4

systems.5

This article is devoted to the feedback stabilization of the system6

z′ = Az +Bv + f, z(0) = z0, (1.1)

where A is the generator of an analytic semigroup (etA)t>0 on a Hilbert space H, where B : U → D(A∗)′ is a7

linear operator on a Hilbert space U and where f is a given source satisfying an exponential decay at infinity.8

The purpose of this source term in what follows is to handle nonlinearities (see Section 5).9

Our aim is to obtain a feedback control v(t) that depends on the values of z(s) for s 6 t − τ , where τ > 010

is a positive constant corresponding to a delay. With such a feedback control, our aim is to obtain exponential11

stabilization of (1.1) if we assume that it is the case without delay. A characterization of the exponential12

stabilization of (1.1) with rate σ > 0 in the case without delay is the well-known Fattorini-Hautus criterion (see13

[19], [20] and [5]):14

∀ε ∈ D(A∗), ∀λ ∈ C, Reλ > −σ A∗ε = λε and B∗ε = 0 =⇒ ε = 0. (UCσ)

In the case of a system governed by partial differential equations, this criterion corresponds generally to a15

Unique Continuation property (UC) and in many situations it holds true for any σ (see the examples given in16

this article). Here and in what follows, we denote by A∗ : D(A∗) → H and by B∗ : D(A∗) → U the adjoint17

operators of A and B. Note that we have identified H and U with their duals. This criterion is equivalent, in18

the case without delay, to the exponential stabilization of (1.1) with a rate larger than σ provided we assume19

the following hypotheses:20

The spectrum of A consists of isolated eigenvalues (λj) with finite algebraic multiplicity Nj
and there is no finite cluster point in {λ ∈ C : Reλ > −σ}, (Hyp1)

21

B ∈ L(U,H−γ) for some γ ∈ [0, 1). (Hyp2)

Let ρ(A) be the resolvent set of A. The spaces Hα are defined as follows: we fix µ0 ∈ ρ(A), then22

Hα :=

{
D((µ0 −A)α) if α > 0
D((µ0 −A∗)−α)′ if α < 0

and H∗α :=

{
D((µ0 −A∗)α) if α > 0
D((µ0 −A)−α)′ if α < 0.

(1.2)

We recall that if α > 0, a norm for H−α is

‖f‖H−α := ‖(µ0 −A)−αf‖H,

see, for instance, [37, Proposition 2.10.2]. To deal with the source f , we also assume the following hypothesis23

Hα = [H,D(A)]α (α ∈ [0, 1]), (Hyp3)

where [·, ·]α denotes the complex interpolation method (see, for instance, [36, Section 1.9, pp.55-61]). Using24

[36, p.143, Remarks 3 and 4], we have that Hα = (H,D(A))α,2 for α ∈ [0, 1], where (·, ·)α,p denotes the real25

interpolation method (see, for instance, [36, Section 1.3.2, p.24]).26

We assume that27

fσ : t 7→ eσtf(t) ∈ L2(0,∞;H−γ′) γ′ < 1/2. (1.3)

We say that f ∈ L2
σ(0,∞;H−γ′) if fσ ∈ L2(0,∞;H−γ′) and we write

‖f‖L2
σ(0,∞;H−γ′ )

= ‖fσ‖L2(0,∞;H−γ′ )
.
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The same definition can be extended to spaces of the kind Lpσ(0,∞;X), C0
σ([0,∞);X), Hm

σ (0,∞;X), with X a1

Banach space.2

Note that a sufficient condition for (Hyp1) is that A has compact resolvent. For all λj eigenvalue of A, we
define its geometric multiplicity

`j := dim ker(A− λj Id) ∈ N∗.

Here and after, N∗ is the set of the positive integers.3

We also define the maximum of the geometric multiplicities of the unstable modes:4

N+ := max{`i : Reλi > −σ}. (1.4)

Finally, let us define the subset5

D∞ := {(t, s) ∈ R2 : t ∈ (0,∞), s ∈ (0, t)}. (1.5)

Our main result is the following theorem:6

Theorem 1.1. Let us consider σ > 0 and let us assume (Hyp1), (Hyp2), (Hyp3) and (UCσ). Then there exist7

K ∈ L∞loc(D∞;L(H)), ζk ∈ D(A∗), vk ∈ B∗ (D(A∗)), k = 1, . . . , N+, such that if8

v(t) = 1[τ,+∞)(t)

N+∑
k=1

(
z(t− τ) +

∫ t−τ

0

K(t− τ, s)z(s) ds, ζk
)

H
vk, (1.6)

then for any z0 ∈ H, f satisfying (1.3), the solution z of (1.1) satisfies9

‖z(t)‖H 6 Ce−σt
(
‖z0‖H + ‖f‖L2

σ(0,∞;H−γ′ )

)
(t > 0). (1.7)

Assume moreover that γ = 0, γ′ = 0 and that z0 ∈ H1/2. Then,

z ∈ L2
σ(0,∞;H1) ∩ C0

σ([0,∞);H1/2) ∩H1
σ(0,∞;H),

and10

‖z‖L2
σ(0,∞;H1)∩C0

σ([0,∞);H1/2)∩H1
σ(0,∞;H) 6 C

(
‖z0‖H1/2

+ ‖f‖L2
σ(0,∞;H)

)
. (1.8)

Here and in all what follows, 1O is the characteristic function of the set O. In the above statement and11

in the whole paper, we use C as a generic positive constant that does not depend on the other terms of the12

inequality. The value of the constant C may change from one appearance to another.13

Remark 1.2. Note that in the statement of Theorem 1.1, the kernel K can be obtained as the solution of a14

Voltera’s type integral equation involving A and B, see Lemma 2.2.15

The above result shows that we can stabilize a general class of linear parabolic systems with a finite number16

of controls and with a constant delay: the feedback control v(t) at time t, given by (1.6), only depends on17

values of the state z(s) for s 6 t− τ . This result can be seen as a generalization of several recent results on the18

stabilization of parabolic systems with delay control, in particular [14] where the authors constructed a feedback19

control for finite dimensional linear systems, and [31] where the authors obtained a stabilizing feedback control20

of a one-dimensional reaction-diffusion equation with a boundary control subjected to a constant delay. Let us21

mention some ideas of their method that we adapt to prove our result: using that their operator is self-adjoint of22

compact resolvent they split the system into an unstable finite-dimensional part and a stable infinite-dimensional23

part. They are thus led to stabilize the finite-dimensional unstable system and to do this with a delay, they24

use the Artstein transformation, see [2], and obtain an autonomous control system without delay satisfying the25

Kalman condition. Finally, by using an appropriate Lyapunov function, they prove that the feedback control26

designed in the finite-dimensional part actually stabilizes the whole system.27

We can mention several articles in this direction: in [26], the authors consider the stabilization of a struc-1

turally damped Euler-Bernoulli beam. The corresponding system is parabolic but the main operator is no more2
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self-adjoint. Then [25] generalizes the result of [31] in the case where the main operator is a Riesz spectral3

operator with simple eigenvalues. The work in [27] extends the result of [31] to the case where the control4

contains some disturbances and where the delay can depend on time.5

Here our aim is to extend the result of [31] for a large class of parabolic systems, and in particular with the6

possibility to consider partial differential equations written in a spatial domain with dimension larger than one.7

We also precise the number of controls N+ needed to stabilize the system by using the approach developed in8

[4] in the case of the Navier-Stokes system or in [5], for general linear and nonlinear parabolic systems. We9

present two important examples, that is the reaction-diffusion equation and the Oseen system and we end this10

paper to show that within this framework, we can also handle some nonlinear parabolic systems such as the11

Navier-Stokes system. Other results on stabilization by finite dimensional controls could be mentioned here, for12

example [3, 6, 7, 8, 24, 33], etc.13

The present paper is organized as follows. In Section 2, the proof of Theorem 1.1 is given. As in [31], it relies14

on the decomposition of the system (1.1) into two parts: an unstable finite-dimensional part and an infinite-15

dimensional part. This decomposition is possible thanks to (Hyp1) and [22, Theorem 6.17, p.178]. Due to the16

presence of a constant delay, an equivalent autonomous control system is considered for the finite-dimensional17

part by means of the Artstein transformation. This system is exponentially stabilizable by using (UCσ). Using18

the inverse of the Artstein transform, a stabilizing feedback control is designed in the finite-dimensional space19

that stabilizes exponentially the finite-dimensional unstable system (with delay control). Finally, we prove that20

the designed feedback stabilizes exponentially the complete system. Thereafter, we illustrate our results by21

some precise examples: the case of the feedback stabilization of the N -dimensional linear convection-diffusion22

equation with N > 1 with delay boundary control in Section 3, the case of the feedback stabilization of the23

Oseen system with delayed distributed control in Section 4 and finally, a local feedback distributed stabilization24

of the Navier-Stokes system around a stationary state in Section 5.25

2 Proof of Theorem 1.126

We consider below a decomposition that is already detailed and used in several previous articles (see, for instance,27

[34], [4], [5]). We recall it for sake of completeness.28

Let us consider σ > 0. We first decompose the spectrum of A into the “unstable” modes and the “stable”29

modes:30

Σ+ := {λj : Reλj > −σ}, Σ− := {λj : Reλj < −σ}. (2.1)

Using that (etA)t>0 is an analytic semigroup (see [11, Theorem 2.11, p.112]) and (Hyp1), we see that Σ+ is of31

finite cardinal.32

Thus, we can introduce the projection operator (see [22, Thm. 6.17, p.178]) defined by33

P+ :=
1

2πı

∫
Γ+

(λ−A)−1 dλ, (2.2)

where ı is the imaginary unit and Γ+ is a contour enclosing Σ+ but no other point of the spectrum of A. We
can define

H+ := P+H, H− := (Id−P+)H.

From [22, Thm. 6.17, p.178], we have H+ ⊕H− = H and if we set

A+ := A|H+
: H+ → H+, A− := A|H− : D(A) ∩H− → H−,

then the spectrum of A+ (resp. A−) is exactly Σ+ (resp. Σ−). By using the analyticity of
(
eAt
)
t>0

, (Hyp1)34

and (2.1), we deduce the existence of σ− > σ such that35 ∥∥eA−t∥∥L(H−)
6 Ce−σ−t,

∥∥(λ0 −A)γeA−t
∥∥
L(H−)

6 C
1

tγ
e−σ−t (2.3)

(see, for instance, [30, Theorem 6.13, p.74] for the second relation.)1
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We can proceed similarly for A∗: we write2

P ∗+ :=
1

2πı

∫
Γ+

(λ−A∗)−1 dλ, (2.4)

H∗+ := P ∗+H, H∗− := (Id−P ∗+)H,

A∗+ := A|H∗+ : H∗+ → H∗+, A∗− := A|H∗− : D(A∗) ∩H∗− → H∗−.

Note that P ∗+ is the adjoint of P+. In particular, we see that if z ∈ H− and ζ ∈ H∗+, then3

(z, ζ)H = ((Id−P+)z, ζ)H =
(
z, (Id−P ∗+)ζ

)
H = 0. (2.5)

We also define
U+ := B∗H∗+, U− := B∗

(
D(A∗) ∩H∗−

)
,

and4

p+ : U→ U+, p− : U→ U−, i+ : U+ → U, i− : U− → U, (2.6)

the orthogonal projections and the inclusion maps. Note that we have the following relations for the above5

maps:6

i+ = p∗+, i− = p∗−. (2.7)

As explained in [4] (see also [34] and [5]), we can extend P+ and (I − P+) as bounded operators

P+ ∈ L(H−1,H+), (Id−P+) ∈ L(H−1,
[
D(A∗) ∩H∗−

]′
).

We can thus define7

B+ := P+Bi+ ∈ L(U+,H+), B− := (Id−P+)Bi− ∈ L(U−,
[
D(A∗) ∩H∗−

]′
). (2.8)

It is proved in [4] (see also [34] and [5]) that

P+B = B+p+, (Id−P+)B = B−p−.

From the above relation, taking the projections P+ and Id−P+ of (1.1), we see that it splits into the two8

equations (see [4, 5, 34]).9

z′+ = A+z+ +B+p+v + P+f, z+(0) = P+z
0, (2.9)

10

z′− = A−z− +B−p−v + (Id−P+)f, z−(0) = (Id−P+)z0. (2.10)

In order to study the stabilization of the finite-dimensional system (2.9), we use the Artstein transformation
(see [2]) that allows us to pass from (2.9) in the case of a delay input to an autonomous system. More precisely,
we consider

w(t) := z+(t) +

∫ t+τ

t

e(t−s)A+B+p+v(s) ds.

Then in what follows, we study the stabilization of the autonomous system satisfied by w (Lemma 2.1). Since11

the corresponding feedback is expressed with w, we also consider the inverse of the Artstein transformation and12

more precisely show the existence of a kernel K to write w in terms of z+ (Lemma 2.2).13

Lemma 2.1. Assume (UCσ) for σ > 0. Then, there exist C > 0 and G ∈ L(H+,U+), with rankG 6 N+ where14

N+ is defined by (1.4), such that for any f ∈ L2
σ(0,∞;H−γ′) and w0 ∈ H+, the solution of15 {

w′ = A+w + e−τA+B+p+Gw + P+f,
w(0) = w0,

(2.11)

satisfies16

‖w‖H1
σ(0,∞;H+) 6 C

(
‖w0‖H+

+ ‖P+f‖L2
σ(0,∞;H+)

)
. (2.12)
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Note that in the above statement, we have that p+G = G and we could thus simplify the first equation of1

(2.11). We keep p+ so that we can consider G as an operator in L(H+,U).2

Proof of Lemma 2.1. First we notice that (A+, e
−τA+B+p+) satisfies the Fattorini-Hautus test: assume that

ε ∈ H∗+ satisfies

A∗+ε = λjε, B∗+e
−τA∗+ε = 0.

Then we deduce
A∗ε = λjε, B∗+e

−τA∗+ε = e−τλj i∗+B
∗P ∗+ε = e−τλjB∗ε = 0.

Note that here we have used (2.7) and the fact that B∗P ∗+ε = B∗ε ∈ U+.3

Thus from (UCσ), we deduce ε = 0. We can thus use the standard result of Fattorini or Hautus (see also [5,
Theorem 1.6]) for a finite-dimensional system: for any σ? > σ, there exists G ∈ L(H+,U+), with rankG 6 N+

such that the operator
A? = A+ + e−τA+B+p+G

satisfies ∥∥eA?t∥∥L(H+)
6 Ce−σ?t (t > 0).

We recall that since the system is finite-dimensional, we can take σ? arbitrarily large by using the classical4

pole-assignment theorem (see, for instance, [11, Theorem 2.4, p.21]).5

In particular, A? + σ IdH+
is of negative type and is the infinitesimal generator of an analytic semigroup in6

H+ (with domain H+). Thus considering w̃(t) = eσtw(t) with w solution of (2.11) and applying [11, Theorem7

3.1, p.143], we deduce (2.12).8

We recall that D∞ is defined by (1.5). The following result concerns a Voltera’s type integral equation. The9

methods to solve such an equation are quite classical (see, for instance, [38, Chapter 4]). However since here10

the limits of the integral are non standard, we give below the short proof of this result. We recall that p+ and11

B+ are defined by (2.6) and (2.8).12

Lemma 2.2. Assume G ∈ L(H+,U+).13

There exists K ∈ L∞loc(D∞;L(H+)) such that

K(t, s) = e(t−s−τ)A+B+p+G1(max{t−τ,0},t)(s)

+

∫ t

max{t−τ,s}
e(t−ξ−τ)A+B+p+GK(ξ, s) dξ (t > 0, s ∈ (0, t)). (2.13)

Proof. The proof relies on a fixed point argument. We set

K0(t) := e(t−τ)A+B+p+G, K0 ∈ L∞(0, τ ;L(H+)),

so that (2.13) writes

K(t, s) = K0(t− s)1(max{t−τ,0},t)(s) +

∫ t

max{t−τ,s}
K0(t− ξ)K(ξ, s) dξ.

Let T > 0, and let us define

DT = {(t, s) ∈ R2 | t ∈ (0, T ), s ∈ (0, t)},

and
Φ : L∞(DT ;L(H+))→ L∞(DT ;L(H+)),

(ΦK)(t, s) =

∫ t

max{t−τ,s}
K0(t− ξ)K(ξ, s) dξ, ((t, s) ∈ DT ).
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The mapping Φ is well-defined, and is a linear and bounded operator of L∞(DT ;L(H+)). Moreover,

‖(ΦK)(t, s)‖L(H+) 6 t ‖K0‖L∞(0,τ ;L(H+)) ‖K‖L∞(DT ;L(H+)) .

This yields ∥∥(Φ2K)(t, s)
∥∥
L(H+)

=

∥∥∥∥∥
∫ t

max{t−τ,s}
K0(t− ξ)ΦK(ξ, s) dξ

∥∥∥∥∥
L(H+)

6 ‖K0‖L∞(0,τ ;L(H+))

∫ t

max{t−τ,s}
‖ΦK(ξ, s)‖L(H+)

6 ‖K0‖2L∞(0,τ ;L(H+)) ‖K‖L∞(DT ;L(H+))

∫ t

max{t−τ,s}
ξdξ

6
t2

2
‖K0‖2L∞(0,τ ;L(H+)) ‖K‖L∞(DT ;L(H+)) ,

and by induction

‖(ΦnK)(t, s)‖L(H+) 6
tn

n!
‖K0‖nL∞(0,τ ;L(H+)) ‖K‖L∞(DT ;L(H+)) (n ∈ N∗).

In particular, for n large enough, Φn is a strict contraction and consequently if we define Φ̃ by

(Φ̃K)(t, s) := (ΦK)(t, s) +K0(t− s)1(max{t−τ,0},t)(s)

then Φ̃n is also a strict contraction. This implies that Φ̃ admits a unique fixed point, which is a solution of1

(2.13). This implication is classical but we recall its proof for sake of completeness: by the Banach fixed-point2

theorem, Φ̃n admits a unique fixed point K. In particular Φ̃n+1(K) = Φ̃(K), and we deduce that Φ̃(K) is a3

fixed point of Φ̃n. Therefore Φ̃(K) = K. The uniqueness is obtained by noticing that a fixed point of Φ̃ is also4

a fixed point of Φ̃n.5

We are now in a position to prove the main result6

Proof of Theorem 1.1. We consider G and K(t, s) obtained in Lemma 2.1 and in Lemma 2.2, and we set7

v(t) = 1[τ,+∞)(t)G

[
z+(t− τ) +

∫ t−τ

0

K(t− τ, s)z+(s) ds

]
. (2.14)

Since rankG 6 N+, we can write G as

G(φ) =

N+∑
k=1

ck (φ) vk, (φ ∈ H+)

with ck ∈ L(H+,C) and vk ∈ U+, k = 1, . . . , N+.8

From (2.5), if ζ ∈ H∗+ then
∀φ ∈ H+, (φ, ζ)H = 0 =⇒ ζ = 0.

Combining this fact with dimH∗+ = dimL(H+,C), we deduce that there exists a unique ζk ∈ H∗+ such that for
all φ ∈ H+, ck (φ) = (φ, ζk)H. We can thus write G as

G(φ) =

N+∑
k=1

(φ, ζk)H vk, (φ ∈ H+).

The interest of taking ζk ∈ H∗+ is that the above formula for G can be applied to φ ∈ H and extend G as a9

linear bounded operator in H satisfying G = 0 in H− (see (2.5)). Extending also the family K by K(t, s) = 010

in H−, we see that (2.14) can be written as (1.6).11
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Let us define1

w(t) := z+(t) +

∫ t

0

K(t, s)z+(s) ds, (2.15)

so that (2.9) can be written2 {
z′+(t) = A+z+(t) +B+p+1[τ,+∞)(t)Gw(t− τ) + P+f(t) t > 0,

z+(0) = P+z
0.

(2.16)

Then we use (2.13), (2.15) and the Fubini theorem to perform the following computation for t > 0:∫ t+τ

t

e(t−s)A+B+p+Gw(s− τ)1[τ,+∞)(s) ds =

∫ t

max{t−τ,0}
e(t−s−τ)A+B+p+Gw(s) ds

=

∫ t

max{t−τ,0}
e(t−s−τ)A+B+p+G

[
z+(s) +

∫ s

0

K(s, ξ)z+(ξ) dξ

]
ds

=

∫ t

0

[
1(max{t−τ,0},t)(s)e

(t−s−τ)A+B+p+G+

∫ t

max{t−τ,s}
e(t−ξ−τ)A+B+p+GK(ξ, s) dξ

]
z+(s) ds

=

∫ t

0

K(t, s)z+(s) ds = w(t)− z+(t). (2.17)

Consequently,3

w(t) = z+(t) +

∫ t+τ

t

e(t−s)A+B+p+Gw(s− τ)1[τ,+∞)(s) ds. (2.18)

From (2.16), we deduce that w is solution of (2.11) with w0 = z+(0). Thus w satisfies (2.12) and from (2.18),4

‖z+‖H1
σ(0,∞;H+) 6 C

(
‖P+z

0‖H+
+ ‖P+f‖L2

σ(0,∞;H+)

)
. (2.19)

In particular, using the Sobolev embedding H1(0,∞) ↪→ L∞(0,∞), we deduce5

‖z+(t)‖H+ 6 Ce−σt
(
‖P+z

0‖H+ + ‖P+f‖L2
σ(0,∞;H+)

)
6 Ce−σt

(
‖z0‖H + ‖f‖L2

σ(0,∞;H−γ′ )

)
. (2.20)

Since H+ ⊂ H1, we have

H1
σ(0,∞;H+) ⊂ L2

σ(0,∞;H1) ∩ C0
σ([0,∞);H1/2) ∩H1

σ(0,∞;H)

and (2.20) yields in particular that if z0 ∈ H1/2 and if f ∈ L2
σ(0,∞;H), then6

‖z+‖L2
σ(0,∞;H1)∩C0

σ([0,∞);H1/2)∩H1
σ(0,∞;H) 6 C

(
‖z0‖H1/2

+ ‖f‖L2
σ(0,∞;H)

)
. (2.21)

Then, we can consider the solution of (2.10): for t > τ ,

z−(t) = eA−t(Id−P+)z0 +

∫ t

τ

(λ0 −A)γeA−(t−s)(λ0 −A)−γB−p−Gw(s− τ) ds

+

∫ t

0

eA−(t−s)(Id−P+)f(s) ds. (2.22)

Using (2.3) and (2.12), we deduce that

‖z−(t)‖H 6 Ce−σ−t
∥∥z0
∥∥
H + Ce−σt

∫ t

τ

1

(t− s)γ
e−(σ−−σ)(t−s) ds

(
‖P+z

0‖H+ + ‖P+f‖L2
σ(0,∞;H+)

)
+ Ce−σt

∫ t

0

1

(t− s)γ′
e−(σ−−σ)(t−s) ‖eσsf(s)‖H−γ′ ds.

8



Using that σ− > σ, γ < 1 and γ′ < 1/2, we deduce from the above estimate that

‖z−(t)‖H− 6 Ce−σt
(
‖z0‖H + ‖f‖L2

σ(0,∞;H−γ′ )

)
(t > 0).

Combining this with (2.20), we deduce (1.7).1

Let us prove now (1.8). If f ∈ L2
σ(0,∞;H), B ∈ L(U,H) and if z0 ∈ H1/2, then the first part remains2

unchanged, and we have (2.21) and3

‖v‖L2
σ(0,∞;U) 6 C

(
‖z0‖H+

+ ‖f‖L2
σ(0,∞;H+)

)
. (2.23)

Consequently,4

B−p−v + (Id−P+)f ∈ L2
σ(0,∞;H−). (2.24)

Moreover since P+z
0 ∈ H+ ⊂ H1/2,

z−(0) = z0 − P+z
0 ∈ H1/2 ∩H−.

Using that A− is the infinitesimal generator of an analytic semigroup of type smaller than −σ (see, for instance
[11, Proposition 2.9, p.120]), then

z− ∈ L2
σ(0,∞;H1) ∩ C0

σ([0,∞);H1/2) ∩H1
σ(0,∞;H),

and from (2.23)

‖z−‖L2
σ(0,∞;H1)∩C0

σ([0,∞);H1/2)∩H1
σ(0,∞;H) 6 C

(
‖z0 − P+z

0‖H1/2
+ ‖B−p−v‖L2

σ(0,∞;H) + ‖(Id−P+)f‖L2
σ(0,∞;H)

)
6 C

(
‖z0‖H1/2

+ ‖f‖L2
σ(0,∞;H)

)
.

Combining this with (2.21), we deduce (1.8).5

3 Feedback boundary stabilization of the reaction-convection-diffusion6

equations7

Let Ω ⊂ RN (N > 1) be a bounded domain of class C1,1. In this section, we apply Theorem 1.1 for the8

stabilization of the reaction-convection-diffusion equation. Let us consider Γ a non-empty open subset of ∂Ω9

and the control problem:10 
∂tz −∆z − b · ∇z − cz = 0 in (0,∞)× Ω,

z = v on (0,∞)× Γ,
z = 0 on (0,∞)× (∂Ω \ Γ),

z(0, ·) = z0 in Ω,

(3.1)

where c, b,div b ∈ L∞(Ω). In order to write (3.1) under the form (1.1), we introduce the following functional
setting:

H = L2(Ω), U = L2(Γ),

Az = ∆z + b · ∇z + cz, D(A) = H2(Ω) ∩H1
0 (Ω).

From standard results on this operator A (see for example [17, Theorem 5, p.305] and [11, Theorem 6.1,
p.170]), we see that (Hyp1) and (Hyp3) hold true. To define the control operator B, we use a standard
method (see, for instance [37, pp.341-343] or [32]): we first fix λ0 ∈ ρ(A) and we consider the lifting operator
D0 ∈ L(L2(∂Ω);L2(Ω)) such that for any v ∈ L2(∂Ω), w = D0v is the unique solution of the following system{

λ0w −∆w − b · ∇w − cw = 0 in Ω,
w = v on ∂Ω.

9



Then, we set
B = (λ0 −A)D0 : U −→ (D(A∗))′,

where we have extended the operator A as an operator from L2(Ω) into (D(A∗))′ and where we see U as a closed1

subspace of L2(∂Ω) (by extending by zero in ∂Ω \ Γ any v ∈ U). Using standard results on elliptic equations,2

we have that B satisfies (Hyp2) for any γ > 3/4.3

Let us recall how we can see that with A and B defined as above (3.1) writes as (1.1). We set z̃ = z − w,
with w = D0v. Then z̃ satisfies the system

∂tz̃ −∆z̃ − b · ∇z̃ − cz̃ = −∂tw + λ0w in (0,∞)× Ω,
z̃ = 0 on (0,∞)× ∂Ω,

z̃(0, ·) = z̃0 := z0 − w(0, ·) in Ω.

Using the Duhamel formula, we have

z̃(t) = etAz̃0 +

∫ t

0

e(t−s)A(−∂tw(s) + λ0w(s)) ds.

By integrating by parts, we obtain

z(t) = etAz0 +

∫ t

0

e(t−s)A(λ0 −A)w(s) ds,

that is {
z′ = Az + (λ0 −A)D0v,

z(0) = z0.

To apply Theorem 1.1, we only need to check (UCσ). We recall that

D(A∗) = H2(Ω) ∩H1
0 (Ω), A∗ε = ∆ε− b · ∇ε+ (c− div b)ε,

(see, for instance, [37, p.345]). Moreover, by classical results (see [37, Proposition 10.6.7]), we see that

D∗0 := − ∂

∂ν
(λ0 −A∗)−1,

and thus

B∗ε := − ∂ε
∂ν |Γ

.

Thus if ε satisfies A∗ε = λε and B∗ε = 0, then
λε−∆ε+ b · ∇ε− (c− div b)ε = 0 in Ω,

ε = 0 on ∂Ω,
∂ε

∂ν
= 0 on Γ.

From standard results on the unique continuation of the Laplace operator (see for instance [21, Theorem 5.3.1,4

p.125]), we deduce that ε = 0. Thus (UCσ) holds for any σ and we deduce the following result by applying5

Theorem 1.1:6

Theorem 3.1. Assume σ > 0 and let us define N+ by (1.4). Then there exist K ∈ L∞loc(D∞;L(L2(Ω))),7

ζk ∈ H2(Ω) ∩H1
0 (Ω), vk ∈ H1/2(Γ), k = 1, . . . , N+, such that the solution z of (3.1) with8

v(t) = 1[τ,+∞)(t)

N+∑
k=1

(∫
Ω

[
z(t− τ) +

∫ t−τ

0

K(t− τ, s)z(s) ds
]
ζk dx

)
vk, (3.2)

and for z0 ∈ L2(Ω) satisfies9

‖z(t)‖L2(Ω) 6 Ce−σt‖z0‖L2(Ω). (3.3)
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4 Feedback distributed stabilization of the Oseen system1

Let Ω ⊂ R3 be a bounded domain of class C1,1. In this section, we apply Theorem 1.1 to the Oseen system:2 
∂tz + (wS · ∇)z + (z · ∇)wS − ν∆z +∇q = 1Ov in (0,∞)× Ω,

∇ · z = 0 in (0,∞)× Ω,
z = 0 on (0,∞)× ∂Ω,

z(0, ·) = z0 in Ω,

(4.1)

where wS ∈ [H2(Ω)]3 is a fixed (real) velocity and v is the control that acts on the nonempty open subset3

O ⊂ Ω. We could also consider the boundary stabilization of the Oseen system by using the same method as in4

the above section but with some adaptations due the incompressibility condition and due to the pressure (see5

[4] for more details).6

Let us give the functional setting:

H = {z ∈ [L2(Ω)]3 : ∇ · z = 0 in Ω, z · n = 0 on ∂Ω}, U = [L2(O)]3.

We denote by P the orthogonal projection P : [L2(Ω)]3 → H and we define the Oseen operator:

D(A) = [H2(Ω) ∩H1
0 (Ω)]3 ∩H, Az = P

(
ν∆z − (wS · ∇)z − (z · ∇)wS

)
.

We recall (see, for instance [4, Theorem 20]) that the operator A is the infinitesimal generator of an analytic
semigroup on H and has a compact resolvent. Moreover,

D(A∗) = [H2(Ω) ∩H1
0 (Ω)]3 ∩H, A∗ε = P

(
ν∆ε+ (wS · ∇)ε− (∇wS)∗ε

)
.

We also define the control operator B ∈ L(U,H) by

Bv = P (1Ov) ,

and we can check that
B∗ε = ε|O.

In particular, we see that (Hyp1), (Hyp2) and (Hyp3) hold true (see [11, Theorem 6.1, p.170] for (Hyp3)).7

If ε satisfies A∗ε = λε and B∗ε = 0, then
λε− ν∆ε− (wS · ∇)ε+ (∇wS)∗ε+∇π = 0 in Ω,

∇ · ε = 0 in Ω,
ε = 0 on ∂Ω,
ε ≡ 0 in O.

Then using [18], we deduce that ε = 0. Thus (UCσ) holds for any σ and we deduce the following result by8

applying Theorem 1.1:9

Theorem 4.1. Assume σ > 0 and let us define N+ by (1.4). Then there exist K ∈ L∞loc(D∞;L(H)), ζk ∈ D(A∗),10

vk ∈ [L2(O)]3, k = 1, . . . , N+, such that the solution z of (4.1) with11

v(t) = 1[τ,+∞)(t)

N+∑
k=1

(∫
Ω

[
z(t− τ) +

∫ t−τ

0

K(t− τ, s)z(s) ds
]
ζk dx

)
vk, (4.2)

and for z0 ∈ H satisfies12

‖z(t)‖[L2(Ω)]3 6 Ce−σt‖z0‖[L2(Ω)]3 . (4.3)
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Let us define1

V = [H1
0 (Ω)]3 ∩H, (4.4)

then we have that V = H1/2 (see again [4, Theorem 20]). Thus applying Theorem 1.1, we have also the following2

result on3 
∂tz + (wS · ∇)z + (z · ∇)wS − ν∆z +∇q = 1Ov + f in (0,∞)× Ω,

∇ · z = 0 in (0,∞)× Ω,
z = 0 on (0,∞)× ∂Ω,

z(0, ·) = z0 in Ω.

(4.5)

Theorem 4.2. Assume σ > 0 and let us consider v given by (4.2). Then for any z0 ∈ V and for any
f ∈ L2

σ(0,∞;H) the solution of (4.5) satisfies

z ∈ L2
σ(0,∞; [H2(Ω)]3) ∩ C0

σ([0,∞); [H1(Ω)]3) ∩H1
σ(0,∞; [L2(Ω)]3),

and4

‖z‖L2
σ(0,∞;[H2(Ω)]3)∩C0

σ([0,∞);[H1(Ω)]3)∩H1
σ(0,∞;[L2(Ω)]3) 6 C

(
‖z0‖[H1(Ω)]3 + ‖f‖L2

σ(0,∞;[L2(Ω)]3)

)
. (4.6)

5 Local feedback distributed stabilization of the Navier-Stokes sys-5

tem6

We use the same notation as in the previous section. We consider the stabilization of the Navier-Stokes system7

with internal control:8 
∂tz̃ + (z̃ · ∇)z̃ − ν∆z̃ +∇q̃ = 1Ov + fS in (0,∞)× Ω,

∇ · z̃ = 0 in (0,∞)× Ω,

z̃ = bS on (0,∞)× ∂Ω,
z̃(0, ·) = z̃0 in Ω,

(5.1)

around the stationary state9 
(wS · ∇)wS − ν∆wS +∇rS = fS in Ω,

∇ · wS = 0 in Ω,

wS = bS on ∂Ω.

(5.2)

We assume that (wS , rS) is a solution of (5.2) such that wS ∈ [H2(Ω)]3 as in the previous section. The functions10

fS ∈ [L2(Ω)]3 and bS ∈ [W 3/2(∂Ω)]3 are independent of time.11

We define
z = z̃ − wS , q = q̃ − rS , z0 = z̃0 − wS ,

so that12 
∂tz + (wS · ∇)z + (z · ∇)wS − ν∆z +∇q = 1Ov − (z · ∇)z in (0,∞)× Ω,

∇ · z = 0 in (0,∞)× Ω,
z = 0 on (0,∞)× ∂Ω,

z(0, ·) = z0 in Ω.

(5.3)

Then we consider the following mapping

Z : L2
σ(0,∞; [L2(Ω)]3)→ L2

σ(0,∞; [L2(Ω)]3), f 7→ −(z · ∇)z,

where z is the solution of (4.5) given in Theorem 4.2, associated with z0 ∈ V and f ∈ L2
σ(0,∞;H). In particular,13

the control v is given by (4.2). We notice that if f is a fixed point of Z, then the corresponding solution z of14

(4.5) given in Theorem 4.2 satisfies (5.3) since f = −(z · ∇)z.15

12



Then by standard Sobolev embeddings, we find1

‖z1 · ∇z2‖L2
σ(0,∞;[L2(Ω)]3) 6 C‖z1‖C0

σ([0,∞);[H1(Ω)]3)‖z2‖L2
σ(0,∞;[H2(Ω)]3). (5.4)

Thus Z is well-defined. Let us set
R = ‖z0‖[H1(Ω)]3 ,

and
BR =

{
f ∈ L2

σ(0,∞; [L2(Ω)]3) : ‖f‖L2
σ(0,∞;[L2(Ω)]3) 6 R

}
.

Then from (5.4) and (4.6),
‖Z(f)‖L2

σ(0,∞;[L2(Ω)]3) 6 4CR2,

and BR is invariant by Z for R small enough. Similarly, using (5.4) and (4.6), for any f1, f2 ∈ BR, then

‖Z(f1)−Z(f2)‖L2
σ(0,∞;[L2(Ω)]3) 6 2CR‖f1 − f2‖L2

σ(0,∞;[L2(Ω)]3),

and thus Z is a strict contraction on BR for R small enough.2

We thus deduce that Z admits a unique fixed point f in BR for ‖z0‖[H1(Ω)]3 small enough. As explained

above, the solution z of (4.5) given in Theorem 4.2, associated with z0 ∈ V and f ∈ L2
σ(0,∞; [L2(Ω)]3) is a

solution of (5.3). Then, in particular from (4.6), we have

‖z‖L2
σ(0,∞;[H2(Ω)]3)∩C0

σ([0,∞);[H1(Ω)]3)∩H1
σ(0,∞;[L2(Ω)]3) 6 2CR 6 2C‖z0‖[H1(Ω)]3 .

Now, let us show that the uniqueness of solutions of (5.3) with v given by (4.2). For this, let us consider
two solutions

zi ∈ L2
σ(0,∞; [H2(Ω)]3) ∩ C0

σ([0,∞); [H1(Ω)]3) ∩H1
σ(0,∞; [L2(Ω)]3) (i = 1, 2).

We denote by v1 and v2 the controls given by (4.2) for respectively z1 and z2. On (0, τ), the controls vi are3

null, so that zi are two strong solutions of the Navier-Stokes system with the same initial condition. Following4

standard results (see, for instance, [35, Theorem 3.4, p. 297]), we deduce that z1 ≡ z2 in [0, τ ]. This implies5

that v1 ≡ v2 on (τ, 2τ). Thus following the standard proof of uniqueness given for instance in [35, Theorem 3.4,6

p. 297], we deduce that z1 ≡ z2 in [τ, 2τ ], and we can proceed by induction to deduce that z1 ≡ z2.7

We have obtained the following local stabilization result for the Navier-Stokes system with internal control8

with delay:9

Theorem 5.1. Assume σ > 0 and let us define N+ by (1.4). Then there exist K ∈ L∞loc(D∞;L(H)), ζk ∈ D(A∗),
vk ∈ [L2(O)]3, k = 1, . . . , N+ and R > 0, such that for any

z̃0 ∈ [H1(Ω)]3, ∇ · z̃0 = 0 in Ω, z̃0 = bS on ∂Ω,

and
‖z̃0 − wS‖[H1(Ω)]3 6 R,

there exists a unique solution z of (5.1) with10

v(t) = 1[τ,+∞)(t)

N+∑
k=1

(∫
Ω

[
(z̃ − wS)(t− τ) +

∫ t−τ

0

K(t− τ, s)(z̃ − wS)(s) ds

]
ζk dx

)
vk, (5.5)

satisfying
z̃ − wS ∈ L2

σ(0,∞; [H2(Ω)]3) ∩ C0
σ([0,∞); [H1(Ω)]3) ∩H1

σ(0,∞; [L2(Ω)]3).

Moreover we have the estimate11

‖z̃ − wS‖L2
σ(0,∞;[H2(Ω)]3)∩C0

σ([0,∞);[H1(Ω)]3)∩H1
σ(0,∞;[L2(Ω)]3) 6 C‖z̃0 − wS‖[H1(Ω)]3 . (5.6)

13
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