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Introduction

Let F : R n → R be a convex differentiable function admitting at least one minimizer. Let: F * = inf F and X * = argmin F . In this paper, we are interested in the class of unconstrained optimization problems:

min x∈R n F (x). (1) 
In many application fields like image processing, data science or deep learning among many others, there is a need for efficient optimization techniques. Due to the large dimension of the data, it is not possible to resort to second order information (e.g. the Hessian matrix as in Newton's method). This is the reason why first order methods are used, and there is therefore a need for developing accelerated first order methods. Since the seminal work by B.T. Polyak [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] in 1964, the Heavy Ball algorithm is one of the main accelerated algorithm for minimizing C 2 strongly convex functions with Lipschitz gradient. From a mechanical point of view, the Heavy Ball system in continuous time corresponds to the ordinary differential equation (ODE) describing the motion of a body in the potential field F subject to a viscous friction force: ẍ(t) + α ẋ(t) + ∇F (x(t)) = 0 [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF] where α > 0. The physical intuition is that, as time evolves, the trajectory x(t) of the body will reach a minimum of the potential F and solve the optimization problem (1) while reducing the oscillations by benefiting from friction.

In [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] Polyak proved that if F belongs to the class S 2,1 µ,L of µ-strongly convex functions of class C 2 admitting a L-Lipschitz gradient, the solution of the ODE (2) converges linearly to the minimizer of F . Observe that under the same hypothesis on F the solution of the Gradient Flow: ẋ(t) + ∇F (x(t)) = 0

(3) converges linearly to the minimizer of F . It turns that this linear convergence occurs under much weaker hypotheses. In [START_REF] Bégout | On damped second order gradients systems[END_REF] Begout et al. proved that if F satisfies a Lojasiewicz property with exponent θ = 1 2 , a linear decay is achieved similarly to the gradient flow. These linear decays have their analogous in the optimization setting since the discrete Heavy Ball algorithm and the Gradient descent algorithm ensure a linear decay of F (x n ) -F * when F ∈ S 2,1 µ,L or when it belongs to larger sets. Thus, some natural questions arise:

1. Are all these linear decays similar ? 2. Is there any benefit in using an inertial algorithm for functions for which the Gradient Descent is already linear ?

3. If the decay is linear, is the convergence really fast in practice ?

4. Can we give more accurate bounds ?

The response to the first question is simple: no, all these linear decays are not similar. Indeed, if F ∈ S 2,1 µ,L and if x is a solution of the Heavy Ball ODE (2) for α = 2 √ µ, we have F (x(t))-F (x) =

O(e -2 √ µt ) [25, Theorem 9], whereas F (x(t)) -F (x) = O(e -µt ) if x is a solution of the Gradient Flow equation [START_REF] Attouch | The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations[END_REF]. And we can easily prove that these rates are achieved for quadratic functions. This remark gives an answer to the second question: if µ is very small, which is the case in many large scale problems, the inertia of the Heavy Ball method ensures a much better convergence rate. We will see that this square root also appears in the algorithm and it may explain the various practical behaviors of algorithms that are all linear.

In large scale problems, µ may be so small that the linear decay may not be perceptible. In many image processing problems, or statistical problems, one can observe that the convergence is very slow and FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] is better. This slowness is due to the smallness of µ. A typical example is the linear convergence of the Forward-Backward algorithm applied to the LASSO problem i.e. when F (x) = 1 2 Ax -b 2 + λ x 1 . We refer the reader to Section 3.3 for more details. The main contribution of this paper is to provide answers to the last question : yes, we can give more accurate bounds depending on the geometrical assumptions on F . More precisely most of these decays are exponential of the form O(e δ √ µt ). It turns out that the value of δ highly depends on the precise geometrical hypotheses made on F and it is different if F is quadratic or only satisfies a Lojasiewicz property with parameter θ = 1 2 . In this paper, we focus on the class of convex functions being strongly convex, or quasistrongly convex [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF] which is a relaxation of strong convexity. A differentiable function F is said µ-quasi-strongly convex if: For example, the third line of the table asserts that if F ∈ S 1,1 µ , then choosing α = 2 √ µ in the ODE [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF] ensures that F (x(t)) -F * = O(e -√ µt ). The Figure 1 illustrates some of the results provided in this first table .  Similarly we can summarize some of the main results of decay rates of optimization algorithms related to the heavy ball method. These inertial algorithms will be described in Section 4. All of them ensure an exponential decay:

∀x ∈ R n , ∇F (x), x -x * F (x) -F (x * ) + µ 2 x -x * 2 (4 
F (x n ) -F * = O(q n ) ( 5 
)
where the value of q depends on the condition number κ = µ L and is different for each algorithm. Note that the Gradient Descent ensures a decay with q = 1 -κ when F ∈ S 2,1 µ,L . The contributions of the paper illustrated on the Figure 1 are the following: in the continuous setting, our first result is new non-asymptotic and optimal rates and global convergence for the class of quasi-strongly convex functions having a unique minimizer. We also prove that these rates can be improved if F additionally have a L-Lipschitz gradient. In particular we prove that the optimal parameter α in (2) is not α = 2 √ µ for these sub-classes of functions. A second contribution is to propose stability results, namely integrability sufficient conditions on the perturbation in order to preserve the previous convergence rates. A third contribution is then to extend these results to the non differentiable case (namely to the monotone inclusion) and to prove the optimality of these exponential decays building functions for which these rates are reached. In the discrete setting, our main contribution is to provide a new optimization algorithm for minimizing functions of S 1,1 µ,L with better convergence rate than the classical scheme of Nesterov built for S 1,1 µ,L . We finally extend this scheme to composite and non differentiable functions.

The paper is organized as follows. In Section 2, we recall the different geometric assumptions considered in this work for the function to minimize. Section 3 is then devoted to the analysis of the ODE associated to the Heavy Ball algorithm. We propose numerical schemes associated to this analysis in Section 4. We illustrate the results of the paper with numerical examples in Section 5. Eventually, we detail the proofs of the Theorems of Sections 3 and 4 in Section 6.

Preliminaries: relaxing strong convexity

Throughout the paper, we are interested in the class of unconstrained optimization problems: min x∈R n F (x), where F : R n → R is a convex function admitting at least one minimizer. We assume that R n is equipped with the Euclidean scalar product •, • and the associated norm • . As usual B(x * , r) denotes the open Euclidean ball with center x * ∈ R n and radius r > 0. For any real subset X ⊂ R n , the Euclidean distance d is defined as: d(x, X) = inf y∈X x -y for any x ∈ R n .

In this paper we revisit the Heavy Ball method for the class of strongly and quasi-strongly convex functions. Let us first recall the definition of strong convexity:

Definition 1 (Strong convexity). A function F : R n → R is µ-strongly convex if and only if the S 2,1 µ,L Polyak [25] 1- √ κ 1+ √ k 2
Local convergence and optimal rate on S 2,1 µ,L , may diverge on S 1,1 

µ,L S 1,1 µ,L Nesterov [21] 1 - √ κ Global convergence S 1,1 µ,L GFJ [14] 1 -κ Global convergence S 2,1 µ,L SFL [30] 1 -2 √ κ + O(κ) Global convergence, three points method S 1,1 µ,L Siegel [29] 1 - √ κ + O(κ)
F function F -µ 2 • 2 is convex. If F is differentiable, F is µ-strongly convex if and only if: ∀(x, y) ∈ R n × R n , F (y) F (x) + ∇F (x), y -x + µ 2 y -x 2 .
We have a special interest in a more general class of quasi-strongly convex functions introduced by I. Necoara and al. in [20]:

Definition 2 (Quasi-strong convexity [20, Definition 1]). A continuously differentiable function F : R n → R is µ-quasi-strongly convex if for any x ∈ R n : ∇F (x), x -x * F (x) -F (x * ) + µ 2 x -x * 2
where x * denotes the projection of x onto the set X * = argmin F .

We refer the reader to [20, Section 3] for a complete review of relations between several functional classes relaxing the strong convexity properties. Note that strongly convex functions are a subclass of the class of quasi-strongly convex functions. But the quasi-strong convexity does not imply the convexity of F and does not ensure the uniqueness of the minimizer.

The class of quasi-strongly convex functions is a subclass of functions having the Polyak-Lojasiewicz property, namely the Lojasiewicz property [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF] with an exponent equal to 1 2 . In the convex setting the Polyak-Lojasiewicz property is equivalent to a quadratic growth condition which is another relaxation of the strong convexity:

Lemma 1. Let F : R n → R be a continuously differentiable function with X * = argmin F = ∅ and F * = inf F . If F is µ-strongly-quasi convex then F also satisfies the Polyak-Lojasiewicz (PL µ ) property: (PL µ ) : ∀x ∈ R n , ∇F (x) 2 2µ(F (x) -F * ).
If in addition F is convex then F satisfies the growth condition G(2):

G(2) : ∀x ∈ R n , F (x) -F * µ 2 d(x, X * ) 2 .
The quadratic growth condition G(2) can be seen as a sharpness assumption ensuring that the magnitude of the gradient is not too low in the neighborhood of the minimizers, see [START_REF] Aujol | Optimal convergence rates for Nesterov acceleration[END_REF] for more details. Roughly speaking, any function F satisfying G(2) is at least as sharp as x 2 in the neighborhood of its set of minimizers. Note that when F has a unique minimizer, the quadratic growth condition G(2) is exactly the characterisation of the notion of strong minimizer of F introduced in [2, Section 3.3].

Finally observe that any differentiable convex function with a Lipschitz continuous gradient and satisfying a quadratic growth condition, is quasi-strongly convex: Lemma 2. Let F : R n → R be a convex continuously differentiable function with X * = argmin F = ∅ and F * = inf F . If F has a L-Lipschitz continuous gradient for some L > 0 and satisfies the growth condition G(2) then F is µ 2 L -quasi-strongly convex. Proof. Using the assumption that F has a Lipschitz continuous gradient, the Polyak-Lojasiewicz inequality (PL µ ) and then the quadratic growth condition, we have:

∀x ∈ R n , ∇F (x), x -x * F (x) -F * + 1 2L ∇F (x) 2 F (x) -F * + µ L (F (x) -F * ) F (x) -F * + µ 2 2L d(x, X * ) 2 .

The continuous case

Let F : R n → R be a convex continuously differentiable function admitting at least one minimizer.

In this section we study the convergence rates in finite time for the values F (x(t)) -F * along the trajectories of the perturbed second-order ordinary differential equation:

ẍ(t) + α ẋ(t) + ∇F (x(t)) = g(t) (6) 
for any t t 0 , where t 0 > 0 and g : [t 0 , +∞[ is an integrable source term that can be interpreted as an external perturbation exerted on the system. We assume that, for any given initial conditions (x 0 , v 0 ) ∈ R n × R n , the Cauchy problem associated with the ODE [START_REF] Aujol | Some first-order algorithms for total variation based image restoration[END_REF], admits a unique global solution satisfying (x(0), ẋ(0)) = (x 0 , v 0 ). This is guaranteed in particular when the gradient of F is Lipschitz on bounded subsets of R n [START_REF] Haraux | On a second order dissipative ODE in Hilbert space with an integrable source term[END_REF][START_REF] Jendoubi | Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term[END_REF].

In his seminal work [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF], B.T. Polyak gives a global convergence rate for strongly convex functions of class C 2 with a Lipschitz continuous gradient. In [START_REF] Bégout | On damped second order gradients systems[END_REF], P. Bégout, J. Bolte and M.A. Jendoubi prove the strong convergence of the trajectory at an exponential decay (depending on the Lojasiewicz exponent) provided that F is real-analytic. More recently B.T. Polyak and P. Shcherbakov prove the exponential decay of the values of F (x(t)) -F * for the class of C 2 functions satisfying the Polyak-Lojasiewicz inequality (PL µ ) without assuming the uniqueness of the minimizer in [START_REF] Polyak | Lyapunov functions: An optimization theory perspective[END_REF].

Let us recall that the exponential decay of solutions of the Gradient Descent flow (3) for functions in (PL µ ) is straightforward. Indeed defining

E(t) = F (x(t)) -F (x * ), we get E (t) = -∇F (x(t)) 2 -µ(F (x(t)) -F (x * )) = -µE(t), which ensures that F (x(t)) -F (x * ) (F (x(t 0 )) -F (x * )) e -µ(t-t0) . (7) 
We can thus observe that the exponent is proportional to µ and not √ µ.

Proving convergence rates for the Heavy Ball method in the case of an objective function which is not C 2 is an active field of research. Without the C 2 assumption, for the class of differentiable strongly convex functions, a suitable choice of the friction parameter α provides an exponential decay of the values F (x(t)) -F * [START_REF] Attouch | The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF][START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF]. More precisely, if F is assumed µ-strongly convex differentiable, J.W. Siegel proves in [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] that for α = 2 √ µ:

F (x(t)) -F * 2 (F (x 0 ) -F * ) e -√ µt (8) 
where x(•) is solution of the ODE (6) with g = 0 and (x(0), ẋ(0)) = (x 0 , 0). Applying [START_REF] Sebbouh | Convergence rates of damped inertial dynamics under geometric conditions[END_REF]Theorem 3] with α = δ √ µ for δ large enough, an exponential decay with an exponent proportional to √ µ has also be obtained in [START_REF] Sebbouh | Convergence rates of damped inertial dynamics under geometric conditions[END_REF] for the class of convex differentiable functions satisfying the Polyak-Lojasiewicz property. Let us also mention the work on higher order ODEs by Shi et al. [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF] where under the same hypotheses as [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF], the authors get a convergence rate of the order

O e - √ µ
4 t (which is of course not as good as what we get in this paper). The goal of this section is to provide non-asymptotic convergence rates for the values F (x(t))-F * that can be achieved for the class of quasi-strongly convex functions and the sub-class of quasi-strongly convex functions having a Lipschitz continuous gradient. In particular, we provide optimal convergence rates for the class of differentiable quasi-strongly convex functions.

Convergence rates in the unperturbed case

Let us first consider the unperturbed ODE:

ẍ(t) + α ẋ(t) + ∇F (x(t)) = 0 (9) 
where F : R n → R is a differentiable convex function admitting a unique minimizer x * . Assume that F is additionally quasi-strongly convex. Based on a Lyapunov analysis, the aim of this paragraph is to establish non-asymptotic convergence rates for the values F (x(t)) -F * along the trajectory x(t) solution of [START_REF] Balti | Asymptotic for the perturbed heavy ball system with vanishing damping term[END_REF]. The following Lyapunov energy plays a central role in our whole analysis:

E λ,ξ (t) = F (x(t)) -F * + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 x(t) -x * 2 (10) 
where λ and ξ are two real parameters. To establish non-asymptotic results, we will need the following technical lemma:

Lemma 3. Let F : R n → R be a continuously differentiable convex function with X * = argmin F = ∅ and F * = inf F . Let α > 0 and t 0 > 0. Let x be the solution of the ODE (9) for given initial conditions (x(t 0 ), ẋ(t 0 )) = (x 0 , v 0 ) and M 0 = F (x 0 ) -F * + 1 2 v 0 2 . Then:

∀t t 0 , F (x(t)) -F * M 0 , ẋ(t) 2 2M 0 .
Assume in addition that F satisfies the growth condition G(2) for some constant µ > 0. Then for any minimizer x * ∈ X * , for all λ 0 and for all ξ 0, we have:

∀t t 0 , E λ,ξ (t) 1 + λ √ µ + 1 2 M 0 .
Proof. Introducing the Lyapunov energy: W (t) = F (x(t)) -F * + 1 2 ẋ(t) 2 and using the ODE (9), we easily prove:

W (t) = ∇F (x(t)), ẋ(t) + ẍ(t), ẋ(t) = -α ẋ(t) 2 0.
The energy W is so non increasing: ∀t t 0 , W (t) W (t 0 ). We then deduce:

∀t t 0 , F (x(t)) -F * M 0 , ẋ(t) 2 2M 0 .
where:

M 0 = W (t 0 ) = F (x 0 ) -F * + 1 2 v0 2 > 0.
Assuming that F satisfies the growth condition G(2) with a constant µ > 0, we get:

λ(x(t) -x * ) + ẋ(t) 2 λ 2 x(t) -x * 2 + ẋ(t) 2 + 2λ x(t) -x * ẋ(t) 2 µ λ 2 + 2 + 2λ 2 µ √ 2 M 0 = 2 λ √ µ + 1 2 M 0 .
Since ξ 0 we finally get the expected inequality.

Our first result whose proof is detailed in Section 6.1, provides a non-asymptotic convergence rate for the values F (x(t)) -F * for the class of quasi-strongly convex functions.

Theorem 1. Let F : R n → R be a continuously differentiable function with X * = argmin F = ∅ and F * = inf F . Let α > 0 and t 0 > 0. Let x be the solution of the ODE (9) for given initial conditions

(x(t 0 ), ẋ(t 0 )) = (x 0 , v 0 ). Let M 0 = F (x 0 ) -F * + 1 2 v 0 2
. Assume that F is µ-quasi-strongly convex for some µ > 0 and admits a unique minimizer x * .

• If α 3 µ 2 then:

F (x(t)) -F * 3M 0 1 + ( 2α 3 √ µ + 1) 2 + 2α 2 27µ + 4α 9 √ µ 1 + ( 2α 3 √ µ + 1) 2 e -2α 3 (t-t0)
39M 0 e -2α 3 (t-t0) .

• If α > 3 µ 2 then:

∀t t 0 , F (x(t)) -F * M 0 µ + α + √ µ -α 2 -4µ 2 3µ -α 2 + α α 2 -4µ e -(α- √ α 2 -4µ)(t-t0) .
This rate is optimal in the sense that it is achieved for the function

F (x) = µ 2 x 2 .
We refer the reader to Subsection 6.1 for the proof of the theorem.

Let us focus on the optimality of the proposed decay rates. Consider the quadratic function

F (x) = µ 2 x 2 , x ∈ R n .
By definition F is µ-strongly convex, therefore µ-quasi-strongly convex, and has a µ-Lipschitz gradient. In that case, the ODE ( 9) is a second order linear differential equation with constant coefficients whose solutions can be easily computed. A straightforward computation shows that the convergence rates on the values F (x(t)) -F * are given by:

F (x(t)) -F * =    O (e -αt ) if α 2 √ µ O e -(α- √ α 2 -4µ)t if α > 2 √ µ. (11) 
We thus conclude that the convergence rate with the exponent α -α 2 -4µ given in Theorem 1 when α > 3 µ 2 , is optimal for the class of quasi-strongly convex functions. On the other hand, this suggests that the convergence rates given in Theorem 1 when α < 3 µ 2 may be improved at least for the sub-class of quasi-strongly convex functions having a Lipschitz continuous gradient as investigated hereafter.

In fact, we can prove that the exponential rate 2α 3 is actually optimal for the class S µ of strongly convex functions. It also proves that for such functions, α = 2 √ µ is not the parameter that ensures the best decay rate (contrary to the choice e.g. in [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF]).

Proposition 1. Let µ > 0 and α < 3 µ 2 . The exponent 2α 3 in the exponential rate is optimal on the class S µ of strongly convex functions in the sense that for any δ ∈ ( 2α 3 , 4α 3 ) and any

r ∈ (1, 3δ 2α ), if F (x) = |x| r + µ 2 |x| 2 , the solution x of the ODE (9) satisfies lim sup t>t0 (F (x(t)) -F * ) e δt > 0.
Proof. Let us consider the Lyapunov energy E λ,ξ defined by [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. Differentiating E λ,ξ as done in the proof of Theorem 1 (see Subsection 6.1) with λ = 2α 3 and ξ = -2α 2 9 we have the following equality:

∀t t 0 , E (t) + 2α 3 E(t) = 2α 3 27 x(t) -x * 2 + 2α 3 (F (x(t)) -F * -∇F (x(t)), x(t) -x * ) . ( 12 
)
Observe now that for

F (x) = |x| r + µ 2 |x| 2 , we have: F (x)(x -x * ) = r|x| r + µx.
Thus applying [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] we get for this specific function:

∀t t 0 , E (t) + 2α 3 E(t) = 2α 3 27 |x(t)| 2 + 2α 3 (1 -r)|x(t)| r - µ 2 |x(t)| 2 .
It then follows that for any δ ∈ ( 2α 3 , 4α 3 )

∀t t 0 , E (t) + δE(t) 2α 3 27 - αµ 3 - α 2 9 (δ - 2α 3 ) |x(t)| 2 + (δ - 2αr 3 )|x(t)| r . If r ∈ (1, 3δ 2α
) then the right member is non negative for t sufficiently large. It turns out that there exits t 1 and K > 0 such that

∀t t 1 , E(t) Ke -δt .
We conclude following the proof of Theorem 5 (see Subsection 6.3) by showing that y(t) = e δt |x(t)| r cannot tend to 0 when t tends to +∞.

To conclude this section, we finally show that the convergence rates for the values F (x(t))-F * obtained for the general class of quasi-strongly convex functions in Theorem 1, can be improved in the case α < 3 µ 2 if more information about the geometry of F is available. Assume that F additionally has a L-Lipschitz continuous gradient. It turns out that the Lyapunov energy [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] does not allow to choose λ > 2 3 α because the term 3λ 2 -α ẋ(t) 2 in its derivative would be non negative. We propose to add the following mechanic energy to the previous one:

E m (t) = F (x(t)) -F (x * ) + 1 2 ẋ(t) 2 . (13) 
Let β 0. We consider the energy E(t) = E λ,ξ (t) + βE m (t) defined by

E(t) = (1 + β)(F (x(t)) -F * ) + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 x(t) -x * 2 + β 2 ẋ(t) 2 . ( 14 
)
Using Lemma 3, a straightforward computation enables to show that the new energy E is uniformly bounded on the time interval [t 0 , +∞[. More precisely, if F satisfies a global growth condition G(2) for µ > 0 then for any minimizer x * ∈ X * , for all λ 0 and for all ξ 0,

∀t t 0 , E(t) 1 + 2β + λ √ µ + 1 2 M 0 (15) 
where:

M 0 = F (x 0 ) -F * + 1 2 v 0 2 .
We then have:

Theorem 2. Let F : R n → R be a continuously differentiable function with X * = argmin F = ∅ and F * = inf F . Let α > 0 and t 0 > 0. Let x be the solution of the ODE (9) for given initial conditions (x(t 0 ), ẋ(t 0 )) = (x 0 , v 0 ). Assume that F is µ-quasi-strongly convex for some µ > 0 with a L-Lipschitz gradient and admits a unique minimizer

x * . Let M 0 = F (x 0 ) -F * + 1 2 v 0 2 . If α 3 µ 2 then: ∀t t 0 , F (x(t)) -F * 1 + 2 1 + β (1 -β) 2 µ(1 + 2β) + ( √ µ + λ) 2 µ(1 + β) M 0 e -λ(t-t0) with: β = µ L -2α 2 9L and λ = 2α 1+β 3+β = 2 3 α 1 + 2 3 9µ-2α 2 9L+3µ-2 3 α 2 .
Note that the Theorem 2 only provides an upper bound on the actual convergence rate for the values F (x(t)) -F * since the value β = µ L -2α 2 9L is actually a lower bound of the value β * ensuring the best convergence rate. Following the proof of Theorem 2 detailed in Subsection 6.1, the theoretical value β * satisfies:

µ L - 2α 2 9L β * < µ L
and can be numerically evaluated as the smallest root of the polynomial

β → 2α 2 (1 -β 2 ) -(3 + β) 2 (µ -βL) inside the open interval [0, µ L ).
In the case when α = 3 µ 2 then Theorem 2 applies with β = 0 and we find exactly the control provided by Theorem 1 in O(e -2α 3 t ).

Convergence analysis under perturbations

In this section we extend our convergence analysis to the solutions of the perturbed differential equation:

ẍ(t) + α ẋ(t) + ∇F (x(t)) = g(t). (16) 
Our main contribution is to provide integrability sufficient conditions on the perturbation g in order to guarantee that the convergence properties previously established are preserved. All our analysis is based on the same Lyapunov energy as in the unperturbed case:

E(t) = (1 + β)(F (x(t)) -F * ) + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 x(t) -x * 2 + β 2 ẋ(t) 2
where λ and ξ are two real parameters and x * denotes a minimizer of F . To deal with the perturbation term, we choose to add an integral term in the energy E as done in [START_REF] Attouch | Fast inertial dynamics and FISTA algorithms in convex optimization[END_REF][START_REF] Balti | Asymptotic for the perturbed heavy ball system with vanishing damping term[END_REF][START_REF] Aujol | Optimal rate of convergence of an ODE associated to the fast gradient descent schemes for b > 0[END_REF][START_REF] Sebbouh | Convergence rates of damped inertial dynamics under geometric conditions[END_REF] and the references therein:

G(t) = E(t) + T t λ(x(s) -x * ) + (1 + β) ẋ(s)), g(s) ds. (17) 
As previously done all the results stated in this section are non-asymptotic and based on the following lemma extending Lemma 3 to the perturbed case: Lemma 4. Let F : R n → R be a continuously differentiable function with X * = argmin F = ∅ and F * = inf F . Let α > 0 and t 0 > 0. Let x be the solution of the perturbed ODE (16) for given initial conditions (x(t 0 ), ẋ(t 0 )) = (x 0 , v 0 ).

Assume that +∞ t0 g(s) ds < +∞. Then:

∀t t 0 , ẋ(t) √ 2M 0 + I 0 F (x(t)) -F * M 0 + ( √ 2M 0 + I 0 )I 0 where M 0 = F (x 0 ) -F * + 1 2 v 0 2 and I 0 = +∞ t0
g(s) ds < +∞. If in addition F satisfies the growth condition G(2) for some µ > 0, then for any minimizer x * ∈ X * , for all λ 0 and ξ 0, we have for all t t 0

E λ,ξ (t) M 0 + ( 2M 0 + I 0 )I 0 + M 0 + I 0 √ 2 + λ √ µ M 0 + ( 2M 0 + I 0 )I 0 2 .
Proof. Let T > 0. We introduce the following energy:

W (t) = F (x(t)) -F * + 1 2 ẋ(t) 2 + T t g(s), ẋ(s) ds.
Using the ODE ( 16), we easily prove: W (t) = -α ẋ(t) 2 0, so that the energy W is non increasing: ∀t t 0 , W (t) W (t 0 ). We then deduce:

∀t t 0 , F (x(t)) -F * + 1 2 ẋ(t) 2 M 0 + t t0 g(s), ẋ(s) ds M 0 + t t0 g(s) ẋ(s) ds
where:

M 0 = W (t 0 ) = F (x 0 ) -F * + 1 2 v0 2 > 0. Hence: ∀t t 0 , 1 2 ẋ(t) 2 M 0 + t t0
g(s) ẋ(s) ds.

Let:

I 0 = +∞ t0
g(s) ds. Applying the Grönwall-Bellman Lemma [12, Lemma A.5], we obtain:

∀t t 0 , ẋ(t) 2M 0 + t t0 g(s) ds 2M 0 + I 0
Hence for all t t 0 , we have:

F (x(t)) -F * M 0 + ( √ 2M 0 + I 0 )I 0 .
Assuming now that F satisfies the growth condition G(2) with the constant µ, we have:

λ(x(t) -x * ) + ẋ(t) 2 λ 2 x(t) -x * 2 + ẋ(t) 2 + 2λ x(t) -x * ẋ(t) (λ x(t) -x * + ẋ(t) ) 2 2 M 0 + I 0 √ 2 + λ √ µ M 0 + ( 2M 0 + I 0 )I 0 2 .
Since ξ 0 we finally get the expected inequality.

Assuming now some integrability conditions on the perturbation g, we prove that the exponential decays stated in the unperturbed case for the class of quasi-strongly convex functions and its sub-class of quasi-strongly convex functions having a Lipschitz continuous gradient, are preserved.

Theorem 3. Let F : R n → R be a continuously differentiable function with X * = argmin F = ∅ and F * = inf F . Let α > 0 and t 0 > 0. Let x be the solution of the perturbed ODE (16) for given initial conditions (x(t 0 ), ẋ(t 0 )) = (x 0 , v 0 ). Let:

M 0 = F (x 0 ) -F * + 1 2 v 0 2 , I 0 = +∞ t0 g(s) ds, E 0 (λ) = M 0 + ( √ 2M 0 + I 0 )I 0 + √ M 0 + I0 √ 2 + λ √ µ M 0 + ( √ 2M 0 + I 0 )I 0 2
Assume that F is µ-quasi-strongly convex for some µ > 0 and admits a unique minimizer x * .

• Assume that α 3 µ 2 . If

J 0 (β) = +∞ t0 e 2α 1+β 3+β t g(t) dt < +∞
then for all t t 0 :

F (x(t)) -F * e λt0 E 0 (λ) + ( 2(1 + β)E 0 (λ) + (1 + β)I 0 )J 0 (β) 1 + β 1 + 2 1 + β (1 -β) 2 e -λt
where λ = 2α 1+β 3+β and β = 0. If F additionally has a L-Lipschitz continuous gradient then the decay rate can be improved by choosing:

β = µ L - 2α 2 9L and λ = 2α 1 + β 3 + β = 2 3 α 1 + 2 3 9µ -2α 2 9L + 3µ -2 3 α 2 .
• Assume that α > 3 µ 2 . If:

J 0 = +∞ t0 e (α- √ α 2 -4µ)t g(t) dt < +∞ then: ∀t t 0 , F (x(t)) -F * 2µ e λt0 E 0 (λ) + ( 2E 0 (λ) + I 0 )J 0 2µ -(α -α 2 -4µ) 2 e -(α- √ α 2 -4µ)t .

The non-differentiable case

Assume now that F is a convex but non differentiable function. In that case, the Heavy Ball ODE has no meaning anymore but we can consider the following differential inclusion:

0 ∈ ẍ(t) + α ẋ(t) + ∂F (x(t)). ( 18 
)
To study some optimization algorithms dedicated to non smooth functions, it may be useful to understand the behavior of solutions of [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF]. For example, to solve the LASSO problem:

min x∈R n 1 2 Ax -b 2 + β x 1 (19) 
proximal algorithms such as the Forward Backward can be used. It is known that on such problems inertial algorithms like FISTA may be used. It is shown in [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF] that the behavior of FISTA is linked with the behavior of solutions of:

0 ∈ ẍ(t) + α t ẋ(t) + ∂F (x(t)). ( 20 
)
It turns out that FISTA is not the only inertial algorithm that can be used to minimize the LASSO problem or any non smooth optimization problem. If F is non smooth but strongly convex or quasi-strongly convex, it may be interesting to understand how the Heavy Ball algorithm can be used, and how to choose the parameter α. Since the C 2 assumption is irrelevant here, an analysis with weaker assumptions of the differential inclusion may be useful. Actually, we will see in the part dedicated to the optimization scheme, that the previous analysis applies to non smooth functions.

Solutions of the differential inclusion

The differential inclusion problem (18) admits a shock solution [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a nonsmooth set of constraints[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF] and it is known [START_REF] Attouch | The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations[END_REF][START_REF] Cabot | Asymptotics for some vibro-impact problems with a linear dissipation term[END_REF] that for any solution x of (18), F (x(t)) -F * converges to 0 for any α > 0. Most of known convergence rates of F (x(t)) -F * are consequences of a Lyapunov analysis. An energy E is defined and is a non increasing function of t. To prove that E is non increasing, the simplest way is to compute the derivative E of E. To study solutions of (18), we use exactly the same energy defined to study the Heavy Ball ODE :

E λ,ξ (t) = F (x(t)) -F * + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 2 x(t) -x * 2 .
This time these Lyapunov energies may not be differentiable. Fortunately, the shock solutions [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a nonsmooth set of constraints[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF] of the differential inclusion (18) are obtained as limit of C 2 functions, where the the subdifferential ∂F is replaced by its Moreau Yosida approximation [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF].

Let us recall the definition of shock solution for the differential inclusion (18):

Definition 3 (Shock solution [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a nonsmooth set of constraints[END_REF][START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF]). A function x : [t 0 , +∞) -→ R n is an energy-conserving shock solution of the differential inclusion (18) if :

1. x ∈ C 0,1 ([t 0 , T ]; R n ) for all T > t 0 , i.e.
x is a Lipschitz continuous function.

2. ẋ ∈ BV ([t 0 , T ]; R n ) for all T > t 0 .

3. x(t) ∈ dom(F ) for all t ≥ t 0 .

For all

φ ∈ C 1 c ([t 0 , +∞), R + ) and v ∈ C([t 0 , +∞), dom(F )), it holds : T t0 (F (x(t)) -F (v(t)))φ(t)dt ≤ ẍ + α ẋ, (v -x)φ M×C 5.
x satisfies the following energy equation for a.e. t ≥ t 0

F (x(t)) -F (x 0 ) + 1 2 ẋ(t) 2 - 1 2 v 0 2 + t t0 α ẋ(s) 2 ds = 0.
We then consider the Moreau-Yosida approximations {F γ } γ>0 of F defined by:

F γ (x) = min y F (y) + 1 2γ x -y 2 (21) 
and the following approximating ODE:

ẍγ (t) + α ẋγ (t) + ∇F γ (x γ (t)) = 0 x γ (t 0 ) = x 0 ẋγ (t 0 ) = v 0 . (22) 
The differential equation ( 22) falls into the classical theory of differential equations and admits a unique solution x γ of class C 2 on [t 0 , +∞) for all γ > 0. More precisely, using [1, Theorems 3.2 and 3.3], we have the following result:

Theorem 4. Assume F to be a lower semi continuous convex function. Let {F γ } γ>0 the Moreau-Yosida approximations of F . There exists a sub-sequence {x γ } γ>0 of solutions of (22) that converges to a shock solution of (18) in the following sense:

• x γ -→ γ→0
x uniformly on [t 0 , T ] for all T > t 0 .

• ẋγ -→ γ→0 ẋ in L p ([t 0 , T ]; R n ) , for all p ∈ [1, +∞) and T > t 0 . • F γ (x γ ) -→ γ→0 F (x) in L p ([t 0 , T ]; R n ), for all ∀p ∈ [1, +∞) and T > t 0 .
From Corollary 3.6 of [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF], we also have:

Corollary 1.
Under the same hypotheses of Theorem 4, if dom(F ) = R n , then the differential inclusion (18) admits a shock solution x , such that :

x ∈ W 2,∞ ((t 0 , T ); R n ) ∩ C 1 ([t 0 , +∞); R n ), for all T > t 0 .
It turns out that all the results shown for the Heavy ball ODE remain valid for the differential inclusion [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF]. Indeed, the approximated solutions x γ of Theorem 4 are solutions of the Heavy ball ODE and they thus satisfy all the previous properties. By passing to the limit γ → 0 + , the shock solutions of (18) also satisfies these properties (see e.g. [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF] for more details).

We do not restate all the Theorems of the previous section for the differential inclusion case. However, we state a result for a particular case of interest, the LASSO problem (19):

Corollary 2. Let us set F (x) = 1 2 Ax -b 2 + β x 1 . Assume that Ker(A) = {0}.
Then F is µ-strongly convex, where µ is the minimal spectral value of A * A, there is a solution of the differential inclusion [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF] such that the conclusions of Theorem 1 hold.

Optimality of the decays

In Theorem 1, we assert that if F ∈ qS 1,1 µ i.e. if F is a continuously differentiable µ-quasi-strongly convex function, and if α < 3 µ 2 , we can ensure that:

F (x(t)) -F * = O e -2αt 3
.

In this section, we show that this decay also applies to some solutions of the associated differential inclusion [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF] for functions in qS µ . A natural question arises : is this rate optimal, or can we expect a better rate on qS µ ? The Theorem 5 answers to this question by proving that the exponential rate 2α 3 cannot be improved on the class S µ for any α < 3 µ 2 . Its proof detailed in Section 6.3 lies on lower bounds of suitable Lyapunov energies. 

The discrete case

In this section we present a new inertial scheme to minimize a function F ∈ S 1,1 µ,L i.e. µ-strongly convex, differentiable, whose gradient is L-Lipschitz continuous. In a second time, this scheme is extended to a sum of two convex functions F = f + h using an inertial proximal gradient algorithm. These schemes can be seen as discretizations of the Heavy Ball ODE and they are variations of the schemes proposed by B.T. Polyak [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF], Y. Nesterov [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o( 1 k 2 )[END_REF] and J.W. Siegel [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF].

Most gradient algorithms, classical gradient descent or inertial algorithms, ensure a linear decay of F (x n ) -F * when F ∈ S 1,1 µ,L . This decay depends mostly on the condition number κ:

κ = µ L .
In his book [23, Theorem 2.1.13], Y. Nesterov has shown that for such functions, any first order method cannot ensure in general a better decreasing rate than

F (x n ) -F * = O 1 - √ κ 1 + √ κ 2n
When κ is small, we have

1 - √ κ 1 + √ κ 2 = 1 -4 √ κ + o( √ κ). (25) 
We will see that several algorithms inspired by the continuous Heavy Ball ODE have been proposed to minimize functions belonging to S 1,1 µ,L . In the next section we provide a new scheme achieving the optimal rate for the continuous ODE.

The seminal Heavy Ball algorithm proposed by Polyak in [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] was designed for functions in S 2,1 µ,L that are C 2 and strongly convex. It turns out that the C 2 hypothesis is crucial to ensure the convergence and the rate of the method. Moreover, the convergence result by Polyak [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] is only local (and not global). Since we do not make this C 2 assumption, we will not compare extensively our algorithm to the classical Heavy Ball algorithm.

The Differentiable case

Several algorithms to minimize functions of S 1,1 µ,L or S 2,1 µ,L are inspired by the Heavy Ball ODE in the unperturbed continuous case:

ẍ(t) + α ẋ(t) + ∇F (x(t)) = 0 ( 26 
)
rewritten as the following first order differential system:

ẋ(t) = v(t) v(t) = -αv(t) -∇F (x(t)). ( 27 
)
The first one was proposed by Polyak in [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] for functions in S 2,1 µ,L :

     x n+ 1 2 = x n + 1 - √ κ 1 + √ κ 2 (x n -x n-1 ) x n+1 = x n+ 1 2 -s 2 ∇F (x n ) (28) 
with s = This algorithm is efficient for functions in S 2,1 µ,L but it may diverge for some functions in S 1,1 µ,L , see [START_REF] Ghadimi | Global convergence of the heavyball method for convex optimization[END_REF] for example. It is worth mentioning that Ghadimi et al. in [START_REF] Ghadimi | Global convergence of the heavyball method for convex optimization[END_REF]Theorem 4] prove the linear convergence of such a scheme for functions F in S 1,1 µ,L changing the step and the inertia, but the rate in this case is:

F (x n ) -F * = O((1 -κ) n ) ( 29 
)
that is the best rate that can be achieved of the gradient descent on S 1,1 µ,L . As we will see further, this decay is much worse than the ones that can be achieved using other schemes for small κ since for small κ, κ << √ κ. In his book [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], Nesterov proposes a scheme which is quite similar:

     x n+ 1 2 = x n + 1 - √ κ 1 + √ κ (x n -x n-1 ) x n+1 = x n+ 1 2 -s 2 ∇F (x n+ 1 2 ) (30) 
with s = 1 √ L . This scheme can also be seen as discretization of the Heavy Ball ODE with α = 2 √ µ, but the descent step s 2 is about four times lower. Nesterov proves the convergence of the scheme [START_REF] Van Scoy | The fastest known globally convergent firstorder method for minimizing strongly convex functions[END_REF] for functions in S 1,1 µ,L and he gives a convergence rate:

F (x n ) -F * = O((1 - √ κ) n ). ( 31 
)
Notice that another variant of this algorithm with the same asymptotic decrease rate was also introduced by Y. Nesterov in [START_REF] Nesterov | Gradient methods for minimizing composite objective function. core discussion papers 2007076[END_REF] with an extension to non differentiable functions (but still strongly convex). An application of this last scheme to image processing can be found in [START_REF] Aujol | Some first-order algorithms for total variation based image restoration[END_REF].

The schemes ( 28) and ( 30) are called two points schemes since the computation of x n+1 needs the two previous points x n and x n-1 . These schemes can also be written in another building the point x n+1 from the previous iterate x n and a direction v n . Hence the Heavy Ball algorithm can be written as a two steps scheme where the input is a pair (x n , v n ):

         x n+ 1 2 = x n + sv n v n+ 1 2 = v n x n+1 = x n+ 1 2 -s 2 ∇F (x n ) v n+1 = v n + s(-2 √ µ 1 1+ √ κ v n -∇F (x n )) (32) with s = 2 √ L+ √ µ .
The link between the scheme (32) and the ODE ( 26) with α = 2 √ µ appears in the set up of the variable v n+1 : when κ tends to 0, we can see that:

v n+1 ≈ v n + s(-2 √ µv n - ∇F (x n ))
. Similarly the Nesterov scheme can be written as:

         x n+ 1 2 = x n + sv n v n+ 1 2 = v n x n+1 = x n+ 1 2 -s 2 ∇F (x n+ 1 2 ) v n+1 = v n + s(-2 √ µ 1 1+ √ κ v n -∇F (x n+ 1 2 )) (33) with s = 1 √ L .
Once again the link between the scheme and the ODE can be seen in the expression of v n+1 . Later J.W. Siegel in [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] proposed a variation of these schemes:

         x n+ 1 2 = x n + sv n v n+ 1 2 = (1 + √ κ) -2 (v n -s∇F (x n+ 1 2 )) x n+1 = x n+ 1 2 -s 2 ∇F (x n+ 1 2 ) v n+1 = v n+ 1 2 + s(1 + √ κ) -1 √ κ∇F (x n+ 1 2 ) (34) 
with s = 1 √ L . Notice that the scheme (34) provides the same convergence rate as the scheme proposed by Nesterov, see (31). The expression of v n+1 can be stated as follows:

v n+1 = v n + s (1 + √ κ) 2 -α 1 + √ κ 2 v n + (-1 + √ κ + κ)∇F (x n+ 1 2 ) .
One can observe in this last expression that the sequence (v n ) n∈N is a particular discretization of the variable v = ẋ in [START_REF] Sebbouh | Convergence rates of damped inertial dynamics under geometric conditions[END_REF]. It turns out that this discretization allows to reach a decay rate similar to the Nesterov scheme (31), see Table 1.

We can also remark that for the three given schemes the choice of v n+ 1 2 is arbitrary since x n+1 does not directly depend on v n+ 1 2 . From an algorithmic point of view v n+ 1 2 is actually hidden and it has no real interest in the Polyak and the Nesterov schemes. The main issue in defining v n+ 1 2 is in the theoretical analysis of these inertial algorithms. It turns out that the definition of v n+ 1 2 simplifies the Lyapunov analysis of the scheme introduced by Siegel and will be useful to analyze the scheme we introduce now inspired by the previous ones:

         x n+ 1 2 = x n + sv n v n+ 1 2 = (1 + 3λs 2 ) -1 (v n -s∇F (x n+ 1 2 )) x n+1 = x n+ 1 2 -s 2 ∇F (x n+ 1 2 ) v n+1 = v n+ 1 2 + (1 + λs) -1 λs 2 ∇F (x n+ 1 2 ) (35) with s = 1 √ L .
The careful reader can check that the sequence (v n ) n∈N is yet another discretization of the variable v = ẋ in [START_REF] Sebbouh | Convergence rates of damped inertial dynamics under geometric conditions[END_REF] with α = 3λ 2 . The interest of this new scheme ( 35) is that it allows to provide a better decay rate of F (x n ) -F * that is asymptotically better than the previous ones for suitable choices of λ : Theorem 6. If F is µ-strongly convex, differentiable with a L-Lipschitz gradient and if

λ ≤ √ 2µ 1 + 2 √ κ , ( 36 
)
then the sequence (x n ) n∈N provided by (35) with s = 1 √ L satisfies:

F (x n )-F * 1 - λ 2 2µ -1 F (x 0 ) -F * + 1 2 λ(x 0 -x * ) + 1 + λ √ L v 0 2 1 + λ 2 L - 3λ 2 2L -n
One first should notice that as soon as λ < √ 2µ, then (36) is true as soon as κ is small enough.

Hence, for κ small enough and λ = √ 2µ 1+2 √ κ , the new scheme (35) ensures that

F (x n ) -F * = O(1 + √ 2κ -6κ) -n
It follows that our new scheme improves over Nesterov's rate (31) by a factor √ 2. Recently, a triple momentum method has been introduced in [START_REF] Van Scoy | The fastest known globally convergent firstorder method for minimizing strongly convex functions[END_REF] with the following rate:

F (x n ) -F * ≤ C κ 1 - √ κ 2n . ( 37 
)
When κ is small, we have

(1 - √ κ) 2 = 1 -2 √ κ + o( √ κ). ( 38 
)
This provides a better asymptotic rate. But one should notice that C κ explodes when κ → 0 + . Hence it may not be the best choice when one is interested in finite error bounds. Moreover, as far as we know, this method cannot be extended to the case of composite optimization with F = g + h where g is a L-Lipschitz gradient convex function and h a possibly non smooth convex lower semi-continuous function. The function F to be minimized needs to be differentiable to use the scheme of [START_REF] Van Scoy | The fastest known globally convergent firstorder method for minimizing strongly convex functions[END_REF], contrary to the results presented in this paper (see Theorem 7).

Discrete scheme in the non differentiable case

In many practical problems especially coming from statistics or image processing the function F to minimize is not differentiable. A classical case is the LASSO problem:

F (x) = 1 2 Ax -y 2 + λ x 1
where A is a linear operator. To study the minimisation of such functions, convex but not differentiable, we cannot consider a differential equation involving F . Nevertheless we can consider the following monotone inclusion:

0 ∈ ẍ(t) + α ẋ(t) + ∂F (x(t)). ( 39 
)
This inclusion problem admits a shock solution (see [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b 3[END_REF] and [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a nonsmooth set of constraints[END_REF]) and F (x(t)) -F * tends to 0. When F = f + h, with f differentiable, ∇f is L-Lipschitz and h is convex proper and lower semi continuous, Siegel in [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] proposes an extension of the discrete scheme built for differentiable function. In the following section we prove that our scheme can be directly extended to such function F using the Forward-Backward algorithm, also called Proximal Gradient Operator. We recall the definition of the proximal operator:

prox h (x) = argmin y h(y) + 1 2 y -x 2 .
Using the optimality condition, we have the equivalence:

y = prox h (x) ⇔ x ∈ ∂h(y) + y ⇔ y = (Id + ∂h) -1 (x).
The proximal operator is widely used in convex and non differentiable optimization. It is a generalization of the implicit gradient descent to convex and non differentiable function.

If F is convex, where F = f + h, with f differentiable, ∇f is L-Lipschitz and h is convex proper and lower semi continuous, a classical algorithm to minimize F is the Forward-Backward algorithm defined in the following way:

x n+1 = T (x n ), where T (x) := prox s 2 h x -s 2 ∇f (x) . If s 2 1
L , it can be shown that (F (x n ) -F * ) n∈N tends to 0 and (x n ) n∈N converges (weakly in an infinite dimension Hilbert space) to a minimizer x of F .

The operator T shares many properties with the gradient descent. The algorithm FISTA of Beck and Teboulle [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] can be seen as a Nesterov acceleration to this operator T . Following Siegel [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] we modify the previous scheme so that it can be used with F = f + h with f a smooth strongly convex function with L-Lipschitz gradient and h a possibly non smooth convex function:

we replace g = 1 λ ∇F (x n+ 1 2 ) in (35) by g = λ t 2 x n+ 1 2 -prox s 2 h (x n+ 1 2 -s 2 ∇f (x n+ 1 2 )) ( 40 
)
where t := λs. More precisely the new scheme can be written as:

       λx n+ 1 2 = λx n + tv n v := v n+ 1 2 = (1 + 3t 2 ) -1 (v n -tg) λx n+1 = λx n+ 1 2 -t 2 g v n+1 = v + (1 + t) -1 t 2 g (41)
that is exactly the original scheme (35) replacing g by g. This new scheme shares the same properties as the previous one:

Theorem 7. Let F = f + h. If f is µ-strongly convex, differentiable with gradient L-Lipschitz, if h is convex, proper and lower semi-continuous, if λ ≤ √ 2µ 1 + 2 √ κ , (42) 
then the sequence (x n ) n∈N provided by (41) with s = 1 √ L satisfies :

F (x n )-F * 1 - λ 2 2µ -1 F (x 0 ) -F * + 1 2 λ(x 0 -x * ) + (1 + λ √ L )v 0 2 1 + λ 2 L - 3λ 2 2L -n
One should notice that as soon as λ < √ 2µ, then (42) is true as soon as κ is small enough. This Theorem applies then to the LASSO problem when the function x → Ax -b 2 is strongly convex, i.e. when ker(A) = {0}, and it ensures that in this setting we can expect an exponential decay O(1

+ √ 2κ -6κ) -n for λ = √ 2µ 1+2 √
κ and κ sufficiently small. As far as we know, this is the best rate that can be found in the literature.

Numerical results

In this section, we illustrate the theoretical results of the previous sections.

Case of an anisotropic quadratic function

To compare the Heavy ball based algorithms, we first test them on a toy example:

F (x 1 , x 2 ) = 1 2 x 2 1 + 500x 2 2 . ( 43 
)
For this function, µ = 1 and L = 1000. The starting point is set to In Figure 2, the logarithm of (F (x n ) -F * ) is computed for each sequence provided by the various algorithms. We can first observe that Polyak's scheme [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] has the best asymptotic rate although it is slower at the beginning. Actually, the distance to the minimizer may grow during the first iterations due to the large step size s ≈ 4

x init = [1, 1].
L when κ = µ L << 1. For high accuracy, the Polyak's scheme is the most efficient, but for a fair approximation of the minimizer it may not be the best method to use. We can see that the other algorithms share roughly the same behavior (with a better convergence than Polyak's scheme for the first iterations). Since the function F to minimize is quadratic, it is not surprising (it is known since [25] that Polyak's scheme is asymptotically optimal among quadratic functions). The schemes of Nesterov [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], Siegel [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] and the ones introduced in this paper are built to be as efficient as possible for strongly convex functions (but not for quadratic functions). Moreover all these schemes are discretizations of the same ODE, so that their behaviors are similar.

An example of divergence for Polyak's scheme

In Figure 3 we can observe the convergence of Polyak's scheme to a 3-cycle for a function F ∈ S 1,1 µ,L but F / ∈ S 2,1 µ,L giving light to the difference between the two classes of functions and the possible problematic behavior of Polyak's scheme for the set F ∈ S 1,1 µ,L . This example was given in Lessard et al. [START_REF] Lessard | Analysis and design of optimization algorithms via integral quadratic constraints[END_REF]. 

Case of a non smooth anisotropic strongly convex function

In this last example, we compare the algorithm of Siegel [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF] and the one presented in this paper designed for non smooth and composite functions applied to the function:

F (x 1 , x 2 ) = µ 2 x 2 1 + L 2 x 2 2 + |x 1 | + |x 2 | (44) 
with µ = 10 -2 and L = 10 4 . On this example, we can observe that the convergence to the minimizer is better with our algorithm.

6 Proofs

Proofs of Theorems 1 and 2

We consider the energy E(t) defined by

E(t) = (1 + β)(F (x(t)) -F * ) + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 x(t) -x * 2 + β 2 ẋ(t) 2 .
Differentiating the energy E and using the ODE (9), we have: Using now the µ-quasi-strong convexity of F , we get:

E (t) = (1 + β) ∇F (x(t)) + ẍ(t), ẋ(t) + (λ 2 + ξ) x(t) -x * , ẋ(t) +λ x(t) -x * , ẍ(t) + λ ẋ(t) 2 = -λ ∇F (x(t)), x(t) -x * + (λ -α(1 + β)) ẋ(t) 2 +(ξ + λ(λ -α)) ẋ(t), x(t) -x *
E (t) -λ(F (x(t)) -F * ) - λµ 2 x(t) -x * 2 + (λ -α(1 + β)) ẋ(t) 2 +(ξ + λ(λ -α)) ẋ(t), x(t) -x * -λE(t) + λβ(F (x(t)) -F * ) + λ 2 (ξ + λ 2 -µ) x(t) -x * 2 + 3 2 λ -α + β λ 2 -α ẋ(t) 2 + (ξ + λ(2λ -α)) ẋ(t), x(t) -x *
From now on, there will be 2 cases: the case β = 0 corresponding to the Theorem 1 and the case β 0 corresponding to the Theorem 2.

• If β = 0, we then have:

E (t)+λE(t) λ 2 (ξ+λ 2 -µ) x(t)-x * 2 + 3 2 λ -α ẋ(t) 2 +(ξ+λ(2λ-α)) ẋ(t), x(t)-x * (45) 
• If β 0 and assuming in addition that F has a L-Lipschitz gradient, we have:

F ((x(t)) -F * ≤ L 2 x(t) -x * 2 ,
hence:

E (t) + λE(t) λ 2 (βL + ξ + λ 2 -µ) x(t) -x * 2 + (ξ + λ(2λ -α)) ẋ(t), x(t) -x * + 3 2 λ -α + β λ 2 -α ẋ(t) 2 (46) 
In these two cases, the idea is to choose the parameters λ > 0 (as large as possible) and ξ such that the right side of the differential inequality is negative. For that, we need to control a 21 term of the form:

T (a, b, c) = a u 2 + b v 2 + c u, v (47) 
Lemma 5. If a ≤ 0, b ≤ 0 and c 2 ≤ 4ab, then T (a, b, c) ≤ 0.

Proof. Observe that if a = 0 then c = 0 and the result of the Lemma holds since b ≤ 0. Assume now that a < 0.

T (a, b, c) = -(-a u 2 -b v 2 -c u, v ) - √ -a u - |c| 2 √ -a v 2 - c 2 4a -b v 2 .
Hence, to have T (a, b, c) ≤ 0, it is sufficient to have c 2 4a -b ≥ 0, i.e. (since a < 0): c 2 ≤ 4ab.

Proof of Theorem 1 (case β = 0) As previously stated by (45), for the class of the µ-quasistrongly convex functions F , we have:

E λ,ξ (t)+λE λ,ξ (t) λ 2 (ξ +λ 2 -µ) x(t)-x * 2 + 3 2 λ -α ẋ(t) 2 +(ξ +λ(2λ-α)) ẋ(t), x(t)-x * .
The question now is how to choose the parameter λ > 0 as large as possible and ξ with respect to the friction coefficient α such that the right side of the inequality (45) is negative while ensuring the control of the values F (x(t)) -F * by the energy E λ,ξ .

According to Lemma 5, to get: E λ,ξ (t) + λE λ,ξ (t) 0, it is sufficient to choose λ and ξ such that:

ξ + λ 2 -µ 0, λ 2 3 α, ∆(λ, ξ, α) 0. (48) 
where: ∆(λ, ξ, α)

:= (ξ + 2λ 2 -λα) 2 -λ(ξ + λ 2 -µ) (3λ -2α) .
Firstly, we choose the parameter ξ that minimize the quantity ∆(λ, ξ, α) i.e.:

ξ = - λ 2 2 < 0. ( 49 
)
Thus the conditions (48) can thus be rewritten as:

∆(λ, α) = ∆(λ, - λ 2 2 , α) 0, λ 2 3 α, where: ∆(λ, α) = λ 4 (3λ -2α)(λ 2 -2αλ + 4µ). • Assume first α 3 µ 2 i.e.: λ = 2 3 α √ 2µ.
In that case, we have: ∆( 2 3 α, α) = 0 so that the largest admissible value for λ is: λ * = 2 3 α. With this choice of parameter, we have:

∀t t 0 , E λ,ξ (t) + 2 3 αE λ,ξ (t) 0,
hence using Lemma 3:

∀t t 0 , E λ,ξ (t) E λ,ξ (t 0 )e -2 3 α(t-t0) .
Let us now prove that we can control the trajectory in finite time. Observe that the quasistrong convexity of F ensures that F satisfies the global growth condition G(2) with the real constant µ so that:

∀t t 0 , E λ,ξ (t) (1 - 2α 2 9µ )(F (x(t)) -F * ) + 1 2 λ(x(t) -x * ) + ẋ(t) 2 . (50) 
Hence:

∀t t 0 , E λ,ξ (t) 1 2 λ(x(t) -x * ) + ẋ(t) 2 .
We now set: y(t) = e λt (x(t) -x * ). It follows: 

∀t t 0 , ẏ(t) = e λt λ(
2 2E λ,ξ (t 0 ) + λ 2 y(t 0 ) e -λ 2 (t+t0) 2 e -λ(t-t0) 2E λ,ξ (t 0 ) + λ 2 x(t 0 ) -x * e -λ 2 (t-t0) 2 e -λ(t-t0)
Coming back to the definition of the energy E λ,ξ (t), we have for all t t 0

F (x(t)) -F * = E λ,ξ (t) - 1 2 λ(x(t) -x * ) + ẋ(t) 2 + λ 2 4 x(t) -x * 2 E λ,ξ (t) + λ 2 4 x(t) -x * 2 E λ,ξ (t 0 ) + 2E λ,ξ (t 0 ) + λ 2 x(t 0 ) -x * e -λ 2 (t-t0) 2 e -2 3 α(t-t0)
Using Lemma 3, we then get for all t t 0 ,

F (x(t)) -F * 3M 0 1 + ( 2α 3 √ µ + 1) 2 + 2α 2 27µ + 4α 9 √ µ 1 + ( 2α 3 √ µ + 1) 2 e -2α 3 (t-t0) .
Remembering that α 3 µ 2 , we can prove that the constant in the previous control is uniformly bounded with respect to µ which concludes the proof.

• Assume now that α > 3 µ 2 i.e.: 2 3 α > √ 2µ. In that case, 2 3 α is not an admissible value for λ anymore. Let us then discuss the sign of ∆(λ, α) when λ < √ 2µ < 2 3 α, which is equivalent to study the sign the polynomial G(λ, α) = λ 2 -2αλ + 4µ. Since α > 3 µ 2 , its discriminant δ = α 2 -4µ is non negative and G admits two real roots:

λ ± = α ± α 2 -4µ.
Observe now that α+ α 2 -4µ > 2α 3 , hence α+ α 2 -4µ is not an admissible value for λ. But we easily prove that the hypothesis α > 3 µ 2 is equivalent to: α -α 2 -4µ < √ 2µ, so that the largest admissible value for λ is given by:

λ * = α -α 2 -4µ.
As previously done, the energy E λ,ξ satisfies the following differential inequality: E λ,ξ (t) + λ * E λ,ξ (t) 0 so that using Lemma 3, for all t t 0 E λ,ξ (t) E λ,ξ (t 0 )e -λ * (t-t0)

  1 + 1 + α µ - α 2 µ 2 -4 2   M 0 e -λ * (t-t0)
where:

M 0 = F (x 0 ) -F * + 1 2 v 0 2 .
Coming back now to the definition of the energy and applying the quadratic growth condition G µ (2), we get:

E λ,ξ (t) = F (x(t)) -F * + 1 2 λ(x(t) -x * ) + ẋ(t) 2 - λ 2 4 x(t) -x * 2 F (x(t)) -F * - λ 2 4 x(t) -x * 2 (1 - λ 2 2µ )(F (x(t)) -F * ).
And the expected control on the values F (x(t)) -F * is obtained straightforward since

λ * = α -α 2 -4µ < √ 2µ for any α > 3 µ 2 .
Proof of Theorem 2 (case when β 0) As previously stated for the class of the µ-quasistrongly convex functions F having a Lipschitz continuous gradient, we have:

E (t) + λE(t) λ 2 (βL + ξ + λ 2 -µ) x(t) -x * 2 + 3 2 λ -α + β λ 2 -α ẋ(t) 2 +(ξ + λ(2λ -α)) ẋ(t), x(t) -x * .
The question now is how to choose the parameters λ > 0 as large as possible, β 0 and ξ with respect to the friction coefficient α and the Lipschitz parameter L such that:

∀t t 0 , E (t) + λE(t) 0. ( 51 
)
Let us define:

∆(λ, ξ, α, β) := (ξ + 2λ 2 -λα) 2 -λ(βL + ξ + λ 2 -µ) (3λ -2α + β(λ -2α)) . (52) 
According to Lemma 5, it is sufficient to choose λ and ξ such that:

βL + ξ + λ 2 -µ 0, 3 2 λ -α + β( λ 2 
-α) 0, ∆(λ, ξ, α, β) 0 to ensure that the energy E satisfies the differential inequality (51). First, we choose for ξ the one ensuring that ∆ is minimal, i.e.:

ξ = - λ 2 2 (1 -β) -βλα. (53) 
Re-injecting the optimal ξ into (52), we eventually obtain:

∆(λ, α, β) = ∆(λ, - λ 2 2 (1 -β) -βλα, α, β) = λ 4 ((3 + β)λ -2α(1 + β)) λ 2 (1 -β) -2α(1 -β)λ + 4(µ -βL) .
Consequently, applying Lemma 5, we need to choose the parameter λ as large as possible and satisfying all the following constraints for some β ∈ [0, 1]:

   λ 2 (1 + β) -2αβλ -2(µ -βL) 0, λ 2α 1 + β 3 + β , ∆(λ, α, β) 0 (54)
and the parameter β ∈ [0, 1] that maximizes the value of λ. Let:

P 1 (λ, β, α) = λ 2 (1 + β) -2αβλ -2(µ -βL).
Since ∆(2α 1+β 3+β , α, β) = 0, the quantity 2α 1+β 3+β is the largest admissible value for λ if and only if:

P 1 (2α 1 + β 3 + β , β, α) 0,
or equivalently, if and only if:

Q α (β) = 2α 2 (1 -β 2 ) -(3 + β) 2 (µ -βL) 0 (55) 
for any 0 β < µ L . Let us so discuss the sign of Q α with respect to the choice of α. To that end, observe that assuming α 3 µ 2 , we have:

Q α (0) = 2α 2 -9µ 0, Q α ( µ L ) = 2α 2 (1 - µ L ) > 0.
Hence Q α admits at least one real root, denoted by β * inside the interval [0, µ L [ such that:

∀β ∈ [0, β * ], Q α (β) 0.
Note that the value β = 0 is admissible when α = 3 µ 2 . In any case, the best choice for λ is: λ = 2α 1+β 3+β , and the best rate is obtained for the largest admissible β ensuring the control on the values F (x(t)) -F * . And with these choices of parameters, we get the following control on the energy: E(t) E(t 0 )e -λ(t-t0) .

As in the proof of Theorem 1, we first prove that we can control the trajectory x(t) -x * from the energy E. With our choice of parameters ξ and λ and remembering that the µ-quasi-strong convexity of F ensures that F also satisfies the global growth condition G(2) with the constant µ (see Lemma 2), we have:

E(t) = (1 + β)(F (x(t)) -F * ) - λ 2 4 x(t) -x * 2 + 1 2(β + 1) λ(x(t) -x * ) + (β + 1) ẋ(t) 2 (1 + β - λ 2 2µ )(F (x(t)) -F * ) + 1 2(β + 1) λ(x(t) -x * ) + (β + 1) ẋ(t) 2 .
Observe now that for any β ∈ [0, β * ], we have: Q α (β) 0 which implies:

α (3 + β) µ -βL 2(1 -β 2 ) (3 + β) µ 2(1 + β) .
It follows:

1 + β - λ 2 2µ = 1 + β -2α 2 (1 + β) 2 µ(3 + β) 2 0 
and:

E(t) 1 2(β + 1) λ(x(t) -x * ) + (β + 1) ẋ(t) 2 .
We now define: y(t) = e λ 1+β t (x(t) -x * ). Hence:

ẏ(t) = e λ 1+β t λ 1 + β (x(t) -x * ) + ẋ(t) = e λ 1+β t 1 + β λ(x(t) -x * ) + (β + 1) ẋ(t) e λ 1+β t 2 1 + β E(t) 2 1 + β E(t 0 )e -λ 2 t0 e 1-β 2(1+β) λt .
Remember that λ = 2α 1+β 3+β . Integrating between t 0 and t, we get:

y(t) 3 + β α(1 -β) 2 1 + β E(t 0 )e -λ 2 t0 e 1-β 2(1+β) λt
which implies:

x(t) -x * 3 + β α(1 -β) 2 1 + β E(t 0 )e -λ 2 (t-t0) .
Coming back now to the definition of the energy, we have a control on the values F (x(t)) -F * from the energy and the trajectory x(t) -x * :

(

1 + β)(F (x(t)) -F * ) E(t) + λ 2 4 x(t) -x * 2 1 + 2 1 + β (1 -β) 2 E(t 0 )e -λ(t-t0) .
Using Lemma 3 and the inequality (15), we finally obtain the expected control.

Despite the fact that the value of β * is not exactly known, we can easily get a lower bound on β * when α < 3 µ 2 . Indeed remember that β * is a real root of the polynomial

Q α chosen such that ∀β ∈ [0, β * ], Q α (β) 0 = Q α (β * )
which is equivalent to:

∀β ∈ [0, β * ], α (3 + β) µ -βL 2(1 -β 2 ) . (57) 
Observe now that for any β 0, we have:

(3 + β) 2 2(1 -β 2 ) 9 2
so that it is sufficient to ensure: α 3 µ-βL 2 , or equivalently:

β µ L -2α 2 9L to obtain (57). From the lower bound β = µ L -2α 2 9L
, we obtain a lower bound on λ:

λ = 2α 3 1 + 2 3 9µ -2α 2 9L + 3µ -2 3 α 2 2α 3 .

Proof of Theorem 3

Let λ, ξ and T three real numbers. Let x * be a minimizer of F and x any trajectory solution of:

ẍ(t) + α ẋ(t) + ∇F (x) = g(t),
where: α > 0. We introduce the following Lyapunov energy:

G(t) = E(t) + T t λ(x(s) -x * ) + (1 + β) ẋ(s)), g(s) ds (58) 
where the energy E is defined as in the non-perturbed case by:

E(t) = (1 + β)(F (x(t)) -F * ) + 1 2 λ(x(t) -x * ) + ẋ(t) 2 + ξ 2 x(t) -x * 2 + β 2 ẋ(t) 2 .
Differentiating the energy G, we obtain the following differential inequality on which relies the whole proof of Theorem 3:

G (t) = E (t) -λ(x(t) -x * ) + (1 + β) ẋ(t), g(t) -λE(t) + λ 2 (βL + ξ + λ 2 -µ) x(t) -x * 2 + 3 2 λ -α + β λ 2 -α ẋ(t) 2 +(ξ + λ(2λ -α)) ẋ(t), x(t) -x * .
The parameters β, λ and ξ are chosen as in the unperturbed case:

• If α 3 µ 2 , we then choose:

β = 0, λ = 2α 3 , ξ = - λ 2 2 
for the class of quasi-strongly convex functions, and:

β = µ L - 2α 2 9L , λ = 2α 1 + β 3 + β = 2 3 α 1 + 2 3 9µ -2α 2 9L + 3µ -2 3 α 2 , ξ = - λ 2 2 (1 -β) -αβλ
for the class of quasi-strongly convex functions having a Lipschitz continuous gradient.

• If α > 3 µ 2 , we then choose:

β = 0, λ = α -α 2 -4µ, ξ = - λ 2 2 .
In both cases, with these choices of parameters and as shown in the proofs of Theorems 1 and 2, we have:

∀t t 0 , E(t) = (1 + β)(F (x(t)) -F * ) + 1 2 (ξ + β 1 + β λ 2 ) x(t) -x * 2 + 1 2(β + 1) λ(x(t) -x * ) + (β + 1) ẋ(t) 2 1 2(β + 1) λ(x(t) -x * ) + (β + 1) ẋ(t) 2 (59) 
In particular we deduce that for all t t 0 , G (t) -λE(t) 0. The energy G is so non-increasing, hence: ∀t t 0 , G(t) ≤ G(t 0 ), i.e.:

∀t t 0 , E(t) E(t 0 ) + t t0 g(s), ẋ(s) + λ(x(s) -x * ) ds E(t 0 ) + t t0 g(s) (1 + β) ẋ(s) + λ(x(s) -x * ) ds.
Coming back now to the inequality (59), we have:

1 2 (1 + β) ẋ(t) + λ(x(t) -x * ) 2 (1 + β)E(t) (1 + β)E(t 0 ) + t t0 (1 + β) g(s) (1 + β) ẋ(s) + λ(x(s) -x * ) ds
Applying the Grönwall-Bellman Lemma [12, Lemma A.5], we obtain:

∀t t 0 , (1 + β) ẋ(t) + λ(x(t) -x * ) 2(1 + β)E(t 0 ) + (1 + β) t t0
g(s) ds.

Since

+∞ t0 g(s) ds < +∞ by assumption, we can conclude that:

sup t t0 (1 + β) ẋ(t) + λ(x(t) -x * ) 2(1 + β)E(t 0 ) + (1 + β) +∞ t0 g(s) ds < +∞.
We set:

A = 2(1 + β)E(t 0 ) + (1 + β)I 0 where I 0 = +∞ t0
g(s) ds. The differential inequality ∀t t 0 , G (t) -λE(t) 0 then becomes:

∀t t 0 , E (t) -λE(t) + λ(x(t) -x * ) + (1 + β) ẋ(t), g(t) .
-λE(t) + A g(t) .

Integrating between t 0 and t , we finally obtain: ∀t t 0 , e λt E(t) e λt0 E(t 0 ) + A t t0 e λs g(s) ds, e λt0 E(t 0 ) + A +∞ t0 e λs g(s) ds < +∞.

Hence: ∀t t 0 , E(t) C 0 e -λ(t-t0) where: C 0 = E(t 0 ) + ( 2(1 + β)E(t 0 ) + (1 + β)I 0 )J 0 e -λt0 . Combining the very last inequality with Lemma 4 and the control on the values provided in the proofs of Theorems 1 and 2, we finally obtained the expected inequalities. More precisely:

• If α > 3 µ 2 then β = 0, λ = α -α 2 -4µ and:

∀t t 0 , F (x(t)) -F * 2µ 2µ -(α -α 2 -4µ) 2 E(t) 2µC 0 2µ -(α -α 2 -4µ) 2
e -λ(t-t0) .

• If α 3 µ 2 , using the same argument than in Theorem 1, we can prove that:

∀t t 0 , x(t) -x * 3 + β α(1 -β) 2 1 + β E(t)
so that:

∀t t 0 , (1 + β)(F (x(t)) -F * ) E(t) + λ 2 4 x(t) -x * 2 1 + 2 1 + β (1 -β) 2 E(t)
which concludes the proof.

Proof of Theorem 5

The proof of Theorem 5 relies on the the inequality (45) established in the proof of Theorem 1 for µ-quasi-strongly convex functions: 

E (t
the energy L n+1 can be expressed as a variation of L n+ 1 2 :

L n+1 = L n+ 1 2 + F (x n+1 ) -F (x n+ 1 2 ) - t 4 4 g 2 + t 2 2 u, g . (71) 
To prove Theorem 3 we demonstrated that the Lyapunov Energy defined by (64) satisfies

E (t) + λE(t) 0. ( 72 
)
To prove Theorem 6 we will use the following Lemma whose proof is left to Subsection 6.5: Lemma 6.

1 + t - 3 2 t 2 L n+1 -L n ≤ t 4 1 - 2µ λ 2 + 4t u 2 . ( 73 
)
Observe that since: t = λs = λ √ L , then

1 - 2µ λ 2 + 4t = 1 - 2µ λ 2 + 4 λ √ L = 1 -2 √ µ λ 2 + 4 λ √ L . (74) 
Let x = √ µ λ . We then have:

1 - 2µ λ 2 + 4t = 1 -2x 2 + 4 √ κ 1 x . (75) 
with κ = µ L . We easily prove that x

1+ √ κ √ 2 (which is equivalent to λ √ 2µ 1+2 √ κ ) implies that 2x 3 -x - 4 √
κ > 0 which ensures that the right member of the inequality (73) is non positive. It follows that for all n 0 we have:

L n 1 + λ √ L - 3λ 2 2L -n L 0 . ( 76 
)
Using the µ-strong convexity of F we get

1 - λ 2 2µ (F (x n ) -F * ) F (x n ) -F * - λ 2 4 x n -x * 2 L n (77) 
which ends the proof of Theorem 6.

Proof of Lemma 6

Sketch of proof: The proof of Lemma 6 is technical. This is the reason why we first give a structure of it :

1. A key descent inequality (78) used previously by Siegel is proven.

2. We give an upper bound of L n+ 1 2 -L n . 3. From this bound and (78) we give an upper bound of L n+1 -L n .

4. We deduce a bound on (1 + t)L n+1 -L n as a polynomial in t whose coefficients depend on u and v.

5. We conclude by bounding this polynomial by L n+1 .

Step 3. Using (71), we get: 

L n+1 -L n = L n+1 -L n+ 1 2 + L n+ 1 2 -L n = F (x n+1 ) -F (x n ) -

)
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 1 Figure 1: Decay rates that can be achieved depending on the geometrical hypotheses made on F for µ = 1 the parameter of quasi-strong convexity. The dashed blue curve illustrates the results of Polyak [25], the green point illustrates the results of Siegel [29], the solid line the result given in Theorem 1 and the dashed-doted line the result of Theorem 2 for L = 1.1.
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  which can bee seen as a discretization of the Heavy Ball ODE for α = 2 √ µ.
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 2 Figure 2: Comparison of various algorithms

Figure 3 :

 3 Figure 3: Convergence of Polyak's algorithm to a 3-cycle for a function F ∈ S 1,1 µ,L .
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 4 Figure 4: Comparison of our scheme with the one of Siegel applied to composite and non differentiable functions.
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 1 Comparison of the geometric decay rates of various Heavy Ball schemes depending on the geometry of

	Global convergence, can be extended
	to non differentiable functions

  + (ξ + λ(2λ -α)) ẋ(t), x(t) -x * . Observe that if F (x) = |x| + µ 2 |x| 2 thisinequality is actually an equality: Since x(t) → 0 when t → +∞, it follows that it exists t 1 > t 0 such that E(t 1 ) > 0 and such that for any t > t 1 , E (t) + δE(t) 0 (62) and thus e δt E(t) e δt1 E(t 1 ) > 0. It follows that for any t > t 1 + ẏ(t)| 2 e -δt e δt1 E(t 1 ) > 0. (63) Let us define: H(t) := e δt E(t). Hence, if it exists t 2 large enough such that for all t t 2 , |y(t)| 1 2 H(t 1 ). Then there exists t 3 t 2 such that:

	Now, noticing that:								
	-λ 2 4	x n+1 -x * 2 =	-λ 2 4	x n+1 -x n+ 1 2 + x n+ 1 2 -x * 2 = -	1 4	u 2 -	t 4 4	g 2 +	t 2 2	u, g
	) + λE(t) ẋ(t) 2 E (t) + λE(t) = λ 2 (ξ + λ 2 -µ) x(t) -x * 2 + 3 2 λ -α λ 2 (ξ + λ 2 -µ)|x(t)| 2 + 3 2 λ -α | ẋ(t)| 2 + (ξ + λ(2λ -α)) ẋ(t)x(t)	(60)
				λ 2	(	λ 2 2	-µ)|x(t)| 2 .	(61)
	From (61) we deduce that for any δ > λ						
	E (t) + δE(t) = -µ)|x(t)| It follows that λ 2 ( λ 2 2 E (t) + δE(t) λ 2 (λ 2 -µ -δλ 2 )|x(t)| e δt |x(t)| + 1 2 |λx(t) + ẋ(t)| 2 e δt1 E(t 1 ) > 0.
	Setting y(t) := e δt x(t) we have						
		|y(t)| + |(λ -δ)y(t) ∀t t 3 , | ẏ(t)| 1 2 H(t 1 )e	δ 2 t -	δ -λ 2	H(t 1 ) > 0.

since for this function, we actually have for all u ∈ ∂F (x)

u, x -x * = F (x) -F * + µ 2 x -x * 2 .

If we choose λ = 2α 3 and ξ = -λ 2 2 we get

E (t) + λE(t) = 2 + (δ -λ)E(t). 2 + (δ -λ)|x(t)|.

  Then, we apply (78) with y = x n and tv n = λ(x n+1 2 -x n ) to get :F (x n+1 ) -F (x n ) -t g, v n ≤ -L n+1 -L n ≤ -t 2 µ 2λ 2 v n 2 -t(F (x n+1 ) -F * ) -tµ 2λ 2 u 2 -As in the continuous case, we assume that: λ ≤ √ 2µ so that -t 2 µ 2λ 2 + t 2 4 ≤ 0. We thus deduce that:L n+1 -L n ≤ -t(F (x n+1 ) -F * ) -tµ 2λ 2 u 2 -Step 4. Using the following expression of F (x n+1 ) -F

									t g, v n +	t 2 2	g 2 -t g, u
	-t 1 +	3t 4	v, u -	t(4 + 5t) 8	v 2 +	t 2 4	v n	2 -	t 4 4	g 2	(83)
												t 2 2	g 2 -	t 2 µ 2λ 2 v n	2	(84)
	and (78) with y = x * to get										
	g, u ≥ F (x n+1 ) -F * +	µ 2λ 2 u 2 +	t 2 2	g 2 .	(85)
	Combining (83), (84) and (85) we deduce :					
												t 3 2	g 2
	-t 1 +	3t 4	v, u -	t(4 + 5t) 8	v 2 +	t 2 4	v n	2 -	t 4 4	g 2
												t 3 2	g 2
			-t 1 +	3t 4	v, u -	t(4 + 5t) 8	v 2 -	t 4 4	g 2
												n+1	2 +	λ 2 4	x n+1 -x * 2
	= L n+1 -	1 2	u + (1 + t)v 2 +	1 4	u -t 2 g 2
	= L n+1 -	1 2	u + (1 + t)v 2 +	1 4	t 4 g 2 + u 2 -2t 2 u, g
	= L n+1 -	1 4	u 2 -	(1 + t) 2 2		v 2 +	t 4 4	g 2 -(1 + t) u, v -	t 2 2	u, g
	we eventually get:										
	(1 + t)L n+1 -L n ≤	t 4	1 -	2µ λ 2		u 2 +	t 2 8	(3 + 4t) v 2 -	t 3 4	(2 + t -t 2 ) g 2
		+	t 2 4		u, v +	t 3 2	u, g .

* : F (x n+1 ) -F * = L n+1 -1 2 λ(x n+1 -x * ) + (1 + t)v
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which is also impossible. It follows that y(t) cannot tend to 0 when t → ∞ which concludes the proof.

Proof of Theorem 6

The proof of Theorem 6 is based on a Lyapunov analysis inspired by the one proposed for the ODE. To study the ODE we used to following Lyapunov energy :

To study the properties of the scheme (35) we define the sequence L n

which can be seen as particular discretization of E. To simplify the writing of the proof, we will use the following notations

With these reduced notations, the scheme may be written:

Remember that the value of v n+1 is actually chosen such that

Let us first compute L n+ 1 2 and L n using the reduced notations. We have:

and L n can be written in the following way as:

Proof of Lemma 6: Step 1. We first prove the inequality (78)

which is a key inequality used by Siegel in [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF].

Since F is strongly convex, for any y ∈ R n we have

Inequality (78) holds summing the two previous inequalities.

Step 2.

We use the identity (with the condition A -B = a + b):

with

We thus get with this identity:

Moreover observe that:

Hence:

Using the expression of v n in v n , u , we get:

We now use the inequality:

so that:

2 and:

And thus, since t ≥ 0 and t = λ

so that:

Step 5. This last step relies on the following technical lemma whose proof is straightforward:

, we have:

Let us apply Lemma 7 with x = √ 1 + tv and y = 1 √ 1+t u. We get:

Choosing:

which actually satisfies: A(t) ≥ 1 4 for any t ≥ 0, we thus deduce that:

Hence:

Moreover:

using the µ-strong convexity of F and the fact that λ 2 -2µ ≤ 0. We finally get:

(93)

Proof of Theorem 7

The proof is essentially similar to the one of Theorem 6. The careful reader may have remarked that the only property of g that is used in the proof of Theorem 6 is the inequality (78) we recall here

It is used twice, once with y = x n and once with y = x * . Actually, any vector g satisfying this descent property will ensure the decay described in both theorems. It turns out that the vector g defined in (40) satisfies this inequality under the hypothesis of the Theorem 7, see also [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF]Lemma 4.2] :

Adding the three last inequalities we get :

Using T x -y = T x -x + x -y we get

Applying this Lemma to x = x n+ 1 2 we have T x = x n+1 and using g := λ t 2 (x -T x) we get exactly the inequality needed to complete the proof of Theorem 7 :

(100)