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A hybrid model of opinion dynamics with
memory-based connectivity

S. Mariano, I.C. Morărescu, R. Postoyan Member, IEEE, L. Zaccarian Fellow, IEEE

Abstract—Given a social network where the individuals know
the identity of the other members, we present a model of
opinion dynamics where the connectivity among the individuals
depends on both their current and past opinions. Thus, their
interactions are not only based on the present states but also
on their past relationships. The model is a multi-agent system
with active or inactive pairwise interactions depending on auxil-
iary state variables filtering the instantaneous opinions, thereby
taking the past experience into account. When an interaction
is (de)activated, a jump occurs, leading to a hybrid model.
The proven stability properties ensure that opinions converge to
local agreements/clusters as time grows. Simulation results are
provided to illustrate the theoretical guarantees.

Index Terms—Agents-based systems; Stability of hybrid sys-
tems; Lyapunov methods; Opinion Dynamics.

I. INTRODUCTION

MOTIVATED by the growing importance of digital social
networks, opinion dynamics has received an increasing

attention from the control community e.g., [1], [4], [18], [20],
[22]. The multi-agent systems formalism is well-suited for
modelling these networks, as a node can model the individual’s
opinion and an edge describes the interaction between two
given individuals e.g., [5], [8], [14], [19].

Two main models provide convergence towards local agree-
ment or disagreement patterns. One of them (FJ) [13] es-
sentially filters the consensus dynamics by using the initial
opinions. Indeed, a major role in the mutual influence on the
individual’s opinions is played by their culture, belonging to
a community (social class, political party, etc), principles and
beliefs. The second one is the bounded confidence model (HK)
described in [17], which formalizes the idea that only individu-
als with similar opinions actually interact. Social psychologists
agree that both the FJ and HK models are relevant, depending
on the context, see [10] for a detailed survey. Nevertheless,
as pointed out in [10], opinion dynamics in social networks
is a complex phenomenon, whose key features cannot be
completely captured by any of these models separately. This
has motivated the development of other deterministic models
e.g., [1], [5], [11], [20], [22], as well as stochastic models e.g.,
[2], [7], [19], [27]. Notably, most of these works provide either
empirical or rigorous convergence results but stability is eluded
in general. The recent work in [12] provides a Lyapunov
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analysis of the HK model and reveals that only an attractivity
property can be guaranteed. Then [12] proposes a stability
inducing variant of the HK model where the connectivity
depends on adaptive thresholds, instead of fixed ones as in
[17]. Indeed, a link is activated when the opinions mismatch
between two agents is small compared to the average opinion
mismatch with their other neighbours.

This paper is a further step in the direction paved by [12]:
we propose a model where connectivity also depends on the
past history. With this, we merge the features of the FJ model
(where importance is given to the past, the initial conditions)
and those of the HK model (the bounded confidence mech-
anism based on current opinions). It is indeed reasonable to
assume that the interactions within a social network depend
both on the current state and on the past relationships, when
the members are aware of the identity of their neighbours. Here
we account for the past by linearly filtering the instantaneous
(de)activation functions (de)activating a link only when both
the adaptive threshold and its filtered version reach certain
thresholds. Our model uses the hybrid formalism of [16].
A new Lyapunov function is constructed, which guarantees
a suitable KL-stability property ensuring asymptotic conver-
gence to opinion clusters. In addition, solutions are proved not
to generate Zeno phenomenon and to stop jumping in finite-
time. Simulation results illustrate the behaviour of the model
and the impact of the filters and their parameters.

Our technical proofs exploit interesting analogies between
the adaptive threshold connectivity as in [12] and the event-
triggered control technique of [25]. These two domains - a
priori unrelated - have actually much in common. Indeed, the
memory-based connectivity proposed here is inspired by the
dynamic event-triggering control policy proposed in [15].

Background and problem statement are given in Section II.
The new hybrid model and its stability analysis, are presented
in Section III. Illustrative simulations results are reported in
Section IV and Section V concludes the paper.

Notation. R represents the real numbers, R≥0 := [0,∞),
R>0 := (0,∞). |x| is the Euclidean norm of vector x ∈ Rn.
Moreover, (x, y) stands for [x> y>]>. A continuous function
β : R≥0 × R≥0 −→ R≥0 is of class-KL (β ∈ KL), if it
is non-decreasing in its first argument, non-increasing in its
second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0. U◦(x; v) :=
lim suph→0+, y→x(U(y + hv) − U(y))/h denotes the Clarke
generalized directional derivative at x in the direction v of a
Lipschitz function U [6].



II. BACKGROUND AND PROBLEM STATEMENT

Following [12], we consider a set of individuals V :=
{1, . . . , n}, also referred to as agents, connected through a
social network. The opinions of individuals are modelled by a
scalar variable yi ∈ R for any i ∈ V . The dynamics of opinion
yi, i ∈ V , depends on the interactions of individual i with its
neighbours. We define

E+ := {(i, j) ∈ V × V | i < j} (1)

and, for each (i, j) ∈ E+, adjacency coefficient aij defines
whether agents i and j interact or not, i.e. whether or not they
are neighbours. Thus, aij is the connectivity variable for link
(i, j), satisfying

aij = aji :=

{
1 if i and j interact
0 otherwise. (2)

The graph is undirected as aij = aji. Interaction changes,
if any, are described by a jump of the variable aij . The
corresponding hybrid behavior is well represented with the for-
malism of [16]. Variables yi and aij obey the next continuous-
time dynamics between two successive jumps

ẏi =
∑n
j=1 ϕij(yj − yi), ∀i ∈ V, (3)

ȧij = 0, ∀(i, j) ∈ E+, (4)

with ϕij :=
aij
didj

when i 6= j and ϕii := −
∑
j 6=i ϕij ,

where di := 1 +
∑
j 6=i aij ≥ 1 is the degree of agent i

augmented by 1. We omit the dependence of di and ϕij on the
connectivity variables. By construction we have that ϕij = ϕji
and

∑n
j=1 ϕij = 0 for any i ∈ V . The variable ϕij is such that

Φ := [−ϕij ](i,j)∈V2 defines a normalized Laplacian matrix.
Dynamics (4) means that aij is constant between jumps (along
flowing solutions) and that the time-derivative of yi is given by
the weighted average of the opinion mismatch between agent
i and its neighbours.

When a jump occurs over the network, i.e. when one of the
variables aij for some (i, j) ∈ E+ is updated, solutions obey
the following discrete dynamics,

y+
h = yh, ∀h ∈ V

a+
hk =

{
ahk if (h, k) 6= (i, j)
1− ahk if (h, k) = (i, j),

∀(h, k) ∈ E+ (5)

Dynamics (5) states that the opinions yi do not change across
jumps and that the connectivity variable aij toggles between
0 and 1 according to (de)activation. It simplifies notation to
write the second equation of system (5) as

a+ = gij(y, a), (6)

where y := (y1, . . . , yn) ∈ Rn is the opinions vector, and
a := (a12, . . . , a1n, a23, . . . , an−2,n, an−1,n) ∈ {0, 1}

n(n−1)
2

is the connectivity variables vector.
To complete the model, we present the memoryless

(de)activation criterion (jump dynamics) for each link between
two agents, as proposed in [12, §4]. The adaptive thresholds
idea of [12] is that two agents interact when their opinions
are close relative to their respective neighbours’ opinions (an
alternative to the fixed threshold HK model [17]). Roughly

speaking, given (i, j) ∈ E+:
• Deactivation. If aij = 1, link (i, j) is active. Deactivation
is then enabled when Γoff

ij (y, a) ≤ −ε, where ε > 0 is a
regularization parameter and η > 0 is a connectivity parameter,
while Γoff

ij is defined in (7) at the top of the next page. This
means that link (i, j) is cut when yi and yj are too far apart,
as compared to other neighbours’ opinions. Parameter1 ε > 0
rules out Zeno solutions, i.e. solutions that jump indefinitely
in a finite continuous time interval. It is typically set to a small
value.
• Activation. If aij = 0, link (i, j) is not active. Activation
is enabled when Γon

ij (y, a) ≥ ε with Γon
ij defined in (7). The

underlying idea is that link (i, j) should be activated when the
difference between opinions i and j, namely |yi−yj | is small
as compared to the average opinion mismatch of agents i and
j with their respective neighbours (individuals with relatively
close opinions influence each other).

Parameter η, as empirically shown in [12], influences the av-
erage cardinality of the communities that arise from the initial
topology. It actually determines how big the mismatch |yi−yj |
needs to be with respect to the average opinions mismatch of
agents i and j with their neighbours to (de)activate the link.

As a result, the overall hybrid model is given by[
ẏ
ȧ

]
=

[
−Φy

0

]
, (y, a) ∈ Cinst

[
y+

a+

]
∈


y⋃

(y,a)∈Dij,inst

(i,j)∈E+

gij(y, a)

 , (y, a) ∈ Dinst,
(8a)

where we recall that Φ = [−ϕij ](i,j)∈V2 and E+ is in (1), and
Xinst := Rn × {0, 1}

n(n−1)
2 , and

Don
ij,inst :=

{
(y, a) ∈ Xinst | aij = 0, Γon

ij (y, a) ≥ ε
}

Doff
ij,inst :=

{
(y, a) ∈ Xinst | aij = 1, Γoff

ij (y, a) ≤ −ε
}
,

(8b)

Dinst :=
⋃

(i,j)∈E+ Don
ij,inst ∪Doff

ij,inst, and Cinst := Xinst \Dinst.
The main stability result of [12] is to prove that all maximal
solutions (solutions that cannot be extended any further in
time) to (7), (8) are complete (solutions that evolve for
arbitrarily large times) and eventually continuous (i.e, they
perform a finite number of jumps), see [16, Chapter 2], and
all enjoy a desirable global asymptotic stability property for
the following set Ainst, measured by the function ω0 below,

Ainst := {(y, a) ∈ Xinst | aij(yi − yj)2 = 0, ∀(i, j) ∈ E+},
ω0(y, a) := min

(z,a)∈Ainst

|y − z|. (9)

Set Ainst characterizes clusters as, when (y, a) ∈ Ainst, any
couple of agents (i,j) either have the same opinion, namely
yi = yj , which means they belong to the same cluster, or they
do not share any interconnection, so that aij = 0. Since ω0 is
not a Euclidean norm in the extended (y, a) space (because a
is fixed when defining ω0 in (9)), we deem it more appropriate

1Constant ε is the same for every link of the network in [12], however the
results do hold mutatis mutandis when it is link dependent, i.e. when we have
different εij > 0 for each (i, j) ∈ V2.



Γon
ij (y, a) :=

∑
` 6=i, 6̀=j

[
(dj + 1)ϕi`(yi − y`)2 + (di + 1)ϕj`(yj − y`)2

]
−
(

1 +
η2

didj

)
(yi − yj)2

Γoff
ij (y, a) :=

∑
` 6=i, 6̀=j

[ djai`
(di − 1)d`

(yi − y`)2 +
diaj`

(dj − 1)d`
(yj − y`)2

]
−
(

1− η2

didj

)
(yi − yj)2

(7)

to use in this paper the following notion of KL-stability, which
combines the approach in [26] with the KL results in [3, §3.5].
Following [12], the solutions of hybrid model (8) evolve in two
time directions, on of them, t, keeping track of ordinary time
and a second one, j, counting the number of jumps.

Definition 1: Let ω : Rnq → R≥0 be continuous. A hybrid
system is KL-stable with respect to ω if there exists β ∈ KL
such that all maximal solutions φ are complete and satisfy
ω(φ(t, j)) ≤ β(ω(φ(0, 0)), t + j) for all (t, j) ∈ domφ. �

It is proven in the text beneath [12, Lemma 5] that system
(8) is KL-stable with respect to ω0. Due to the structure
of Ainst where aij(yi − yj)

2 = 0, this property means that
solutions asymptotically form clusters [12, Section 4.3].

A possible criticism of the result of [12] summarized above
is that the connectivity variables aij are only based on the
instantaneous opinions mismatch, see (8b). If two agents
had or had not been in agreement for a long time, their
current interaction status is not affected by the past. The main
contribution of this paper is to introduce a novel model with
memory-based connectivity features. In the next section, we
formalize this intuition via a new hybrid model where the
past memory is captured by additional state variables. For this
model, we will prove a generalization of the above mentioned
KL-stability property.

III. MEMORY-BASED CONNECTIVITY

A. Hybrid model

We define the connectivity between agents i and j, for
(i, j) ∈ E+, using Γon

ij or Γoff
ij in (7), but also based on a new

memory state variable θij ∈ R that is a filtered version of
the instantaneous threshold criterion reviewed in Section II.
Loosely speaking, θij reflects the history of the interaction
between agents i and j.

More precisely, for each (i, j) ∈ E+, the flow dynamics for
θij is selected as

θ̇ij = −βijθij + (1− aij)Γon
ij (y, a) + aijΓ

off
ij (y, a)

=: fθ,ij(y, a, θij), (10)

where βij > 0 are tunable parameters associated to how fast
each agent “forgets” the past, and Γon

ij and Γoff
ij are given

in (7). When link (i, j) is active, aij = 1 according to (2) and
θ̇ij = −βijθij +Γoff

ij (y, a) in view of (10). Hence, variable θij
filters Γoff

ij (y, a), which is indeed the right term to be monitored
for deciding whether link (i, j) should be deactivated, see
Section II. Conversely, when link (i, j) is not active, aij = 0
and θ̇ij = −βijθij + Γon

ij (y, a) so that Γon
ij (y, a) is filtered to

infer whether or not the link should be activated.
The novel variable θij acts as a first order filter for the

thresholds Γoff
ij or Γon

ij , as shown in (10). Hence, βij are tuning

parameters to set how “nostalgic” each pair of agents are with
respect to their common past. When βij is large, the past is
not given much credit, and βij →∞ recovers the criterion of
Section II. Conversely, when βij is small, the past values of
Γoff
ij or Γon

ij matter more, as compared to the current ones.
When a jump occurs, i.e. when a link is (de)activated, the

memory variable θij is unchanged, namely θ+
ij = θij for each

(i, j) ∈ E+. The proposed memory-based (de)activation policy
then intuitively generalizes the one of Section II:
• Activation. If aij = 0, link (i, j) is not active. Activation is
enabled when Γon

ij (y, a) ≥ ε and θij is non-negative. Parameter
ε plays the same role as in Section II, preventing Zeno
solutions, see footnote 1 on page 2.
• Deactivation. If aij = 1, link (i, j) is active. Deactivation
is then enabled when Γoff

ij (y, a) ≤ −ε and θij is non-positive.
The rationale is similar to the previous case.

The mechanism described above can be written in a compact
form extending the memoryless model (8). Introducing

θ := (θ12, . . . , θ1n, θ23, . . . , θn−2,n, θn−1,n) ∈ R
n(n−1)

2

x := (y, a, θ) ∈ Xmem := Rn × {0, 1}
n(n−1)

2 × R
n(n−1)

2 ,

the memory-based hybrid model is given byẏȧ
θ̇

 = f(x) :=

 −Φy
0

fθ(y, a, θ)

 , x ∈ Cmem

y+

a+

θ+

 ∈ g(x) :=


y⋃

(y,a)∈Dij,mem

(i,j)∈E+

gij(y, a)

θ

 , x ∈ Dmem,

(11a)

with x := (y, a, θ), with

Dmem :=
⋃

(i,j)∈E+

Don
ij,mem ∪Doff

ij,mem, Cmem := Xmem\Dmem

Don
ij,mem :=

{
(y, a, θ) ∈ Xmem | aij = 0, Γon

ij ≥ ε, θij ≥ 0
}

Doff
ij,mem :=

{
(y, a, θ) ∈ Xmem | aij = 1, Γoff

ij ≤ −ε, θij ≤ 0
}
.

(11b)

System (11) satisfies the hybrid basic conditions of [16, As.
6.5], in view of the definition of the flow and jump maps
and the flow and jump sets. Then, from [16, Thm 6.30], it is
(nominally) well-posed, namely its solutions satisfy a desirable
sequential compactness property.

B. Main stability result

We establish here a KL-stability property for (11) general-
izing the one established for (8) at the end of Section II. To



this end, function ω0 in (9) is generalized to

ω(x) := ω0((y, a)) +
∑

(i,j)∈E+

(1− aij) max{0, θij}, (12)

for any x ∈ Xmem which incorporates the memory variable
θ. Since ω0 is continuous, then ω is continuous too on Xmem.
Our main result below ensures KL-stability of model (11) with
respect to ω, as well as properties of the hybrid time domains
of its solutions. The proof of Theorem 1 is based on a novel
hybrid Lyapunov function characterized in the next section.

Theorem 1: All maximal solutions to system (11) are com-
plete and eventually continuous. For each maximal solution x,
there exists x? ∈ Xmem such that x(t, j) → x? as t + j → ∞.
Moreover, system (11) is KL-stable with respect to ω in (12).

Since the second term in (12) is non-negative, the conver-
gence to zero of ω(x) established in Theorem 1 immediately
implies that ω0((y, a)) → 0. As result, Theorem 1 ensures
that opinions converge to clusters as time grows. In addition,
(1 − aij) max{0, θij} converges to zero for all (i, j) ∈ E+,
namely the memory variable θij associated to individuals
belonging to different clusters is not positive. The asymptotic
behavior of solutions is clarified in the following corollary,
which is an immediate consequence of eventual continuity
of solutions (a eventually settles to a clustering pattern) and
convergence of solutions (opinions settle to constant values
that coincide within each cluster because ω0((y, a))→ 0).

Corollary 1: Each maximal solution of (11) converges to a
clustering pattern with constant, equal opinions in each cluster.

C. Lyapunov function and proof of Theorem 1

Consider the following candidate Lyapunov function,

U(x) := V (x) + γ
∑

(i,j)∈E+

(1− aij) max{0, θij}, (13)

for each x = (y, a, θ) ∈ Xmem, γ > 0 to be selected, and

V (x) :=
1

2
y>Φy =

1

4

∑
(i,j)∈V2

ϕij(yi − yj)2. (14)

The second equality above arises from the Dirichlet form
[9, Prop. 1.9] and the definition of Φ after (4). Function
V was used in [12, eqn. (18)] and takes into account the
opinions, while the second term in (13) accounts for the new
dynamics θ, paralleling the dynamic event-triggered control
designs [15],[23]. We state below key properties of U .

Proposition 1: Given system (11), there exist γ > 0 in (13)
and c1, c2, cF , cJ > 0 such that the following holds.

(i) U is locally Lipschitz on Xmem and satisfies c1ω(x) ≤
U(x) ≤ c2ω(x) for all x ∈ Xmem.

(ii) For all x ∈ Cmem, U◦(x; f(x)) ≤ −cFU(x).
(iii) For all x ∈ Dmem, and υ ∈ g(x), U(υ)− U(x) ≤ −cJ .

Proof. We prove the three items one by one.
Proof of item (i). Function U is locally Lipschitz on Xmem in
view of its definition in (13). According to [12, eqn. (19)],
there exist c̃1, c̃2 > 0 such that for any (y, a) ∈ Xinst,
c̃1ω0((y, a))2 ≤ V (x) ≤ c̃2ω0((y, a))2. As a result, by the
definition of ω in (12), we obtain the inequality in (i) with
c1 := min{c̃1, γ} and c2 := max{c̃2, γ}.

Proof of item (ii). Given any x = (y, a, θ) ∈ Cmem, introduce
the sets (below, for simplicity, the dependence on x is some-
times omitted)

Ec>0(x) := {(i, j) ∈ E+ | aij = 0 and θij > 0},
Ec=0(x) := {(i, j) ∈ E+ | aij = 0 and θij = 0},
EcΓ(x) := {(i, j) ∈ E+ | Γon

ij (y, a) ≥ 0}.
(15)

According to [21, Prop. 1.1], in view of (10), (11), (13) and
the definition of fθ, we have that

U◦(x; f(x)) = 〈∇V (x), f(x)〉
+γ
∑

(i,j)∈Ec>0

(
−βijθij + Γon

ij (y, a)
)

+γ
∑

(i,j)∈Ec=0
max

{
0,−βijθij + Γon

ij (y, a)
}

= 〈∇V (x), f(x)〉+ γ
∑

(i,j)∈Ec>0

(
−βijθij + Γon

ij (y, a)
)

+γ
∑

(i,j)∈(Ec=0∩EcΓ) Γon
ij (y, a)

= 〈∇V (x), f(x)〉+ γ
∑

(i,j)∈Ê
(
−βijθij + Γon

ij (y, a)
)
,

where Ê(x) := Ec>0(x) ∪ (Ec=0(x) ∩ EcΓ)(x)). Note that [12,
eqn. (20)] holds because variables (y, a) obey the same flow
dynamics as in (8) and (11). Then 〈∇V (x), f(x)〉 ≤ −c̃FV (x)
for some c̃F > 0. Consequently,

U◦(x; f(x)) ≤ −c̃FV (x)− γ
∑

(i,j)∈Ê

βijθij + γ
∑

(i,j)∈Ê

Γon
ij (y, a).

The expression of Γon
ij in (7), together with (14) yields

∑
(i,j)∈Ê

Γon
ij (y, a) =

∑
(i,j)∈Ê

(
−
(

1 +
η2

didj

)
(yi − yj)2

+
∑
6̀=i, ` 6=j

(
(dj + 1)ϕi`(yi − y`)2 + (di + 1)ϕj`(yj − y`)2

))
≤ n

∑
(i,j)∈Ê

∑
` 6=i, 6̀=j

(
ϕi`(yi − y`)2 + ϕj`(yj − y`)2

)
≤ n

∑
(i,`)∈V2

ϕi`(yi − y`)2 + n
∑

(j,`)∈V2

ϕj`(yj − y`)2

= 4nV (x) + 4nV (x) = 8nV (x), (16)

which can be substituted in the preceding inequality to get

U◦(x; f(x)) ≤ −(c̃F − 8nγ)V (x)− γ
∑

(i,j)∈Ê

βijθij . (17)

Now, θij = (1− aij) max{0, θij} for (i, j) ∈ Ê ⊂ Ec>0 ∪Ec=0,
and (1 − aij) max{0, θij} = 0 for (i, j) ∈ E+\Ê , because
either aij = 1 or θij ≤ 0 for those edges. Then,

U◦(x; f(x)) ≤ −cFU(x), (18)

where cF = min{c̃F −8nγ, β} and β := min(i,j)∈E+ βij > 0,
which implies item (ii) with any γ ∈ (0, c̃F8n ).
Proof of item (iii). From (11b), for each x ∈ Dmem and υ ∈
g(x), there exists (i, j) ∈ E+ such that x ∈ Don

ij,mem∪Doff
ij,mem,

and a+ ∈ gij(y, a). Since Don
ij,mem and Doff

ij,mem are disjoint,
then two cases may occur: case “on” and case “off” below.
Case “on”: x ∈ Don

ij,mem. In this case, aij = aji = 0,
Γon
ij (y, a) ≥ ε and θij ≥ 0. Since link (i, j) is activated at this

jump, a+
ij = a+

ji = 1 and from (5), (6), the other connectivity
variables, as well as all the memory variables in view of (11),



remain constant across the jump. Consequently,

U(υ)− U(x) = V (υ)− V (x)− γmax{0, θij}. (19)

Following the proof [12, Lemma 5], we get V (υ) − V (x) =
1

2(di + 1)(dj + 1)

(
−Γon

ij (y, a)− η2

didj
(yi − yj)2

)
.

Thus, (19) yields

U(υ)− U(x) ≤ 1

2d+
i d

+
j

(
−ε− η2

didj
(yi − yj)2

)
,

where d+
i = di + 1 and d+

j = dj + 1. Taking cJ ∈
(

0,
ε

2n2

]
,

characterizing the least possible decrease with n agents, we
prove item (iii) for the case “on”.
Case “off”: x ∈ Doff

ij,mem. In this case, aij = aji = 1,
Γoff
ij ≤ −ε and θij ≤ 0. Link (i, j) is deactivated at this jump

and a+
ij = a+

ji = 0. The other connectivity variables and the
memory variables remain constant. Then (19) holds again and
following again the proof of [12, Lemma 5], we deduce that

V (υ) − V (x) =
1

2didj

(
Γoff
ij (y, a)− η2

didj
(yi − yj)2

)
. Thus,

(19) yields

U(υ)− U(x) ≤ 1

2didj

(
−ε− η2

didj
(yi − yj)2

)
.

Selecting cJ ∈
(

0,
ε

2n2

]
, item (iii) holds in case “off”.

Thus, item (iii) holds with cJ :=
ε

2n2
. �

Proof of Theorem 1. To prove that maximal solutions to
(11) are complete, we invoke [16, Prop. 6.10]. First, the
viability condition is satisfied in view of the system definition.
Secondly, g(Dmem) ⊂ Cmem∪Dmem. Moreover, using W (x) =
y>y, we have 〈∇W (x), f(x)〉 = −2y>Φy ≤ 0, therefore
the y components are bounded. Also the memory variables
θ are bounded, because they are constant across jumps and
the components of its flow map are exponentially stable filters
with integrable inputs. Consequently, maximal solutions do
not escape in finite time and [16, Prop. 6.10] establishes their
completeness. Eventual continuity follows from the fact that
the decrease of U across jumps in item (iii) of Proposition 1
is constant at each jump and that U does not increase on flows
in item (ii) of Proposition 1, therefore any solution jumping
forever would eventually lead to a negative U(x), contradicting
item (i) of Proposition 1. About convergence of solutions,
state a settles due to eventual continuity, y settles too because
〈∇W (x), f(x)〉 = −2yTΦy = 0 and symmetry of Φ implies
−2ẏ = Φy = 0, finally θ converges too because it is a linear
filter with a converging input.

Let us now prove the KL bound on the solutions. Since
the conditions of Proposition 1 are analogous to those of [12,
Lemma 5], we can proceed as in [12, eq. (23)] to obtain

ω(x(t, j)) ≤ β(ω(x(0, 0)), t, j)

:=
c2
c1

ecF ·t
(

1−min

{
1,

cJ
c2ω(x(0, 0))

})j

ω(x(0, 0)),

establishing a class KLL bound [3], which is easily trans-
formed into a class KL bound ω(x(t, j)) ≤ β̄(ω(x(0, 0)), t+j)
constructing β̄ from β as in [3, Lemma 6.1]. �

IV. SIMULATIONS

Consider n = 15 agents, ε = 0.01 and η = 3 in (7).
The initial topology is an Erdős-Rényi random graph, with
probability p of having an interconnection between each node
pair, while the initial values of yi, i ∈ {1, . . . , n} are selected
randomly in the interval [0, 1]. Simulation results for model
(8) use the Matlab toolbox [24] and are reported in Fig. 1.

Initial Graph Final Graph | jumps = 26

Fig. 1. Initial and final topologies for given y(0, 0), with p = 0.1. Nodes
have been sorted counterclockwise to clearly visualize the clusters appearing
in the final topology.

We then study model (11), the impact of the choices of βij
and the initial values of θij on the evolution of the opinions, for
the same y(0, 0) as in Fig. 1. In particular, we take for βij = β
with β ∈ {0.1, 50}, and θij(0, 0) = θo with θo ∈ {0, 0.01, 1}
for aij(0, 0) = 1 and θo = 0 otherwise, as well as the case
where θo takes random values in [−1, 0), for all (i, j) ∈ E+.
The final graphs are depicted in Fig. 2 and 3, showing that the
opinions converge to fixed agreement values in each cluster,
as stated in Corollary 1. The communities arising from model
(8) and (11) are generally different for any selection of initial
conditions. The simulations show that the communities are
significantly influenced by the novel memory variable. Only
for θo = 0 the clusters in Fig. 3 are the same as those in
Fig. 1. Indeed, even with a small value for θo in combination
with a high value of β leads to significantly different clusters
compared to the ones in [12].

When comparing Fig. 2 and 3, we note that positive values
of θ tend to preserve the existing initial interconnections,
leading to larger clusters. This suggests that agents remember
their mutual relationships with each other. On the other hand,
negative values generate clusters made of fewer agents in
general, see Fig. 2 compared to Fig. 3. The evolutions of
y and θ as functions of the continuous-time t are depicted in
Fig. 4 for β = 0.1 and θo = 1. Two clusters appear as time
grows, in agreement with the corresponding plot in Fig. 2.
When agents i and j are in the same cluster, θij converges
to 0 just as Γoff

ij (y, a) does in this case. When agents i and j
are not in the same cluster, θij converges to the same values
of Γon

ij (y, a)/βij in view of (10). This ratio, Γon
ij (y, a)/βij , can

take any constant value in (−∞, ε] in view of (11b). Hence, in
some cases we have θij(t, j)→ 0 as t+j→∞ although agents
i and j are not in the same cluster. That said, to distinguish
agents from the same clusters, it is more relevant to monitor
σij defined as:

σij := (2aij − 1)
|θij |

|(1− aij)Γon
ij (y, a) + aijΓ

off
ij (y, a)|

. (20)



Final Graph |  = 50 | o = 1 | jumps = 44 Final Graph |  = 50 | o = 0.01 | jumps = 44

Final Graph |  = 0.1 | o = 1 | jumps = 35 Final Graph |  = 0.1 | o = 0.01 | jumps = 44

Fig. 2. Four different final topologies for different couples of (β, θ(0, 0)).

Final Graph |  = 0.1 | o = 0 | jumps = 26 Final Graph |  = 0.1 | 
o
  [-1,0) | jumps = 20

Fig. 3. Different final topologies for different, non positive θ(0, 0).

At steady-state, σij either converges to 1/βij if agents i
and j belong to the same cluster, or to −1/βij otherwise.
The influence of βij is clear here: the smaller βij , the more
important the past is and the bigger σij , and vice versa.
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Fig. 4. Values of y (left) and θ (right) for β = 0.1 and θo = 1. Different
colors have been used for different clusters in the final topology.

V. CONCLUSIONS

We have presented a hybrid model of opinion dynamics
where the connectivity among individuals takes into account
both the present and the past values of the opinions of the
respective individuals. We believe that the idea of taking
into account the past when defining connectivity in opinion
dynamics is appealing and relevant, and that it has been largely
unexplored so far. Further investigation on more complex
opinion dynamics models could follow the path outlined in
this work, exploiting the hybrid formalism, and hence, all the
technical result available. Another direction to investigate re-
sides in testing the proposed model on real world applications.
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