
HAL Id: hal-02545145
https://hal.science/hal-02545145v2

Preprint submitted on 6 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Binary Complete and Aperiodic Turing machine
Pablo Concha-Vega, Rodrigo Torres-Avilés

To cite this version:
Pablo Concha-Vega, Rodrigo Torres-Avilés. A Binary Complete and Aperiodic Turing machine. In
press. �hal-02545145v2�

https://hal.science/hal-02545145v2
https://hal.archives-ouvertes.fr

A Binary Complete and Aperiodic Turing
machine

Pablo Concha-Vega1, Rodrigo Torres-Avilés2?

1 Dpto. de Ciencias de la Computación y Tecnologias de la Información,
Universidad de Bı́o-Bı́o, Chile

2 Dpto. de Sistemas de Información, Universidad del Bı́o-Bı́o, Chile

Received 04 August 2020; In final form XX xxxxx 202X

Turing machines have been studied as dynamical systems
for more than two decades, first formalized by Kůrka, propos-
ing a topological dynamical system named Turing machine
with moving tape (TMT). It was conjectured that every
TMT has at least one periodic point. Nowadays, there
are several examples of aperiodic Turing machines, disprov-
ing Kůrka’s conjecture. Moreover, one of these machines,
named SMART, has other interesting properties like re-
versibility, completeness, aperiodicity, topological minimal-
ity, among others. This machine has four states and works
over an alphabet of three symbols. In this research, we
study the dynamical properties of BinSmart, a 2-symbols
reconstruction of the main dynamic of SMART machine.
This machine results to be aperiodic, topologically minimal
(therefore transitive) but not time-symmetric, as it is not
a direct translation of the original machine. We also prove
that its t-shift is a primitive substitution.

Key words: Symbolic Systems, Topological Dynamics, Turing
machines, Subshifts, Minimality, Aperiodicity, Substitution

1 INTRODUCTION

The term computation refers to any kind of mathematical calculation
that includes both arithmetical and non-arithmetical steps and follows

? email: rtorres@ubiobio.cl

1

a well-defined model, for example, an algorithm. While algorithms had
an important role in certain areas of mathematics, prior to the 1930’s
they had not been studied as mathematical objects by themselves. [11]
changed this by introducing a type of imaginary machine which could
take an input and process it with a finite number of steps until getting
the final output. This mathematical model of computation defines an
abstract machine, which classically consists of a head that, following
some defined instructions, can manipulate symbols and move along an
infinite tape (but with a finite input). The part of the tape that is
not part of the input is filled with a special symbol usually known as
the blank symbol. This model was developed as a formalization of the
concept of computation.

The study of Turing machines is mainly focused on computability,
which in simple words means to study whether computers can solve
a certain problem. One of the most studied problems related with
this topic is the halting problem, which consists of determining, given
a computer program and an input, whether the program will finish
running or will be running forever. Alan Turing proved in 1936 that
an algorithm to solve the halting problem for all possible inputs (A
program and an input for this program) cannot exist.

Nevertheless, in this research, we do not study neither the classi-
cal Turing machine model or computability and complexity. Instead,
we consider Turing machines as symbolic systems, more specifically, a
model defined by [8] in 1997 named Turing machine with moving tape
(TMT), which, as its name suggests, is the tape the component that
has the ability to move while the head keeps stationary. It is impor-
tant to remark that if the model is not defined in this way, it could
not be compact, which is a serious drawback in topological dynamics
[8]. The idea behind this model is to study the dynamics of Turing
machines, so we do not consider either initial or final states, since the
computation may start in any state and proceed infinitely. We do not
need to restrict the computation only to finite tape contents either,
because the computation is carried out over an arbitrarily long part of
the tape. Simply stated, the Turing machine with moving tape model
can be defined with a finite set of inner states, a finite alphabet, and a
transition function.

Considering this dynamical point of view, interesting questions emerge
when we work over infinite ‘inputs’ or infinite computational time. Can
we predict the behavior of the computer? Can we know if the computer

2

will reach a specific state of computation? Can we determine if the com-
putation will fall into a loop? If it does not, will it reach any possible
state of computation? How much can the dynamical point of view
tell us about computation? There exists a very rich field of research
attaining to these questions (for examples, see [6, 5, 4, 10]).

The study of aperiodic Turing machines has been of particular in-
terest. Aperiodicity means that there does not exist a configuration in
the machine that eventually evolves into itself. In the context of TMT,
Kůrka conjectured that there does not exist such a Turing machine.
This was later disproved by [2], presenting an aperiodic, complete,
but irreversible Turing machine. Several years later, [3] presented a
3-symbol, aperiodic and complete, but this time reversible, Turing ma-
chine called SMART, proving a conjecture by [7] about its existence.
In this last work, it was also proved that SMART presented several
other dynamical properties not seen before in TMT, such as Topologi-
cal Minimality and Substitutivity. This machine was also used to prove
that aperiodicy and minimality are undecidable properties.

In topological dynamics, even a change in the speed of the machine
could imply changes in its dynamics and properties. Considering the
previous, a simple decrease in the size of the SMART alphabet would
not give us a binary machine with all of its topological properties (in
fact, a naive transformation would imply breaking the reversibility or
completeness of the Turing machine). In this fashion, the existence of a
two symbol complete reversible and aperiodic Turing machine remains
unclear.

In this research, we focus on the study of a Turing machine pro-
posed by Julien Cassaigne, nicknamed BinSmart. This Turing ma-
chine is claimed to be aperiodic, based in the same general behavior of
SMART: recursive calls of searches for a particular symbol. Therefore,
the research question is to answer which properties are preserved from
SMART to BinSmart.

This research is organized as follows: In section 2 all the main con-
cepts needed for the rest of the document are defined. Next, in section
3, the dynamical and topological properties of BinSmart are proved.
Last, in section 4, a substitution for the minimal t-shift of BinSmart is
presented.

3

2 DEFINITIONS

2.1 Dynamical System
A dynamical system is a pair (X,T), where X is a compact metric
space and T : X → X is a continuous self-map called global transition
function. The compact metric space evolves in time through the global
transition function, thus the n−th evolution of an element x ∈ X is
denoted by Tn(x). When the dynamical system works over discrete
time it is called discrete dynamical system, and when the metric space
is defined in a discrete way, it is called a symbolic system.

2.2 Orbits
In a dynamical system (X,T), the orbit O(x) of a point x ∈ X is
defined by O(x) = (Tn(x))n∈N, in other words, the orbit of a point
contains all its evolutions.
Periodic orbits: A point x ∈ X has a periodic orbit if there exists
n ∈ N such that x = Tn(x), or equivalently, x ∈ O(x). The point
x ∈ X is called periodic point with period n. If the dynamical system
does not possess a periodic point, it is called Aperiodic.

2.3 Subshifts, languages and words
There exists a specific type of symbolic system called subshift, which is
based in a space of words evolving through the shift function. To give
a formal definition, we need first some concepts about words.

Given a finite set Σ, called alphabet, ΣZ is the set of bi-infinite se-
quences of elements of Σ, called bi-infinite words. Σω (ωΣ) represent
the set of right (left) infinite sequences of elements of Σ, called infinite
words to the right (left). The set of infinite words to the right can be also
represented by ΣN. Finally, Σ∗ represents the set of finite concatena-
tions of elements of Σ, called finite words, including the word of length
0; the empty word ε. Two finite words v = v0...vn and v′ = v′0...v

′
n can

be concatenated just by putting them together: vv′ = v0...vnv
′
0...v

′
n.

We can also concatenate a finite word v with a right infinite word u:
vu = v0...vnu0u1.... A finite word v is said to be a subword of another
(finite or infinite) word u, if there exists two indexes i < j, such that
uiui+1...uj = v. This is denoted by v v u (and u w v). If the index i

is equal to 0, we say that v is a prefix of u and is denoted by v <p u

(and u =p v). If the index j is equal to l, where l is the length of u, we
say that v is a suffix of u and is denoted by v <s u (and u =s v). It

4

is important to say that this definition of subword may vary in other
works.

Now, let us introduce the shift function σ, which is defined both in
ΣZ and ΣN by σ(u)i = ui+1. Given a subset S ⊆ ΣZ (or S ⊆ ΣN), a
formal language is defined by the subwords of sequences in S:

L(S) = {z ∈ Σ∗|(∃w ∈ S)z v w}

Reciprocally, given a formal language L, a set of infinite sequences
can be defined in ΣM (M ∈ {Z,N}):

SL = {w ∈ ΣM|(∀z v w)z ∈ L}

When S satisfies SL(S) = S, it is called a subshift.

2.4 Topological dynamical system
A topological dynamical system (X,T,Ω) is a dynamical system (X,T)
with a topology Ω such that T is continuous. When we refer to a
topological dynamical system, we omit the collection Ω, which is defined
by the open sets of the metric d : X ×X → N in our cases, by the balls
Bx as Ω = {Br(x) : x ∈ X, r > 0}.

Perfect set
A point x ∈ S, where S ⊂ X is called an isolated point if there exists
a neighborhood of x that does not contain any other point of S. Thus,
a subset of a topological space is called a perfect set if it has no iso-
lated points. In other words, given a perfect set S, any point can be
approximated arbitrarily well by other points from the set.

2.5 Turing Machine
A Turing machine (TM) is a computational model that describes an
abstract machine, which consists of a head that reads symbols from a
tape, which are modified following the previously defined instructions of
the machine. Turing machines are mainly used to define computabil-
ity (can this problem be solved by a computer?). In this work, the
dynamics of Turing machine are studied, therefore some preliminary
considerations have to be made in order to specify Turing machines in
the context of dynamical systems.

Formally, a Turing machine M is a tuple (Q,Σ, δ), where Q is a
finite set of states, Σ is a finite set of symbols (a finite alphabet) and
δ ⊆ Q×Σ×Σ×Q×{−1, 0,+1} is the transition relation of the machine.

5

Configuration of a Turing machine
A TM works over a tape, usually bi-infinite, full of symbols from Σ.

A configuration is an element (r, i, w) ∈ Q×Z×ΣZ. A finite configu-
ration is an element (r, i, v) ∈ Q×{0, 1, ...,m−1}×Σm for some m ∈ N.
A right semi-infinite configuration is an element (r, i, u) ∈ Q×N×Σω.
A left semi-infinite configuration is an element (r, i, u) ∈ Q × (−N)×
ωΣ.

Instructions of a Turing machine
Basically, an instruction is what takes the machine from one configu-
ration to another, in other words, instructions define the behavior of
Turing machines, and particularly, the evolution of configurations.

Mathematically, an instruction is a quintuple (r, s, s′, r′, c) ∈ Q×Σ×
Σ×Q× {−1, 0,+1} and it can be applied to a configuration (r′′, i, w)
if wi = s and r′′ = r, leading to the configuration (r′, i+ c, w′), where
w′i = s′ and w′k = wk for all k 6= i. If the configuration is finite or
(right or left) semi-finite with domain K, and i + c 6∈ K , then the
instruction cannot be applied and the machine halts. If no instruction
can be applied, the machine halts.

Definition 1. For configurations x, y, we say that a Turing machine
M reaches configuration y from x if y is the result of evolving M on
x over a finite number of steps, and we denote this by x `∗ y. This
notation is considered for finite, semi-finite and infinite configurations.

In the computational context, Turing machines have an initial and
a final state, but since we are studying its dynamics, we omit these
definitions.

Deterministic Turing machine
A Turing machine M is deterministic if for any configuration (r, i, w),
at most one instruction can be applied. This is equivalent to give δ as
a (possibly partial) function δ : Q× Σ→ Q× Σ× {−1, 0,+1}.

Complete Turing machine
A Turing machine M is complete if for each configuration (r, i, w), at
least one instruction can be applied. This is equivalent saying that the
machine never halts.

Injective Turing machine
A Turing machine M is injective when δ is injective. This is:

6

(∀q, q′ ∈ Q)(∀s, s′ ∈ Σ) : δ(q, s) = δ(q′, s′)⇒ q = q′ ∧ s = s′

This is equivalent to say that every configuration comes from at most
one pre-image or previous configuration.

Reversible Turing machine
A Turing Machine M is reversible if it is deterministic and injective.

In this work, we will use the definition of reverse Turing machine
from [3]. A reversible Turing machine can be characterized by a pair
(ρ, µ), where ρ : Q × Σ → Q × Σ is a partial injective function and
µ : Q → {−1, 0,+1} is a partial function, such that δ is characterized
by all the instructions of the form (r, s, s′, r′, µ(r′)) where r ∈ Q, s ∈ Σ
and (r′, s′) = ρ(r, s).

Indeed, the movement portion of the instructions depends on the
state at which it goes in a reversible Turing machine; if not, the Tur-
ing machine has a configuration with more than one pre-image, and
therefore it would be not injective. Now we can define the following:

Definition 2. The reverse of a Turing machine M = (Q,Σ, δ) is de-
fined by M−1 = (Q,Σ, δ−1), where (r′, s′, s, r,−µ(r)) ∈ δ−1 if and only
if r ∈ Q, s ∈ Σ and (r′, s′) = ρ(r, s).

The reverse machine is called this way because it reverses the com-
putation. In this case, we need to define the function φ : (ΣZ,Z, Q)→
(ΣZ,Z, Q) as φ(w, i, r) = (w, i− µ(r), r), then the reverse computation
is obtained by applying φ−1 ◦M−1 ◦ φ.

2.6 Turing Machine as a Dynamical System
Topological dynamical systems of Turing machine is a paradigm formal-
ized by [8] (but firstly introduced by [9]) and it gives us a strong tool
for the study of the dynamics of Turing machine. In this research, we
will consider the dynamical system called Turing machine with Moving
Tape (TMT), which consists in putting the head at the center of the
tape (the 0 position) and only moving the tape instead.

The dynamical system (X,T) for TMT consists in: X ⊆ ωΣ×Q×Σω

and T : X → X is the application of δ by moving the tape instead of
the head. An element from ωΣ×Q×Σω is called a TMT configuration.

To have a better understanding of how this system works, let us
specify the way that instructions are applied: instruction (r, u0, s

′, r′, c)

7

is applied to a TMT configuration (...w2w1w0, r, u0u1u2...) resulting in:

• if c = −1, (...w3w2w1, r
′, w0s

′u1...)

• if c = 0, (...w2w1w0, r
′, s′u1u2...)

• if c = +1, (...w1w0s
′, r′, u1u2u3...)

We call a finite configuration of TMT, a tuple (v, r, v′) ∈ ∗Σ×Q×Σ∗.
Additionally, the metric used to measure the distance between a pair
of points (w, r, u), (w′, r′, u′) ∈ X is, considering i = min{j : w−j 6=
w′−j ∨ uj 6= u′j , j ∈ N}:

d((w, r, u), (w′, r′, u′)) =
{

1 if r 6= r′

2−i in other cases

As we can see, this is a modification of the Cantor metric.

2.7 The t-shift
Taking into account the TMT dynamical system, we can define the
projection π : X → Q× Σ by π(w, r, w′) = (r, w′0).

The t-shift, denoted by ST ⊆ (Q× Σ)N, is the sets of orbits τ(x) =
(π(Tn(x)))n∈N for x ∈ X. In other terms, ST = {τ(x) : x ∈ X}.

In figure 1, a comparison among the classic Turing machine model,
TMT and t-shift can be seen through an example.

1 0 1 1 1 0
q0

1 0 0 1 1 0
q1

1 0 0 1 1 0
q0

1 0 1 1 1 0
q2

...

1 0 1 1 1 0
q0

0 1 0 0 1 1
q1

1 0 0 1 1 0
q0

0 1 1 1 0 0
q2

...

1 0 0 1 ...
q0 q1 q0 q2
0 0 1 1 ...
q1 q0 q2 q2
0 1 1 0 ...
q0 q2 q2 q2
1 1 0 0 ...
q2 q2 q2 q2

...

Turing machine model TMT model t-shift

FIGURE 1: Examples of the evolution of a TM in its dynamical mod-
els (the classic one, TMT and t-shift). The represented machine has
the instructions (q0, 0, 1, q2,+1), (q0, 1, 0, q1,−1), (q1, 0, 0, q0,+1) and
(q2, α, α, q2,+1), ∀α ∈ Σ.

As we can see, the t-shift stores the read symbol and the current
inner state at each step of computation for every possible configuration
i.e. it contains relevant information of the computation history of the
machine.

8

Cylinder
In this context, a ball is called a cylinder and it is defined by Br(x) =
{y ∈ ωΣ × Q × Σω : d(x, y) < r}, but we can also define it in a more
intuitive way: Given a finite configuration (v, r, v′) ∈ Σ∗ ×Q× Σ∗, its
cylinder is:

[v, r, v′] = {(w, r′, w′) ∈ ωΣ×Q× Σω : (r = r′)(w =s v)(w′ =p v
′)}

2.8 Turing machine dynamical and topological properties
Here, we present the properties linked with the Turing machine dynam-
ical system that are the center of our study.

Aperiodicity
The first of this properties is aperiodicity which says that a dynami-
cal system does not have any periodic point. In the Turing machine
context, we will call periodic configuration instead of periodic point,
then a Turing machine is aperiodic if it does not have any periodic
configuration. In mathematical terms:

(∀x ∈ X)(∀n > 0) : Tn(x) 6= x

Topological transitivity
A dynamical system (X,T) is topologically transitive if there exists a
point x ∈ X such that for all point y ∈ X we got that y ∈ O(x). When
this happens, we say that x is a transitive point and O(x) is dense.

Now, let us contextualize this property for the TMT dynamical sys-
tem:

Definition 3. Let (X,T) be a TMT dynamical system. (X,T) is topo-
logically transitive if

(∀u, v ∈ Σ∗ ×Q× Σ∗)(∃x ∈ [u])(∃n > 0) : Tn(x) ∈ [v]

or, equivalently:

(∃x ∈ X)(∀u ∈ Σ∗ ×Q× Σ∗)(∃n > 0) : Tn(x) ∈ [u]

The previous definitions are indeed equivalent, due that we work
over a perfect set [1].

9

Topological minimality
If every point of a dynamical system is topologically transitive, then it
is topologically minimal.

Definition 4. Let (X,T) be a TMT dynamical system. (X,T) is topo-
logically minimal if

(∀x ∈ X)(∀u ∈ Σ∗ ×Q× Σ∗)(∃n > 0) : Tn(x) ∈ [u]

Time-symmetry
Time-symmetry is a property firstly studied in physical systems and it
is considered stronger than reversibility. When a system presents this
property, it is indistinguishable if the system goes forward or backward
in time. The definition for Turing machines has been taken from [3].

Definition 5. A reversible Turing machine M = (Q,Σ, δ) is said to be
time-symmetric if there exists involutions hQ : Q→ Q and hΣ : Σ→ Σ
such that:

(hQ(r), hΣ(s), hΣ(s′), hQ(r′), c) ∈ δ−1 ⇔ (r, s, s′, r′, c) ∈ δ

Substitutive subshift
A substitution is a morphism φ : Σ∗ → Σ∗, which can be extended to
ΣN. A fixed point of φ is a word w ∈ ΣN such that φ(w) = w. A
subshift is substitutive if it is the closure of the orbit of a fixed point of
some substitution. In that case, we can define the subshift with that
substitution.

3 BINSMART TOPOLOGICAL AND DYNAMICAL PROP-
ERTIES

3.1 The BinSmart machine
In this section, we introduce the Binary Smart (BinSmart) machine
which is the main object of study in this work. This Turing machine
is based on another machine known as SMART machine [3], but it
is not a simple recoding, as it would imply a loss in reversibility or
completeness.

10

3D 1G′

3D′ 1G3G

3G′

1D′

1D

1|0J

0|0I

0|0J

1|0J

1|1J

0|1J

1|1J

0|1I

0|1I1|1I

0|0I

1|0I

1|0I

0|0J

0|1J

1|1I

FIGURE 2: Binary Smart(BinSmart): We gave it this name because
it has a similar behavior than SMART machine, but with just two
symbols. An arrow from r to r′ labelled α|α′c represents the instruction
(r, α, α′, r′, c) of the machine.

We remark the symmetry between states 1D and 1G, between 1D′
and 1G′, between 3D and 3G and between 3D′ and 3G′. For example,
the states 1D and 1G read and write exactly the same symbols but
have opposite moving directions; this can be extended to the rest of
the states.

In this section, we try to follow the same steps as [3] in order to
proof the desired properties, but, as we conclude that Time-Symmetry
is not present in BinSmart, we change our approach to decide about
Topological Minimality.

3.2 BinSmart’s behavior
The behavior of the BinSmart machine consists of applying bounded
searches of 1s. To describe this behavior, considering s ∈ {0, 1}, the
following propositions are defined:

11

D1(n) :
(

0 0n 1
1D

)
`∗
(

1 0n 1
3G

)
G1(n) :

(
1 0n 0

1G

)
`∗
(

1 0n 1
3D

)
D′1(n) :

(1 0 0n s
1D′

)
`∗
(1 0 0n s

1D′

)
G′1(n) :

(
s 0n 0 1

1G′

)
`∗
(

s 0n 0 1
1G′

)
D3(n) :

(
0 0n 1

3D

)
`∗
(

0 0n 1
3D

)
G3(n) :

(
1 0n 0

3G

)
`∗
(

1 0n 0
3G

)
D′3(n) :

(1 0n 0
3D′

)
`∗
(

1 0n 0
3G

)
G′3(n) :

(0 0n 1
3G′

)
`∗
(

0 0n 1
3D

)
Lemma 1. D1(n), G1(n), D′1(n), G′1(n), D3(n), G3(n), D′3(n) and
G′3(n) are true for all n ∈ N.

Proof. SinceD1(n), D′1(n), D3(n) andD′3(n) are symmetrical toG1(n),
G′1(n), G3(n) and G′3(n), we will do the proofs just for the first ones.
We prove D′1(n) and D3(n) by making an induction over n. The basis
can be done by hand by simulating the machine. Let us suppose that
these propositions are true for n−1 and for n−2. First we prove D′1(n).

(
1 0 0n−3 0 0 0 s

1D′

)
`D′1(n−1)(

1 0 0n−3 0 0 0 s
1D′

)
`2(

1 0 0n−3 0 1 1 s
1G′

)
`G′1(n−2)(

1 0 0n−3 0 1 1 s
1G′

)
`(

1 0 0n−3 0 1 1 s
3D

)
`D3(n−2)(

1 0 0n−3 0 1 1 s
3D

)
`(

1 0 0n−3 0 0 0 s
1D′

)
Now, for D3(n)

(
0 0 0 0n−3 0 1

3D

)
`2(

0 1 0 0n−3 0 1
1D′

)
`D′1(n−2)(

0 1 0 0n−3 0 1
1D′

)
`(

0 1 0 0n−3 0 1
3G

)
`G3(n−2)(

0 1 0 0n−3 0 1
3G

)
`2(

0 0 0 0n−3 0 1
3D

)
`D3(n−1)(

0 0 0 0n−3 0 1
3D

)
12

Since D1(n) and D′3(n) are not recursive, we prove them directly.
Let us prove D1(n).(

0 0 0n−2 0 1
1D

)
One Step(

1 0 0n−2 0 1
1D′

)
Apply D′1(n− 1)(

1 0 0n−2 0 1
1D′

)
One step(

1 0 0n−2 0 1
3G

)
Apply G3(n− 1)(

1 0 0n−2 0 1
3G

)
Now, for D′3(n) (

1 0n−1 0 0
3D′

)
One Step(

1 0n−1 0 1
3G

)
Apply G3(n− 1)(

1 0n−1 0 0
3G

)

3.3 Aperiodicity
Before proving that BinSmart does not have any periodic configuration,
we prove aperiodicity in two particular but important points.

Lemma 2.
(1 0n 1 0

3D′

)
`∗
(1 0n 0 1

3D′

)
Proof. (

1 0n 1 0
3D′

)
`2(

1 0n 0 1
1G

)
`G1(n)(

1 0n 1 1
3D

)
`(

1 0n 0 1
3D′

)
Lemma 3. The semi-infinite configuration

(
0 0ω

1D

)
is not periodic.

Proof. Starting with this configuration, the machine will evolve into(1 0 1 0ω

3D′

)
after 8 steps. Now we can apply Lemma 2 and see that

the evolution of this configuration is in fact not periodic.

13

In order to generalize aperiodicity to any configuration, we will prove
that arbitrary large blocks of 0s appear regardless of the context and
in a recurrent way.

Lemma 4. If we define, for every n ≥ 0, the set Cn = {x|x ∈
(

0 0n

1D

)
∪(

0n 0
1G

)
}, then for every x ∈ Cn, either x or its orbit will eventually

visit Cm for arbitrary large m.

Proof. Since the states 1D and 1G are symmetrical, we just make the
proof for the first one. We use s0, s1, s2, s3 ∈ {0, 1} as variables.

(
s0 s1 0 0n 1 s2 s3

1D

)
`D1(n)(

s0 s1 1 0n 1 s2 s3
3G

)
`(

s0 s1 0 0n 1 s2 s3
3G′

)
if s1 = 0(

s0 0 0 0n 1 s2 s3
3G′

)
`G′3(n+1)(

s0 0 0 0n 1 s2 s3
3D

)
`(

s0 0 0 0n 0 s2 s3
3D′

)
if s2 = 1(

s0 0 0 0n 0 1 s3
3D′

)
`(

s0 0 0 0n 0 0 s3
1D′

)
if s3 = 0(

s0 0 0 0n 0 0 0
1D′

)
`(

s0 0 0 0n 0 0 1
1G

)
�

if s3 = 1(
s0 0 0 0n 0 0 1

1D′

)
`2(

s0 0 0 0n 0 0 1
1G

)
�

if s2 = 0(
s0 0 0 0n 0 0 s3

3D′

)
`2(

s0 0 0 0n−1 0 0 0 s3
1G

)
�

Now we study the case s1 = 1

14

(
s0 1 0 0n 1 s2 s3

3G′

)
`(

s0 0 0 0n 1 s2 s3
1G′

)
if s0 = 0(0 0 0 0n 1 s2 s3

1G′

)
`(

1 0 0 0n 1 s2 s3
1D

)
�

if s0 = 1(1 0 0 0n 1 s2 s3
1G′

)
`(

1 0 0 0n 1 s2 s3
3D

)
`D3(n+1)(

1 0 0 0n 1 s2 s3
3D

)
`(1 0 0 0n 0 s2 s3

3D′

)
if s2 = 1(1 0 0 0n 0 1 s3

3D′

)
`(1 0 0 0n 0 0 s3

1D′

)
if s3 = 1(

1 0 0 0n 0 0 1
1D′

)
`2(

1 0 0 0n 0 0 1
1G

)
�

if s3 = 0(
1 0 0 0n 0 0 0

1D′

)
`(

1 0 0 0n 0 0 1
1G

)
�

if s2 = 0(1 0 0 0n 0 0 s3
3D′

)
`2(

1 0 0 0n−1 0 0 0 s3
1G

)
�

Theorem 1. The BinSmart machine has no periodic points.

Proof. Consider an arbitrary configuration, after at most 11 steps, the
machine will be reading a 0 symbol in either state 1D or 1G, in other
words, it arrives to one of the sets Cn defined in Lemma 4. The amount
of 0s will grow then, expanding to the left or to the right. At some point
the machine will either reach a configuration of the form

(
0 0ω

1D

)
(or

its symmetric), which we know to be aperiodic from Lemma 3, or it
will pass by an infinite sequence of configurations of the form

(
0 0n

1D

)
15

, with n ≥ 0, (or its symmetric), implying that its behavior is not
periodic.

3.4 Time-Symmetry
Let us present the reverse Turing machine of BinSmart in figure 3, in
order to compare it with possible involutions of the original machine.

3D 1G′

3D′ 1G3G

3G′

1D′

1D

1|1J

0|1I

1|1J

0|0J

0|1J

1|0J

0|0J

1|0I

0|1I

1|0I

1|1I0|0I

1|1I

0|1J

1|0J

0|0I

FIGURE 3: Reverse Binary Smart.

Proposition 1. The BinSmart machine is not time-symmetric.

Proof. We know that the instructions (1D′, 0, 1, 1G,J) and (1D′, 1, 1, 3G,J)
are in δ, then, if the BinSmart machine is time-symmetric, there must
exist two involutions hQ and hΣ such that (hQ(1D′), hΣ(0), hΣ(1), hQ(1G),J)
and (hQ(1D′), hΣ(1), hΣ(1), hQ(3G),J) are in δ−1. But there does not
exist an involution hQ that satisfies this condition neither with the
involution hΣ : {0→ 0} or with the involution hΣ : {0→ 1}.

3.5 Topological transitivity and minimality
Now, as we proved that BinSmart is not Time-Symmetric, we cannot
follow the same argument used in [3].

16

In this fashion, we directly prove topological minimality which im-
plies topological transitivity. To prove BinSmart minimality, we need
to prove that every bi-infinite configuration reaches any finite configu-
ration. To do that, we demonstrate that an arbitrary bi-infinite con-
figuration x and an arbitrary finite configuration u reach another but
‘identical’ configuration v in different times. We also prove that u
evolves into v faster than x does. Since the machine is reversible, there
is only one path to reach a specific configuration, then if x and u evolve
into v, and u do it faster than x, implies that x reaches u. Since x
and u are arbitrary, this argument is enough to prove minimality. To
demonstrate this, the following lemmas are stated.

Lemma 5. Every x ∈ X will reach
(

0 0p

1D

)
, for all p ∈ N.

Proof. As we know from Theorem 1, after at most 11 steps, any config-
uration arrives in one of the sets Cn for some n, then we apply Lemma
4 in order to reach Cm for any m, getting one of the following configu-
rations (disregarding the context):

(i)
(

0 0m

1D

)
(ii)

(
0m 0

1G

)
If we reach (i), we are done, so let us see the case (ii):(

0m 0
1G

)
`3(

0m−1 1 1
3G′

)
Apply Lemma 2 (m− 2) times(

0 1 0m−2 1
3G′

)
`2(

1 0 0m−2 1
1D

)
�

In this case we got that p = m− 2. Since we can reach this configu-
ration for any m, we can do it for any p.

Lemma 6.
(

0 0n

1D

)
`∗
(

1 0m 1 0n−m−1

3D′

)
, for any m < n

Proof. Starting from
(

0 0n

1D

)
, after 3 steps we reach

(
1 1 0n−1

3D′

)
,

then we apply Lemma 2m times, in an iterative way, to obtain:
(

1 0m 1 0n−m−1

3D′

)
.

17

Lemma 7. Considering an arbitrary finite word w ∈ {0, 1}∗ of length
l, the following statements are true:

(i)
(

1 1 0 0n w1 ... wl 1
1D

)
`∗
(1 0 0 0n 0 w2 ... wl 1

3D′

)
(ii)

(
1 w1 ... wl 0 0n 1

1D

)
`∗
(1 w1 ... wl 0 0n 1

3G′

)
(iii)

(
1 w1 ... wl 0n 0 1 1

1G

)
`∗
(

1 w1 ... wl−1 0 0n 0 0 1
3G′

)
(iv)

(
1 0n 0 w1 ... wl 1

1G

)
`∗
(1 0n 0 w1 ... wl 1

3D′

)
Proof. Since (i) and (ii) are symmetrical to (iii) and (iv) we will do
the proofs only for the first two.
Case (i): (

1 1 0 0n w1 ... wl 1
1D

)
`D1(n) (w1 have to be equal to 1)(

1 1 1 0n 1 w2 ... wl 1
3G

)
`3(

1 0 0 0n 1 w2 ... wl 1
3D

)
`D3(n+1)(

1 0 0 0n 1 w2 ... wl 1
3D

)
`(1 0 0 0n 0 w2 ... wl 1

3D′

)
�

Case (ii): (
1 w1 ... wl 0 0n 1

1D

)
`D1(n)(

1 w1 ... wl 1 0n 1
3G

)
`(1 w1 ... wl 0 0n 1

3G′

)
�

Lemma 8. Considering an arbitrary finite word w ∈ {0, 1}∗ of length
l, we got that:

(
1 1 1 0n w1 ... wl

3D′

)
`∗
(

1 0 0 0n+c+2 wc+3 ... wl

3D′

)
, where

c is the amount of 0 symbols between w1 and the first 1 symbol to the
right.

Proof. First, let us see the case w1 = 0

18

(1 1 1 0n 0 w2 ... wl

3D′

)
`D′3(n)(

1 1 1 0n 0 w2 ... wl
3G

)
(∗)

`3(
1 0 0 0n 0 w2 ... wl

3D

)
`D3(n+c+2)(

1 0 0 0n 0 0c 1 wc+3 ... wl
3D

)
`(1 0 0 0n 0 0c 0 wc+3 ... wl

3D′

)
�

Now, let us see the case w1 = 1

(1 1 1 0n 1 w2 ... wl

3D′

)
`(1 1 1 0n 0 w2 ... wl

1D′

)
If w2 = 1

(1 1 1 0n 0 1 w3 ... wl

1D′

)
`(

1 1 1 0n 0 1 w3 ... wl
3G

)
`G3(n)(

1 1 1 0n 0 1 w3 ... wl
3G

)
Which reduces to (∗)

If w2 = 0, we can use Lemma 2 c times, obtaining(
1 1 1 0n+c 1 1 wc+3 ... wl

3D′

)
, which reduces to the case w1 = w2 = 1.

Corollary 1.
(

1k 1 0n w1 ... wl 1
3D′

)
`∗
(

1 0k+n+l 1
3D′

)
, with k = 2 · |w|1.

Lemma 9. Considering an arbitrary finite word w ∈ {0, 1}∗ of length
m, for every i ∈ {1, 2, 3, ...,m} and every r ∈ Q, there exists k1, k2 ∈ N
such that, every configuration of the form x =

(
1k1+1 w1 ...wi... wm 1k2+1

r

)
evolves into

(
1 0k1+k2+m 1

3D′

)
or into

(
1 0k1+k2+m 1

3G′

)
.

Proof. As we know from Theorem 1, every configuration evolves into a
configuration that belongs to one of the sets Cn defined in Lemma 4,
then the number of 0’s will increase either to the right or to the left.
We will call w ∈ {0, 1}∗ to the part of the symbols that have not been
turned into 0’s, and l to the length of w. Then, we will reach one of
the following configurations:

19

(i)
(

1k1+1 0 0n w1 ... wl 1k2+1

1D

)
(ii)

(
1k1+1 w1 ... wl 0 0n 1k2+1

1D

)
(iii)

(
1k1+1 w1 ... wl 0n 0 1k2+1

1G

)
(iv)

(
1k1+1 0n 0 w1 ... wl 1k2+1

1G

)
where n+ l+ 1 = m. As before, we will do the proof only for the cases
(i) and (ii) since they are symmetric to (iii) and (iv). At this point, we
can apply Lemma 7 obtaining the following configurations:

(a)
(

1k1 0 0 0n 0 w2 ... wl 1k2+1

3D′

)
for (i)

(b)
(

1k1+1 w1 ... wl 0 0n 1k2+1

3G′

)
for (ii)

Now we apply Corollary 1 in order to reach the next configurations:

•
(

1 0k1+k2+m 1
3D′

)
for (a)

•
(

1 0k1+k2+m 1
3G′

)
for (b)

Lemma 10.
(1 1 0n 1 1

3G′

)
`∗
(

1 0n+2 1
3D′

)
.

Proof. (
1 1 0n 1 1

3G′

)
`2(

1 0 0n 1 1
3D

)
`D3(n)(

1 0 0n 1 1
3D

)
`(

1 0 0n 0 1
3D′

)
�

Theorem 2. The BinSmart machine is minimal.

Proof. Let w be an arbitrary finite word of length l, r ∈ Q an arbitrary
state, i ∈ {1, 2, 3, ..., l} and x ∈ X an arbitrary bi-infinite configura-
tion. It is enough to prove that the orbit of x contains the following
configurations in the next order:

20

1. w =
(

0 0n

1D

)
2. u =

(
1k1+1 w1 ...wi... wl 1k2+1

r

)
3. v =

(
1 0m 1 0n−m−1

3D′

)
for any n,m, k1, k2 ∈ N, where n > m. Let us see the evolution.

• Evolution from x to w: done directly by Lemma 5.

• Evolution from w to v: done directly by Lemma 6.

• Evolution from u to v: using Lemma 9 and Lemma 10 for l+k1 +
k2 = m

• Evolution from x to u: first of all, note that n is as big as we
want, then always exists a path that is longer enough to include
u before reach v, even if x contains v, all we have to do is to let it
evolve into w with a big enough value of n. Considering this, that
both x and u reach v, and the fact that the machine is reversible,
there is only one way to reach and specific configuration, we can
deduce that x passes through u before evolving into v.

Corollary 2. The BinSmart machine is transitive.

4 BINSMART’S T -SHIFT.

In this section, we prove that the BinSmart’s t-shift is a substitutive
subshift. First, we first need to define the following recursive functions.

• S1
D : N −→ (Q× Σ)∗
S1

D(0) = 0 1 1
1D′ 1G 3D′

S1
D(1) = 0 1 1 0 0 1 1 1

1D′ 1G 3D′ 1D′ 1G 1G′ 3D 3D′

S1
D(n) = S1

D(n− 1) 0 0
1D′ 1GS

1
G(n− 2) 1

1G′ S
3
D(n− 2) 1 1

3D 3D′

• S1
G : N −→ (Q× Σ)∗
S1

G(0) = 0 1 1
1G′ 1D 3G′

S1
G(1) = 0 1 1 0 0 1 1 1

1G′ 1D 3G′ 1G′ 1D 1D′ 3G 3G′

S1
G(n) = S1

G(n− 1) 0 0
1G′ 1D S

1
D(n− 2) 1

1D′ S
3
G(n− 2) 1 1

3G 3G′

21

• S3
D : N −→ (Q× Σ)∗
S3

D(0) = 0 1 0
3D 1D 3G′

S3
D(1) = 0 0 1 1 0 0 1 0

3D 1D 1D′ 3G 3G′ 3D 1D 3G′

S3
D(n) = 0 0

3D 1D S
1
D(n− 2) 1

1D′ S
3
G(n− 2) 1 0

3G 3G′ S
3
D(n− 1)

• S3
G : N −→ (Q× Σ)∗
S3

G(0) = 0 1 0
3G 1G 3D′

S3
G(1) = 0 0 1 1 0 0 1 0

3G 1G 1G′ 3D 3D′ 3G 1G 3D′

S3
G(n) = 0 0

3G 1GS
1
G(n− 2) 1

1G′ S
3
D(n− 2) 1 0

3D 3D′ S
3
G(n− 1)

Lemma 11. S1
D(n) is the trace corresponding to applying the propo-

sition D′1(n) to
(1 0 0n s

1D′

)
until

(1 0 0n s
1D′

)
. The analogous goes for

S1
G(n).

Similarly, S3
D(n) is the trace corresponding to applying the proposi-

tion D3(n) to
(

0 0n 1
3D

)
until

(
0 0n 1

3D

)
. The analogous goes for S3

G(n).

Proof. It is enough to see the proof of Lemma 1 and take the trace.

Now let us define the substitution. Since the states {1D, 1D′, 3D, 3D′}
are symmetrical to the states {1G, 1G′, 3G, 3G′}, we only define the
substitution for the first ones.
φ : (Q× Σ)∗ −→ (Q× Σ)∗
φ(0

1D) = 0 1 1
1D′ 1G 3D′

φ(1
1D) = 1

1D′

φ(0
1D′) = 0 0

1D′ 1G

φ(1
1D′) = 1

1D′

φ(0
3D) = 0 0

3D 1D

φ(1
3D) = 0 1 0

3D 1D 3G′

φ(0
3D′) = 1 0

3D 3D′

φ(1
3D′) = 1 1

3D 3D′

For example, the substitution of 0 1 1
1G′ 1D 3G′ is:

φ(0 1 1
1G′ 1D 3G′) = 0 0 1 1 1

1G′ 1D 1D′ 3G 3G′

Lemma 12. S1
D(n) = S1

D(0)φ(S1
D(n− 1))

S1
G(n) = S1

G(0)φ(S1
G(n− 1))

22

S3
D(n) = φ(S3

D(n− 1))S3
D(0)

S3
G(n) = φ(S3

G(n− 1))S3
G(0)

Proof. It is enough to prove it for S1
D(n) and S3

D(n), the other cases
can be proved by symmetry.

S1
D(0)φ(S1

D(n)) = S1
D(0)φ(S1

D(n− 1) 0 0
1D′ 1G

S1
G(n− 2) 1

1G′ S
3
D(n− 2) 1 1

3D 3D′)

= S1
D(0)φ(S1

D(n−1)) 0 0 0 1 1
1D′ 1G 1G′ 1D 3G′ φ(S1

G(n−2)) 1
1G′ φ(S3

D(n−2)) 0 1 0 1 1
3D 1D 3G′ 3D 3D′

= S1
D(0)φ(S1

D(n− 1)) 0 0
1D′ 1G

S1
G(0)φ(S1

G(n− 2)) 1
1G′ φ(S3

D(n− 2))S3
D(0) 1 1

3D 3D′

= S1
D(n) 0 0

1D′ 1G
S1

G(n− 1) 1
1G′ S

3
D(n− 1) 1 1

3D 3D′

= S1
D(n+ 1)

φ(S3
D(n))S3

D(0) = φ(0 0
3D 1D S1

D(n− 2) 1
1D′ S

3
G(n− 2) 1 0

3G 3G′ S
3
D(n− 1))S3

D(0)

= 0 0 0 1 1
3D 1D 1D′ 1G 3D′ φ(S1

D(n−2)) 1
1D′ φ(S3

G(n−2)) 0 1 0 1 0
3G 1G 3D′ 3G 3G′ φ(S3

D(n−1))S3
D(0)

= 0 0
3D 1D S1

D(0)φ(S1
D(n− 2)) 1

1D′ φ(S3
G(n− 2))S3

G(0) 1 0
3G 3G′ φ(S3

D(n− 1))S3
D(0)

= 0 0
3D 1D S1

D(n− 1) 1
1D′ S

3
G(n− 1) 1 0

3G 3G′ S
3
D(n)

= S3
D(n+ 1)

Theorem 3. The t-shift of BinSmart is the closure of a fixed point of
substitution φ.

Proof. it is enough to prove that φn(0
1G′) = 0 0

1G′ 1D S
1
D(n − 2) for all

n > 1, because, from Lemma 11, 0 0
1G′ 1D S

1
D(n − 2) is the trace of(0 0ω

1G′

)
over the first steps and, as the configuration is transitive, the

orbit of this configuration is dense. We will prove it by induction.

Base of induction: φ2(0
1G′) = 0 0

1G′ 1D S
1
D(0)

Induction hypothesis: φn(0
1G′) = 0 0

1G′ 1D S
1
D(n− 2)

23

Induction thesis:

φn+1(0
1G′) = φ(φn(0

1G′)) // Induction hypothesis
= φ(0 0

1G′ 1D S
1
D(n− 2))

= 0 0 0 1 1
1G′ 1D 1D′ 1G 3D′ φ(S1

D(n− 2))
= 0 0

1G′ 1D S
1
D(0)φ(S1

D(n− 2)) // Lemma 12
= 0 0

1G′ 1D S
1
D(n− 1)

5 ACKNOWLEDGMENTS

The authors want to thank Julien Cassaigne which facilitates the con-
struction of the BinSmart machine. This work was partially financed
by ANID/CONICYT + FONDECYT + 11170177.

REFERENCES

[1] Ethan Akin and Jeffrey D Carlson. (2012). Conceptions of topological tran-
sitivity. Topology and its Applications, 159(12):2815–2830.

[2] Vincent D Blondel, Julien Cassaigne, and Codrin Nichitiu. (2002). On the
presence of periodic configurations in Turing machines and in counter machines.
Theoretical Computer Science, 289(1):573–590.

[3] Julien Cassaigne, Nicolas Ollinger, and Rodrigo Torres-Avilés. (2017). A
small minimal aperiodic reversible Turing machine. Journal of Computer and
System Sciences, 84:288–301.

[4] Anah́ı Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés. (2015). The
transitivity problem of Turing machines. In International Symposium on
Mathematical Foundations of Computer Science, pages 231–242. Springer.

[5] Philip K Hooper. (1966). The undecidability of the Turing machine immor-
tality problem 1. The Journal of Symbolic Logic, 31(2):219–234.

[6] E. Jeandel. (2012). On immortal configurations in Turing machines. In
S. B. Cooper, A. Dawar, and B. Löwe, editors, Conference on Computability
in Europe (CiE 2012), volume 7318 of Lecture Notes in Computer Science,
pages 334–343. Springer, Springer.

[7] Jarkko Kari and Nicolas Ollinger. (2008). Periodicity and immortality in
reversible computing. In International Symposium on Mathematical Founda-
tions of Computer Science, pages 419–430. Springer.

[8] Petr Kůrka. (1997). On topological dynamics of Turing machines. Theoretical
Computer Science, 174(1-2):203–216.

[9] Cristopher Moore. (1990). Unpredictability and undecidability in dynamical
systems. Physical Review Letters, 64(20):2354.

24

[10] Rodrigo Torres, Nicolas Ollinger, and Anahi Gajardo. (2012). Undecidability
of the surjectivity of the subshift associated to a Turing machine. In Interna-
tional Workshop on Reversible Computation, pages 44–56. Springer.

[11] Alan Mathison Turing. (1937). On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London mathematical society,
2(1):230–265.

25

