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Abstract

In this paper, we study the behavior of solutions of the ODE associated to the Heavy Ball
method. Since the pioneering work of B.T. Polyak [25], it is well known that such a scheme
is very efficient for C2 strongly convex functions with Lipschitz gradient. But much less is
known when the C2 assumption is dropped. Depending on the geometry of the function to
minimize, we obtain optimal convergence rates for the class of convex functions with some
additional regularity such as quasi-strong convexity or strong convexity. We perform this
analysis in continuous time for the ODE, and then we transpose these results for discrete
optimization schemes. In particular, we propose a variant of the Heavy Ball algorithm which
has the best state of the art convergence rate for first order methods to minimize strongly,
composite non smooth convex functions.

Keywords Lyapunov function, rate of convergence, ODEs, optimization, strong convexity,
Heavy Ball method.

1 Introduction

Let F : Rn → R be a convex differentiable function admitting at least one minimizer. Let:
F ∗ = inf F and X∗ = argminF . In this paper, we are interested in the class of unconstrained
optimization problems:

min
x∈Rn

F (x). (1)

In many application fields like image processing, data science or deep learning among many
others, there is a need for efficient optimization techniques. Due to the large dimension of the
data, it is not possible to resort to second order information (e.g. the Hessian matrix as in
Newton’s method). This is the reason why first order methods are used, and there is therefore
a need for developing accelerated first order methods.

Since the seminal work by B.T. Polyak [25] in 1964, the Heavy Ball algorithm is one of the
main accelerated algorithm for minimizing C2 strongly convex functions with Lipschitz gradient.
From a mechanical point of view, the Heavy Ball system in continuous time corresponds to the
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ordinary differential equation (ODE) describing the motion of a body in the potential field F
subject to a viscous friction force:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (2)

where α > 0. The physical intuition is that, as time evolves, the trajectory x(t) of the body will
reach a minimum of the potential F and solve the optimization problem (1) while reducing the
oscillations by benefiting from friction.

In [25] Polyak proved that if F belongs to the class S2,1µ,L of µ-strongly convex functions of

class C2 admitting a L-Lipschitz gradient, the solution of the ODE (2) converges linearly to the
minimizer of F . Observe that under the same hypothesis on F the solution of the Gradient Flow:

ẋ(t) +∇F (x(t)) = 0 (3)

converges linearly to the minimizer of F . It turns that this linear convergence occurs under much
weaker hypotheses. In [11] Begout et al. proved that if F satisfies a  Lojasiewicz property with
exponent θ = 1

2 , a linear decay is achieved similarly to the gradient flow. These linear decays
have their analogous in the optimization setting since the discrete Heavy Ball algorithm and
the Gradient descent algorithm ensure a linear decay of F (xn)− F ∗ when F ∈ S2,1µ,L or when it
belongs to larger sets. Thus, some natural questions arise:

1. Are all these linear decays similar ?

2. Is there any benefit in using an inertial algorithm for functions for which the Gradient
Descent is already linear ?

3. If the decay is linear, is the convergence really fast in practice ?

4. Can we give more accurate bounds ?

The response to the first question is simple: no, all these linear decays are not similar. Indeed, if
F ∈ S2,1µ,L and if x is a solution of the Heavy Ball ODE (2) for α = 2

√
µ, we have F (x(t))−F (x) =

O(e−2
√
µt) [25, Theorem 9], whereas F (x(t))−F (x) = O(e−µt) if x is a solution of the Gradient

Flow equation (3). And we can easily prove that these rates are achieved for quadratic functions.
This remark gives an answer to the second question: if µ is very small, which is the case in many
large scale problems, the inertia of the Heavy Ball method ensures a much better convergence
rate. We will see that this square root also appears in the algorithm and it may explain the
various practical behaviors of algorithms that are all linear.

In large scale problems, µ may be so small that the linear decay may not be perceptible. In
many image processing problems, or statistical problems, one can observe that the convergence is
very slow and FISTA [10] is better. This slowness is due to the smallness of µ. A typical example
is the linear convergence of the Forward-Backward algorithm applied to the LASSO problem i.e.
when F (x) = 1

2 ‖Ax− b‖
2

+ λ ‖x‖1. We refer the reader to Section 3.3 for more details.
The main contribution of this paper is to provide answers to the last question : yes, we can

give more accurate bounds depending on the geometrical assumptions on F . More precisely most
of these decays are exponential of the form O(eδ

√
µt). It turns out that the value of δ highly

depends on the precise geometrical hypotheses made on F and it is different if F is quadratic or
only satisfies a  Lojasiewicz property with parameter θ = 1

2 .
In this paper, we focus on the class of convex functions being strongly convex, or quasi-

strongly convex [20] which is a relaxation of strong convexity. A differentiable function F is said
µ-quasi-strongly convex if:

∀x ∈ Rn, 〈∇F (x), x− x∗〉 > F (x)− F (x∗) +
µ

2
‖x− x∗‖2 (4)
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where x∗ denotes the projection of x onto the set of minimizers.
In the literature, several hypotheses have been proposed: being quadratic (Qµ), belonging

to the class S2,1µ,L (resp. S1,1µ,L) of µ-strongly convex functions of class C2 (resp. C1) admitting a
L-Lipschitz gradient, being just µ-strongly convex Sµ, µ-quasi-strongly convex qSµ , satisfying
the Polyak- Lojasiewicz (PLµ) property with some constant µ > 0. The exact definition of these
properties will be given in Section 2, but we draw the reader’s attention to the fact that all these
conditions are not equivalent and that they characterize sub-classes of functions satisfying the
Polyak- Lojasiewicz property. More precisely, if F has a unique minimizer we have:

Qµ ( S2,1µ,L ( S1,1µ,L ( Sµ ( qSµ ( PLµ.

Let us mention that quasi-strongly convex functions are not necessarily convex.
In this paper, we investigate both the continuous and the discrete case. We provide some

convergence rates for the values F (x(t))−F ∗ along the trajectories of the heavy ball ODE (2) for
functions F having a unique minimizer and being quasi-strongly convex. We then extend these
results to include perturbations. We eventually consider the case of an associated monotone
inclusion to deal with non differentiable functions and especially composite functions. Finally
we apply these results to provide a new optimization algorithm whose decay rate for the class of
strongly convex functions is better than the state of the art.

Let us now summarize from the literature and the present paper some of the main results of
decay rates for the values F (x(t))− F ∗ along the solutions of (2) in the following table:

Hypotheses on F References values of α Exponential rate of
F (x(t))− F ∗

S2,1µ Polyak [25] (0, 2
√
µ) α

S2,1µ Polyak [25] (2
√
µ,+∞) α−

√
α2 − 4µ

S1,1µ Siegel [29] 2
√
µ

√
µ

qSµ and uniqueness of the minimizer ADR, Th. 1 (0, 3
√

µ
2 ] 2α

3

qSµ and uniqueness of the minimizer ADR Th. 1 [3
√

µ
2 ,+∞) α−

√
α2 − 4µ

qSµ,L and uniqueness of the minimizer ADR Th. 2 (0, 3
√

µ
2 ] 2

3α
(

1 + 2
3

9µ−2α2

9L+3µ− 2
3α

2

)
For example, the third line of the table asserts that if F ∈ S1,1µ , then choosing α = 2

√
µ in the

ODE (2) ensures that F (x(t)) − F ∗ = O(e−
√
µt). The Figure 1 illustrates some of the results

provided in this first table.
Similarly we can summarize some of the main results of decay rates of optimization algorithms

related to the heavy ball method. These inertial algorithms will be described in Section 4. All
of them ensure an exponential decay:

F (xn)− F ∗ = O(qn) (5)

where the value of q depends on the condition number κ = µ
L and is different for each algorithm.

Note that the Gradient Descent ensures a decay with q = 1− κ when F ∈ S2,1µ,L.
The contributions of the paper illustrated on the Figure 1 are the following: in the continuous

setting, our first result is new non-asymptotic and optimal rates and global convergence for the
class of quasi-strongly convex functions having a unique minimizer. We also prove that these
rates can be improved if F additionally have a L-Lipschitz gradient. In particular we prove
that the optimal parameter α in (2) is not α = 2

√
µ for these sub-classes of functions. A

second contribution is to propose stability results, namely integrability sufficient conditions on
the perturbation in order to preserve the previous convergence rates. A third contribution is
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Figure 1: Decay rates that can be achieved depending on the geometrical hypotheses made on F
for µ = 1 the parameter of quasi-strong convexity. The dashed blue curve illustrates the results
of Polyak [25], the green point illustrates the results of Siegel [29], the solid line the result given
in Theorem 1 and the dashed-doted line the result of Theorem 2 for L = 1.1.

then to extend these results to the non differentiable case (namely to the monotone inclusion)
and to prove the optimality of these exponential decays building functions for which these rates
are reached. In the discrete setting, our main contribution is to provide a new optimization
algorithm for minimizing functions of S1,1µ,L with better convergence rate than the classical scheme

of Nesterov built for S1,1µ,L. We finally extend this scheme to composite and non differentiable
functions.

The paper is organized as follows. In Section 2, we recall the different geometric assumptions
considered in this work for the function to minimize. Section 3 is then devoted to the analysis
of the ODE associated to the Heavy Ball algorithm. We propose numerical schemes associated
to this analysis in Section 4. We illustrate the results of the paper with numerical examples in
Section 5. Eventually, we detail the proofs of the Theorems of Sections 3 and 4 in Section 6.

2 Preliminaries: relaxing strong convexity

Throughout the paper, we are interested in the class of unconstrained optimization problems:
minx∈Rn F (x), where F : Rn → R is a convex function admitting at least one minimizer. We
assume that Rn is equipped with the Euclidean scalar product 〈·, ·〉 and the associated norm ‖·‖.
As usual B(x∗, r) denotes the open Euclidean ball with center x∗ ∈ Rn and radius r > 0. For
any real subset X ⊂ Rn, the Euclidean distance d is defined as: d(x,X) = infy∈X ‖x − y‖ for
any x ∈ Rn.

In this paper we revisit the Heavy Ball method for the class of strongly and quasi-strongly
convex functions. Let us first recall the definition of strong convexity:

Definition 1 (Strong convexity). A function F : Rn → R is µ-strongly convex if and only if the
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Hypothesis on F References Values of q Remarks

S2,1µ,L Polyak [25]
(

1−
√
κ

1+
√
k

)2
Local convergence and optimal rate

on S2,1µ,L, may diverge on S1,1µ,L
S1,1µ,L Nesterov [21] 1−

√
κ Global convergence

S1,1µ,L GFJ [14] 1− κ Global convergence

S2,1µ,L SFL [30] 1− 2
√
κ+O(κ) Global convergence,

three points method

S1,1µ,L Siegel [29] 1−
√
κ+O(κ) Global convergence, can be extended

to non differentiable functions

S1,1µ,L ADR, Th. 6 1−
√

2κ Global convergence, can be extended

+O(κ) to non differentiable functions

Table 1: Comparison of the geometric decay rates of various Heavy Ball schemes depending on
the geometry of F

function F − µ
2 ‖ · ‖

2 is convex. If F is differentiable, F is µ-strongly convex if and only if:

∀(x, y) ∈ Rn × Rn, F (y) > F (x) + 〈∇F (x), y − x〉+
µ

2
‖y − x‖2.

We have a special interest in a more general class of quasi-strongly convex functions introduced
by I. Necoara and al. in [20]:

Definition 2 (Quasi-strong convexity [20, Definition 1]). A continuously differentiable function
F : Rn → R is µ-quasi-strongly convex if for any x ∈ Rn:

〈∇F (x), x− x∗〉 > F (x)− F (x∗) +
µ

2
‖x− x∗‖2

where x∗ denotes the projection of x onto the set X∗ = argminF .

We refer the reader to [20, Section 3] for a complete review of relations between several
functional classes relaxing the strong convexity properties. Note that strongly convex functions
are a subclass of the class of quasi-strongly convex functions. But the quasi-strong convexity
does not imply the convexity of F and does not ensure the uniqueness of the minimizer.

The class of quasi-strongly convex functions is a subclass of functions having the Polyak-
 Lojasiewicz property, namely the  Lojasiewicz property [18, 19] with an exponent equal to 1

2 . In
the convex setting the Polyak- Lojasiewicz property is equivalent to a quadratic growth condition
which is another relaxation of the strong convexity:

Lemma 1. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅
and F ∗ = inf F . If F is µ-strongly-quasi convex then F also satisfies the Polyak- Lojasiewicz
(PLµ) property:

(PLµ) : ∀x ∈ Rn, ‖∇F (x)‖2 > 2µ(F (x)− F ∗).

If in addition F is convex then F satisfies the growth condition G(2):

G(2) : ∀x ∈ Rn, F (x)− F ∗ > µ

2
d(x,X∗)2.
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The quadratic growth condition G(2) can be seen as a sharpness assumption ensuring that
the magnitude of the gradient is not too low in the neighborhood of the minimizers, see [8] for
more details. Roughly speaking, any function F satisfying G(2) is at least as sharp as ‖x‖2 in the
neighborhood of its set of minimizers. Note that when F has a unique minimizer, the quadratic
growth condition G(2) is exactly the characterisation of the notion of strong minimizer of F
introduced in [2, Section 3.3].

Finally observe that any differentiable convex function with a Lipschitz continuous gradient
and satisfying a quadratic growth condition, is quasi-strongly convex:

Lemma 2. Let F : Rn → R be a convex continuously differentiable function with X∗ =
argminF 6= ∅ and F ∗ = inf F . If F has a L-Lipschitz continuous gradient for some L > 0

and satisfies the growth condition G(2) then F is µ2

L -quasi-strongly convex.

Proof. Using the assumption that F has a Lipschitz continuous gradient, the Polyak- Lojasiewicz
inequality (PLµ) and then the quadratic growth condition, we have:

∀x ∈ Rn, 〈∇F (x), x− x∗〉 > F (x)− F ∗ +
1

2L
‖∇F (x)‖2 > F (x)− F ∗ +

µ

L
(F (x)− F ∗)

> F (x)− F ∗ +
µ2

2L
d(x,X∗)2.

3 The continuous case

Let F : Rn → R be a convex continuously differentiable function admitting at least one minimizer.
In this section we study the convergence rates in finite time for the values F (x(t)) − F ∗ along
the trajectories of the perturbed second-order ordinary differential equation:

ẍ(t) + αẋ(t) +∇F (x(t)) = g(t) (6)

for any t > t0, where t0 > 0 and g : [t0,+∞[ is an integrable source term that can be interpreted as
an external perturbation exerted on the system. We assume that, for any given initial conditions
(x0, v0) ∈ Rn × Rn, the Cauchy problem associated with the ODE (6), admits a unique global
solution satisfying (x(0), ẋ(0)) = (x0, v0). This is guaranteed in particular when the gradient of
F is Lipschitz on bounded subsets of Rn [15, 16].

In his seminal work [25], B.T. Polyak gives a global convergence rate for strongly convex
functions of class C2 with a Lipschitz continuous gradient. In [11], P. Bégout, J. Bolte and M.A.
Jendoubi prove the strong convergence of the trajectory at an exponential decay (depending
on the  Lojasiewicz exponent) provided that F is real-analytic. More recently B.T. Polyak and
P. Shcherbakov prove the exponential decay of the values of F (x(t)) − F ∗ for the class of C2

functions satisfying the Polyak- Lojasiewicz inequality (PLµ) without assuming the uniqueness
of the minimizer in [26].

Let us recall that the exponential decay of solutions of the Gradient Descent flow (3) for
functions in (PLµ) is straightforward. Indeed defining E(t) = F (x(t)) − F (x∗), we get E ′(t) =

−‖∇F (x(t))‖2 6 −µ(F (x(t))− F (x∗)) = −µE(t), which ensures that

F (x(t))− F (x∗) 6 (F (x(t0))− F (x∗)) e−µ(t−t0). (7)

We can thus observe that the exponent is proportional to µ and not
√
µ.
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Proving convergence rates for the Heavy Ball method in the case of an objective function
which is not C2 is an active field of research. Without the C2 assumption, for the class of
differentiable strongly convex functions, a suitable choice of the friction parameter α provides an
exponential decay of the values F (x(t))− F ∗ [5, 29]. More precisely, if F is assumed µ-strongly
convex differentiable, J.W. Siegel proves in [29] that for α = 2

√
µ:

F (x(t))− F ∗ 6 2 (F (x0)− F ∗) e−
√
µt (8)

where x(·) is solution of the ODE (6) with g = 0 and (x(0), ẋ(0)) = (x0, 0). Applying [27,
Theorem 3] with α = δ

√
µ for δ large enough, an exponential decay with an exponent proportional

to
√
µ has also be obtained in [27] for the class of convex differentiable functions satisfying the

Polyak- Lojasiewicz property. Let us also mention the work on higher order ODEs by Shi et al.
[28] where under the same hypotheses as [29], the authors get a convergence rate of the order

O
(
e−
√
µ

4 t
)

(which is of course not as good as what we get in this paper).

The goal of this section is to provide non-asymptotic convergence rates for the values F (x(t))−
F ∗ that can be achieved for the class of quasi-strongly convex functions and the sub-class of
quasi-strongly convex functions having a Lipschitz continuous gradient. In particular, we provide
optimal convergence rates for the class of differentiable quasi-strongly convex functions.

3.1 Convergence rates in the unperturbed case

Let us first consider the unperturbed ODE:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (9)

where F : Rn → R is a differentiable convex function admitting a unique minimizer x∗. Assume
that F is additionally quasi-strongly convex. Based on a Lyapunov analysis, the aim of this
paragraph is to establish non-asymptotic convergence rates for the values F (x(t))−F ∗ along the
trajectory x(t) solution of (9). The following Lyapunov energy plays a central role in our whole
analysis:

Eλ,ξ(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 (10)

where λ and ξ are two real parameters. To establish non-asymptotic results, we will need the
following technical lemma:

Lemma 3. Let F : Rn → R be a continuously differentiable convex function with X∗ =
argminF 6= ∅ and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the ODE
(9) for given initial conditions (x(t0), ẋ(t0)) = (x0, v0) and M0 = F (x0)− F ∗ + 1

2‖v0‖
2. Then:

∀t > t0, F (x(t))− F ∗ 6M0, ‖ẋ(t)‖2 6 2M0.

Assume in addition that F satisfies the growth condition G(2) for some constant µ > 0. Then
for any minimizer x∗ ∈ X∗, for all λ > 0 and for all ξ 6 0, we have:

∀t > t0, Eλ,ξ(t) 6

(
1 +

(
λ
√
µ

+ 1

)2
)
M0.

Proof. Introducing the Lyapunov energy: W (t) = F (x(t))− F ∗ + 1
2‖ẋ(t)‖2 and using the ODE

(9), we easily prove:

W ′(t) = 〈∇F (x(t)), ẋ(t)〉+ 〈ẍ(t), ẋ(t)〉 = −α‖ẋ(t)‖2 6 0.

7



The energy W is so non increasing: ∀t > t0,W (t) 6W (t0). We then deduce:

∀t > t0, F (x(t))− F ∗ 6M0, ‖ẋ(t)‖2 6 2M0.

where: M0 = W (t0) = F (x0)−F ∗+ 1
2‖v̇0‖

2 > 0. Assuming that F satisfies the growth condition
G(2) with a constant µ > 0, we get:

‖λ(x(t)− x∗) + ẋ(t)‖2 6 λ2‖x(t)− x∗‖2 + ‖ẋ(t)‖2 + 2λ‖x(t)− x∗‖‖ẋ(t)‖

6

(
2

µ
λ2 + 2 + 2λ

√
2

µ

√
2

)
M0 = 2

(
λ
√
µ

+ 1

)2

M0.

Since ξ 6 0 we finally get the expected inequality.

Our first result whose proof is detailed in Section 6.1, provides a non-asymptotic convergence
rate for the values F (x(t))− F ∗ for the class of quasi-strongly convex functions.

Theorem 1. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅
and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the ODE (9) for given initial
conditions (x(t0), ẋ(t0)) = (x0, v0). Let M0 = F (x0)− F ∗ + 1

2‖v0‖
2.

Assume that F is µ-quasi-strongly convex for some µ > 0 and admits a unique minimizer x∗.

• If α 6 3
√

µ
2 then:

F (x(t))− F ∗ 6 3M0

(
1 + (

2α

3
√
µ

+ 1)2 +
2α2

27µ
+

4α

9
√
µ

√
1 + (

2α

3
√
µ

+ 1)2

)
e−

2α
3 (t−t0)

6 39M0e
− 2α

3 (t−t0).

• If α > 3
√

µ
2 then:

∀t > t0, F (x(t))− F ∗ 6M0

µ+
(
α+
√
µ−

√
α2 − 4µ

)2
3µ− α2 + α

√
α2 − 4µ

e−(α−
√
α2−4µ)(t−t0).

This rate is optimal in the sense that it is achieved for the function F (x) = µ
2 ‖x‖

2.

We refer the reader to Subsection 6.1 for the proof of the theorem.
Let us focus on the optimality of the proposed decay rates. Consider the quadratic function

F (x) = µ
2 ‖x‖

2, x ∈ Rn. By definition F is µ-strongly convex, therefore µ-quasi-strongly convex,
and has a µ-Lipschitz gradient. In that case, the ODE (9) is a second order linear differential
equation with constant coefficients whose solutions can be easily computed. A straightforward
computation shows that the convergence rates on the values F (x(t))− F ∗ are given by:

F (x(t))− F ∗ =

 O (e−αt) if α 6 2
√
µ

O
(
e−(α−

√
α2−4µ)t

)
if α > 2

√
µ.

(11)

We thus conclude that the convergence rate with the exponent α−
√
α2 − 4µ given in Theorem 1

when α > 3
√

µ
2 , is optimal for the class of quasi-strongly convex functions. On the other hand,

this suggests that the convergence rates given in Theorem 1 when α < 3
√

µ
2 may be improved at

least for the sub-class of quasi-strongly convex functions having a Lipschitz continuous gradient
as investigated hereafter.

In fact, we can prove that the exponential rate 2α
3 is actually optimal for the class Sµ of

strongly convex functions. It also proves that for such functions, α = 2
√
µ is not the parameter

that ensures the best decay rate (contrary to the choice e.g. in [29]).
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Proposition 1. Let µ > 0 and α < 3
√

µ
2 . The exponent 2α

3 in the exponential rate is optimal
on the class Sµ of strongly convex functions in the sense that for any δ ∈ ( 2α

3 ,
4α
3 ) and any

r ∈ (1, 3δ
2α ), if F (x) = |x|r + µ

2 |x|
2, the solution x of the ODE (9) satisfies

lim sup
t>t0

(F (x(t))− F ∗) eδt > 0.

Proof. Let us consider the Lyapunov energy Eλ,ξ defined by (10). Differentiating Eλ,ξ as done in

the proof of Theorem 1 (see Subsection 6.1) with λ = 2α
3 and ξ = − 2α2

9 we have the following
equality:

∀t > t0, E ′(t) +
2α

3
E(t) =

2α3

27
‖x(t)− x∗‖2 +

2α

3
(F (x(t))− F ∗ − 〈∇F (x(t)), x(t)− x∗〉) . (12)

Observe now that for F (x) = |x|r + µ
2 |x|

2, we have: F ′(x)(x− x∗) = r|x|r + µx. Thus applying
(12) we get for this specific function:

∀t > t0, E ′(t) +
2α

3
E(t) =

2α3

27
|x(t)|2 +

2α

3

(
(1− r)|x(t)|r − µ

2
|x(t)|2

)
.

It then follows that for any δ ∈ ( 2α
3 ,

4α
3 )

∀t > t0, E ′(t) + δE(t) >

(
2α3

27
− αµ

3
− α2

9
(δ − 2α

3
)

)
|x(t)|2 + (δ − 2αr

3
)|x(t)|r.

If r ∈ (1, 3δ
2α ) then the right member is non negative for t sufficiently large. It turns out that

there exits t1 and K > 0 such that

∀t > t1, E(t) > Ke−δt.

We conclude following the proof of Theorem 5 (see Subsection 6.3) by showing that y(t) =
eδt|x(t)|r cannot tend to 0 when t tends to +∞.

To conclude this section, we finally show that the convergence rates for the values F (x(t))−F ∗
obtained for the general class of quasi-strongly convex functions in Theorem 1, can be improved
in the case α < 3

√
µ
2 if more information about the geometry of F is available.

Assume that F additionally has a L-Lipschitz continuous gradient. It turns out that the
Lyapunov energy (10) does not allow to choose λ > 2

3α because the term
(
3λ
2 − α

)
‖ẋ(t)‖2 in

its derivative would be non negative. We propose to add the following mechanic energy to the
previous one:

Em(t) = F (x(t))− F (x∗) +
1

2
‖ẋ(t)‖2. (13)

Let β > 0. We consider the energy E(t) = Eλ,ξ(t) + βEm(t) defined by

E(t) = (1 + β)(F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 +

β

2
‖ẋ(t)‖2 . (14)

Using Lemma 3, a straightforward computation enables to show that the new energy E is uni-
formly bounded on the time interval [t0,+∞[. More precisely, if F satisfies a global growth
condition G(2) for µ > 0 then for any minimizer x∗ ∈ X∗, for all λ > 0 and for all ξ 6 0,

∀t > t0, E(t) 6

(
1 + 2β +

(
λ
√
µ

+ 1

)2
)
M0 (15)

where: M0 = F (x0)− F ∗ + 1
2‖v0‖

2. We then have:

9



Theorem 2. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅
and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the ODE (9) for given initial
conditions (x(t0), ẋ(t0)) = (x0, v0).

Assume that F is µ-quasi-strongly convex for some µ > 0 with a L-Lipschitz gradient and
admits a unique minimizer x∗. Let M0 = F (x0)− F ∗ + 1

2‖v0‖
2. If α 6 3

√
µ
2 then:

∀t > t0, F (x(t))− F ∗ 6
[
1 + 2

1 + β

(1− β)2

]
µ(1 + 2β) + (

√
µ+ λ)2

µ(1 + β)
M0e

−λ(t−t0)

with: β = µ
L −

2α2

9L and λ = 2α 1+β
3+β = 2

3α
(

1 + 2
3

9µ−2α2

9L+3µ− 2
3α

2

)
.

Note that the Theorem 2 only provides an upper bound on the actual convergence rate for

the values F (x(t)) − F ∗ since the value β = µ
L −

2α2

9L is actually a lower bound of the value β∗

ensuring the best convergence rate. Following the proof of Theorem 2 detailed in Subsection 6.1,
the theoretical value β∗ satisfies:

µ

L
− 2α2

9L
6 β∗ <

µ

L

and can be numerically evaluated as the smallest root of the polynomial β 7→ 2α2(1−β2)− (3 +
β)2(µ− βL) inside the open interval [0, µL ). In the case when α = 3

√
µ
2 then Theorem 2 applies

with β = 0 and we find exactly the control provided by Theorem 1 in O(e−
2α
3 t).

3.2 Convergence analysis under perturbations

In this section we extend our convergence analysis to the solutions of the perturbed differential
equation:

ẍ(t) + αẋ(t) +∇F (x(t)) = g(t). (16)

Our main contribution is to provide integrability sufficient conditions on the perturbation g in
order to guarantee that the convergence properties previously established are preserved. All our
analysis is based on the same Lyapunov energy as in the unperturbed case:

E(t) = (1 + β)(F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 +

β

2
‖ẋ(t)‖2

where λ and ξ are two real parameters and x∗ denotes a minimizer of F . To deal with the
perturbation term, we choose to add an integral term in the energy E as done in [4, 9, 7, 27] and
the references therein:

G(t) = E(t) +

∫ T

t

〈λ(x(s)− x∗) + (1 + β)ẋ(s)), g(s)〉ds. (17)

As previously done all the results stated in this section are non-asymptotic and based on the
following lemma extending Lemma 3 to the perturbed case:

Lemma 4. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅
and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the perturbed ODE (16) for
given initial conditions (x(t0), ẋ(t0)) = (x0, v0).

Assume that
∫ +∞
t0
‖g(s)‖ds < +∞. Then:

∀t > t0, ‖ẋ(t)‖ 6
√

2M0 + I0

F (x(t))− F ∗ 6 M0 + (
√

2M0 + I0)I0

10



where M0 = F (x0)− F ∗ + 1
2‖v0‖

2 and I0 =
∫ +∞
t0
‖g(s)‖ds < +∞.

If in addition F satisfies the growth condition G(2) for some µ > 0, then for any minimizer
x∗ ∈ X∗, for all λ > 0 and ξ 6 0, we have for all t > t0

Eλ,ξ(t) 6M0 + (
√

2M0 + I0)I0 +

(√
M0 +

I0√
2

+
λ
√
µ

√
M0 + (

√
2M0 + I0)I0

)2

.

Proof. Let T > 0. We introduce the following energy:

W (t) = F (x(t))− F ∗ +
1

2
‖ẋ(t)‖2 +

∫ T

t

〈g(s), ẋ(s)〉ds.

Using the ODE (16), we easily prove: W ′(t) = −α‖ẋ(t)‖2 6 0, so that the energy W is non
increasing: ∀t > t0,W (t) 6W (t0). We then deduce:

∀t > t0, F (x(t))− F ∗ +
1

2
‖ẋ(t)‖2 6 M0 +

∫ t

t0

〈g(s), ẋ(s)〉ds 6M0 +

∫ t

t0

‖g(s)‖‖ẋ(s)‖ds

where: M0 = W (t0) = F (x0)− F ∗ + 1
2‖v̇0‖

2 > 0. Hence:

∀t > t0,
1

2
‖ẋ(t)‖2 6M0 +

∫ t

t0

‖g(s)‖‖ẋ(s)‖ds.

Let: I0 =
∫ +∞
t0
‖g(s)‖ds. Applying the Grönwall-Bellman Lemma [12, Lemma A.5], we obtain:

∀t > t0, ‖ẋ(t)‖ 6
√

2M0 +

∫ t

t0

‖g(s)‖ds 6
√

2M0 + I0

Hence for all t > t0, we have: F (x(t)) − F ∗ 6 M0 + (
√

2M0 + I0)I0. Assuming now that F
satisfies the growth condition G(2) with the constant µ, we have:

‖λ(x(t)− x∗) + ẋ(t)‖2 6 λ2‖x(t)− x∗‖2 + ‖ẋ(t)‖2 + 2λ‖x(t)− x∗‖‖ẋ(t)‖
6 (λ‖x(t)− x∗‖+ ‖ẋ(t)‖)2

6 2

(√
M0 +

I0√
2

+
λ
√
µ

√
M0 + (

√
2M0 + I0)I0

)2

.

Since ξ 6 0 we finally get the expected inequality.

Assuming now some integrability conditions on the perturbation g, we prove that the expo-
nential decays stated in the unperturbed case for the class of quasi-strongly convex functions
and its sub-class of quasi-strongly convex functions having a Lipschitz continuous gradient, are
preserved.

Theorem 3. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅
and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the perturbed ODE (16) for
given initial conditions (x(t0), ẋ(t0)) = (x0, v0). Let:

M0 = F (x0)− F ∗ + 1
2‖v0‖

2, I0 =
∫ +∞
t0
‖g(s)‖ds,

E0(λ) = M0 + (
√

2M0 + I0)I0 +
(√

M0 + I0√
2

+ λ√
µ

√
M0 + (

√
2M0 + I0)I0

)2
Assume that F is µ-quasi-strongly convex for some µ > 0 and admits a unique minimizer x∗.

11



• Assume that α 6 3
√

µ
2 . If

J0(β) =

∫ +∞

t0

e2α
1+β
3+β t‖g(t)‖dt < +∞

then for all t > t0:

F (x(t))− F ∗ 6
eλt0E0(λ) + (

√
2(1 + β)E0(λ) + (1 + β)I0)J0(β)

1 + β

[
1 + 2

1 + β

(1− β)2

]
e−λt

where λ = 2α 1+β
3+β and β = 0. If F additionally has a L-Lipschitz continuous gradient then

the decay rate can be improved by choosing:

β =
µ

L
− 2α2

9L
and λ = 2α

1 + β

3 + β
=

2

3
α

(
1 +

2

3

9µ− 2α2

9L+ 3µ− 2
3α

2

)
.

• Assume that α > 3
√

µ
2 . If:

J0 =

∫ +∞

t0

e(α−
√
α2−4µ)t‖g(t)‖dt < +∞

then:

∀t > t0, F (x(t))− F ∗ 6 2µ
eλt0E0(λ) + (

√
2E0(λ) + I0)J0

2µ− (α−
√
α2 − 4µ)2

e−(α−
√
α2−4µ)t.

3.3 The non-differentiable case

Assume now that F is a convex but non differentiable function. In that case, the Heavy Ball
ODE has no meaning anymore but we can consider the following differential inclusion:

0 ∈ ẍ(t) + αẋ(t) + ∂F (x(t)). (18)

To study some optimization algorithms dedicated to non smooth functions, it may be useful
to understand the behavior of solutions of (18). For example, to solve the LASSO problem:

min
x∈Rn

1

2
‖Ax− b‖2 + β‖x‖1 (19)

proximal algorithms such as the Forward Backward can be used. It is known that on such
problems inertial algorithms like FISTA may be used. It is shown in [1] that the behavior of
FISTA is linked with the behavior of solutions of:

0 ∈ ẍ(t) +
α

t
ẋ(t) + ∂F (x(t)). (20)

It turns out that FISTA is not the only inertial algorithm that can be used to minimize the LASSO
problem or any non smooth optimization problem. If F is non smooth but strongly convex or
quasi-strongly convex, it may be interesting to understand how the Heavy Ball algorithm can
be used, and how to choose the parameter α. Since the C2 assumption is irrelevant here, an
analysis with weaker assumptions of the differential inclusion may be useful. Actually, we will
see in the part dedicated to the optimization scheme, that the previous analysis applies to non
smooth functions.

12



3.3.1 Solutions of the differential inclusion

The differential inclusion problem (18) admits a shock solution [24, 1] and it is known [3, 13] that
for any solution x of (18), F (x(t))−F ∗ converges to 0 for any α > 0. Most of known convergence
rates of F (x(t))− F ∗ are consequences of a Lyapunov analysis. An energy E is defined and is a
non increasing function of t. To prove that E is non increasing, the simplest way is to compute
the derivative E ′ of E . To study solutions of (18), we use exactly the same energy defined to
study the Heavy Ball ODE :

Eλ,ξ(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ2

2
‖x(t)− x∗‖2.

This time these Lyapunov energies may not be differentiable. Fortunately, the shock solutions
[24, 1] of the differential inclusion (18) are obtained as limit of C2 functions, where the the
subdifferential ∂F is replaced by its Moreau Yosida approximation [1].

Let us recall the definition of shock solution for the differential inclusion (18):

Definition 3 (Shock solution [24, 1]). A function x : [t0,+∞) −→ Rn is an energy-conserving
shock solution of the differential inclusion (18) if :

1. x ∈ C0,1([t0, T ];Rn) for all T > t0, i.e. x is a Lipschitz continuous function.

2. ẋ ∈ BV ([t0, T ];Rn) for all T > t0.

3. x(t) ∈ dom(F ) for all t ≥ t0.

4. For all φ ∈ C1c ([t0,+∞),R+) and v ∈ C([t0,+∞), dom(F )), it holds :∫ T

t0

(F (x(t))− F (v(t)))φ(t)dt ≤ 〈ẍ+ αẋ, (v − x)φ〉M×C

5. x satisfies the following energy equation for a.e. t ≥ t0

F (x(t))− F (x0) +
1

2
‖ẋ(t)‖2 − 1

2
‖v0‖2 +

∫ t

t0

α ‖ẋ(s)‖2 ds = 0.

We then consider the Moreau-Yosida approximations {Fγ}γ>0 of F defined by:

Fγ(x) = min
y

(
F (y) +

1

2γ
‖x− y‖2

)
(21)

and the following approximating ODE:

ẍγ(t) + αẋγ(t) +∇Fγ(xγ(t)) = 0

xγ(t0) = x0 ẋγ(t0) = v0.
(22)

The differential equation (22) falls into the classical theory of differential equations and admits
a unique solution xγ of class C2 on [t0,+∞) for all γ > 0. More precisely, using [1, Theorems
3.2 and 3.3], we have the following result:

Theorem 4. Assume F to be a lower semi continuous convex function. Let {Fγ}γ>0 the Moreau-
Yosida approximations of F . There exists a sub-sequence {xγ}γ>0 of solutions of (22) that
converges to a shock solution of (18) in the following sense:

• xγ −→
γ→0

x uniformly on [t0, T ] for all T > t0.

• ẋγ −→
γ→0

ẋ in Lp([t0, T ];Rn) , for all p ∈ [1,+∞) and T > t0.

• Fγ(xγ) −→
γ→0

F (x) in Lp([t0, T ];Rn), for all ∀p ∈ [1,+∞) and T > t0.

13



From Corollary 3.6 of [1], we also have:

Corollary 1. Under the same hypotheses of Theorem 4, if dom(F ) = Rn, then the differential
inclusion (18) admits a shock solution x , such that :

x ∈W 2,∞((t0, T );Rn) ∩ C1([t0,+∞);Rn), for all T > t0.

It turns out that all the results shown for the Heavy ball ODE remain valid for the differential
inclusion (18). Indeed, the approximated solutions xγ of Theorem 4 are solutions of the Heavy
ball ODE and they thus satisfy all the previous properties. By passing to the limit γ → 0+, the
shock solutions of (18) also satisfies these properties (see e.g. [1] for more details).

We do not restate all the Theorems of the previous section for the differential inclusion case.
However, we state a result for a particular case of interest, the LASSO problem (19):

Corollary 2. Let us set F (x) = 1
2‖Ax − b‖

2 + β‖x‖1. Assume that Ker(A) = {0}. Then F
is µ-strongly convex, where µ is the minimal spectral value of A∗A, there is a solution of the
differential inclusion (18) such that the conclusions of Theorem 1 hold.

3.3.2 Optimality of the decays

In Theorem 1, we assert that if F ∈ qS1,1µ i.e. if F is a continuously differentiable µ-quasi-strongly

convex function, and if α < 3
√

µ
2 , we can ensure that:

F (x(t))− F ∗ = O
(
e−

2αt
3

)
.

In this section, we show that this decay also applies to some solutions of the associated differential
inclusion (18) for functions in qSµ. A natural question arises : is this rate optimal, or can we
expect a better rate on qSµ ? The Theorem 5 answers to this question by proving that the
exponential rate 2α

3 cannot be improved on the class Sµ for any α < 3
√

µ
2 . Its proof detailed in

Section 6.3 lies on lower bounds of suitable Lyapunov energies.

Theorem 5. If F (x) = |x|+ µ
2 |x|

2 and if α < 3
√

µ
2 then any solution of (18) and any δ > 2α

3
we have

lim sup
t>t0

eδt(F (x(t))− F ∗) > 0. (23)

4 The discrete case

In this section we present a new inertial scheme to minimize a function F ∈ S1,1µ,L i.e. µ-strongly
convex, differentiable, whose gradient is L-Lipschitz continuous. In a second time, this scheme
is extended to a sum of two convex functions F = f + h using an inertial proximal gradient
algorithm. These schemes can be seen as discretizations of the Heavy Ball ODE and they are
variations of the schemes proposed by B.T. Polyak [25], Y. Nesterov [21] and J.W. Siegel [29].

Most gradient algorithms, classical gradient descent or inertial algorithms, ensure a linear
decay of F (xn)− F ∗ when F ∈ S1,1µ,L. This decay depends mostly on the condition number κ:

κ =
µ

L
.

In his book [23, Theorem 2.1.13], Y. Nesterov has shown that for such functions, any first order
method cannot ensure in general a better decreasing rate than

F (xn)− F ∗ = O
(

1−
√
κ

1 +
√
κ

)2n

. (24)
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When κ is small, we have (
1−
√
κ

1 +
√
κ

)2

= 1− 4
√
κ+ o(

√
κ). (25)

We will see that several algorithms inspired by the continuous Heavy Ball ODE have been
proposed to minimize functions belonging to S1,1µ,L. In the next section we provide a new scheme
achieving the optimal rate for the continuous ODE.

The seminal Heavy Ball algorithm proposed by Polyak in [25] was designed for functions in
S2,1µ,L that are C2 and strongly convex. It turns out that the C2 hypothesis is crucial to ensure
the convergence and the rate of the method. Moreover, the convergence result by Polyak [25]
is only local (and not global). Since we do not make this C2 assumption, we will not compare
extensively our algorithm to the classical Heavy Ball algorithm.

4.1 The Differentiable case

Several algorithms to minimize functions of S1,1µ,L or S2,1µ,L are inspired by the Heavy Ball ODE in
the unperturbed continuous case:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (26)

rewritten as the following first order differential system:{
ẋ(t) = v(t)
v̇(t) = −αv(t)−∇F (x(t)).

(27)

The first one was proposed by Polyak in [25] for functions in S2,1µ,L: xn+ 1
2

= xn +

(
1−
√
κ

1 +
√
κ

)2

(xn − xn−1)

xn+1 = xn+ 1
2
− s2∇F (xn)

(28)

with s = 2√
L+
√
µ

which can bee seen as a discretization of the Heavy Ball ODE for α = 2
√
µ.

This algorithm is efficient for functions in S2,1µ,L but it may diverge for some functions in S1,1µ,L,
see [14] for example. It is worth mentioning that Ghadimi et al. in [14, Theorem 4] prove the
linear convergence of such a scheme for functions F in S1,1µ,L changing the step and the inertia,
but the rate in this case is:

F (xn)− F ∗ = O((1− κ)n) (29)

that is the best rate that can be achieved of the gradient descent on S1,1µ,L. As we will see further,
this decay is much worse than the ones that can be achieved using other schemes for small κ
since for small κ, κ <<

√
κ.

In his book [23], Nesterov proposes a scheme which is quite similar:xn+ 1
2

= xn +

(
1−
√
κ

1 +
√
κ

)
(xn − xn−1)

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

(30)

with s = 1√
L

. This scheme can also be seen as discretization of the Heavy Ball ODE with

α = 2
√
µ, but the descent step s2 is about four times lower. Nesterov proves the convergence of

the scheme (30) for functions in S1,1µ,L and he gives a convergence rate:

F (xn)− F ∗ = O((1−
√
κ)n). (31)
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Notice that another variant of this algorithm with the same asymptotic decrease rate was
also introduced by Y. Nesterov in [22] with an extension to non differentiable functions (but still
strongly convex). An application of this last scheme to image processing can be found in [6].

The schemes (28) and (30) are called two points schemes since the computation of xn+1 needs
the two previous points xn and xn−1. These schemes can also be written in another building the
point xn+1 from the previous iterate xn and a direction vn. Hence the Heavy Ball algorithm can
be written as a two steps scheme where the input is a pair (xn, vn):

xn+ 1
2

= xn + svn
vn+ 1

2
= vn

xn+1 = xn+ 1
2
− s2∇F (xn)

vn+1 = vn + s(−2
√
µ 1

1+
√
κ
vn −∇F (xn))

(32)

with s = 2√
L+
√
µ

. The link between the scheme (32) and the ODE (26) with α = 2
√
µ appears

in the set up of the variable vn+1: when κ tends to 0, we can see that: vn+1 ≈ vn + s(−2
√
µvn−

∇F (xn)). Similarly the Nesterov scheme can be written as:
xn+ 1

2
= xn + svn

vn+ 1
2

= vn
xn+1 = xn+ 1

2
− s2∇F (xn+ 1

2
)

vn+1 = vn + s(−2
√
µ 1

1+
√
κ
vn −∇F (xn+ 1

2
))

(33)

with s = 1√
L

. Once again the link between the scheme and the ODE can be seen in the expression

of vn+1. Later J.W. Siegel in [29] proposed a variation of these schemes:
xn+ 1

2
= xn + svn

vn+ 1
2

= (1 +
√
κ)−2(vn − s∇F (xn+ 1

2
))

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

vn+1 = vn+ 1
2

+ s(1 +
√
κ)−1

√
κ∇F (xn+ 1

2
)

(34)

with s = 1√
L

. Notice that the scheme (34) provides the same convergence rate as the scheme

proposed by Nesterov, see (31). The expression of vn+1 can be stated as follows:

vn+1 = vn +
s

(1 +
√
κ)2

[
−α

(
1 +

√
κ

2

)
vn + (−1 +

√
κ+ κ)∇F (xn+ 1

2
)

]
.

One can observe in this last expression that the sequence (vn)n∈N is a particular discretization
of the variable v = ẋ in (27). It turns out that this discretization allows to reach a decay rate
similar to the Nesterov scheme (31), see Table 1.

We can also remark that for the three given schemes the choice of vn+ 1
2

is arbitrary since
xn+1 does not directly depend on vn+ 1

2
. From an algorithmic point of view vn+ 1

2
is actually

hidden and it has no real interest in the Polyak and the Nesterov schemes. The main issue in
defining vn+ 1

2
is in the theoretical analysis of these inertial algorithms. It turns out that the

definition of vn+ 1
2

simplifies the Lyapunov analysis of the scheme introduced by Siegel and will
be useful to analyze the scheme we introduce now inspired by the previous ones:

xn+ 1
2

= xn + svn
vn+ 1

2
= (1 + 3λs

2 )−1(vn − s∇F (xn+ 1
2
))

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

vn+1 = vn+ 1
2

+ (1 + λs)−1λs2∇F (xn+ 1
2
)

(35)
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with s = 1√
L

. The careful reader can check that the sequence (vn)n∈N is yet another discretization

of the variable v = ẋ in (27) with α = 3λ
2 . The interest of this new scheme (35) is that it allows

to provide a better decay rate of F (xn) − F ∗ that is asymptotically better than the previous
ones for suitable choices of λ :

Theorem 6. If F is µ-strongly convex, differentiable with a L-Lipschitz gradient and if

λ ≤
√

2µ

1 + 2
√
κ
, (36)

then the sequence (xn)n∈N provided by (35) with s = 1√
L

satisfies:

F (xn)−F ∗ 6
(

1− λ2

2µ

)−1 [
F (x0)− F ∗ +

1

2
‖λ(x0 − x∗) +

(
1 +

λ√
L

)
v0‖2

](
1 +

√
λ2

L
− 3λ2

2L

)−n
One first should notice that as soon as λ <

√
2µ, then (36) is true as soon as κ is small

enough.

Hence, for κ small enough and λ =
√
2µ

1+2
√
κ

, the new scheme (35) ensures that

F (xn)− F ∗ = O(1 +
√

2κ− 6κ)−n

It follows that our new scheme improves over Nesterov’s rate (31) by a factor
√

2.
Recently, a triple momentum method has been introduced in [30] with the following rate:

F (xn)− F ∗ ≤ C

κ

(
1−
√
κ
)2n

. (37)

When κ is small, we have
(1−

√
κ)2 = 1− 2

√
κ+ o(

√
κ). (38)

This provides a better asymptotic rate. But one should notice that C
κ explodes when κ → 0+.

Hence it may not be the best choice when one is interested in finite error bounds. Moreover,
as far as we know, this method cannot be extended to the case of composite optimization with
F = g+h where g is a L-Lipschitz gradient convex function and h a possibly non smooth convex
lower semi-continuous function. The function F to be minimized needs to be differentiable to
use the scheme of [30], contrary to the results presented in this paper (see Theorem 7).

4.2 Discrete scheme in the non differentiable case

In many practical problems especially coming from statistics or image processing the function F
to minimize is not differentiable. A classical case is the LASSO problem:

F (x) =
1

2
‖Ax− y‖2 + λ‖x‖1

where A is a linear operator. To study the minimisation of such functions, convex but not dif-
ferentiable, we cannot consider a differential equation involving F . Nevertheless we can consider
the following monotone inclusion:

0 ∈ ẍ(t) + αẋ(t) + ∂F (x(t)). (39)

This inclusion problem admits a shock solution (see [1] and [24]) and F (x(t))− F ∗ tends to 0.
When F = f +h, with f differentiable, ∇f is L-Lipschitz and h is convex proper and lower semi
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continuous, Siegel in [29] proposes an extension of the discrete scheme built for differentiable
function. In the following section we prove that our scheme can be directly extended to such
function F using the Forward-Backward algorithm, also called Proximal Gradient Operator.

We recall the definition of the proximal operator:

prox h(x) = argmin y

(
h(y) +

1

2
‖y − x‖2

)
.

Using the optimality condition, we have the equivalence:

y = prox h(x) ⇔ x ∈ ∂h(y) + y ⇔ y = (Id+ ∂h)
−1

(x).

The proximal operator is widely used in convex and non differentiable optimization. It is a
generalization of the implicit gradient descent to convex and non differentiable function.

If F is convex, where F = f + h, with f differentiable, ∇f is L-Lipschitz and h is convex
proper and lower semi continuous, a classical algorithm to minimize F is the Forward-Backward
algorithm defined in the following way:

xn+1 = T (xn), where T (x) := prox s2h
(
x− s2∇f(x)

)
.

If s2 6 1
L , it can be shown that (F (xn) − F ∗)n∈N tends to 0 and (xn)n∈N converges (weakly in

an infinite dimension Hilbert space) to a minimizer x̃ of F .
The operator T shares many properties with the gradient descent. The algorithm FISTA

of Beck and Teboulle [10] can be seen as a Nesterov acceleration to this operator T . Following
Siegel [29] we modify the previous scheme so that it can be used with F = f+h with f a smooth
strongly convex function with L-Lipschitz gradient and h a possibly non smooth convex function:
we replace g = 1

λ∇F (xn+ 1
2
) in (35) by

g̃ =
λ

t2

(
xn+ 1

2
− prox s2h(xn+ 1

2
− s2∇f(xn+ 1

2
))
)

(40)

where t := λs. More precisely the new scheme can be written as:
λxn+ 1

2
= λxn + tvn

v := vn+ 1
2

= (1 + 3t
2 )−1(vn − tg̃)

λxn+1 = λxn+ 1
2
− t2g̃

vn+1 = v + (1 + t)−1t2g̃

(41)

that is exactly the original scheme (35) replacing g by g̃. This new scheme shares the same
properties as the previous one:

Theorem 7. Let F = f +h. If f is µ−strongly convex, differentiable with gradient L-Lipschitz,
if h is convex, proper and lower semi-continuous, if

λ ≤
√

2µ

1 + 2
√
κ
, (42)

then the sequence (xn)n∈N provided by (41) with s = 1√
L

satisfies :

F (xn)−F ∗ 6
(

1− λ2

2µ

)−1(
F (x0)− F ∗ +

1

2
‖λ(x0 − x∗) + (1 +

λ√
L

)v0‖2
)(

1 +

√
λ2

L
− 3λ2

2L

)−n
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One should notice that as soon as λ <
√

2µ, then (42) is true as soon as κ is small enough.

This Theorem applies then to the LASSO problem when the function x 7→ ‖Ax− b‖2 is strongly
convex, i.e. when ker(A) 6= {0}, and it ensures that in this setting we can expect an exponential

decay O(1 +
√

2κ− 6κ)−n for λ =
√
2µ

1+2
√
κ

and κ sufficiently small. As far as we know, this is the

best rate that can be found in the literature.

5 Numerical results

In this section, we illustrate the theoretical results of the previous sections.

5.1 Case of an anisotropic quadratic function

To compare the Heavy ball based algorithms, we first test them on a toy example:

F (x1, x2) =
1

2
x21 + 500x22. (43)

For this function, µ = 1 and L = 1000. The starting point is set to xinit = [1, 1].

Figure 2: Comparison of various algorithms

In Figure 2, the logarithm of (F (xn) − F ∗) is computed for each sequence provided by the
various algorithms. We can first observe that Polyak’s scheme [25] has the best asymptotic rate
although it is slower at the beginning. Actually, the distance to the minimizer may grow during
the first iterations due to the large step size s ≈ 4

L when κ = µ
L << 1. For high accuracy, the

Polyak’s scheme is the most efficient, but for a fair approximation of the minimizer it may not be
the best method to use. We can see that the other algorithms share roughly the same behavior
(with a better convergence than Polyak’s scheme for the first iterations). Since the function
F to minimize is quadratic, it is not surprising (it is known since [25] that Polyak’s scheme is
asymptotically optimal among quadratic functions). The schemes of Nesterov [23], Siegel [29]
and the ones introduced in this paper are built to be as efficient as possible for strongly convex
functions (but not for quadratic functions). Moreover all these schemes are discretizations of the
same ODE, so that their behaviors are similar.
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5.2 An example of divergence for Polyak’s scheme

In Figure 3 we can observe the convergence of Polyak’s scheme to a 3-cycle for a function F ∈ S1,1µ,L
but F /∈ S2,1µ,L giving light to the difference between the two classes of functions and the possible

problematic behavior of Polyak’s scheme for the set F ∈ S1,1µ,L. This example was given in Lessard
et al. [17].

Figure 3: Convergence of Polyak’s algorithm to a 3-cycle for a function F ∈ S1,1µ,L.

5.3 Case of a non smooth anisotropic strongly convex function

In this last example, we compare the algorithm of Siegel [29] and the one presented in this paper
designed for non smooth and composite functions applied to the function:

F (x1, x2) =
µ

2
x21 +

L

2
x22 + |x1|+ |x2| (44)

with µ = 10−2 and L = 104. On this example, we can observe that the convergence to the
minimizer is better with our algorithm.

6 Proofs

6.1 Proofs of Theorems 1 and 2

We consider the energy E(t) defined by

E(t) = (1 + β)(F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 +

β

2
‖ẋ(t)‖2 .

Differentiating the energy E and using the ODE (9), we have:

E ′(t) = (1 + β)〈∇F (x(t)) + ẍ(t), ẋ(t)〉+ (λ2 + ξ)〈x(t)− x∗, ẋ(t)〉
+λ〈x(t)− x∗, ẍ(t)〉+ λ‖ẋ(t)‖2

= −λ〈∇F (x(t)), x(t)− x∗〉+ (λ− α(1 + β))‖ẋ(t)‖2

+(ξ + λ(λ− α))〈ẋ(t), x(t)− x∗〉
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Figure 4: Comparison of our scheme with the one of Siegel applied to composite and non differ-
entiable functions.

Using now the µ-quasi-strong convexity of F , we get:

E ′(t) 6 −λ(F (x(t))− F ∗)− λµ

2
‖x(t)− x∗‖2 + (λ− α(1 + β))‖ẋ(t)‖2

+(ξ + λ(λ− α))〈ẋ(t), x(t)− x∗〉

6 −λE(t) + λβ(F (x(t))− F ∗) +
λ

2
(ξ + λ2 − µ)‖x(t)− x∗‖2

+

(
3

2
λ− α+ β

(
λ

2
− α

))
‖ẋ(t)‖2 + (ξ + λ(2λ− α))〈ẋ(t), x(t)− x∗〉

From now on, there will be 2 cases: the case β = 0 corresponding to the Theorem 1 and the case
β > 0 corresponding to the Theorem 2.

• If β = 0, we then have:

E ′(t)+λE(t) 6
λ

2
(ξ+λ2−µ)‖x(t)−x∗‖2+

(
3

2
λ− α

)
‖ẋ(t)‖2+(ξ+λ(2λ−α))〈ẋ(t), x(t)−x∗〉

(45)

• If β > 0 and assuming in addition that F has a L-Lipschitz gradient, we have:

F ((x(t))− F ∗ ≤ L

2
‖x(t)− x∗‖2 ,

hence:

E ′(t) + λE(t) 6
λ

2
(βL+ ξ + λ2 − µ)‖x(t)− x∗‖2 + (ξ + λ(2λ− α))〈ẋ(t), x(t)− x∗〉

+

(
3

2
λ− α+ β

(
λ

2
− α

))
‖ẋ(t)‖2 (46)

In these two cases, the idea is to choose the parameters λ > 0 (as large as possible) and ξ
such that the right side of the differential inequality is negative. For that, we need to control a
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term of the form:
T (a, b, c) = a ‖u‖2 + b ‖v‖2 + c〈u, v〉 (47)

Lemma 5. If a ≤ 0, b ≤ 0 and c2 ≤ 4ab, then T (a, b, c) ≤ 0.

Proof. Observe that if a = 0 then c = 0 and the result of the Lemma holds since b ≤ 0. Assume
now that a < 0.

T (a, b, c) = −(−a ‖u‖2 − b ‖v‖2 − c〈u, v〉) 6 −
(√
−a ‖u‖ − |c|

2
√
−a
‖v‖
)2

−
(
c2

4a
− b
)
‖v‖2 .

Hence, to have T (a, b, c) ≤ 0, it is sufficient to have c2

4a − b ≥ 0, i.e. (since a < 0): c2 ≤ 4ab.

Proof of Theorem 1 (case β = 0) As previously stated by (45), for the class of the µ-quasi-
strongly convex functions F , we have:

E ′λ,ξ(t)+λEλ,ξ(t) 6
λ

2
(ξ+λ2−µ)‖x(t)−x∗‖2+

(
3

2
λ− α

)
‖ẋ(t)‖2+(ξ+λ(2λ−α))〈ẋ(t), x(t)−x∗〉.

The question now is how to choose the parameter λ > 0 as large as possible and ξ with respect to
the friction coefficient α such that the right side of the inequality (45) is negative while ensuring
the control of the values F (x(t))− F ∗ by the energy Eλ,ξ.

According to Lemma 5, to get: E ′λ,ξ(t) + λEλ,ξ(t) 6 0, it is sufficient to choose λ and ξ such
that:

ξ + λ2 − µ 6 0, λ 6
2

3
α, ∆(λ, ξ, α) 6 0. (48)

where: ∆(λ, ξ, α) := (ξ + 2λ2 − λα)2 − λ(ξ + λ2 − µ) (3λ− 2α) .
Firstly, we choose the parameter ξ that minimize the quantity ∆(λ, ξ, α) i.e.:

ξ = −λ
2

2
< 0. (49)

Thus the conditions (48) can thus be rewritten as:

∆̃(λ, α) = ∆(λ,−λ
2

2
, α) 6 0, λ 6

2

3
α,

where: ∆̃(λ, α) = λ
4 (3λ− 2α)(λ2 − 2αλ+ 4µ).

• Assume first α 6 3
√

µ
2 i.e.: λ = 2

3α 6
√

2µ. In that case, we have: ∆̃( 2
3α, α) = 0 so that

the largest admissible value for λ is: λ∗ = 2
3α. With this choice of parameter, we have:

∀t > t0, E ′λ,ξ(t) +
2

3
αEλ,ξ(t) 6 0,

hence using Lemma 3:

∀t > t0, Eλ,ξ(t) 6 Eλ,ξ(t0)e−
2
3α(t−t0).

Let us now prove that we can control the trajectory in finite time. Observe that the quasi-
strong convexity of F ensures that F satisfies the global growth condition G(2) with the
real constant µ so that:

∀t > t0, Eλ,ξ(t) > (1− 2α2

9µ
)(F (x(t))− F ∗) +

1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 . (50)
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Hence:

∀t > t0, Eλ,ξ(t) >
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 .

We now set: y(t) = eλt(x(t)− x∗). It follows:

∀t > t0, ‖ẏ(t)‖ = eλt‖λ(x(t)− x∗) + ẋ(t)‖ 6
√

2Eλ,ξ(t0)e
λ
2 t0e

λ
2 t.

Integrating between t0 and t, we then get:

∀t > t0, ‖y(t)‖ 6 ‖y(t0)‖+
2

λ

√
2Eλ,ξ(t0)e

λ
2 t0
(
e
λ
2 t − eλ2 t0

)
,

so that

∀t > t0, ‖y(t)‖ 6
2

λ

√
2Eλ,ξ(t0)e

λ
2 t0e

λ
2 t + ‖y(t0)‖ − 2

λ

√
2Eλ,ξ(t0)eλt0 ,

6
2

λ

√
2Eλ,ξ(t0)e

λ
2 t0e

λ
2 t + ‖y(t0)‖

hence for all t > t0,

λ2

4
‖x(t)− x∗‖2 6

λ2

4
e−2λt

(
2

λ

√
2Eλ,ξ(t0)e

λ
2 t0e

λ
2 t + ‖y(t0)‖

)2

6

(√
2Eλ,ξ(t0) +

λ

2
‖y(t0)‖e−λ2 (t+t0)

)2

e−λ(t−t0)

6

(√
2Eλ,ξ(t0) +

λ

2
‖x(t0)− x∗‖e−λ2 (t−t0)

)2

e−λ(t−t0)

Coming back to the definition of the energy Eλ,ξ(t), we have for all t > t0

F (x(t))− F ∗ = Eλ,ξ(t)−
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

λ2

4
‖x(t)− x∗‖2

6 Eλ,ξ(t) +
λ2

4
‖x(t)− x∗‖2

6

[
Eλ,ξ(t0) +

(√
2Eλ,ξ(t0) +

λ

2
‖x(t0)− x∗‖e−λ2 (t−t0)

)2
]
e−

2
3α(t−t0)

Using Lemma 3, we then get for all t > t0,

F (x(t))− F ∗ 6 3M0

(
1 + (

2α

3
√
µ

+ 1)2 +
2α2

27µ
+

4α

9
√
µ

√
1 + (

2α

3
√
µ

+ 1)2

)
e−

2α
3 (t−t0).

Remembering that α 6 3
√

µ
2 , we can prove that the constant in the previous control is

uniformly bounded with respect to µ which concludes the proof.

• Assume now that α > 3
√

µ
2 i.e.: 2

3α >
√

2µ. In that case, 2
3α is not an admissible value

for λ anymore. Let us then discuss the sign of ∆̃(λ, α) when λ <
√

2µ < 2
3α, which is

equivalent to study the sign the polynomial G(λ, α) = λ2 − 2αλ+ 4µ. Since α > 3
√

µ
2 , its

discriminant δ = α2 − 4µ is non negative and G admits two real roots:

λ± = α±
√
α2 − 4µ.
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Observe now that α+
√
α2 − 4µ > 2α

3 , hence α+
√
α2 − 4µ is not an admissible value for λ.

But we easily prove that the hypothesis α > 3
√

µ
2 is equivalent to: α−

√
α2 − 4µ <

√
2µ,

so that the largest admissible value for λ is given by:

λ∗ = α−
√
α2 − 4µ.

As previously done, the energy Eλ,ξ satisfies the following differential inequality: E ′λ,ξ(t) +
λ∗Eλ,ξ(t) 6 0 so that using Lemma 3, for all t > t0

Eλ,ξ(t) 6 Eλ,ξ(t0)e−λ
∗(t−t0) 6

1 +

(
1 +

α

µ
−

√
α2

µ2
− 4

)2
M0e

−λ∗(t−t0)

where: M0 = F (x0)− F ∗ + 1
2‖v0‖

2. Coming back now to the definition of the energy and
applying the quadratic growth condition Gµ(2), we get:

Eλ,ξ(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 − λ2

4
‖x(t)− x∗‖2

> F (x(t))− F ∗ − λ2

4
‖x(t)− x∗‖2 > (1− λ2

2µ
)(F (x(t))− F ∗).

And the expected control on the values F (x(t)) − F ∗ is obtained straightforward since

λ∗ = α−
√
α2 − 4µ <

√
2µ for any α > 3

√
µ
2 .

Proof of Theorem 2 (case when β > 0) As previously stated for the class of the µ-quasi-
strongly convex functions F having a Lipschitz continuous gradient, we have:

E ′(t) + λE(t) 6
λ

2
(βL+ ξ + λ2 − µ)‖x(t)− x∗‖2 +

(
3

2
λ− α+ β

(
λ

2
− α

))
‖ẋ(t)‖2

+(ξ + λ(2λ− α))〈ẋ(t), x(t)− x∗〉.

The question now is how to choose the parameters λ > 0 as large as possible, β > 0 and ξ with
respect to the friction coefficient α and the Lipschitz parameter L such that:

∀t > t0, E ′(t) + λE(t) 6 0. (51)

Let us define:

∆(λ, ξ, α, β) := (ξ + 2λ2 − λα)2 − λ(βL+ ξ + λ2 − µ) (3λ− 2α+ β(λ− 2α)) . (52)

According to Lemma 5, it is sufficient to choose λ and ξ such that:

βL+ ξ + λ2 − µ 6 0, 3
2λ− α+ β(λ2 − α) 6 0, ∆(λ, ξ, α, β) 6 0

to ensure that the energy E satisfies the differential inequality (51). First, we choose for ξ the
one ensuring that ∆ is minimal, i.e.:

ξ = −λ
2

2
(1− β)− βλα. (53)

Re-injecting the optimal ξ into (52), we eventually obtain:

∆(λ, α, β) = ∆(λ,−λ
2

2
(1− β)− βλα, α, β)

=
λ

4
((3 + β)λ− 2α(1 + β))

(
λ2(1− β)− 2α(1− β)λ+ 4(µ− βL)

)
.
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Consequently, applying Lemma 5, we need to choose the parameter λ as large as possible and
satisfying all the following constraints for some β ∈ [0, 1]: λ2(1 + β)− 2αβλ− 2(µ− βL) 6 0,

λ 6 2α
1 + β

3 + β
, ∆̃(λ, α, β) 6 0

(54)

and the parameter β ∈ [0, 1] that maximizes the value of λ. Let:

P1(λ, β, α) = λ2(1 + β)− 2αβλ− 2(µ− βL).

Since ∆̃(2α 1+β
3+β , α, β) = 0, the quantity 2α 1+β

3+β is the largest admissible value for λ if and only if:

P1(2α
1 + β

3 + β
, β, α) 6 0,

or equivalently, if and only if:

Qα(β) = 2α2(1− β2)− (3 + β)2(µ− βL) 6 0 (55)

for any 0 6 β < µ
L . Let us so discuss the sign of Qα with respect to the choice of α. To that

end, observe that assuming α 6 3
√

µ
2 , we have:

Qα(0) = 2α2 − 9µ 6 0, Qα(
µ

L
) = 2α2(1− µ

L
) > 0.

Hence Qα admits at least one real root, denoted by β∗ inside the interval [0, µL [ such that:

∀β ∈ [0, β∗], Qα(β) 6 0.

Note that the value β = 0 is admissible when α = 3
√

µ
2 . In any case, the best choice for λ is:

λ = 2α 1+β
3+β , and the best rate is obtained for the largest admissible β ensuring the control on

the values F (x(t))− F ∗. And with these choices of parameters, we get the following control on
the energy:

E(t) 6 E(t0)e−λ(t−t0). (56)

As in the proof of Theorem 1, we first prove that we can control the trajectory ‖x(t)− x∗‖ from
the energy E . With our choice of parameters ξ and λ and remembering that the µ-quasi-strong
convexity of F ensures that F also satisfies the global growth condition G(2) with the constant
µ (see Lemma 2), we have:

E(t) = (1 + β)(F (x(t))− F ∗)− λ2

4
‖x(t)− x∗‖2 +

1

2(β + 1)
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖2

> (1 + β − λ2

2µ
)(F (x(t))− F ∗) +

1

2(β + 1)
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖2 .

Observe now that for any β ∈ [0, β∗], we have: Qα(β) 6 0 which implies:

α 6 (3 + β)

√
µ− βL

2(1− β2)
6 (3 + β)

√
µ

2(1 + β)
.

It follows:

1 + β − λ2

2µ
= 1 + β − 2α2 (1 + β)2

µ(3 + β)2
> 0
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and:

E(t) >
1

2(β + 1)
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖2 .

We now define: y(t) = e
λ

1+β t(x(t)− x∗). Hence:

‖ẏ(t)‖ = e
λ

1+β t‖ λ

1 + β
(x(t)− x∗) + ẋ(t)‖ =

e
λ

1+β t

1 + β
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖

6 e
λ

1+β t

√
2

1 + β
E(t) 6

√
2

1 + β
E(t0)e−

λ
2 t0e

1−β
2(1+β)

λt.

Remember that λ = 2α 1+β
3+β . Integrating between t0 and t, we get:

‖y(t)‖ 6 3 + β

α(1− β)

√
2

1 + β
E(t0)e−

λ
2 t0e

1−β
2(1+β)

λt

which implies:

‖x(t)− x∗‖ 6 3 + β

α(1− β)

√
2

1 + β
E(t0)e−

λ
2 (t−t0).

Coming back now to the definition of the energy, we have a control on the values F (x(t))− F ∗
from the energy and the trajectory x(t)− x∗:

(1 + β)(F (x(t))− F ∗) 6 E(t) +
λ2

4
‖x(t)− x∗‖2 6

[
1 + 2

1 + β

(1− β)2

]
E(t0)e−λ(t−t0).

Using Lemma 3 and the inequality (15), we finally obtain the expected control.
Despite the fact that the value of β∗ is not exactly known, we can easily get a lower bound

on β∗ when α < 3
√

µ
2 . Indeed remember that β∗ is a real root of the polynomial Qα chosen

such that
∀β ∈ [0, β∗], Qα(β) 6 0 = Qα(β∗)

which is equivalent to:

∀β ∈ [0, β∗], α 6 (3 + β)

√
µ− βL

2(1− β2)
. (57)

Observe now that for any β > 0, we have:

(3 + β)2

2(1− β2)
>

9

2

so that it is sufficient to ensure: α 6 3
√

µ−βL
2 , or equivalently: β > µ

L −
2α2

9L to obtain (57).

From the lower bound β = µ
L −

2α2

9L , we obtain a lower bound on λ:

λ =
2α

3

(
1 +

2

3

9µ− 2α2

9L+ 3µ− 2
3α

2

)
>

2α

3
.
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6.2 Proof of Theorem 3

Let λ, ξ and T three real numbers. Let x∗ be a minimizer of F and x any trajectory solution of:

ẍ(t) + αẋ(t) +∇F (x) = g(t),

where: α > 0. We introduce the following Lyapunov energy:

G(t) = E(t) +

∫ T

t

〈λ(x(s)− x∗) + (1 + β)ẋ(s)), g(s)〉ds (58)

where the energy E is defined as in the non-perturbed case by:

E(t) = (1 + β)(F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 +

β

2
‖ẋ(t)‖2.

Differentiating the energy G, we obtain the following differential inequality on which relies the
whole proof of Theorem 3:

G′(t) = E ′(t)− 〈λ(x(t)− x∗) + (1 + β)ẋ(t), g(t)〉

6 −λE(t) +
λ

2
(βL+ ξ + λ2 − µ)‖x(t)− x∗‖2 +

(
3

2
λ− α+ β

(
λ

2
− α

))
‖ẋ(t)‖2

+(ξ + λ(2λ− α))〈ẋ(t), x(t)− x∗〉.

The parameters β, λ and ξ are chosen as in the unperturbed case:

• If α 6 3
√

µ
2 , we then choose:

β = 0, λ =
2α

3
, ξ = −λ

2

2

for the class of quasi-strongly convex functions, and:

β =
µ

L
− 2α2

9L
, λ = 2α

1 + β

3 + β
=

2

3
α

(
1 +

2

3

9µ− 2α2

9L+ 3µ− 2
3α

2

)
, ξ = −λ

2

2
(1− β)− αβλ

for the class of quasi-strongly convex functions having a Lipschitz continuous gradient.

• If α > 3
√

µ
2 , we then choose:

β = 0, λ = α−
√
α2 − 4µ, ξ = −λ

2

2
.

In both cases, with these choices of parameters and as shown in the proofs of Theorems 1 and
2, we have:

∀t > t0, E(t) = (1 + β)(F (x(t))− F ∗) +
1

2
(ξ +

β

1 + β
λ2)‖x(t)− x∗‖2

+
1

2(β + 1)
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖2

>
1

2(β + 1)
‖λ(x(t)− x∗) + (β + 1)ẋ(t)‖2 (59)
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In particular we deduce that for all t > t0, G′(t) 6 −λE(t) 6 0. The energy G is so non-increasing,
hence: ∀t > t0, G(t) ≤ G(t0), i.e.:

∀t > t0, E(t) 6 E(t0) +

∫ t

t0

〈g(s), ẋ(s) + λ(x(s)− x∗)〉ds

6 E(t0) +

∫ t

t0

‖g(s)‖‖(1 + β)ẋ(s) + λ(x(s)− x∗)‖ds.

Coming back now to the inequality (59), we have:

1

2
‖(1 + β)ẋ(t) + λ(x(t)− x∗)‖2 6 (1 + β)E(t) 6 (1 + β)E(t0)

+

∫ t

t0

(1 + β)‖g(s)‖‖(1 + β)ẋ(s) + λ(x(s)− x∗)‖ds

Applying the Grönwall-Bellman Lemma [12, Lemma A.5], we obtain:

∀t > t0, ‖(1 + β)ẋ(t) + λ(x(t)− x∗)‖ 6
√

2(1 + β)E(t0) + (1 + β)

∫ t

t0

‖g(s)‖ds.

Since
∫ +∞
t0
‖g(s)‖ds < +∞ by assumption, we can conclude that:

sup
t>t0
‖(1 + β)ẋ(t) + λ(x(t)− x∗)‖ 6

√
2(1 + β)E(t0) + (1 + β)

∫ +∞

t0

‖g(s)‖ds < +∞.

We set: A =
√

2(1 + β)E(t0) + (1 + β)I0 where I0 =
∫ +∞
t0
‖g(s)‖ds. The differential inequality

∀t > t0, G′(t) 6 −λE(t) 6 0 then becomes:

∀t > t0, E ′(t) 6 −λE(t) + 〈λ(x(t)− x∗) + (1 + β)ẋ(t), g(t)〉.
6 −λE(t) +A‖g(t)‖.

Integrating between t0 and t , we finally obtain:

∀t > t0, e
λtE(t) 6 eλt0E(t0) +A

∫ t

t0

eλs‖g(s)‖ds,

6 eλt0E(t0) +A

∫ +∞

t0

eλs‖g(s)‖ds < +∞.

Hence: ∀t > t0, E(t) 6 C0e
−λ(t−t0) where: C0 = E(t0) + (

√
2(1 + β)E(t0) + (1 + β)I0)J0e

−λt0 .
Combining the very last inequality with Lemma 4 and the control on the values provided in the
proofs of Theorems 1 and 2, we finally obtained the expected inequalities. More precisely:

• If α > 3
√

µ
2 then β = 0, λ = α−

√
α2 − 4µ and:

∀t > t0, F (x(t))− F ∗ 6 2µ

2µ− (α−
√
α2 − 4µ)2

E(t) 6
2µC0

2µ− (α−
√
α2 − 4µ)2

e−λ(t−t0).

• If α 6 3
√

µ
2 , using the same argument than in Theorem 1, we can prove that:

∀t > t0, ‖x(t)− x∗‖ 6 3 + β

α(1− β)

√
2

1 + β
E(t)
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so that:

∀t > t0, (1 + β)(F (x(t))− F ∗) 6 E(t) +
λ2

4
‖x(t)− x∗‖2 6

[
1 + 2

1 + β

(1− β)2

]
E(t)

which concludes the proof.

6.3 Proof of Theorem 5

The proof of Theorem 5 relies on the the inequality (45) established in the proof of Theorem 1
for µ-quasi-strongly convex functions:

E ′(t) +λE(t) 6
λ

2
(ξ+λ2−µ)‖x(t)−x∗‖2 +

(
3

2
λ− α

)
‖ẋ(t)‖2 + (ξ+λ(2λ−α))〈ẋ(t), x(t)−x∗〉.

Observe that if F (x) = |x|+ µ
2 |x|

2 this inequality is actually an equality:

E ′(t) + λE(t) =
λ

2
(ξ + λ2 − µ)|x(t)|2 +

(
3

2
λ− α

)
|ẋ(t)|2 + (ξ + λ(2λ− α))ẋ(t)x(t)〉 (60)

since for this function, we actually have for all u ∈ ∂F (x)

〈u, x− x∗〉 = F (x)− F ∗ +
µ

2
‖x− x∗‖2 .

If we choose λ = 2α
3 and ξ = −λ

2

2 we get

E ′(t) + λE(t) =
λ

2
(
λ2

2
− µ)|x(t)|2. (61)

From (61) we deduce that for any δ > λ

E ′(t) + δE(t) =
λ

2
(
λ2

2
− µ)|x(t)|2 + (δ − λ)E(t).

It follows that

E ′(t) + δE(t) >
λ

2
(λ2 − µ− δλ

2
)|x(t)|2 + (δ − λ)|x(t)|.

Since x(t)→ 0 when t→ +∞, it follows that it exists t1 > t0 such that E(t1) > 0 and such that
for any t > t1,

E ′(t) + δE(t) > 0 (62)

and thus eδtE(t) > eδt1E(t1) > 0. It follows that for any t > t1

eδt
(
|x(t)|+ 1

2
|λx(t) + ẋ(t)|2

)
> eδt1E(t1) > 0.

Setting y(t) := eδtx(t) we have

|y(t)|+ 1

2
|(λ− δ)y(t) + ẏ(t)|2e−δt > eδt1E(t1) > 0. (63)

Let us define: H(t) := eδtE(t). Hence, if it exists t2 large enough such that for all t > t2,
|y(t)| 6 1

2H(t1). Then there exists t3 > t2 such that:

∀t > t3, |ẏ(t)| >
√
H(t1)e

δ
2 t − δ − λ

2
H(t1) > 0.
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Since y ∈ C1 (thanks to Corollary 1), y is a continuous function of time. It follows that the sign
of ẏ(t) is constant on [t3,+∞[. If ẏ(t3) > 0 then:

∀t > t3, y(t) > y(t3) +

∫ t

t3

(√
H(t1)e

δ
2u − δ − λ

2
H(t1)

)
du

which is impossible. If ẏ(t3) < 0 then for all t > t3,

y(t) 6 y(t3)−
∫ t

t3

(√
H(t1)e

δ
2u − δ − λ

2
H(t1)

)
du,

which is also impossible. It follows that y(t) cannot tend to 0 when t→∞ which concludes the
proof.

6.4 Proof of Theorem 6

The proof of Theorem 6 is based on a Lyapunov analysis inspired by the one proposed for the
ODE. To study the ODE we used to following Lyapunov energy :

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 − λ2

4
‖x(t)− x∗‖2. (64)

To study the properties of the scheme (35) we define the sequence Ln

Ln := L(xn, vn) := F (xn)− F ∗ +
1

2
‖λ(xn − x∗) + (1 + λs)vn‖2 −

λ2

4
‖xn − x∗‖2 (65)

which can be seen as particular discretization of E . To simplify the writing of the proof, we will
use the following notations

t = λs, u = λ(xn+ 1
2
− x∗), v = vn+ 1

2
and g =

1

λ
∇F (xn+ 1

2
). (66)

With these reduced notations, the scheme may be written:
λxn+ 1

2
= λxn + tvn

v := vn+ 1
2

= (1 + 3t
2 )−1(vn − tg)

λxn+1 = λxn+ 1
2
− t2g

vn+1 = v + (1 + t)−1t2g.

(67)

Remember that the value of vn+1 is actually chosen such that

‖λ(xn+1 − x∗) + (1 + t)vn+1‖2 = ‖u+ (1 + t)v‖2. (68)

Let us first compute Ln+ 1
2

and Ln using the reduced notations. We have:

Ln+ 1
2

:= L(xn+ 1
2
, vn+ 1

2
) := F (xn+ 1

2
)− F ∗ +

1

2
‖u+ (1 + t)v‖2 − 1

4
‖u‖2 (69)

and Ln can be written in the following way as:

Ln = F (xn)− F ∗ +
1

2
‖u+ λ(xn − xn+ 1

2
) + (1 + t)vn‖2 −

1

4
‖u+ λ(xn − xn+ 1

2
)‖2

= F (xn)− F ∗ +
1

2
‖u+ vn‖2 −

1

4
‖u− tvn‖2 .
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Now, noticing that:

−λ2

4
‖xn+1 − x∗‖2 =

−λ2

4
‖xn+1 − xn+ 1

2
+ xn+ 1

2
− x∗‖2 = −1

4
‖u‖2 − t4

4
‖g‖2 +

t2

2
〈u, g〉 (70)

the energy Ln+1 can be expressed as a variation of Ln+ 1
2

:

Ln+1 = Ln+ 1
2

+ F (xn+1)− F (xn+ 1
2
)− t4

4
‖g‖2 +

t2

2
〈u, g〉. (71)

To prove Theorem 3 we demonstrated that the Lyapunov Energy defined by (64) satisfies

E ′(t) + λE(t) 6 0. (72)

To prove Theorem 6 we will use the following Lemma whose proof is left to Subsection 6.5:

Lemma 6. (
1 + t− 3

2
t2
)
Ln+1 − Ln ≤

t

4

(
1− 2µ

λ2
+ 4t

)
‖u‖2. (73)

Observe that since: t = λs = λ√
L

, then

1− 2µ

λ2
+ 4t = 1− 2µ

λ2
+ 4

λ√
L

= 1− 2

(√
µ

λ

)2

+ 4
λ√
L
. (74)

Let x =
√
µ

λ . We then have:

1− 2µ

λ2
+ 4t = 1− 2x2 + 4

√
κ

1

x
. (75)

with κ = µ
L .

We easily prove that x > 1+
√
κ√

2
(which is equivalent to λ 6

√
2µ

1+2
√
κ

) implies that 2x3 − x −
4
√
κ > 0 which ensures that the right member of the inequality (73) is non positive.
It follows that for all n > 0 we have:

Ln 6

(
1 +

λ√
L
− 3λ2

2L

)−n
L0. (76)

Using the µ-strong convexity of F we get(
1− λ2

2µ

)
(F (xn)− F ∗) 6 F (xn)− F ∗ − λ2

4
‖xn − x∗‖2 6 Ln (77)

which ends the proof of Theorem 6.

6.5 Proof of Lemma 6

Sketch of proof: The proof of Lemma 6 is technical. This is the reason why we first give a
structure of it :

1. A key descent inequality (78) used previously by Siegel is proven.

2. We give an upper bound of Ln+ 1
2
− Ln.

3. From this bound and (78) we give an upper bound of Ln+1 − Ln.

4. We deduce a bound on (1 + t)Ln+1−Ln as a polynomial in t whose coefficients depend on
u and v.

5. We conclude by bounding this polynomial by Ln+1.
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Proof of Lemma 6: Step 1. We first prove the inequality (78)

F (xn+1)− F (y) ≤ λ〈g, xn+ 1
2
− y〉 − µ

2
‖xn+ 1

2
− y‖2 − t2

2
‖g‖2 (78)

which is a key inequality used by Siegel in [29].
Since ∇F is L = 1

s2 -Lipschitz and g := 1
λ∇F (xn+ 1

2
) := λ

t2 (xn+1 − xn+ 1
2
) we get

F (xn+1)− F (xn+ 1
2
) 6 − t

2

2
‖g‖2. (79)

Since F is strongly convex, for any y ∈ Rn we have

F (xn+ 1
2
)− F (y) 6 λ〈g, xn+ 1

2
− y〉 − µ

2
‖xn+ 1

2
− y‖2. (80)

Inequality (78) holds summing the two previous inequalities.
Step 2.

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn) +

1

2
‖u+ (1 + t)v‖2 − 1

2
‖u+ vn‖2 −

1

4
‖u‖2 +

1

4
‖u− tvn‖2

We use the identity (with the condition A−B = a+ b):

1

2
‖A‖2 − 1

2
‖B‖2 = 〈a,B〉+ 〈b, A〉+

1

2
‖a‖2 − 1

2
‖b‖2 (81)

with
A = u+ (1 + t)v, B = u+ vn
a = −tg, b = − t

2v.

We thus get with this identity:

1

2
‖u+ (1 + t)v‖2 − 1

2
‖u+ vn‖2 = −t〈g, u+ vn〉 −

t

2
〈v, u+ (1 + t)v〉+

t2

2
‖g‖2 − t2

8
‖v‖2

= −t〈g, vn〉 − t〈g, u〉 −
t

2
〈v, u〉 − t(4 + 5t)

8
‖v‖2 +

t2

2
‖g‖2.

Moreover observe that:

−1

4
‖u‖2 +

1

4
‖u− tvn‖2 = − t

2
〈vn, u〉+

t2

4
‖vn‖2 (82)

Hence:

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn)− 〈tg, vn〉 − t〈g, u〉+

t2

2
‖g‖2

− t
2
〈v, u〉 − t(4 + 5t)

8
‖v‖2 − t

2
〈vn, u〉+

t2

4
‖vn‖2

Using the expression of vn in 〈vn, u〉, we get:

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn)− 〈tg, vn〉 − t

(
1 +

t

2

)
〈g, u〉+

t2

2
‖g‖2

−t
(

1 +
3t

4

)
〈v, u〉 − t(4 + 5t)

8
‖v‖2 +

t2

4
‖vn‖2
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Step 3. Using (71), we get:

Ln+1 − Ln = Ln+1 − Ln+ 1
2

+ Ln+ 1
2
− Ln

= F (xn+1)− F (xn)− t〈g, vn〉+
t2

2
‖g‖2 − t〈g, u〉

−t
(

1 +
3t

4

)
〈v, u〉 − t(4 + 5t)

8
‖v‖2 +

t2

4
‖vn‖2 −

t4

4
‖g‖2 (83)

Then, we apply (78) with y = xn and tvn = λ(xn+ 1
2
− xn) to get :

F (xn+1)− F (xn)− t〈g, vn〉 ≤ −
t2

2
‖g‖2 − t2µ

2λ2
‖vn‖2 (84)

and (78) with y = x∗ to get

〈g, u〉 ≥ F (xn+1)− F ∗ +
µ

2λ2
‖u‖2 +

t2

2
‖g‖2. (85)

Combining (83), (84) and (85) we deduce :

Ln+1 − Ln ≤ − t
2µ

2λ2
‖vn‖2 − t(F (xn+1)− F ∗)− tµ

2λ2
‖u‖2 − t3

2
‖g‖2

−t
(

1 +
3t

4

)
〈v, u〉 − t(4 + 5t)

8
‖v‖2 +

t2

4
‖vn‖2 −

t4

4
‖g‖2

As in the continuous case, we assume that: λ ≤
√

2µ so that − t2µ
2λ2 + t2

4 ≤ 0. We thus deduce
that:

Ln+1 − Ln ≤ −t(F (xn+1)− F ∗)− tµ

2λ2
‖u‖2 − t3

2
‖g‖2

−t
(

1 +
3t

4

)
〈v, u〉 − t(4 + 5t)

8
‖v‖2 − t4

4
‖g‖2

Step 4. Using the following expression of F (xn+1)− F ∗ :

F (xn+1)− F ∗ = Ln+1 −
1

2
‖λ(xn+1 − x∗) + (1 + t)vn+1‖2 +

λ2

4
‖xn+1 − x∗‖2

= Ln+1 −
1

2
‖u+ (1 + t)v‖2 +

1

4
‖u− t2g‖2

= Ln+1 −
1

2
‖u+ (1 + t)v‖2 +

1

4

(
t4‖g‖2 + ‖u‖2 − 2t2〈u, g〉

)
= Ln+1 −

1

4
‖u‖2 − (1 + t)2

2
‖v‖2 +

t4

4
‖g‖2 − (1 + t)〈u, v〉 − t2

2
〈u, g〉

we eventually get:

(1 + t)Ln+1 − Ln ≤ t

4

(
1− 2µ

λ2

)
‖u‖2 +

t2

8
(3 + 4t)‖v‖2 − t3

4
(2 + t− t2)‖g‖2

+
t2

4
〈u, v〉+

t3

2
〈u, g〉.
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We now use the inequality:

|〈tg, u〉| ≤ t2

2
‖g‖2 +

1

2
‖u‖2 , (86)

so that: t3

2 |〈u, g〉| ≤
1
4 t

4 ‖g‖2 + 1
4 t

2 ‖u‖2 and:

(1 + t)Ln+1 − Ln ≤
t

4

(
1− 2µ

λ2
+ t

)
‖u‖2 +

t2

8
(3 + 4t)‖v‖2 − t3

4
(2− t2)‖g‖2 +

t2

4
〈u, v〉 (87)

And thus, since t ≥ 0 and t = λ√
L
6
√

2µ
L 6

√
2:

(1 + t)Ln+1 − Ln ≤
t

4

(
1− 2µ

λ2
+ t

)
‖u‖2 +

t2

8
(3 + 4t)‖v‖2 +

t2

4
〈u, v〉 (88)

so that:

(1 + t)Ln+1 − Ln ≤
t

4

(
1− 2µ

λ2

)
‖u‖2 +

t2

4

(
‖u‖2 +

3 + 4t

2
‖v‖2 + 〈u, v〉

)
. (89)

Step 5. This last step relies on the following technical lemma whose proof is straightforward:

Lemma 7. If A ≥ 1
4 , we have:

A ‖x‖2 + 〈x, y〉 6 2A(‖x+ y‖2 + ‖y‖2).

Let us apply Lemma 7 with x =
√

1 + tv and y = 1√
1+t

u. We get:

(1 + t)A ‖v‖2 + 〈u, v〉 6 2A

1 + t
‖u+ (1 + t)v‖2 +

2A

1 + t
‖u‖2 (90)

Choosing:

A(t) =
3 + 4t

2(t+ 1)
(91)

which actually satisfies: A(t) ≥ 1
4 for any t ≥ 0, we thus deduce that:

3 + 4t

2
‖v‖2 + 〈u, v〉 ≤ 3 + 4t

(1 + t)2
‖u+ (1 + t)v‖2 +

3 + 4t

(1 + t)2
‖u‖2

≤ 3 ‖u+ (1 + t)v‖2 + 3 ‖u‖2 .

Hence:

(1 + t)Ln+1 − Ln ≤
t

4

(
1− 2µ

λ2

)
‖u‖2 +

t2

4

(
4‖u‖2 + 3 ‖u+ (1 + t)v‖2

)
. (92)

Moreover:

1

2
‖u+ (1 + t)v‖2 = Ln+1 − (F (xn+1)− F ∗) +

λ2

4
‖xn+1 − x∗‖2

≤ Ln+1 +
λ2 − 2µ

4
‖xn+1 − x∗‖2 ≤ Ln+1

using the µ-strong convexity of F and the fact that λ2 − 2µ ≤ 0. We finally get:(
1 + t− 3

2
t2
)
Ln+1 − Ln ≤

t

4

((
1− 2µ

λ2

)
+ 4t

)
‖u‖2. (93)
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6.6 Proof of Theorem 7

The proof is essentially similar to the one of Theorem 6. The careful reader may have remarked
that the only property of g that is used in the proof of Theorem 6 is the inequality (78) we recall
here

∀y ∈ Rn, F (xn+1)− F (y) ≤ λ〈g, xn+ 1
2
− y〉 − µ

2
‖xn+ 1

2
− y‖2 − t2

2
‖g‖2.

It is used twice, once with y = xn and once with y = x∗. Actually, any vector g satisfying this
descent property will ensure the decay described in both theorems. It turns out that the vector
g̃ defined in (40) satisfies this inequality under the hypothesis of the Theorem 7, see also [29,
Lemma 4.2] :

Lemma 8. If F = f +h is convex, if f ∈ S1,1µ,L, if h is convex, proper and lower semi-continuous

and s = 1√
L

then for all (x, y) ∈ Rn × Rn :

F (Tx)− F (y) ≤ 1

s2
〈x− Tx, x− y〉 − µ

2
‖x− y‖2 − 1

2s2
‖Tx− x‖2 (94)

Proof. Since Tx = prox s2h
(
x− s2∇f(x)

)
, we have x − s2∇f(x) − Tx ∈ s2∂h(Tx) that is for

any y ∈ Rn:

h(Tx)− h(y) 6 〈x− Tx
s2

−∇f(x), Tx− y〉 (95)

Since ∇f is 1
s2 -Lipschitz

f(Tx)− f(x) 6 〈∇f(x), Tx− x〉+
1

2s2
‖Tx− x‖2. (96)

Since f is strongly convex, for all y ∈ Rn

f(x)− f(y) 6 〈∇f(x), x− y〉 − µ

2
‖x− y‖2. (97)

Adding the three last inequalities we get :

F (Tx)− F (y) 6
1

s2
〈x− Tx, Tx− y〉 − µ

2
‖x− y‖2 +

1

2s2
‖Tx− x‖2. (98)

Using Tx− y = Tx− x+ x− y we get

F (Tx)− F (y) 6
1

s2
〈x− Tx, x− y〉 − µ

2
‖x− y‖2 − 1

2s2
‖Tx− x‖2. (99)

Applying this Lemma to x = xn+ 1
2

we have Tx = xn+1 and using g̃ := λ
t2 (x − Tx) we get

exactly the inequality needed to complete the proof of Theorem 7 :

∀y ∈ Rn, F (xn+1)− F (y) ≤ λ〈g̃, xn+ 1
2
− y〉 − µ

2
‖xn+ 1

2
− y‖2 − t2

2
‖g̃‖2. (100)
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