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Abstract

In our former works we proposed different Model Order Reduction strategies for
alleviating the complexity of computational simulations. In fact we proved that
separated representations are specially appealing for addressing many issues, in
particular, the treatment of 3D models defined in degenerated domains (those
involving very different characteristic dimensions, like beams, plate and shells) as well
as the solution of parametrized models for calculating their parametric solutions.
However it was proved that the efficiency of solvers based on the construction of such
separated representations strongly depends on the affine decompositions
(separability) of operators, parameters and geometry. Even if our works proved that
different techniques exists for performing such beneficial separation prior of applying
the separated representation constructor, the complexity of the solver increases in
certain circumstances too much, as the one involving the space separation of complex
microstructures concerned by 3D woven fabrics. In this paper we explore an alternative
route that allows circumventing the just referred difficulties. Thus, instead of following
the standard procedure that consists of introducing the separated representation of
the unknown field prior to discretize the models, the strategy here proposed consists of
proceeding inversely: first the model is discretized and then the separated
representation of the discrete unknown field is enforced. Such a procedure enables the
consideration of very complex and non separable features, like complex domains,
boundary conditions and microstructures as the ones concerned by homogenized
models of complex and rich 3D woven fabrics. It will be proved that such a procedure
can be also easily coupled with a non-intrusive treatment of the parametric dimensions
by using a sparse hierarchical collocation technique.

Keywords: Model Order Reduction, In-plane-out-of-plane separated representations,
Parametric solutions, Non-intrusice PGD

Introduction
A lot of models in polymer, metals and composites processing, structural mechanics,
among many others, are defined in degenerated three-dimensional domains. By degen-
erated we understand that at least one of the domain characteristic dimensions is much
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smaller than the others, as usually encountered when addressing plate and shells geome-
tries.
Mesh-based solutions of 3D models defined in such degenerated domains remain even

nowadays a recurrent issue because the resultingmeshes usually involve toomany degrees
of freedom. In that case the first question concerns the possibility of reducing the model
complexity. In the past many simplified (1D or 2D) models were derived by introducing
simplifying hypotheses into the general 3D problem, however in many cases the required
hypotheses fail and such a reduction is not possible anymore. In those circumstances only
fully 3D solutions are conceivable with the difficulty associated to the extremely large
discrete linear systems resulting from employed meshes that must be fine enough for
attaining the expected accuracy.
Thus, from one side 3D solutions seemmandatory in many cases, but on the other side,

such solutions remain computationally challenging for most of mesh-based discretization
techniques. Thus, new approaches able to address the efficient solution of such models
are required.
Space separated representations within PGD—Proper Generalized Decomposition—

framework seems a valuable route for alleviating such difficulties as discussed below. The
interested reader can refer to the abundant references on the PGD, among them [1–4]
and the references therein. Multi-resolution features of separated representations were
addressed in [5].
Sometimes the spatial domain �, assumed three-dimensional, can be separated using

an in-plane-out-of-plane separated representation specially appropriate for addressing
problems defined in plate or shell-like geometries. In that case the domain � can be
expressed as � = � × I , with � ⊂ R

2 and I ⊂ R.
In-plane-out-of-plane separated representations are particularly useful for addressing

the solution of problems defined in plate [6], shell [7] or extruded domains [8]. A para-
metric 3D elastic solution of beams involved in frame structures was proposed in [9].
The same approach was extensively considered in structural plate and shell models in
[10–15]. Space separated representations were enriched with discontinuous functions for
representing cracks in [16], delamination in [17] and thermal contact resistances in [18].
Domain decomposition within the separated space representation was accomplished in
[19] and localized behaviors were addressed by using superposition techniques in [20].
The in-plane-out-of-plane decomposition was then extended to many other physics:

thermal models were considered in [18]; squeeze flows of Newtonian and non Newtonian
fluids in laminates in [21]; flows in stratified porousmedia in [22] an nonlinear viscoplastic
flows in plate domains in [23]. A full space decomposition was also efficiently applied for
solving the Navier–Stokes equations in the lid-driven cavity problem in [24–26].
In all these works we proved that separated representations are specially appealing for

addressing many issues, in particular, the treatment of 3D models defined in degenerated
domains (those involving very different characteristic dimensions, like beams, plates and
shells) as well as the solution of parametrizedmodels for calculating their parametric solu-
tions.However itwasproved that the efficiencyof solvers basedon the constructionof such
separated representations strongly depends on the affine decompositions (separability) of
operators, parameters and geometry. Even if our works proved that different techniques
exists for performing such beneficial separation prior of applying the separated represen-
tation constructor, the complexity of the solver increases in certain circumstances too



much, as the one involving the space separation of complex microstructures concerned
by 3D woven fabrics.
In this paper we explore an alternative route that allows circumventing the just referred

difficulties. Thus, instead of following the standard procedure that consists in introducing
the separated representation of the unknown field prior to discretize the models, the
strategy here proposed consists of proceeding inversely: first the model is discretized
and then the separated representation of the discrete unknown field is enforced. Such a
procedure, that we never considered in our former developments, and that constitutes the
main contribution of the present work, enables the consideration of very complex and non
separable features, like complex domains, boundary conditions andmicrostructures as the
ones concerned by homogenized models of complex and rich 3D woven fabrics. It will be
proved that such a procedure can be also easily coupled with a non-intrusive treatment
of the parametric dimensions by using a sparse hierarchical collocation technique.

Standard separated representation
The Proper Generalized Decomposition of a generic model defined in a plate domain
� = �×I with (x, y) = x ∈ � ⊂ R

2 and z ∈ I = [0, H ] ⊂ R, and involving the unknown
field u(x, z), consists of looking for the in-plane-out-of-plane separated representation

u(x, z) ≈
N∑

j=1
Xj(x) · Zj(z), (1)

that introduced into the problemweak form results in two problems, the first for comput-
ing the functions involving the in-plane coordinates (Xj(x)) and the other the ones related
to the through-the-thickness coordinate (Zj(z)).
For the sake of completeness, we summarize in Appendix , the standard procedure for

constructing the solution separated representation (1).

Discussion

The standard procedure described in Appendix is very powerful as widely proved in our
former works, and allows for a very compact solution structure, impressive computing
time savings and extremely fine resolution along the thickness coordinate that results
into a 1D problem that can be solved easily and efficiently independently of the number
of nodes considered along the thickness direction, however, many technical difficulties
remain, being the most relevant:

• The procedure is very intrusive because it needs a new algorithmic structure, quite
different to the standard finite element;

• The assembling of plate domains for constituting a complex structure remains nowa-
days a tricky issue when operating with such a separated representations;

• When considering nonlinear models the computational complexity increases signif-
icantly;

• Most importantly, the success of the just described procedure is based on affine
structure of both the differential operators and themodel parameters, like the thermal
conductivity in the problem considered in Appendix A. In complex microstructures,
as the one involved in the 3D woven fabrics depicted in Fig. 1 that will be considered



Fig. 1 3D woven fabric characteristic microstructure

later, affine decompositions of material properties are compromised making difficult
the use of standard procedures based on the use of separated representations. Even
if one could envisage the application of the singular value decomposition—SVD—for
obtaining that affine structure, SVDswill involve an extremely large number of terms.
Moreover, the application of the SVD has a significant computational cost, magnified
when addressing nonlinear behaviors needing for repeated decompositions.

In the next section we propose an alternative procedure that allows circumventing
the just referred difficulties. Thus, instead of following the discussed standard procedure
that consists in introducing the separated representation of the unknown field prior to
discretize the model, the strategy here proposed consists of proceeding inversely: first the
model is discretized and then the separated representation of the discrete unknown field
is enforced.

Non-intrusive formulation: discretizing first and then enforcing a separated
representation
As just indicated, the proposed strategy enforces the unknown field separation on the dis-
crete form accomplished by using any standardwell experienced discretization technique.
In what follows and without loss of generality we assume a finite element discretization.
Again, for the sake of simplicity we start considering a laminate, and an scalar unknown

field, to address more complex configurations later.

Standard 3D finite element discretization

When considering a standard 3D finite element approximation and discretization on a
mesh, compatible with the stratified domain structure, the resulting discrete form reads

GU = F, (2)

where vector U contains the nodal unknowns.



Re-numbering by layering

As just indicated, we assume that the finite elements mesh follows the laminate layers. If
along the plate thickness we assume a finite element layer, and denotes byUi, i = 1, . . . , T ,
the nodal degrees of freedom associated to nodes belonging to the layer Li, i = 1, . . . ,T ,
employing an adequate nodal re-numbering, system (2) can be rewritten as

⎛

⎜⎜⎜⎜⎝

G11 G12 · · · G1T
G21 G22 · · · G2T
...

...
. . .

...
GT 1 GT 2 · · · GT T

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

U1
U2
...

UT

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

F1
F2
...

FT

⎞

⎟⎟⎟⎟⎠
. (3)

Separated expression of the unknown vector

Now, inspired from the in-plane-out-of-plane separated representation employed in
“Standard separated representation” section, we assume

Ui = V Wi, (4)

whereWi is the i-component of vectorW that scales the evolution ofV along the domain
thickness, with i ∈ [1, . . . , T ].
Equation (4) can be rewritten as

Ui = WiV (5)

with

Wi =

⎛

⎜⎜⎜⎜⎝

Wi 0 · · · 0
0 Wi · · · 0
...

...
. . .

...
0 0 · · · Wi

⎞

⎟⎟⎟⎟⎠
= Wi

⎛

⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟⎟⎟⎟⎠
= WiI. (6)

Using the just introduced notation, the layered nodal unknown vector reads:

⎛

⎜⎜⎜⎜⎝

U1
U2
...

UT

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

W1I
W2I
...

WT I

⎞

⎟⎟⎟⎟⎠
V, (7)

that can be expressed in the compact form

U = ZV. (8)

Introducing expression (7) into the linear system (3) it results

⎛

⎜⎜⎜⎜⎝

G11 G12 · · · G1T
G21 G22 · · · G2T
...

...
. . .

...
GT 1 GT 2 · · · GT T

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

W1I
W2I
...

WT I

⎞

⎟⎟⎟⎟⎠
V =

⎛

⎜⎜⎜⎜⎝

F1
F2
...

FT

⎞

⎟⎟⎟⎟⎠
, (9)



that premultiplying by the transpose of Z we finally obtain a linear system whose size
scales with the number of nodes in the plane, that is, in each of the T layers

(W1IW2I · · ·WT I)

⎛

⎜⎜⎜⎜⎝

G11 G12 · · · G1T
G21 G22 · · · G2T
...

...
. . .

...
GT 1 GT 2 · · · GT T

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

W1I
W2I
...

WT I

⎞

⎟⎟⎟⎟⎠
V

= (W1IW2I · · ·WT I)

⎛

⎜⎜⎜⎜⎝

F1
F2
...

FT

⎞

⎟⎟⎟⎟⎠
, (10)

whose matrix compact form reads

[
Z
TGZ

]
V = Z

TF, (11)

that as soon as matrix Z is known, from the vector W involved in the decomposition of
U, the reduced matrix ZTGZ can be computed and the linear system solved for obtaining
vector V whose size is characteristic of a 2D problem.
It is also important to note that this solution only implies matrix products and the

solution of a linear system of reduced size, tasks that can be massively parallelized in
adequate computing platforms.
Now, as soon asV is available, we should update vectorW. For that purpose the previous

systems must be expressed differently as discussed below.
In the present case the unknown vector U reads

⎛

⎜⎜⎜⎜⎝

U1
U2
...

UT

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

V 0 · · · 0
0 V · · · 0
...

...
. . .

...
0 0 · · · V

⎞

⎟⎟⎟⎟⎠
W, (12)

that can be expressed in the compact form as

U = PW, (13)

that allows reducing the linear system to a size that scales with the number of nodes along
the thickness direction

[
P
TGP

]
W = P

TF, (14)

that as soon as matrix P is known, from vector V involved in the decomposition ofU, the
reduced matrix PTGP can be computed and the linear system solved for obtaining vector
W whose size is characteristic of a 1D problem.
Wenote again that this solution only impliesmatrix products and the solution of a linear

system of reduced size, tasks that can be massively parallelized in adequate computing
platforms.



Separated representation constructor

Obviously the solutionU cannot be expressed as a single term involving vectorsV andW.
If we assume that N terms are required in the separated representation, i.e. the unknown
vector is expressed from one of the two (equivalent) expressions below:

U ≈
N∑

j=1
Z
jVj , (15)

with Z
j depending onWj , or

U ≈
N∑

j=1
P
jWj , (16)

withPj depending onVj , and that at the present iteration the first n−1 termswere already
calculated, i.e.

Un−1 =
n−1∑

j=1
Z
jVj , (17)

or

Un−1 =
n−1∑

j=1
P
jWj , (18)

now, the calculation of the enriched approximation Un requires computing Vn andWn.
As discussed in the previous section we must computeVn by assumingWn known, and

then update Wn from the just calculated Vn. The iteration continues until reaching the
fixed point, and then the next couple of vectors (Vn+1,Wn+1) will be searched.
When looking for vector Vn with Wn assumed known, we consider the reduced linear

system:

[
Z
nTGZn

]
Vn = −Z

nTG
⎡

⎣
n−1∑

j=1
Z
jVj

⎤

⎦ + Z
nT F, (19)

from which Vn is calculated, leading to the other reduced linear system

[
P
nTGPn

]
Wn = −P

nTG
⎡

⎣
n−1∑

j=1
P
jWj

⎤

⎦ + P
nT F, (20)

from whichWn is updated.

Discussion

The just described procedure deserves the following important comments:

• MatrixG is obtainedwith anydiscretization technique, inparticular anyfinite element
software using any type of finite element. In this sense the just described procedure is
much less intrusive than the one resulting when introducing the separated represen-
tation before its discretization as described in“Standard separated representation”



section (and the associated Appendix). It is important to note that the numerical
solutions presented and discussed later, the discretization, that is, the construction
of the stiffness matrix G, was accomplished by using the commercial software VPS
from ESI Group;

• In the case of nonlinear models matrix G could correspond to the usual tangent
matrix and again it is computed in a standard way, for example finite elements;

• As soonas thematrixG is available byusing any simulation software, the just described
procedure can be viewed as an iterative procedure for solving the algebraic system.
This iteration strategy can be incorporated as a new function to an existing solver or
performed outside. It is in that sense that the procedure is qualified as non-intrusive.

• The proposed strategy could be viewed as an iterative linear solver able to produce a
separated representation of the nodal solution;

• When the solution is obtained with the desired accuracy according to Eqs. (15) or
(16), it could be post-compressed to reduce, when possible, the number of terms
in the finite sum decomposition, from N to N̂ , with N̂ ≤ N . For that purpose we
proceed as described in [4], from which it follows the SVD decomposition of the fully
3D nodal solution (considering as decomposition coordinates the ones related to the
plane and thickness);

• The solution procedure only involves matrix products and linear systems solutions
(of reduced size, having 2D and 1D complexities) that can be efficiently performed
using massively parallel computing architectures;

• The solution procedure can be also viewed as a domain decomposition technique
in which continuity conditions are implicitly enforced (during the finite element
construction of matrix G) and in which the information spreads all along the whole
domain at each iteration.

• Such a strategy is not restricted to in-plane-out-of-plane decompositions, it can be
used in any partition of the vector containing the nodal unknowns with the only
restriction that all them contains the same number of nodes. It is in that sense that it
seems very close to domain decomposition techniques, expressing

U ≈
D∑

i=1
D
j · Vj , (21)

where Dj depends in vectorDj of sizeD, beingD the number of subdomains consid-
ered in the partition of U and with Vj having the size related to the number of nodes
considered in each subdomain. As just claimed vectors Vj can be associated to nodes
located anywhere, even with no direct connexion, sparsely chosen.

• In usual PGD formulations, imposing complex boundary conditions become some-
times a tricky issue. The weak (natural) or strong (essential) enforcement of boundary
conditions needs performing a separated representation of them, before introducing
the former into the weak form and the last in the solution separated representation.
However, the formulation just described enables the enforcement of any boundary
condition in the most standard way, because only the solution procedure involves
the construction of the separated representation of the discrete solution. To prove
it, Fig. 2 compares the solution when enforcing a nodal displacement on a point of
the boundary of a rectangular domain when using both, the standard finite element



Fig. 2 Comparing FEM and NI-PGD solutions when addressing the enforcement of Dirichlet boundary
conditions

methods and the non-intrusive PGD solver just described. As it can be seen, both
solutions agree in minute.

Non-intrusive parametric solver
To circumvent the intrusivity of standard PGD algorithms when considering parame-
ters as extra-coordinates (see [3,4]) enabling the construction of parametric solutions by
using commercial simulation softwares, we will consider the simple collocation strategy
operating on a hierarchical approximation basis using sparse grids proposed in [27] an
summarized below.
We consider the general case in which a transient parametric solution is searched. For

the sake of notational simplicity, we assume that only one parameter is involved in the
model, μ ∈ [μmin,μmax]. The generalization to several, potentially many parameters is
straightforward. The parametric solution u(x,μ) is searched in the separated form

u(x,μ) ≈
M∑

i=1
Xi(x)Mi(μ),

where both functions involved in the finite sum representation, Xi(x) and Mi(μ), are a
priori unknown.
Sparse Subspace Learning—SSL—consists first in choosing a hierarchical basis of the

parametric domain. The associated collocation points (the Gauss-Lobatto-Chebyshev)
and the associated functions will be noted by: (μj

i, ξ
j
i (μ)), where indexes i and j refer to

the i-point at the j-level.
At the first level, j = 0, there are only to points, μ0

1 and μ0
2, that correspond to the

minimum and maximum value of the parameters that define the parametric domain, i.e.
μ0
1 = μmin and μ0

2 = μmax (�μ = [μmin,μmax]). If we assume that a direct solver is
available, i.e., the one separating the nodal unknowns proposed, described and discussed
in the previous section, these solutions read

u01(x) = u(x;μ = μ0
1),



and

u02(x) = u(x;μ = μ0
2),

respectively.
Thus, the solution at level j = 0 could be approximated from

u0(x,μ) = u01(x)ξ01 (μ) + u02(x)ξ02 (μ),

that in fact consists of a standard linear approximation since at the first level, j = 0, the
two approximation functions read

ξ01 (μ) = 1 − μ − μ0
1

μ0
2 − μ0

1
,

and

ξ01 (μ) = μ − μ0
1

μ0
2 − μ0

1
,

respectively.
At level j = 1 there is only one point located just in themiddle of the parametric domain,

i.e. μ1
1 = 0.5 (μmin + μmax), being its associated interpolation function ξ11 (μ). It defines a

parabola that takes a unit value at μ = μ1
1 and vanishes at the other collocation points of

level j = 0, μ0
1 and μ0

2 in this case. The associated solution reads

u11(x) = u(x;μ = μ1
1).

This solution contains a part already explained by the just computed approximation at
the previous level, j = 0, expressed by

u0(x,μ1
1) = u01(x)ξ01 (μ1

1) + u02(x)ξ02 (μ1
1).

Thus, we can define the so-called surplus as

ũ11(x) = u11(x) − u0(x,μ1
1),

from which the approximation at level j = 1 reads

u1(x, t,μ) = u0(x,μ) + ũ11(x)ξ11 (μ). (22)

The process continues by adding surpluses when going-upwith the hierarchical approx-
imation level. An important aspect is that the norm of the surplus can be used as a local
error indicator, and thenwhen adding a level does not contribute sufficiently, the sampling
process can stop.
The computed solution, as noticed in Eq. (22), ensures a separated representation.

However, it could contain toomany terms. In that circumstances a post-compression takes
place by looking for amore compact separated representation, as previously discussed and
addressed in [4].



When the model involves more parameters, e.g., μ and η, the hierarchical 2D basis,
defined in the parametric space (μ, η) is composed by the cartesian product of the collo-
cations points and the tensor product of the approximation bases ξ0i (μ) and ϕ0

j (η).
Thus, the first level j = 0, is composed by the four points:

(μ0
1, η

0
1), (μ

0
2, η

0
1), (μ

0
2, η

0
2), (μ

0
1, η

0
2),

with the associated interpolation functions

ξ01 (μ)ϕ
0
1(ϕ), ξ02 (μ)ϕ

0
1(η), ξ02 (μ)ϕ

0
2(η), ξ01 (μ)ϕ

0
2(η).

When moving to the next level, j = 1, the collocation points and approximation func-
tions result from the combination of the zero-level of one parameter and the first level of
the second one, i.e., the points are now: (μ0

1, η
1
1), (μ

0
2, η

1
1) and (μ1

1, η
0
1), (μ

1
1, η

0
2). In what

concerns the interpolation functions they result from the product of the zero level in one
coordinate and the level one in the other. It is worth noting that the point (μ1

1, η
1
1) and its

associated interpolation function is in fact a term of level j = 2.
As it can be noticed, the procedure only needs the calculation of the solution for some

values of the parameters. This solution can be performed by using any available software.
It is in that sense that the procedure is qualified as non-intrusive.

Numerical results
In this section, and in order to prove the potentialities of both non-intrusive procedures
just described, the one related to the space separation and the other to the parametric
solutions, we address elastic homogenization on the representative domain associated
with the 3D woven fabric depicted in Fig. 1.
Concerning the homogenization, 2D/1D decompositions will be considered to check

the compactness of the computed solutions, that is, the number of terms involved in both
finite sum decompositions.
Concerning the parametric study damage envelopes with respect to the deformation

(related to a planar stress assumption) applied on the representative domain will be
obtained by using the superposition principle, whose validity is guaranteed by the lin-
earity of the assumed elastic behavior.
Finally, parametric solutions will be considered for performing a sensitivity analysis of

homogenized properties with respect to the microscopic features.

Elastic homogenization

The so-called layer to layer 3Dwoven fabric, constituted bywarps, wefts and blinder yarns,
depicted in Fig. 3 is considered here, and was previously addressed in [28–30].
The mesh used in this study is based on a voxel representation. The yarn mechanical

properties are obtained by using the Mori-Tanaka model, by considering the fibres and
matrix mechanical properties reported in Table 1.
The microstructural geometric complexity as well as the fact that the microscopic

mechanical properties evolve all along the representative cell because the phase fluc-
tuations induced by the forming process itself, make difficult a microstructural separated
representation, supporting the choice of performing a standard discretization of the elas-
tic problem in the representative cell, with the adequate boundary conditions ensuring the



Fig. 3 ED woven fabric (left) and real geometry acquired from a CT scan

Table 1 Fibre andmatrix mechanical properties considered to derive the yarn homogeni
zed properties

E11 E22 E33 G12 G23 G13 ν12 ν23 ν13
Fiber 261.055 16.1332 16.1332 13.6837 10 10 0.289 0.3 0.3

Matrix 2.89 2.89 2.89 1.11 1.11 1.11 0.3 0.3 0.3

Fig. 4 Norm of the terms involved in the 2D/1D (post-compressed) separated representation of the nodal
displacements

fulfillment of the so-called Hill-Mandel conditions [31,32], and then applied a separated
representation to the vector containing the unknown nodal displacements.

Extraction of effective properties

Figure 4 represents the norm of the different terms of the finite sum, from which it can
be noticed that the firsts are the most important for describing the solution, whereas
the ones related to smaller norm are describing the microscopic features of the solu-
tion.Appropriate error estimators [33,34] should be considered for stopping the enrich-
ment process and then truncating the separated representation to a finite sum as reduced
as possible with respect to the desired accuracy.
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Fig. 5 Computational time comparison between FEM and NI-PGD solution techniques. The CPU time refers
to a standard laptop 16 GB ram memory/intel core i7-5600 2.60 Hz processor

The homogenized properties were in perfect agreement to the ones derived with a
standard procedure. The main interest of using the separated representation was the fact
of reaching very fine levels of resolution while speeding-up the solution with respect to
procedures based on direct or iterative solvers of the resulting linear system. Figure 5
compares the computing time related to the use of a standard linear system solution with
the one associated to the separated constructor (NI-PGD), proving the superiority of the
last when the system size increases.

Initial damage envelopes

Initial damage envelopes were considered for analyzing pre-impregnated composite con-
figurations. In thepresent 3Dcase, theydescribe the combinationof effectivedeformations
on the representative domain leading to damage initiation. Because the intense anisotropy
the combination of strains leading to damage results in complex surfaces (in the strain
space) where points in the interior experience elastic behaviour whereas points on the
surface represents loadings leading to damage initiation.
The generation of those surfaces separating undamaged and damaged regions requires

solving the elastic problem for a variety of loadings (strains) and identifying the ones that
activate one of the damage modes (related to fibres or matrix). In general failure starts
with the matrix damage and progresses with transverse yarn damage towards the final
fibre failure.
We consider a mesh on the strain space composed of 600,000 points representing

different combination of the different strain components. Then each one was affected by
a scalar (strain intensity) that was increased until the first failure mode occurs. This point
represent a point on the failure surface.
In order to alleviate the computational cost, and being, until failure, the problem linear,

one could take advantage of the superposition principle, and therefore, solving the elastic
problem in the representative domain, for each component of the strain taking a unit value,
vanishing all the others. Any possible combination is the obtained by superposing the
unitary solutions affected by the scalar intensity factor. These envelopes can be obtained
very efficiently for any failure mode in order to compare them.



Table 2 Damagemodel for yarns andmatrix

Fibre failure Initial transverse damage under compression inside yarns

fft = εa

εt
= 1 fmat =

(
τT

ST − μTσn

)2

+
(

τL

SL − μLσn

)2

= 1

Initial matrix damage Initial transverse damage under tension inside yarns


d
m = 3J2

Xcm Xtm
+ I1

(
Xcm − Xtm

)

Xcm Xtm
fmat =

(
σn

YT

)2

+
(

τT

ST

)2

+
(

τL

SL

)2

= 1

Table 3 Parameters involved in the failure models

ET EC YT (GPa) YC (GPa) SL (GPa) Xt (GPa) Xc (GPa)

0.018 0.018 70 200 100 93 124

Fig. 6 Initial damage envelopes: strain and transverse strain spaces

In our numerical results we assumed the damage model reported in [35,36] and sum-
marized in Table 2, where I1 and J2 are the first and second invariant of the effective
stress tensor; σn, σT and σL are the failure tensions normal, transverse and longitudinal
respectively to the crack plane, with the other parameters given in Table 3.
Figure 6 shows the initial damage envelope for the representative cell for both, normal

and shear strain and for two different 3D woven fabric configuration, layer to layer and
angle interlock Fig. 7.

Sensitivity analysis

In the present case and using the non-intrusive parametric solution procedure, we con-
sidered the homogenization problem but now by adding as extra-coordinates thematerial
parametres Em, E11, E22, G12. Once the parametric space is created, the homogenized
properties becomes parametric with respect to the phases properties, making possible to
evaluate in real-time the homogenized properties for different values of yarn and matrix
elasticity properties. Figure 8 provides a view of the GUI application whose sliders enable
choosing the fibre and matrix properties.
One application of this parametric solution is the study of sensibility of macro with

respect to the micro-properties. Thus, it is possible to evaluate in real-time the output



Fig. 7 Layer to layer configuration (top) and Angle interlock configuration (bottom)

Fig. 8 GUI application for parametric homogenized stiffness real-time evaluation

variation (in %) with respect to a given variation (in %) of a given input. Table 4 reports
these evolutions when enforcing 30% of variation of each input.
Table 4 allows extracting the more relevant parameters with higher impact on the

homogenized properties.

Conclusions
In this present work, a non intrusive formulation of PGD is presented. Both space sepa-
ration and parametric solutions were implemented. Both formulations were successfully



Table 4 Sensitivity analysis

Hom-tensor E11 (%) E22 (%) E33 (%) G12 (%) G13 (%) G23 (%)

Matrix (30 Em) 7.5 7.5 0.2 0.18 0.18 0.6

Yarn (30 E11) 8 12 52 62 64 60

applied for efficiently address homogenization, failure analysis and sensitivity evaluation
of complex 3D microstructures as the ones encountered in 3D woven fabrics. The use
of the proposed techniques allowed important CPU time savings without affecting the
solution accuracy, as well as to explore parametric solutions in almost real-time.
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Appendix A: Revisiting the in-plane-out-of-plane separated representation
constructor
We consider the model related to the steady state heat conduction equation:

∇ · (K∇u) = 0, (23)

in a plate geometry that contains P plies composing the plate thickness. Each ply is charac-
terized by given conductivity tensor Ki(x, y) ≡ Ki(x) which is assumed constant through
the ply thickness. Moreover, without any loss of generality, we assume the same thickness
h (h = H/P) for the different layers of the laminate. Thus, we can define a characteristic
function representing the position of each layer i = 1, . . . , P:

χi(z) =
{
1, zi ≤ z ≤ zi+1
0, otherwise

, (24)

where zi = (i − 1)h defines the location of ply i in the laminate thickness. Now, the
laminate conductivity can be given in the following separated form:

K(x, y, z) =
i=P∑

i=1
Ki(x)χi(z), (25)

with Ki the conductivity tensor of the i-ply.



The weak form of Eq. (23), when assuming Dirichlet boundary conditions, writes:

∫

�

∇u∗ · (K∇u) d� = 0, (26)

with the test function u∗ defined in an appropriate functional space. The solution u(x, y, z)
is searched under the separated form:

u(x, z) ≈
N∑

j=1
Xj(x) · Zj(z). (27)

In what follows we are illustrating the construction of such a decomposition. For this
purpose we assume that at enrichment step n < N the solution un(x, z) is already known:

un(x, z) =
n∑

j=1
Xj(x) · Zj(z), (28)

and that at the present step n + 1 we look for the solution enrichment R(x) · S(z):

un+1(x, z) = un(x, z) + R(x) · S(z). (29)

The test function involved in the weak form is searched under the form:

u∗(x, z) = R∗(x) · S(z) + R(x) · S∗(z). (30)

By introducing Eqs. (29) and (30) into Eq. (26) it results:
∫

�

((
∇̃R∗ · S
R∗ · dS

dz

)
+

(
∇̃R · S∗

R · dS∗
dz

))
·
(
K

(
∇̃R · S
R · dS

dz

))
d�

= −
∫

�

((
∇̃R∗ · S
R∗ · dS

dz

)
+

(
∇̃R · S∗

R · dS∗
dz

))
· Qn d�, (31)

where ∇̃ denotes the plane component of the gradient operator, i.e. ∇̃ =
(

∂
∂x ,

∂
∂y

)T
and

Qn denotes the flux at iteration n:

Qn = K
n∑

j=1

(
∇̃Xj(x) · Zj(z)
Xj(x) · dZj(z)

dz

)
. (32)

Now, as the enrichment process is nonlinear we propose to search the couple of func-
tions R(x) and S(z) by applying the alternate direction fixed point algorithm. Thus, assum-
ing R(x) known, we compute S(z), and then we update R(x). The process continues until
reaching convergence. The converged solutions allow defining the next term in the finite
sum decomposition, i.e. R(x) → Xn+1(x) and S(z) → Zn+1(z).
We are illustrating each one of the just referred steps.



A.1 Computing R(x) from S(z)

When S(z) is known the test function reduces to:

u∗(x, z) = R∗(x) · S(z), (33)

and the weak form (31) reduces to:
∫

�

(
∇̃R∗ · S
R∗ · dS

dz

)
·
(
K

(
∇̃R · S
R · dS

dz

))
d� = −

∫

�

(
∇̃R∗ · S
R∗ · dS

dz

)
· Qn d�. (34)

Now, as all the functions involving the coordinate z are known, they can be integrated
over I = [0, H ]. Thus, if we consider:

K =
(

K k
kT κ

)
, (35)

with

K =
(
Kxx Kxy
Kxy Kyy

)
, (36)

k =
(
Kxz
Kyz

)
(37)

and κ = Kzz , then we can define:

Kx =
⎛

⎝
∫
I K · S2 dz ∫

I k · dS
dz · S dz

∫
I kT · dS

dz · S dz
∫
I κ ·

(
dS
dz

)2
dz

⎞

⎠ (38)

and

(Qx)n =
j=n∑

j=1

(( ∫
I K · S · Zj dz

∫
I k · dZj

dz · S dz
∫
I kT · dS

dz · Zj dz
∫
I κ · dS

dz · dZj
dz dz

)
·
(

∇̃Xj(x)
Xj(x)

))
(39)

that allows writing Eq. (34) into the form:

∫

�

(
∇̃R∗

R∗

)
·
(
Kx

(
∇̃R
R

))
d� = −

∫

�

(
∇̃R∗

R∗

)
· (Qx)n d�, (40)

that defines an elliptic 2D problem in �.

A.2 Computing S(z) from R(x)

When R(x) is known the test function writes:

p∗(x, z) = R(x) · S∗(z) (41)

and the weak form (31) reduces to:

∫

�

(
∇̃R · S∗

R · dS∗
dz

)
·
(
K

(
∇̃R · S
R · dS

dz

))
d� = −

∫

�

(
∇̃R · S∗

R · dS∗
dz

)
· Qn d�. (42)



Now, as all the functions involving the in-plane coordinates x = (x, y) are known, they
can be integrated over �. Thus, using the previous notation we can define:

Kz =
(∫

�
(∇̃R) · (K · ∇̃R) d�

∫
�
(∇̃R) · k · R d�∫

�
(∇̃R) · k · R d�

∫
�

κ · R2 d�

)
, (43)

and

(Qz)n =
j=n∑

j=1

((∫
�
(∇̃R) · (K · ∇̃Xj) d�

∫
�
(∇̃R) · k · Xj d�∫

�
(∇̃Xj) · k · R d�

∫
�

κ · Xj · R d�

)
·
(

Zj(z)
dZj
dz (z)

))
, (44)

that allows writing Eq. (42) into the form:

∫

I

(
S∗
dS∗
dz

)
·
(
Kz

(
S
dS
dz

))
dz = −

∫

I

(
S∗
dS∗
dz

)
· (Qz)n dz (45)

that defines a one-dimensional boundary value problem (BVP).
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