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The three-dimensional transition in the flow around a rotating cylinder

The flow around a circular cylinder rotating with a constant angular velocity, placed in a uniform stream, is investigated by means of two-and three-dimensional direct numerical simulations. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (>2). A second kind of instabilty appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. Threedimensional computations are carried out to analyse the three-dimensional transition under the effect of rotation for low rotation rates. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. The linear and nonlinear parts of the three-dimensional transition have been quantified by means of the amplitude evolution versus time, using the Landau global oscillator model. Proper orthogonal decomposition of the three-dimensional fields allowed identification of the most energetic modes and three-dimensional flow reconstruction involving a reduced number of modes.

Introduction

The flow around a circular cylinder is representative of many phenomena that occur in fluid dynamics. This study describes the transition to turbulence in the wake past a rotating circular cylinder, by means of two-and three-dimensional direct numerical simulation. There are a number of experimental investigations and of DNS studies concerning the three-dimensional vortex dynamics of a fixed cylinder, e.g. [START_REF] Williamson | The natural and forced formation of splot-like vortex dislocations in the transition of a wake[END_REF], [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF], [START_REF] Braza | Successive stages and the role of natural vortex dislocations in three-dimensional wake transition[END_REF], but only a few numerical studies devoted to the three-dimensional transition including wall rotation effects. The flow field depends mainly on two parameters, the Reynolds number Re and the rotation rate α: Re = U ∞ D/ν where D is the cylinder diameter, U ∞ is the free-stream velocity and ν is the kinematic viscosity of the fluid; α = Dω 0 /(2U ∞ ) where ω 0 is the angular velocity of the cylinder.

The earliest experiments on the flow past a circular rotating cylinder were performed by [START_REF] Prandtl | Application of the "magnus effect" to the wind propulsion of ships[END_REF]. More recently, the early phase of the establishment of the flow past a circular cylinder started impulsively into rotation and translation was investigated experimentally and numerically by [START_REF] Badr | Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4[END_REF]. They observed that there is no periodic vortex shedding for α > 2. Concerning the established state, the twodimensional flow for low and moderate Reynolds number under the rotation effect was studied by [START_REF] Ingham | A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers[END_REF] and later by [START_REF] Kang | Laminar flow past a rotating circular cylinder[END_REF]. Stojković, Breuer & Durst (2002) were the first to notice the existence of a second shedding mode for 4.8 6 α 6 5.15 at Re = 100. The two-dimensional numerical study of Stojković et al. (2003) confirmed the existence of this second mode in the Reynolds number range 60 6 Re 6 200. Different flow regimes as rotation speed increases were investigated by [START_REF] Mittal | Flow past a rotating cylinder[END_REF], at Re = 200, 0 6 α 6 5. [START_REF] Cliffe | The effect of cylinder rotation and blockage ratio on the onset of the periodic flows[END_REF] studied the effect of the rotation of a cylinder on the critical Reynolds and Strouhal numbers at the Hopf bifurcation point. Apart from the study of [START_REF] Tokumaru | The lift of a cylinder executing rotary motions in a uniform flow[END_REF] on the aspect ratio influence on the mean lift coefficient, and the more recent study of [START_REF] Mittal | Three-dimensional instabilities in flow past a rotating cylinder[END_REF] (Re = 200 and α = 5), to our knowledge there are no studies qualifiying the three-dimensional effects of the rotation in the Reynolds number range of the present study.

In the present paper, the flow around a rotating circular cylinder placed in a uniform stream, figure 1, is investigated by means of two-and three-dimensional direct numerical simulations, using the code ICARE/IMFT, [START_REF] Braza | Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[END_REF], [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF]. The objectives of the present work are summarized as follows:

(a) To analyse the onset of the three-dimensional transition phenomena under the rotation effect by means of direct numerical simulations, which offers the possibility of dissociating the purely three-dimensional from the two-dimensional mechanisms, which co-exist and interact in the physical experiment.

(b) To study the amplification of the three-dimensional instability process in the spanwise direction using the DNS results, by the Landau global oscillator model, and find the critical Reynolds number for the appearance of the secondary instablity under the rotation effect.

(c) To analyse the organized modes under the rotation effect by a three-dimensional proper orthogonal decomposition.

Summary of the numerical method

The two-and three-dimensional simulations were carried out using the code ICARE of the IMFT, in finite-volume formulation. The governing equations are the continuity and the Navier-Stokes equations for an incompressible fluid, written in general curvilinear coordinates in the (x, y)-plane, while the spanwise component z is in Cartesian coordinates. The numerical method is based on the pressurevelocity formulation using a predictor-corrector pressure scheme, [START_REF] Braza | Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[END_REF]. The temporal discretization adopts the [START_REF] Peaceman | The numerical solution of parabolic and elliptic differential equations[END_REF] scheme in an alternating-direction-implicit formulation. The method is second-order accurate in time and space. The staggered grids by [START_REF] Harlow | Numerical calculation of the time-dependent viscous incompressible flow of fluids with free surface[END_REF] are employed for the velocity and pressure variables.

H-type grids are used because they allows more physical boundary conditions to be introduced on the external boundaries avoiding branch-cut lines. A grid dependence study for the three-dimensional flow around a cylinder with the same code is presented in [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF], and optimum grids have been chosen in the present study. The grid used is (250 × 100 × 80). The spanwise length of the computational domain is 12D where D is the cylinder diameter. The boundary conditions include a nonreflecting condition at the outer boundary to avoid feedback effects, according to [START_REF] Jin | A non-reflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations[END_REF]. A detailed presentation of the boundary conditions for the cylinder can be found in [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF]. For the spanwise free edges of the computational domain, periodic boundary conditions are applied. All presented physical quantities are made dimensionless using upstream velocity and cylinder diameter.

Successive stages of the two-dimensional transition

For low Reynolds numbers, Re < 48, the flow remains steady as the rotation rate increases. For higher Reynolds numbers, an increase in the rotation rate yields successive changes to the flow regime, as described below. At each Reynolds number, the same successive changes occur as a function of α. For low rotation rate α < α L1 , figure 2 shows unsteady flow development similar to the von-K árm án vortex shedding (mode I). This pattern is asymmetric towards the upper part of the cylinder due to the rotation sense. The effect of increasing rotation is to attenuate the contra-rotating vortices from the lower side of the cylinder; thus the instability mode vanishes and the flow is steady for α L1 < α < α L2 . Owing to the increasing rotation rate in association with the strong viscous effect near the wall, the shearing mechanism is increased, and a second instability, mode II, appears in the range α L2 < α < α L3 . In this interval, only counter-clockwise vortices are shed from the upper part of the cylinder with a large wavelength (figure 2, bottom). For α > α L3 , the shearing rate becomes very high and increases the viscous effects near the wall. As a result, the flow becomes steady. For α < α L1 , the Strouhal number St = f D/U ∞ of vortex shedding is practically constant and decreases as a function of α before the first bifurcation, and is very low in the second mode interval, as shown in figure 3(b). The critical α values are presented in figure 3(a) for different Reynolds numbers in comparison with results of [START_REF] Mittal | Flow past a rotating cylinder[END_REF] and Stojković et al. (2002Stojković et al. ( , 2003)). This figure shows that the critical Reynolds number for the appearance of the first flow unsteadiness increases with α.

Three-dimensional transition

The objectives of this section are to analyse the onset and modification of three-dimensional transition phenomena under the rotation effect with respect to the coherent structures in the wake. Without rotation, at Re = 200, the threedimensionality starts from an amplification of the w-velocity component (in the spanwise direction) versus time in the near wake (figure 4a). There is a linear amplification rate followed by a nonlinear state that leads finally to a saturation state as reported by [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF]. The w amplification corresponds to the development of a secondary instability involving the three-dimensional modification of the von K árm án mode which starts to display a regular spanwise undulation the three-dimensional case. The rotation in three-dimensional computations induces a modification in the strain axis of the von K árm án vortices. The amplification of the secondary instability under the wall rotation effect can be studied by means of the Landau global oscillator model, [START_REF] Provansal | Bénard-Von K àrm àn instability: transient and forced regimes[END_REF],

∂A ∂t = σ r A linear growth -l r |A 3 | nonlinear . (4.1)
The real parts of the coefficients σ r and l r can be evaluated by the present DNS study, providing the amplitude variation as a function of period, A/A max , figure 6(a). σ r can be evaluated by the log(A/A max ) variation with time, figure 6(b). For Re = 200 (α = 0), σ r = 0.013 and for Re = 300 (α = 0.5), σ r = 0.041. The σ r evaluation also allows the assesment of the nonlinear growth coefficient near the saturation threshold l r = σ r × A/|A 3 |. l r is found to be positive, which corresponds to a supercritical bifurcation. This means that the bifurcated state exists for Reynolds numbers above critical. l r = 3.055 and 2.314 for Re = 200 and 300 respectively. From the Landau equation (4.1), the critical Reynolds number for the appearance of the secondary instability, for α = 0.5, can be evaluated by performing threedimensional simulations near the threshold, with (Re -Re cr )/Re cr a small parameter. The exponential growth coefficient σ r can be written as a function of the critical Reynolds number near the threshold: σ r = k (Re -Re cr ). According to [START_REF] Provansal | Bénard-Von K àrm àn instability: transient and forced regimes[END_REF], k is a reduced frequency and σ r can be also written as σ r = (1/5) ν/D 2 (Re -Re cr ) where ν is the kinematic viscosity and D the cylinder diameter.

If this global oscillator model is verified by the physics of the present bifurcation, σ r must therefore vary linearly as a function of Reynolds number near the threshold. This is examined by the present direct simulation, for α = 0.5. Figure 7 shows the σ r variation versus Reynolds number. The Reynolds number 300 is too far from the threshold and this point is not taken into account for the assessment of the critical value. The four points corresponding to lower Reynolds numbers clearly indicate a straight line definition that cuts the Re axis at the value 219.8. Therefore, the critical Reynolds number is higher than for the α = 0 case, evaluated by the DNS of [START_REF] Persillon | Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation[END_REF].

The above discussion provides the amplification characteristics of the threedimensional global instability by a DNS approach and by a simpler oscillator In the following section we analyse the energy of the organized modes in space and reconstruct the pattern of the three-dimensional coherent structures.

POD analysis

The analysis of the three-dimensional coherent pattern is carried out by means of a proper orthogonal decomposition (POD), using the snapshot method, [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF]. A subdomain of 160 × 52 × 80 points has been stored for 6 fundamental periods of the votrex shedding; 170 successive instantaneous fields were used. The domain size and time-dependent storage are sufficient to capture the secondary instability and of the main vortex pattern.

Figure 8(a) shows the energy diagram of the first 100 POD modes on a log-log scale, and figure 8(b) shows a zoom of the first 20 modes on a linear-log scale for Reynolds number 200 at α = 0 and α = 1.5. The rotation is found to increase the energy of the modes, as well as to slightly delay the energy decay, for small α values and for two similar Reynolds numbers. Comparing the slope of the energy decay in two-dimensional simulations, figure 8(c), and the three-dimensional decay, it can be seen that the latter is less abrupt than in the two-dimensional case. It displays a more chaotic character which is captured by the DNS. Figure 9 shows the topology of the first five POD modes for Re = 300 and α = 0.5. Mode 1 is very close to the time-averaged flow, forming two main vortex lobes downstream of the cylinder. The averaged vortex pattern is subjected to a transverse undulation, according to the secondary instability. The two next POD modes, 2 and 3, have comparable energy. They are composed of a single row of opposite-sign patterns. Their three-dimensional evolution shows the insertion of a half-wavelength pattern between the principal undulation shown for mode 1. This pattern is more pronounced in mode 3. Modes 4 and 5 are more fragmented by this half-wavelength spanwise pattern, which is developed beyond x/D = 1D and a two-vortex row is organized as with respect to the rear axis. The three-dimensional flow reconstruction is shown in figure 7. A 3-mode reconstruction does not provide a vortex pattern comparable with the instantaneous field. It can be seen that the flow pattern reconstructed with 11 and 19 modes compares quite well to the instantaneous one, especially concerning the spanwise undulation. This reconstruction also captures the modification of the strain axis of the coherent structures due to the rotation. The reconstruction with 19 modes shows the 'braid'-like three-dimensional pattern of the streamwise vortices more clearly than the 7-mode reconstruction. Therefore, to capture the secondary instability and to perform an efficient mode A reconstruction, an order of 15-19 modes is needed. It is recalled that the rotation introduces a global vorticity ω z that is superimposed on the instantaneous vorticity distribution and strengthens the vorticity component in the z-direction. Therefore, the von-K árm án vortex rows become more stable to small spanwise perturbations, and as shown by the present DNS, they keep the wavelength of mode A at the present Reynolds number, 300.

Conclusion

The present study obtains two-dimensional transition steps in the flow around a rotating circular cylinder in good agreement with previous studies. The main objective is the analysis of the three-dimensional transition at low Re and α. A number of three-dimensional computations were carried out near the threshold of the bifurcation to the secondary instability. The amplification of the global instability is analysed by DNS and by a global oscillator model. It is shown that the rotation attenuates the secondary instability and increases the critical Reynolds number. This critical Re has been evaluated as Re cr = 219.8, by the DNS approach and by the Landau model for α = 0.5. The analysis of the organized flow pattern was carried out by proper orthogonal decomposition. The three-dimensional flow reconstructions show that about 19 modes are sufficient to capture the secondary instability related to the spanwise undulation. This work has a significant implications for the understanding of the wall rotation effects that occur in a number of applications in rotating systems, as well as in flow control strategies using rotating cylinders.
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 23 Figure 2. Iso-vorticity -2 6 ω z 6 +2, successive steps in the two-dimensional transition as α increases, Re = 200.
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 456 Figure 4. Temporal evolution of the w-velocity component at (x/D, y/D, z/D) = (1.47, 0, 6) (a) Re = 200, α = 0; (b) Re = 200, α = 1.5; (c) Re = 300, α = 0.5.
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 7 Figure 7. Linear amplification versus Reynolds number; assessment of the critical Reynolds number associated to the secondary instability at α = 0.5.
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 89 Figure 8. Energy diagram of the POD modes. (a) Energy contribution of the first 100 POD modes, Re = 300, α = 0.5. (b) Rotation effect on the energy contribution of the first 20 modes. (c) Comparison of the first 20 POD modes in two-and three-dimensional simulations.
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 10 Figure 10. ω z and ω x iso-vorticity surface reconstructions for Re = 300, α = 0.5. (a) Instantaneous field, (b) reconstruction with the first 3 modes, (c) 7 modes, (d) 11 modes, (e) 19 modes.
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