
HAL Id: hal-02545123
https://hal.science/hal-02545123v1

Submitted on 16 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum circuits synthesis using Householder
transformations

Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Cyril
Allouche

To cite this version:
Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Cyril Allouche. Quantum cir-
cuits synthesis using Householder transformations. Computer Physics Communications, 2020, 248,
pp.107001. �10.1016/j.cpc.2019.107001�. �hal-02545123�

https://hal.science/hal-02545123v1
https://hal.archives-ouvertes.fr

Quantum circuits synthesis using Householder

transformations

Timothée Goubault de Brugière
1,3

, Marc Baboulin
1
, Benoît Valiron

2
, and

Cyril Allouche
3

1
Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, 91405, Orsay, France

2
Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire de Recherche en Informatique,

91405, Orsay, France

3
Atos Quantum Lab, Les Clayes-sous-Bois, France

Abstract

The synthesis of a quantum circuit consists in decomposing a unitary matrix into a series

of elementary operations. In this paper, we propose a circuit synthesis method based on

the QR factorization via Householder transformations. We provide a two-step algorithm:

during the �rst step we exploit the speci�c structure of a quantum operator to compute its

QR factorization, then the factorized matrix is used to produce a quantum circuit. We analyze

several costs (circuit size and computational time) and compare them to existing techniques

from the literature. For a �nal quantum circuit twice as large as the one obtained by the best

existing method, we accelerate the computation by orders of magnitude.

1 Introduction
In the 1980s the notion of a quantum computer emerged as a response to the announced limita-

tion of conventional computers in terms of computing power. Feynman [22], then Deutsch [17]

announced and theorized the �rst foundations of this new paradigm that must override our cur-

rent machines. Ten years later, we saw the �rst concrete algorithms capable of achieving this

quantum supremacy: the Grover algorithm theoretically enables us to search into an unstruc-

tured database quadratically faster than in the conventional case [24] and the Shor algorithm is

expected to be able to break RSA, jeopardizing the security of current encryption tools [13, 59].

Quantum computing is now a research topic of growing interest and many algorithms are de-

signed in numerous �elds to try to surpass classical computers. Examples are various: machine

learning [7, 32], linear algebra [33, 38, 49], backtracking algorithms [44] or even combinatorial

optimization [21]. The interaction between classical computing and quantum computing is also

studied, leading to hybrid quantum-classical computers [61]. Behind all these new algorithms

1

lies a common formalism: the quantum circuit. Developed by Yao [75], the concept of a quan-

tum circuit remains so far the preferred way to describe quantum algorithms. Similarly to the

compilation in classical computing, transforming a high level concept — or more generally a con-

cept unknown to the hardware — into a sequence of basic instructions understandable by the

machine is a central problem. In quantum computing, everything can be modeled with notions

of linear algebra: states are vectors, operators are unitary matrices. The compilation problem

can be formalized as the transformation of a unitary matrix into a quantum circuit consisting of

elementary (unitary) operations admissible by the hardware and referred to as elementary quan-

tum gates. The development of quantum algorithmics has fostered the emergence of high-level

languages [30, 64, 67] to e�ciently describe and program concrete instances of quantum algo-

rithms. With the limited resources that are going to be available at �rst for quantum computers,

it is crucial to design an automated compilation process minimizing the classical and quantum

resources used by a given quantum program.

When turning a unitary matrix into a quantum circuit, several aspects have to be considered.

First, one has to decide on the set of admissible elementary operations. Then, one has to choose

the resources to be minimized: are we interested in the smallest possible circuit, or are we also

considering the classical resources used to produce the circuit and the time required to do so?

The former problem is very theoretical and math-oriented. An operator acting on n qubits is

represented by a matrix of size 2n×2n. Generating a circuit from an arbitrary matrix is therefore a

problem that scales exponentially in n in general, and the problem of �nding the smallest possible

circuit for a particular operator remains challenging [35]. Nonetheless, several techniques have

been developed to this end using e.g., decomposition methods [5, 14, 45, 52, 57]. The resulting

number of gates however still lies within a factor of 2 of the theoretical lower bound [11]. We

are currently in the NISQ (Noisy Intermediate-Scale Quantum) era [51]: the quantum hardware

is noisy and it is hard to perform long computations. In this paper we foresee the future of the

NISQ era where full fault tolerant quantum computation will be available. With the advent of

such systems, we believe that the synthesis of generic operators on small to medium register size

will become critical. For example one can already get a glimpse of such issue in quantum machine

learning problems [7]. Meanwhile, we can also rely on post processing methods that integrate

the presence of noise in the hardware and make the connection between ideal quantum circuit

synthesis and the hardware constraints [58].

Instead of only focusing on the size of the circuit, one can consider the problem in its globality

and also take into account the quantity of classical resources needed, and in particular the time

it takes to generate the circuit. Such optimization is particularly useful, e.g. when one has to

compile a continuous stream of quantum circuits on the �y or when the quantum operator is

parameterized and one has to recompile the parameters of the resulting quantum circuit every

time the operator changes. Improving the compilation time also allows to reach larger problem

sizes. This aspect of optimization is a recent topic of research [2, 25, 43, 47] and is the focus of

our paper.

1.1 Contributions
The main contributions of the paper are as follows.

2

• We adapt the well known and numerically stable QR factorization based on Householder

transformations [23] to the factorization of unitary matrices. The adaptation heavily relies

on the speci�c structure of unitary matrices. We exhibit a signi�cant theoretical and prac-

tical speedup of our speci�c QR algorithm compared to the unmodi�ed QR routine and the

usual technique for quantum circuit synthesis based on the quantum Shannon decomposi-

tion (QSD) [57].

• We propose a complete circuit synthesis method using this specialized QR decomposition

with a complexity analysis for circuit size and arithmetical operations. If some existing the-

oretical and experimental works for quantum circuits synthesis with Householder trans-

formations have been undertaken [12, 29, 66], to our knowledge none has proposed an

implementation method and a �nal circuit construction with clearly de�ned properties.

Overall, our technique is faster than the QSD-based method while providing circuits twice

as large
1
.

• We backup our approach with benchmarks on multicore and GPU architectures for random

unitary matrices operating on up to 15 qubits.

This is a preprint submitted for publication.

1.2 Plan of the paper
The plan of this paper is as follows. In Section 2 we give some background about quantum

computing, quantum circuits and the issues in quantum compilation. Then we detail the new

adapted Householder algorithm in Section 3 and we explain in Section 4 how to convert this

factorization into a quantum circuit. Section 5 presents the performance obtained on multicore

and GPU architectures by our algorithm. We also compare our results with a reference algorithm

based on the Quantum Shannon Decomposition method. We conclude in Section 6.

1.3 Notations
Throughout this paper we will use the following notations. U(k) denotes the set of unitary matri-

ces of size k, i.e. U(k) = {M ∈ Ck×k |M †M = I}, where I is the identity matrix and M †
is the

conjugate transpose of the matrix M . The notation ‖ · ‖ refers to the Euclidean norm of a vector

and ei is the ith canonical vector. The term �ops stands for �oating-point operations and the �op

count evaluates the volume of work in a computation. Unless otherwise speci�ed theses �ops

are given in complex arithmetic. The linear algebra formulas will be presented using matlab-like

notations.

1
This extra cost in the �nal quantum circuit is not negligible, especially when considering the current limitations

of the quantum hardware. It may be possible that the gain in the classical process will not compensate the execution

time of the twice as large quantum circuit on real hardware. However, we can handle problem sizes that were

unreachable before with the QSD, regardless of the quality of the hardware. We believe our approach highlights

the tradeo�s between two measures of complexity (circuit size/compilation time) and that this has to be taken in

consideration when synthesizing generic quantum circuits.

3

2 Background
The core of quantum computation consists in encoding information on the state |φ〉 of a quantum

system. The computational model is derived from the laws of quantum mechanics: the state |φ〉
is represented by a normalized column vector in a (�nite dimensional) Hilbert space Ck

. The

allowed transformations one can perform on |φ〉 can be derived from the Schrödinger equation.

In this paper we focus on unitary transformations. A quantum operator acting on the vector

|φ〉 ∈ Ck
is therefore in this paper regarded as a unitary matrix U ∈ U(k). After computation,

the resulting state is U |φ〉. A sequential application of two transformations U and V yields the

state V (U |φ〉) = (V U) |φ〉 and corresponds to a matrix multiplication.

The basic unit of information in quantum computation is the quantum bit, also called qubit.

It is encoded by a two-level quantum system (e.g., the spin of an electron) whose state can be in

a linear superposition of both levels — called the basis states — according to the laws of quantum

mechanics. We usually write |0〉 to represent the �rst basis state and |1〉 the second one (to follow

the analogy with the classical case). The general form |ψ〉 of the state of a qubit is then the linear

combination of these basis elements |0〉 and |1〉 (also called “superposition”):

|ψ〉 = α |0〉+ β |1〉

where α, β are complex numbers such that |α|2 + |β|2 = 1. In other words, the state of a qubit

is mathematically equivalent to a unit vector (αβ) ∈ C2
and the basis states are the usual basis

vectors

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
.

The qubit is not the only logical unit possible in quantum computing: using 3-level systems (by

adding the basic state |2〉) one can manipulate qutrits ; more generally with a d-level system we

talk about qudits. However the research in quantum computing today uses mostly qubits.

The state of the quantum system consisting of the combination of two systemsA andB resides

in the Kronecker (tensor) product of the space of states of A and the space of states of B. In

particular, to encode n qubits, one can use n two-level systems that together can be seen as a

single 2n level system. The evolution of this system is governed by the left multiplication by

unitary matrices in U(2n). The basis vectors of the space C2n
are of the form |x1〉 ⊗ · · · ⊗ |xn〉

with xi = 0 or 1. The usual ordering of the basis states corresponds to the lexicographic order.

For example, in the case of two qubits the basis states are

|0〉 ⊗ |0〉 =

(
1
0
0
0

)
, |0〉 ⊗ |1〉 =

(
0
1
0
0

)
, |1〉 ⊗ |0〉 =

(
0
0
1
0

)
, |1〉 ⊗ |1〉 =

(
0
0
0
1

)
.

To combine operators acting on distinct subsystems, we again use the tensor product. If |ψ〉 (resp.

|φ〉) is an n-qubit (resp. m-qubit) state and one applies an operatorA on |ψ〉 (resp. B on |φ〉) then

using the global system on n + m qubits it is equivalent to applying the operator A ⊗ B on the

state |ψ〉 ⊗ |φ〉, where ⊗ denotes the Kronecker product [41].

When a state on n qubits cannot be written as a tensor product of two substates then the state

is said to be entangled. The Bell states are simple examples of entangled states on two qubits, one

4

of them is de�ned by

|Φ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

and one can check that it cannot be expressed as the tensor product of two one-qubit states.

Entanglement is believed to be a key in the quantum supremacy over classical computation [31]

and research is performed to better understand its role, for example by giving a measure of how

entangled a state is [71]. An operator that can produce entangled states is said to be an entangling

operator.

Beside composition and combination, a third operation is usually considered: an operation

can be controlled. If M ∈ U(2n) is an operator acting on n qubits, there are two canonical

operations on n + 1 qubits: the positively-controlled-M de�ned as the block matrix (I 0
0 M) and

the negatively-controlled-M , de�ned as (M 0
0 I). Both block-matrices are operators in U(2n+1).

The former sends |0〉 ⊗ |φ〉 to |0〉 ⊗ |φ〉 and |1〉 ⊗ |φ〉 to |1〉 ⊗ (M |φ〉). The latter does the

opposite: it sends |0〉 ⊗ |φ〉 to |0〉 ⊗ (M |φ〉) and |1〉 ⊗ |φ〉 to |1〉 ⊗ |φ〉.
An important notion is the preparation and de-preparation of states. Preparing a state |Φ〉

consists in applying an operator U to the state |0〉 to obtain the state |Φ〉. Conversely, the de-

preparation of the state |Φ〉 consists in applying U † = U−1 to obtain the state |0〉.

Quantum gates Though the theory allows arbitrary unitary matrices, the physical hardware

is usually only capable of handling a �xed set of unitary matrices operating on one or two qubits.

These elementary matrices are called quantum gates, and we can mention the following (see

Table 1):

• the Pauli operators X, Y, Z (the X gate is equivalent to the classical NOT gate),

• the Hadamard gate H which enables us to transform a pure state (i.e. |0〉 or |1〉) into an

equal superposition of |0〉 and |1〉,

• the continuous set of elementary rotations Rx, Ry, Rz de�ned by

RG(α) = cos(α/2)I2 − i sin(α/2)G with G ∈ {X, Y, Z}
where X, Y, Z are the Pauli operators and i is the unit imaginary number.

• the continuous set of phase gates de�ned by

Ph(θ) =

(
1 0
0 eiθ

)
adding a phase to the state |1〉 ; among this set two gates are of particular use: the gate

T (θ = π/4) and the gate S (θ = π/2). Note that Ph(θ) is simply Rz(θ) modulo a global

phase e−i
θ
2 .

Amongst the frequently used 2-qubit gates, one can name the CNOT-gate, which is the positively-

controlled X-gate, and the SWAP gate, �ipping the state of two qubits. Other examples of com-

monly encountered gates are controlled-rotations with arbitrary angles.

5

(
0 1
1 0

)
X

(
0 −i
i 0

)
Y

(
1 0
0 −1

)
Z

1√
2

(
1 1
1 −1

)
H

(
1 0
0 i

)
S

(
1 0
0 eiπ/4

)
T

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

SWAP

Table 1: Usual elementary unitary matrices for representing quantum gates.

q0

q1

q2

q3

H S T Ph(π
8
)

H S T

H S

H

Figure 1: Quantum circuit for the Quantum Fourier Transform

Quantum circuit The usual graphical language for representing composition and combina-

tion of operator is the equivalent of the boolean circuit for classical computing: the quantum

circuit. A quantum circuit consists in a series of parallel, horizontal wires on which are attached

boxes. Each wire corresponds to a qubit, and vertical combination corresponds to the Kronecker

(tensor) product. The circuit is read from left to right and each box corresponds to a quantum

gate (i.e., a unitary operator) applied on the corresponding qubits. Controlled-gates have a special

representation: the controlling qubit is represented with a bullet if the control is positive and a

circle if the control is negative. A vertical line then connects the controlling qubit to the gate to

be controlled. The notation easily extends to multiple controls.

As an example of quantum circuit combining several gates together, the so-called Quantum

Fourier Transform [48] is represented in Figure 1. It enables us to visualize the use of elementary

gates: H , S, T , phase-gate, and positive controls.

Universality We say that a set of gates is universal if any quantum operator, acting on any

number of qubits, can be implemented as a sequence of gates from this set (see e.g. [48, Sec.

4.5] for a complete discussion on the matter). A fundamental (theoretical) result claims that it is

possible to realize any operator only with the set of one-qubit gates and one “su�ciently entan-

gling” 2-qubit gate such as the CNOT [9]. To be able to implement any quantum algorithm with

a given piece of hardware, it is therefore necessary to �rst �nd a universal set of technologically

implementable gates. For instance the IBM quantum machine with superconducting qubits uses

only special unitary gates on one qubit and the CNOT [1]. A technology using trapped ions will

have other gates available like the MS gate [42, 54]. Linear quantum optics will instead focus on

CNOTs and one-qubit gates [36].

6

But having an implementable universal set of gates is not enough: if we are given a quantum

operator as a unitary matrix, one also has to �nd a way to turn the desired unitary matrix acting

on a potentially large number of qubits into a quantum circuit made of local, elementary gates.

This problem is known as circuit synthesis, or equivalently, compilation of the unitary matrix into

a circuit. Note that the state preparation is a special case of circuit synthesis where we want to

synthesize only the �rst column of a unitary matrix.

In this paper, we focus on the set consisting of the CNOT gate and all the one-qubit gates.

The continuous aspect of the set makes it amenable to linear algebra operations, and yet it can

easily be mapped to other universal gate-sets [4, 18, 19, 40], using for example the Solovay-Kitaev

theorem [15] or more recent techniques [34, 53, 56].

Multiplexors Some circuit structures are expressive enough to be reused in other construc-

tions, thus helping during the compilation process. The most important of them is the multi-

plexor [6, 46, 57]. It can be regarded as a generalization of controlled gates because it applies a

di�erent operator for each value of the control qubits. For instance a multiplexor controlled by

two qubits and acting on k qubits has the matrix block structure

A =

A0 0 0 0
0 A1 0 0
0 0 A2 0
0 0 0 A3

where A0 is a k-qubit operator that is applied if both control qubits are 0, A1 is applied if the �rst

control qubit is 0 and the second one is 1, etc. The graphical representation of a multiplexor is

illustrated in Figure 2 with the correspondence between A and a succession of multi-controlled

gates. In the circuit, the crossed-out line stands for a several qubits (in this case, k qubits).

The problem of decomposing a multiplexor into elementary gates admits algorithms with

varying numerical costs depending on the choice of elementary gates [46, 57]. In the case of

a multiplexor applying only one kind of elementary rotations (e.g. along one of the axis X , Y
or Z – we call such a structure a rotation multiplexor) the transition from the angles of the

multiplexors to the angles in the corresponding quantum circuits can be performed via a single

matrix-vector product [46]. Moreover, the decomposition is much simpler than the general case

shown in Figure 2: the decomposition of an Rk-multiplexor controlled by n qubits into two mul-

tiplexors controlled by n−1 qubits has the shape shown in Figure 3 and the special case with one

control qubit is shown in Figure 4 (where we omit angles for legibility). Such decompositions can

be applied recursively and by removing some CNOT gates that cancel (see Figure 2 in [57] for

more details) we obtain a �nal quantum circuit composed of 2n−1 CNOTs and 2n−1 elementary

rotations. For multiplexors in SU(2) the decomposition given in Figure 3 remains valid up to

a diagonal matrix that replaces the last CNOT gate. Hence, without considering this extra gate

— for our purpose we will be able to remove it — we need 2n−1 − 1 CNOTs and 2n−1 generic

one-qubit gates to implement an SU(2)-multiplexor.

7

/ A

≡
/ A0 A1 A2 A3

Figure 2: Circuit equivalence for a multiplexor

/

Rk

≡ /

Rk Rk

Figure 3: Decomposition of a rotation multiplexor

Quantum state preparation A common method for preparing a generic quantum state on

n qubits consists in applying a series of operations such that we are left with the preparation

of a quantum state on n − 1 qubits, and we repeat the process until we have to prepare only

a one-qubit state. Desentangling the �rst qubit is for instance equivalent to zeroing the second

half of the components of the corresponding vector Ψ. To do so, one can apply for each bitstring

s ∈ F n−1
2 a speci�c two-qubit operation Us on the �rst qubit such that Us(Ψ0s |0s〉+ Ψ1s |1s〉) =

Ψ′0s |0s〉. Then the global operator

⊕
s Us can be implemented either by applying successively

one Rz-multiplexor and one Ry-multiplexor, both on the �rst qubit and controlled by the n − 1
other ones, or by applying one SU(2)-multiplexor, still on the �rst qubit and controlled by the

other qubits [45, 57]. In the case where we only use Ry and Rz multiplexors, we can simply

repeat the operation on the n− 1 remaining qubits. Overall we need to implement two rotation

multiplexors on n qubits, two on n−1 qubits etc. for a total of 2×
∑n

k=2 2k−1 ≈ 2n+1
CNOTs and

2 + 2 ×
∑n

k=2 2k−1 ≈ 2n+1
elementary rotations. Some optimizations can decrease the CNOT-

count by a linear term in n but we focus on the asymptotic complexity. When using multiplexors

in SU(2), we remark that the additional diagonal gate in the synthesis of the multiplexor can be

merged with the remaining quantum state as adding phases to each component of the state will

not change the number of nonzero elements. So preparing a quantum state with multiplexors

in SU(2) requires to implement one SU(2)-multiplexor on n qubits, one on n − 1 qubits etc.

(without considering the extra diagonal gates) for a total of approximately 2n CNOTs and 2n

generic one-qubit gates. Finally, to have the total count for the number of elementary rotations,

we decompose each one-qubit gate U as a product of three elementary rotations (ignoring the

global phase) [48]

U = Rx(α)×Rz(β)×Rx(γ) (1)

where α, β, γ are three real parameters. Rx rotations commute with the CNOT gate if the Rx

gate acts on the target qubit of the CNOT gate. So for each quantum subcircuit implementing

an SU(2)-multiplexor and starting from the leftmost rotation, we can commute the Rx gate,

merge it with the next generic one-qubit gate, and repeat the process (decomposition shown in

Eq. (1), commutation and merging) until we reach the last one-qubit gate of the multiplexor

implementation. Thus, up to a linear number of gates, all the generic one-qubit gates can be

8

Rk

≡
Rk Rk

Figure 4: Decomposition of a rotation multiplexor with one control qubit

decomposed into only two elementary rotations, for a total of approximately 2n+1
rotation gates.

Quantum Shannon Decomposition Among the various existing synthesis methods [16, 48,

68], the one giving the shortest circuits in terms of number of gates is the Quantum Shannon

Decomposition (QSD) [45, 57]. It relies on the following two decomposition formulas:

• the �rst one is the Cosine-Sine decomposition (CSD) of a unitary matrix U on n qubits [23]:

U =

(
A1

A2

)(
C −S
S C

)(
B1

B2

)
. (2)

A1, A2, B1, B2 are unitary matrices on n − 1 qubits and C, S are real positive diagonal

matrices such that C2 +S2 = I2n−1 . The second term in the CS decomposition is in fact an

Ry-multiplexor controlled by the n− 1 least signi�cative qubits. The circuit equivalence is

given in Figure 5a, where angles are omitted for legibility.

• The second formula decomposes a multiplexor(
A1

A2

)
=

(
V

V

)(
D†

D

)(
W

W

)
(3)

withD a diagonal matrix on n−1 qubits, V andW are unitary operating n−1 qubits. The

second term involving the matrixD is in fact aRz multiplexor controlled by the n−1 least

signi�cative qubits. The circuit equivalence is represented in Figure 5b, again with omitted

angles.

Finally, synthesizing U on n qubits is equivalent to synthesizing 3 rotation multiplexors on n
qubits and 4 matrices on n− 1 qubits on which we can apply the QSD again as showed in Figure

5c. We repeat the process until we get only multiplexors and gates acting on a small number of

qubits (typically 2) for which an exact decomposition is known [10, 37, 69, 70, 72].

If the Quantum Shannon Decomposition gives the best asymptotic number of CNOTs in the

circuit:
23
48
× 4n, this method has nonetheless drawbacks. It does not take into account other met-

rics useful to minimize in the compilation process such as the classical time required to compute

the circuit. The algorithm for computing Formula (2) consists in reducing the K × K matrix

U into a 2 × 2 bidiagonal block form, then the 4 bidiagonal blocks are simultaneously diag-

onalized using bidiagonal SVD algorithms. The �rst part is the most expensive one in terms

of �oating point operations: by applying Householder re�ectors to the left and right of U , we

progressively bidiagonalize U — this requires K3/3 �ops for each block — and we store the ac-

cumulation of each Householder re�ector to compute A1, A2, B1, B2 — this requires K3/6 �ops

9

/ /n− 1
U ≡

/ /B1

B2

Ry

A1

A2

(a) Cosine-Sine Decomposition

/ /n− 1 A1

A2

≡
/ /W

Rz

V

(b) Decomposing a multiplexor

/ /n− 1
U ≡

/ /U1

Rz

U2

Ry

U3

Rz

U4

(c) Full QSD decomposition

Figure 5: Circuit equivalences for the QSD

for each block. Overall, computing the CSD on a K × K matrix requires 2 × K3
�ops [63].

Concerning Formula (3), one has to perform two matrix/matrix products and an eigenvalue de-

composition. With square matrices of size K, each matrix/matrix product on matrices requires

2 × K3
�ops and the eigenvalue decomposition needs around 26 × K3

[8, Table 3.13]. Over-

all for the �rst step of the Quantum Shannon Decomposition of a matrix of size N we have to

compute one CSD of a matrix of size N and decompose two multiplexors i.e four matrix/matrix

products of size N/2 and two eigenvalue decompositions of size N/2 too. This represents a total

of 2×N3 + 4×2× (N/2)3 + 2×26× (N/2)3 = 19
2
×N3

�ops. Then to pursue the algorithm we

have to perform the same operations on 4 matrices of size N/2, then on 16 matrices of size N/4
etc. Overall, with N = 2n we can approximate the total number of �ops to 19× 8n which is very

expensive. In the next section we propose an alternative method based on Householder trans-

formations. Strongly connected to classical results about QR decomposition, this method aims

at achieving better performance in the synthesis of quantum circuits by �nding a compromise

between circuit size and calculation time.

3 Householder algorithm for unitary matrices
In this section, we �rst recall the main principles of the QR factorization of a general complex

square matrix via Householder transformations. Then we consider the special case of unitary

matrices that correspond to quantum operators.

The QR decomposition of a matrix A ∈ Cn×n
expresses A as the product of a unitary matrix

Q ∈ U(n) and an upper triangular matrix R. A standard algorithm to compute such a factor-

ization consists in applying a series of Householder transformations [23, p. 209] zeroing out

successively the subdiagonal entries of each column.

At step k (1 ≤ k ≤ n−1) of the QR algorithm, we zero out all but the �rst entry of the vector

b in the matrix depicted in Figure 6 using the Householder transformation, H ′k = In − τkuku†k,

10

A(k) = 0k−1

R(k)

B(k)b

Figure 6: Matrix pattern at step k-th of Householder transformation

where uk ∈ Cn−k+1
and τk = 2/u†kuk. Note that in the complex case, the Householder matrix H ′k

can be sometimes referred to as “elementary unitary matrix” (e.g. in [39]).

Then the k-th iteration ends with the computation of the matrix

A(k) = HkA
(k−1) ,

with Hk =

(
Ik−1 0

0 H ′k

)
, A(0) = A and H1 = H ′1. This operation updates B(k) = A(k)(k :

n, k : n) via the relation(
In−k+1 − τkuku†k

)
B(k) = B(k) − τkuk

((
B(k)

)†
uk

)†
, (4)

which zeroes out the subdiagonal entries in column k (but does not a�ect the zeros already in-

troduced in previous columns). The problem is now to �nd the vector uk ∈ Cn−k+1
such that(

In−k+1 − τkuku†k
)
b = (βk, 0, . . . , 0)T = βke1.

with βk ∈ C. From [23, p. 233], we have uk = b± eiθ‖b‖e1 with θ = arg(b1)but various choices

for uk have been proposed in numerical libraries (see [39] for a review of these choices).

At the end of the algorithm we have computed a set of n − 1 Householder transformations

H1, H2, ..., Hn−1 such that (
n−1∏
i=1

Hn−i

)
A = R

where R is upper triangular. Since the Householder matrices are Hermitian, we obtain

A =

(
n−1∏
i=1

Hi

)
R = QR.

In the QR algorithm, the Householder matrices H ′k never need to be explicitly formed and the

expensive part of the computation is the update of the matrix B(k)
, given in Equation (4), which

requires at each iteration a matrix-vector multiplication followed by a rank-1 update ofB(k)
. The

total cost of the factorization is about
4
3
n3

complex �ops (
16
3
n3

real �ops).

11

A block version of the algorithm uses the fact that a product of p Householder matrices H1×
. . .×Hp can be written as I−V TV † where V is an n×p rectangular matrix with the Householder

vector uk ∈ Cn
at the k-th column and T is an upper triangular matrix [62]. The algorithm

consists in partitioning A into blocks of size n× nA for some nA, factorizing the �rst block and

updating the remaining blocks via the operation (we use a matlab-like notation)

A(:, nA + 1 : n) = A(:, nA + 1 : n)− V TV †A(:, nA + 1 : n),

and repeating the process with the next block until the whole matrix is triangularized. The up-

date is richer in BLAS 3 operations [20], potentially leading to better performance, yet without

decreasing the �op count [55].

Let now exploit the speci�city of quantum operators where the corresponding matrix A is

unitary and see how the QR decomposition simpli�es. In this case, the triangular factor is also

unitary and thus diagonal and the QR algorithm of A consists in a progressive diagonalization

of A. For sake of simpli�cation, we detail in the remainder only the �rst iteration. Let b =
(b1, . . . , bn)T be the �rst column of the unitary matrix A and r = (r1, . . . , rn) its �rst row. We

choose the value of the Householder vector u = b±eiθ‖b‖e1 as de�ned in [23, p. 233] but we will

choose the sign “+”. This choice has the advantage of maximizing ‖u‖ (for sake of stability [23,

p. 233]) and of simplifying the �nal decomposition of the quantum operator into elementary

circuits, as we will see in Section 4. Since A (and A(k)
at the kth iteration) is unitary, we have

‖b‖ = 1 and we get

u = b+ eiθe1

and

τ =
2

‖u‖2
=

2

‖b‖2 + ‖e1‖2 + 2|b1|
=

1

1 + |b1|
.

Then applying the Householder transformation H to b gives

Hb = −eiθ‖b ‖e1 = −eiθe1. (5)

The gain in complexity occurs in the update phase. Using the orthonormality of the vectors of

A, the update expressed in Equation (4) simpli�es to

HA = A− τ(b+ eiθe1)
(
A†
(
b+ eiθe1

))†
= A− τ(b+ eiθe1)(e

T
1 + e−iθr).

Then we have

HA = A− τ(beT1 + eiθe1e
T
1 + e1r + e−iθbr).

The �rst column of A does not need to be updated in this computation because of Equation (5)

then we can ignore the term beT1 + eiθe1e
T
1 . Similarly the �rst row of A does not need to be

updated because the unitarity of the rows of A ensures that r = −eiθeT1 after application of H .

Moreover τe−iθ = 1/(eiθ + |b1|eiθ) = 1/(b1 + eiθ) = 1/u1, where u1 denotes the �rst component

of u. So we are left with the rank-1 update

(HA)2:n,2:n = A2:n,2:n −
b(2 : n) · r(2 : n)

u1
.

12

The matrix-vector product expressed in Equation (4) for the classical QR factorization is avoided.

The matrix obtained after the �rst iteration is then

A(1) =

(
−eiθ 0

0 (HA)2:n,2:n

)
and we can continue the algorithm on the unitary matrix A(1)(2 : n, 2 : n) and so on, until A
becomes diagonal. The update at the k-th iteration requires only (n − k)2 multiplications and

(n− k)2 additions. Finally this new algorithm requires

∑n−1
k=1 2× (n− k)2 ∼ 2

3
n3

complex �ops,

which is twice as less than the standard case.

It is possible to choose the vector u such that u1 = 1, then the value of τ will be adjusted so

that the resulting Householder transformation H remains the same. More precisely, keeping the

notations above we set

u← 1

eiθ(1 + |b1|)
u (6)

and we obtain τ = (1 + |b1|) and then the update phase becomes

(HA)2:n,2:n = A2:n,2:n − u(2 : n) · r(2 : n). (7)

The algorithm can easily be done in place. One can store the Householder vectors in the strictly

lower triangular part of A, the diagonal elements of R are stored in the diagonal and the τi’s are

stored in a speci�c array.

The main cost of the algorithm resides in the rank-one update phase in Equation (7). In order

to use more optimized BLAS 2 and BLAS 3 operations we can derive from Equation (7) new update

relations. Suppose we have already performed the factorization and the update for the �rst nb
rows and columns for some nb. Therefore the �rst nb columns of A contain the Householder

vectors, and the block A(1 : nb, nb+ 1 : n) has been updated following (7). Let i, j ∈ Jnb+ 1, nK,

one can verify that the update of the element A(i, j) is given by

A(i, j)← A(i, j)−
nb∑
k=1

A(i, k)× A(k, j) (8)

by simply applying successively the update (7).

In terms of matrix and vector operations we have

A(i, nb+ 1 : n)← A(i, nb+ 1 : n)− A(i, 1 : nb)× A(1 : nb, nb+ 1 : n) (9)

for the update of one row,

A(nb+ 1 : n, j)← A(nb+ 1 : n, j)− A(nb+ 1 : n, 1 : nb)× A(1 : nb, j) (10)

for the update of one column and

A(nb+ 1 : n, nb+ 1 : n)←
A(nb+ 1 : n, nb+ 1 : n)− A(nb+ 1 : n, 1 : nb)× A(1 : nb, nb+ 1 : n) (11)

13

for the update of the full matrix. This last update is a BLAS 3 operation and can potentially yield

higher performance on hybrid CPU-GPU architectures [65].

Using these new update relations we can improve the algorithm by three means:

• �rst we can improve the unblocked algorithm. Instead of updating the whole matrix at

each iteration with a rank one update we only update one row and one column : at the k-th

iteration we have computed the k-th Householder vector and we update the row A(k +
1, k+ 1 : n) and the column A(k+ 1 : n, k+ 1) via the relations (9) and (10). Such updates

consist in more and bigger matrix-vector operations and experimentally it appears to scale

better.

• Secondly this naturally leads to a blocked version of the algorithm. Let nb be the size of our

block. Once we have done the computations on the �rst nb rows and nb columns of Awith

an unblocked version, we can update the rest of the matrix with a matrix/matrix product

via equation (11) and continue the algorithm on the matrix A(nb+ 1 : n, nb+ 1 : n) until

we reach the last block where the unblocked algorithm is applied.

• A third improvement can be made in order to avoid using the unblocked algorithm to

compute the full panel of nb rows and columns of A. Indeed the update of the blocks

A(nb + 1 : n, 1 : nb) and A(1 : nb, nb + 1 : n) can be performed with BLAS 3 operations.

One can prove that there exist triangular matrices T i1, T
i
2 of size i× i, i = 1..nb such that

A(i+ 1 : n, 1 : i)← A(i+ 1 : n, 1 : i) × T i1 (12)

A(1 : i, i+ 1 : n)← T i2 × A(1 : i, i+ 1 : n). (13)

The matrices T i1, T
i
2 are computed using the following recursive formula:

T 1
1 = 1, T i+1

1 =

(
T i1 −pi+1T

i
1/Ni

1/Ni

)
, (14)

T 1
2 = 1, T i+1

2 =

(
T i2

−qi+1T
i
2 1

)
(15)

with pi = A(1 : i, i), qi = A(i, 1 : i). Ni is the normalization factor expressed in Equa-

tion (6).

Proof of Proof of Formulas (12) to (15). By induction on i. We do it for T2 only. The

case i = 1 is trivial because we do not have to update the �rst row. Now suppose the result

is true for some i, 1 ≤ i < nb. The �rst i rows are already updated by the application of T i2,

we only need to update the next row i + 1. Let A(i + 1, j), j ∈ Jnb + 1, nK be an element

of this row. If the column A(1 : i, j) was already updated the update of A(i + 1, j) would

be given by the equation (8) i.e

A(i+ 1, j)← A(i+ 1, j)−
i∑

k=1

A(i+ 1, k)× A(k, j).

14

Written di�erentlyA(i+1, j)← A(i+1, j)−A(i+1, 1 : i+1) ·A(1 : i, j). By hypothesis

A(1 : i, j) is updated by the relation A(1 : i, j)← T i2A(1 : i, j). This gives

A(i+ 1, j)← [−A(i+ 1, 1 : i+ 1)× T i2 ; 1] · A(1 : i+ 1, j).

Doing it for all j and concatenating it with the update of the �rst i rows by the action of

T i2 gives the result. The same thing can be done with T1 but one has to be careful about the

normalization of the Householder vectors.

Therefore T nb1 and T nb2 only depend on the block A(1 : nb, 1 : nb) and can be used to update

A(nb + 1 : n, 1 : nb) and A(1 : nb, nb + 1) in two BLAS 3 updates. This means that during an

iteration we only need to perform an unblocked Householder factorization on a square matrix

of size nb and then perform 3 BLAS 3 updates. The pseudo code of the algorithm is given in

Algorithm 1 (we call the corresponding routine ZUNQRF and its unblocked version ZUNQR2).

ZLARFT2 refers to the adaptation of the standard ZLARFT routine that computes the triangular

matrices.

Algorithm 1 Householder factorization of a unitary matrix A - ZUNQRF

Require: N ≥ 0, A∈ UN
Ensure: A = QR

// NX determines when to switch from blocked to unblocked code

// NB is the block size

for I = 1, NX,NB do
IB ←MIN(N − I + 1, NB)
call ZUNQR2(IB, IB, A(I, I), TAU(I))

T1, T2 ← ZLARFT2(N, IB, A(I, I), TAU(I))

update A(I : N, I : I + IB) via a call to ZTRMM

if I + IB ≤ N then
update A(I : I + IB, I : N) via a call to ZTRMM

update A(I + IB : N, I + IB : N) via a call to ZGEMM

end if
end for
if I ≤ N then

call ZUNQR2(N-I+1, N-I+1, A(I, I), TAU(I))

end if

Thanks to the above QR decomposition resulting in a product of Householder matrices and

a diagonal matrix, we store the information of a unitary matrix into the subdiagonal part of the

complex matrix (the Householder vectors), and two real vectors, including the θ’s (angles of the

diagonal entries) and the τ ’s. In the next section we use this factorization of unitary operators to

obtain quantum circuits .

15

4 From the Householder decomposition to a quantum cir-
cuit

In this section we develop several methods to convert the Householder representation of a unitary

matrix into a quantum circuit. We present a general method in the Section 4.1 and we optimize

it in Section 4.2.

4.1 General method
Let U ∈ U(2n) be the unitary matrix we want to synthesize. The QR factorization of U gives

normalized vectors u1, u2, . . . , u2n−1 and a diagonal matrix D such that

U =
2n−1∏
i=1

Hi ×D.

where Hi are Householder matrices de�ned by Hi = I2n − 2uiu
†
i as in Section 3 (since the ui are

normalized). The synthesis of a diagonal operator is a well-known problem [11, 74]. Therefore,

the main issue is the synthesis of the Householder matrices. We recall that

Hiui = −ui

and

∀v, v ⊥ ui ⇒ Hiv = v.

Consequently, for any unitary matrix Pi whose �rst column is ui we can write

Hi = PiDGP
†
i (16)

with

DG =

−1

1
. . .

1

 .

Indeed Pi can be regarded as an orthonormal basis of vector columns containing ui. In other

words, Equation (16) is a diagonalization of Hi.

From this analysis, we get the following decomposition of the unitary matrix U

U =
2n−1∏
i=1

PiDGP
†
i ×D

and we can derive a quantum circuit as depicted in Figure 7.

• As mentionned already, the synthesis of D is a problem with known solutions.

16

|0〉n
/ U ≡ / D SP(u2n−1)

† DG SP(u2n−1) · · · SP(u1)
† DG SP(u1)

Figure 7: A �rst circuit for the Householder method

• Each blockPiDGP
†
i is equivalent to de-preparing the state ui, applyingDG and repreparing

the state ui.

– The matrixDG is the “zero phase shift” operator and is used for instance in the Grover

di�usion operator in Grover’s algorithm [24].

– In our circuits we use the notation SP(v) to refer to a black box that prepares the state

v. Although many di�erent operators can prepare the state v, we point out that in one

circuit the operators preparing and de-preparing the same state are exactly the same,

otherwise the decomposition would not be valid. Many previous research studies have

sought to optimize the preparation of states and we use their results for our synthesis

[45, 50, 57].

4.2 Resources estimation
We now turn to the question of the size of the circuit sketched in Figure 7 (measured in number of

CNOTs), and to the computational cost to generate the circuit (measured in �ops). In this section

we only give asymptotic results which are summarized in Tables 2 and 3.

Asymptotically, it turns out that the synthesis ofD and andDG are negligible. Using existing

methods one can synthetize D in O(2n) gates, while the series of 2n− 1 subcircuits DG requires

at mostO((2n−1)n2) gates [27] (when n is the number of qubits). As we will see in the following,

the synthesis of the Pi’s requires O(4n) gates: this is the dominant factor.

The complexity of the size of the circuit is therefore essentially due to the preparation and

de-preparation of quantum states. Because of the structure of the problem, we can do better than

systematically applying state preparation on n qubits for each of the ui vectors. We describe two

successive optimizations. The �rst one relies on the possibility to perform state preparations on

less than n qubits; the second one proposes to fuse adjacent sequences of de-preparations and

preparation of states.

4.2.1 Optimization based on state preparation

When preparing ui, if only the last 2k elements of ui ∈ C2n
are non zero, the state is encodable

on k qubits only. This means that a k-qubit operator can prepare the state u′i ∈ C2k
such that

17

/

SP

(
0
1
⊗ ui

)
≡

/

X

SP(ui)

Figure 8: Desentangling one qubit in state preparation

ui = (0
u′i

). Let Q be such an operator, then the operator

P = X⊗(n−k) ⊗Q =

(0) 1

. .
.

1 (0)

⊗
u′i (∗)

 =

(
0 ∗
u′i ∗

)

prepares ui. A quantum circuit to illustrate this is given in Figure 8.

Thus, up to the operators X , D and DG, we observe that the Householder method breaks

down as follows: the synthesis of the �rst 2n−1 columns is done via operators acting on n qubits,

then the next 2n−2 columns are synthesized with operators acting on n− 1 qubits, etc.

In [27] the concept of isometries is formalized. Formally, with n > m, an m to n qubits

isometry can be represented as a 2n × 2m matrix V such that

V †V = I2m×2m .

The data of the 2m �rst columns of an operator on n qubits can be regarded as such an isometry

V . For instance an isometry from 0 to n qubits is a quantum state on n qubits. Synthesizing an

isometry from n−1 to n qubits is equivalent to synthesizing the �rst 2n−1 columns of an n-qubit

operator. With this formalism the synthesis of an n-qubit operator via the Householder method

naturally leads to synthesizing n isometries, respectively isometries from k − 1 to k qubits for k
from 1 to n. Therefore we introduce the following notations:

• hk refers to the number of CNOTs necessary to the synthesis of an isometry from k − 1 to

k qubits with the Householder method,

• cn refers to the number of CNOTs necessary to the synthesis of an n-qubit operator with

the Householder method,

and, refering to the discussion above, we have

cn ∼
n∑
k=1

hk. (17)

With this decomposition we voluntarily omit the side-e�ects that may occur between two sub-

circuits acting on a di�erent number of qubits — typically the transition between the subcircuit

preparing states on j qubits only and the subcircuit preparing states on j + 1 qubits. These

side-e�ects are asymptotically negligible and not taking them into account highly simpli�es the

calculations.

18

Method CNOT count Rotation count

QR 8.7× 4n Unavailable

Quantum Shannon 23/48× 4n 9/8× 4n

Householder (with rotation multiplexors) 2× 4n 2× 4n

Householder (with multiplexors in SU(2)) 4n 2× 4n

Lower bound 1/4× 4n 4n

Table 2: Asymptotic gate counts for decomposition methods

We are concerned with estimating cn: to this end we focus on the estimation of hk. A lower

bound to the asymptotic behavior of hk is given in [27]:

hmink =
3

16
4k + o(4k).

With Equation (17) we derive the lower bound
1
4
4n for cn.

With our current circuit, we have

hk ∼ 2× (2k−1)× pk (18)

where pk is the number of CNOTs required to prepare a state on k qubits. The value pk varies

depending on the structure of subcircuits we consider [45]:

• with rotation multiplexors, pk = 2k+1
, hk ∼ 2× 4k, hence

cn ∼
8

3
4n;

• with multiplexors in SU(2), pk = 2k, hk ∼ 4k and

cn ∼
4

3
4n.

The same calculation can be done for the number of rotations in the circuit. Actually, Equations

(17) and (18) highlight the decomposition of the quantum circuit into smaller subcircuits, thus

remain true by replacing the number of CNOTs with the number of elementary rotations. A

quantum state preparation on n qubits requires 2n+1
rotations, whether using rotations or SU(2)

multiplexors [45]. Overall the number of rotations rn required for the synthesis of a n-qubit

operator with the Householder method is

rn =
8

3
4n.

19

4.2.2 Optimizing adjacent state preparations and de-preparations

We now focus on the concatenations of the adjacent subcircuits SP(ui+1) and SP(ui)
†

in the circuit

of Figure 7. These sequences of operations can indeed be optimized.

To this end we need to look in more details to the state preparation circuits. A circuit P that

prepares the state ψ on n qubits can be decomposed as

P = DY

where

D =

e
iθ1

. . .

eiθ2n

such that θj = arg(ψ(j)) and Y prepares the real state

Ψ =

 |ψ1|
...
|ψ2n|

 .

Y can be synthesized with only Ry rotations by following the standard methodology for state

preparation [57] without caring about the phases equal to 0. Using this decomposition the prod-

ucts preparation/de-preparation that we encounter in the global decomposition are of the form

P †j Pi = Y T
j D

∗
jDiYi

and the diagonal matrices can merge, thus diminishing the size by a cost of a diagonal matrix. In

total 2k−1 − 1 diagonals on k qubits vanish. Asymptotically this represents a gain of 2/3 × 4n

CNOTs and 2/3×4n rotations if we use rotation multiplexors, bringing the total to 2×4n CNOTs

and 2× 4n rotations. If we use multiplexors in SU(2), only multiplexors on k qubits are merging

and not diagonal anymore, saving twice less CNOTs but the same number of rotations. We save

in total 1/3 × 4n CNOTs and 2/3 × 4n rotations and the number of CNOTs, resp. rotations,

becomes asymptotically equal to 4n, resp. 2 × 4n. We also notice that the operators X that

appear when we switch to synthesis on a lower number of qubits disappear too by multiplying

themselves. An example on 3 qubits is showed in Figure 9. We use the following notation: |vk|
(resp. |vTk |) represents the operator that prepares (resp. deprepares) the real state |vk| consisting

of the amplitudes of the components of the state vk. Dk is the diagonal gate containing the phases

of the components of the state vk and Dj
k = D∗j × Dk. The results for the �nal gate counts are

given Table 2.

4.2.3 Flop counts

Apart from the circuit size, the other measure we are interested in is the computational cost,

measured in �ops.

20

D

X

X

D∗7 |vT7 |

DG

X

X

|v7|

X

D6
7 |vT6 |

DG

X X

|v6| D5
6 |vT5 |

DG

X

|v5|
D4

5 |vT4 | DG |v4| D3
4 |vT3 | DG |v3| D2

3 |vT2 | DG |v2| D1
2 |vT1 | DG |v1| D1

Hv7 Hv6 Hv5 Hv4 Hv3 Hv2 Hv1

Figure 9: Quantum circuit designed by the Householder method for 3 qubits

Method �ops

Quantum Shannon 19× 8n

Householder 2/3× 8n

Classical QR factorization 4/3× 8n

Table 3: Asymptotic �op counts for decomposition methods

The computational cost of the synthesis part is negligible compared to the cost of the House-

holder decomposition. Overall state preparations of states of size 2n, 2n − 1, . . . , 3, 2 need to be

performed. For a state on k qubits, it requires O(k2k) operations, and we need to do it for 2k−1

states. Thus the synthesis part needs around

n∑
k=1

k2k × 2k−1 = O(n4n)

�oating point operations. This is asymptotically negligible compared to the Householder factor-

ization where O(8n) operations are needed. Table 3 summarizes the �op count for the various

methods.

5 Experimental results
The experiments have been carried out on one node of the QLM (Quantum Learning Machine)

located at ATOS/BULL. This node is a 24-core Intel Xeon(R) E7-8890 v4 processor at 2.4 GHz.

Hyper-threading has been disabled.

Most of the programs are written in C with the C-interface for LAPACK [3] (LAPACKE). We

adapted the LAPACK routine ZGEQRF (in Fortran) to compute the QR factorization of unitary

matrices using the blocked algorithm described in Section 3. LAPACK is linked with the MKL [26]

multithreaded BLAS. The original ZGEQRF routine computes the best block size according to the

size of the matrix and the hardware, we keep this computation in our modi�ed routine. Our

experiments use random unitary matrices generated via the LAPACK routine ZLAROR which

generate matrices from a uniform distribution according to the Haar measure [60]. This way we

get the most generic matrices possible: dense, without any particular structure or pattern in the

matrix elements. We are thus ensured to have a worst case scenario in terms of performance for

our algorithms.

21

Number of qubits

T
i
m

e
(
s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10−7

10−6

10−5

10−4

10−3

10−2

10−1

H H H
H

H
H

H
H

H
H

H
H

H
H

H

•
• • •

•
•
•
•
•
•
•
•
•
•
•

? ? ?
?

?
?

?
?

?
?

?
?

?
?

?

×

× ×
×
×
×
×
×
×
×
×
×

···?··· Full circuit synthesis

···•··· ZGEQRF

···H··· Modi�ed ZGEQRF

···×··· QSD

10−9 × 8n

Figure 10: Sequential time for operator decomposition and circuit synthesis.

We present here numerical experiments to evaluate successively the sequential performance,

the strong scalability and the weak scalability using multiple cores.

5.1 Sequential runs
In Figure 10 we compare the performance (in time) of the following routines or programs:

• The LAPACK routine ZGEQRF that computes the QR factorization of a complex matrix in

double precision (note that here the matrix is square), to serve as a reference.

• Our modi�ed ZGEQRF routine adapted for unitary matrices.

• The complete circuit synthesis process which includes the QR factorization and the syn-

thesis of the circuit obtained from this decomposition as explained in Section 4.

• The Quantum Shannon Decomposition (QSD), where the implementation essentially relies

on the methodology described in [57] and uses the LAPACK routine ZUNCSD to compute

the Cosine-Sine Decomposition (CSD). The routine implements the algorithm in [63]. This

algorithm is the state of the art and has already been used in other implementations [28, 73].

We considered matrices of sizes 2k× 2k, k = 1 . . . 15 (operators acting on 1 to 15 qubits). The

upper limit of 15 was chosen so that all decompositions can be achieved within an hour. This is

why the curve plotting the QSD decomposition stops for 12 qubits.

22

Number of threads

T
i
m

e
(
s
)

G
�

o
p

/
s

0 5 10 15 20 25

0

1000

2000

3000

4000

5000

0

25

50

75

100

125

150

175

200

H
H

H

H
H

H

H

H

H
H

H
H

H

H

H

H H H H H H H H H H H• •
•
•
•
•
•
•
•
•
• • •

•

•

•
• • • • • • • • • •·

·
·
·
·
·
·
·
·
·
·
·
·

?

?

?
? ? ? ? ? ? ? ? ? ?

···?··· Full circuit synthesis

···•··· ZGEQRF

···H··· Modi�ed ZGEQRF

········ ZGEMM peak

Figure 11: Strong scaling for quantum operator decomposition and circuit synthesis on 15 qubits.

As expected all the methods follow asymptotically O(8n) (curve also plotted) in accordance

with the theoretical complexity. The gap between the general and modi�ed QR factorizations in

log scale corresponds approximatively to a factor of 2, in accordance with the �op count.

When comparing the QR and QSD methods, we observe that for the same amount of time we

can synthesize matrices with 2, almost 3 qubits more. The ratio between the times taken by the

QSD and our method is even increasing with the number of qubits, reaching a value of almost

300 for 12 qubits which is much bigger than the expected ratio of 30. This is due to the routine

ZUNCSD that does not follow the theoretical complexity and does not scale well with the number

of qubits.

5.2 Multithreaded runs
Because we could reach 15 qubits (unitary matrices of size 32768 × 32768) with a sequential

run in less than one hour, we chose this size for our multithreaded runs. The strong scalability

is then evaluated using up to 24 threads. Since the ZUNCSD routine used for the QSD is not

parallel, it has been excluded from our experiments. Figure 11 presents performance results (in

time and G�op/s) for the chosen number of threads. The time of the modi�ed ZGEQRF scales like

the full circuit synthesis since the QR factorization represents most of the computational cost in

the synthesis. Also, due to a smaller �op count, the modi�ed QR is always much faster than the

general QR. Moreover, looking at the G�op/s performance rate, we observe that our modi�ed QR

factorization o�ers a good scalability due to an algorithm which is rich in BLAS 3 operations and

23

Number of qubits | Number of threads

G
�

o
p

/
s

13 | 1 14 | 4 15 | 16

20

40

60

80

100

120

140

H

H

H

•

•

•

+

+

+

···H··· Modi�ed ZGEQRF

···•··· ZGEQRF

···+···· ZGEMM peak

Figure 12: Weak scaling for quantum operator decomposition on 15 qubits.

provides a performance close to that of a matrix-matrix product (ZGEMM routine, also plotted in

Figure 11). Note that the G�op/s rate for the full circuit synthesis is not plotted since the bulk of

the arithmetical operations correspond to those of the factorization and the time of the synthesis

itself is negligible.

Our experiments on weak scaling aim at measuring how the performance evolves with the

number of threads but with a �xed problem size for each thread. Our algorithm for circuit syn-

thesis can only accept matrices of size 2n × 2n i.e. 4n entries. As we can only multiply the size

of our problems by a factor of 4, we need to multiply also the number of threads by a factor of 4.

Thus, starting from a sequential run on 13 qubits, we achieved experiments on 14 and 15 qubits

using 4 and 16 threads respectively. The results given in Figure 12 show that the rate (in G�op/s)

of the modi�ed ZGEQRF increases with the number of threads/qubits with a very good scalability

(close to that of ZGEMM) due to the mostly BLAS 3 operations implemented in the algorithm.

5.3 Experiments on Graphics Processing Units (GPU)
We performed additional experiments to study the behavior of our QR algorithm for unitary

matrices using two Kepler K40 with 2880 CUDA cores and a multicore host composed of two

Intel Xeon E5-2620 processors (6 cores each). The time for the synthesis is not plotted here since

it is negligible compared to the time of the QR factorization.

Similarly to what was made previously with the LAPACK routine, we modi�ed the QR routine

from the MAGMA [65] linear algebra library for GPUs according to Algorithm 3.1. Note that

the transfer of the panel (block column factorized at each iteration) from the CPU to the GPU

24

Number of qubits

T
i
m

e
(
s
)

7 8 9 10 11 12 13 14 15

10−2

10−1

100

101

102

H
H

H
H

H

H

H

H

H

•
•

•
•

•

•

•

•

•

× ×
×

×
×

×

×

×

×

N
N

N

N

N

N

N

N

N

···•··· MAGMA 1 GPU

···N···· MAGMA 2 GPU

···H··· Modi�ed ZGEQRF 1 GPU

···×··· Modi�ed ZGEQRF 2 GPU

Figure 13: Time for factorization of unitary matrices on GPUs.

performed in MAGMA is replaced by a transfer of the 2 triangular matrices mentioned in Section 3

which are broadcasted to the GPUs involved in the computation. In Figure 13, we obtain the factor

of 2 (due to twice less �ops) between the standard and the modi�ed QR factorization. We also

observe that using 2 GPUs has no interest for problems smaller than 12 qubits but we get a factor

close to 2 (e.g., 1.84 for 15 qubits) when switching from 1 to 2 GPUs for problems larger than 13

qubits, showing a good scalability of the algorithm.

6 Conclusion
In this work we recalled the fundamentals of quantum computing and we stated the problem of

quantum circuit synthesis. We highlighted the importance of having an e�cient circuit synthesis

framework by considering metrics based on �op and gate counts. To address this issue we pre-

sented a modi�ed QR factorization in complex arithmetic based on Householder transformations

where we exploit the speci�cities of unitary matrices to require twice as less �ops and we pro-

posed a scalable blocked implementation that contains mostly level-3 BLAS operations. Then we

described a method to convert the QR factorization into a quantum circuit with clearly de�ned

properties. Our method results in a signi�cant gain in time compared to the best methods in

quantum compiling. As future work, we will study the behavior of our method on bigger prob-

lems using large distributed HPC systems. In terms of circuit size, some improvements may be

25

obtained by studying in more details the optimization of state preparation occurring during the

process.

Acknowledgement
This work was supported in part by the French National Research Agency (ANR) under the re-

search project SoftQPRO ANR-17-CE25-0009-02, and by the DGE of the French Ministry of In-

dustry under the research project PIA-GDN/QuantEx P163746-484124.

References
[1] D. Alsina and J. I. Latorre. Experimental test of Mermin inequalities on a �ve-qubit quantum

computer. Physical Review A, 94:012314, 2016.

[2] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast

synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 32(6):818–830, 2013.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. Lapack Users’ Guide. Society for

Industrial and Applied Mathematics, 3
rd

edition, 1999.

[4] A. Barenco. A universal two-bit gate for quantum computation. Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 449(1937):679–683,

1995.

[5] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A.

Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical Review A,

52:3457, 1995.

[6] V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa. Quantum circuits with

uniformly controlled one-qubit gates. Physical Review A, 71:052330, 2005.

[7] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine

learning. Nature, 549(7671):195, 2017.

[8] S. Blackford. Benchmark Lapack. http://www.netlib.org/lapack/lug/node71.html.

[9] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A.

Nielsen, and T. J. Osborne. Practical scheme for quantum computation with any two-qubit

entangling gate. Physical Review Letters, 89:247902, 2002.

[10] S. S. Bullock and I. L. Markov. An arbitrary two-qubit computation in 23 elementary gates or

less. In Proceedings of the 40
th
Annual Design Automation Conference, pages 324–329. ACM,

2003.

26

http://www.netlib.org/lapack/lug/node71.html

[11] S. S. Bullock and I. L. Markov. Asymptotically optimal circuits for arbitrary n-qubit diagonal

computations. Quantum Information & Computation, 4(1):27–47, 2004.

[12] R. Cabrera, T. Strohecker, and H. Rabitz. The canonical coset decomposition of unitary ma-

trices through Householder transformations. Journal of Mathematical Physics, 51(8):082101,

2010.

[13] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone. Report

on post-quantum cryptography. Technical Report NISTIR-8105, NIST – National Institute

of Standards and Technology, 2016.

[14] G. Cybenko. Reducing quantum computations to elementary unitary operations. Computing

in Science & Engineering, 3(2):27–32, 2001.

[15] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. Quantum Information &

Computation, 6(1):81–95, 2006.

[16] A. De Vos and S. De Baerdemacker. Block-ZXZ synthesis of an arbitrary quantum circuit.

Physical Review A, 94:052317, 2016.

[17] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-

puter. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 400(1818):97–117, 1985.

[18] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Proceed-

ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

449(1937):669–677, 1995.

[19] D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical Review A,

51:1015–1022, 1995.

[20] J. Dongarra. Preface: Basic linear algebra subprograms technical (BLAST) forum standard.

International Journal of High Performance Computing Applications, 16(1):1–1, 2002.

[21] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm.

Technical Report MIT-CTP/4610, Massachusetts Institute of Technology, 2014. Also avail-

able as arXiv:1411.4028.

[22] R. P. Feynman. Simulating physics with computers. International journal of theoretical

physics, 21(6-7):467–488, 1982.

[23] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,

Baltimore, 1996. Third edition.

[24] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of

the 28
th
Annual ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996.

27

https://arxiv.org/abs/1411.4028

[25] L. E. Heyfron and E. T. Campbell. An e�cient quantum compiler that reduces T-count.

Quantum Science and Technology, 4(1):015004, 2019.

[26] Intel. Math Kernel Library (MKL). http://www.intel.com/software/products/mkl/.

[27] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl. Quantum circuits for isometries.

Physical Review A, 93:032318, 2016.

[28] R. Iten, O. Reardon-Smith, L. Mondada, E. Redmond, R. S. Kohli, and R. Colbeck. Introduction

to UniversalQCompiler. Draft available as arXiv:1904.01072, 2019.

[29] P. A. Ivanov, E. S. Kyoseva, and N. V. Vitanov. Engineering of arbitrary U(n) transformations

by quantum Householder re�ections. Physical Review A, 74:022323, 2006.

[30] A. Javadi-Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi.

Sca�CC: Scalable compilation and analysis of quantum programs. Parallel Computing, 45:2–

17, 2015.

[31] R. Jozsa and N. Linden. On the role of entanglement in quantum-computational speed-up.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering

Sciences, 459(2036):2011–2032, 2003.

[32] I. Kerenidis and A. Prakash. Quantum recommendation systems. In Proceedings of the 8
th

Innovations in Theoretical Computer Science Conference, volume 67 of Leibniz International

Proceedings in Informatics, pages 49:1–49:21, 2017.

[33] I. Kerenidis and A. Prakash. Quantum gradient descent for linear systems and least squares.

Physical Review A, 101:022316, 2020.

[34] V. Kliuchnikov, D. Maslov, and M. Mosca. Fast and e�cient exact synthesis of single-qubit

unitaries generated by Cli�ord and T gates. Quantum Information & Computation, 13(7-

8):607–630, 2013.

[35] E. Knill. Approximation by quantum circuits. Technical Report LAUR-95-2225, Los Alamos

National Laboratory, 1995. Also available as arXiv:quant-ph/9508006.

[36] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical

quantum computing with photonic qubits. Reviews of Modern Physics, 79:135–174, 2007.

[37] B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Physical

Review A, 63:062309, 2001.

[38] R. LaRose, A. Tikku, É. O’Neel-Judy, L. Cincio, and P. J. Coles. Variational quantum state

diagonalization. NPJ Quantum Information, 5(1):8, 2019.

[39] R. B. Lehoucq. The computation of elementary unitary matrices. ACM Transactions on

Mathematical Software, 22(4):393–400, 1996.

28

http://www.intel.com/software/products/mkl/
https://arxiv.org/abs/1904.01072
https://arxiv.org/abs/quant-ph/9508006

[40] S. Lloyd. Almost any quantum logic gate is universal. Physical Review Letters, 75:346–349,

1995.

[41] C. F. V. Loan. The ubiquitous Kronecker product. Journal of Computational and Applied

Mathematics, 123(1):85 – 100, 2000. Special Issue – Numerical Analysis 2000. Vol. III: Linear

Algebra.

[42] D. Maslov. Basic circuit compilation techniques for an ion-trap quantum machine. New

Journal of Physics, 19(2):023035, 2017.

[43] O. D. Matteo and M. Mosca. Parallelizing quantum circuit synthesis. Quantum Science and

Technology, 1(1):015003, 2016.

[44] A. Montanaro. Quantum walk speedup of backtracking algorithms. Draft available online

as arXiv:1509.02374., 2015.

[45] M. Möttönen and J. J. Vartiainen. Decompositions of general quantum gates. In S. Shannon,

editor, Trends in Quantum Computing Research, chapter 7. Nova Science Publishers, New

York, 2006. Also available online as arXiv:quant-ph/0504100.

[46] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa. Quantum circuits for general

multiqubit gates. Physical Review Letters, 93:130502, 2004.

[47] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov. Automated optimization of large

quantum circuits with continuous parameters. NPJ Quantum Information, 4(1):23, 2018.

[48] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-

bridge University Press, 2011.

[49] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik,

and J. L. O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature

Communications, 5:4213, 2014.

[50] M. Plesch and Č. Brukner. Quantum-state preparation with universal gate decompositions.

Physical Review A, 83:032302, 2011.

[51] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, 2018.

[52] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of any discrete

unitary operator. Physical Review Letters, 73:58–61, 1994.

[53] N. J. Ross and P. Selinger. Optimal ancilla-free Cli�ord+T approximation of Z-rotations.

Quantum Information & Computation, 16(11&12):901–953, 2016.

[54] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl,

V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt. A quantum information

processor with trapped ions. New Journal of Physics, 15(12):123012, 2013.

29

https://arxiv.org/abs/1509.02374
https://arxiv.org/abs/quant-ph/0504100

[55] R. Schreiber and C. V. Loan. A storage-e�cient WY representation for products of House-

holder transformations. SIAM Journal on Scienti�c and Statistical Computing, 10(1):53–57,

1989.

[56] P. Selinger. E�cient Cli�ord+T approximation of single-qubit operators. Quantum Infor-

mation & Computation, 15(1-2):159–180, 2015.

[57] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic circuits. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010,

2006.

[58] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Ho�mann, and F. T. Chong. Optimized

compilation of aggregated instructions for realistic quantum computers. In Proceedings of

the 24
th
International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 1031–1044. ACM, 2019.

[59] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Review, 41(2):303–332, 1999.

[60] G. Stewart. The e�cient generation of random orthogonal matrices with an application to

condition estimators. SIAM Journal on Numerical Analysis, 17(3):403–409, 1980.

[61] M. Suchara, Y. Alexeev, F. Chong, H. Finkel, H. Ho�mann, J. Larson, J. Osborn, and G. Smith.

Hybrid quantum-classical computing architectures. In Proceedings of the 3
rd
International

Workshop on Post-Moore Era Supercomputing, 2018., 2018.

[62] X. Sun and C. Bischof. A basis-kernel representation of orthogonal matrices. SIAM Journal

on Matrix Analysis and Applications, 16(4):1184–1196, 1995.

[63] B. D. Sutton. Computing the complete cs decomposition. Numerical Algorithms, 50(1):33–65,

2009.

[64] K. M. Svore and M. Troyer. The quantum future of computation. IEEE Computer, 49(9):21–

030, 2016.

[65] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Computing, 36(5):232 – 240, 2010. Special Issue on

Parallel Matrix Algorithms and Applications.

[66] J. Urías and D. A. Quiñones. Householder methods for quantum circuit design. Canadian

Journal of Physics, 94(2):150–157, 2016.

[67] B. Valiron, N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith. Programming the quantum

future. Commununications of the ACM, 58(8):52–61, 2015.

[68] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa. E�cient decomposition of quantum gates.

Physical Review Letters, 92:177902, 2004.

30

[69] F. Vatan and C. Williams. Optimal quantum circuits for general two-qubit gates. Physical

Review A, 69:032315, 2004.

[70] F. Vatan and C. P. Williams. Realization of a general three-qubit quantum gate. Draft avail-

able as quant-ph/0401178, 2004.

[71] G. Vidal. E�cient classical simulation of slightly entangled quantum computations. Physical

Review Letters, 91:147902, 2003.

[72] G. Vidal and C. M. Dawson. Universal quantum circuit for two-qubit transformations with

three controlled-not gates. Physical Review A, 69:010301, 2004.

[73] J. Wang and K. Manouchehri. Physical implementation of quantum walks. Springer, 2013.

[74] J. M. Welch. On the Synthesis of Quantum Circuits for Diagonal Operators in Quantum Com-

putation. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences,

2015.

[75] A. C.-C. Yao. Quantum circuit complexity. In Proceedings of the 34
th
Annual Symposium on

the Foundations of Computer Science, pages 352–361. IEEE, 1993.

31

https://arxiv.org/abs/quant-ph/0401178

	Introduction
	Contributions
	Plan of the paper
	Notations

	Background
	Householder algorithm for unitary matrices
	From the Householder decomposition to a quantum circuit
	General method
	Resources estimation
	Optimization based on state preparation
	Optimizing adjacent state preparations and de-preparations
	Flop counts

	Experimental results
	Sequential runs
	Multithreaded runs
	Experiments on Graphics Processing Units (GPU)

	Conclusion

