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Asymptotic temperature of a lossy condensate
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Abstract

We monitor the time evolution of the temperature of phononic collective modes in a
one-dimensional quasicondensate submitted to losses. At long times the ratio between
the temperature and the energy scale mc2, where m is the atomic mass and c the sound
velocity takes, within a precision of 20%, an asymptotic value. This asymptotic value is
observed while mc2 decreases in time by a factor as large as 2.5. Moreover this ratio is
shown to be independent on the loss rate and on the strength of interactions. These re-
sults confirm theoretical predictions and the measured stationary ratio is in quantitative
agreement with the theoretical calculations.
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1 Introduction

There has been many effort and progress in the last decades for the realization and inves-
tigation of isolated many-body quantum systems. The effect of coupling to an environment
has however regained interest in the last years. While such a coupling was manly consid-
ered as detrimental for the study of many-body quantum physics, it has been shown that
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proper engineering of the coupling to an environment could enable the realization of inter-
esting many-body quantum states such as entangled states or highly correlated states [1, 2].
The effect of coupling to an environment is still a widely open question. The simplest kind
of coupling, which is ubiquitous in experiments, is a loss process where the particles leave
the system. Losses are particularly relevant in exciton-polariton condensates but they are also
present, or can be engineered, in ultra-cold atomic degenerate Bose gases. If one considers a
Bose-Einstein condensate (BEC) wavefunction, losses are treated as a dissipative term added
to the Gross-Pitaevskii equation, equation which describes the evolution of the BEC at the
mean-field level. This approach was successful in describing the effect of local losses in an
atomic BEC [3] and many aspects of exciton-polariton condensates [4–7]. In the last case, a
pumping process ensures the presence of a steady state. Beyond this mean-field approach, the
loss process introduces fluctuations, which are due to the shot noise associated to the quanti-
zation of the particles. Both the dissipation and the fluctuations produced by losses was taken
into account in stochastic theoretical descriptions [8–11]1.

While for exciton-polariton condensates a pumping process is present, in atomic Bose gases
the sole effect of losses can be investigated. In [10, 11] the time evolution of a Bose-Einstein
condensate, or a quasicondensate in reduced dimension, submitted to homogeneous losses
has been theoretically investigated. The dissipative term is responsible for cooling: although
the loss process is homogeneous, losses per unit length occur at a higher rate in regions of
higher densities – just because there are more atoms – which leads to a decrease of density
fluctuations and thus of their associated interaction energy. On the other hand, the stochastic
nature of losses tends to increase density fluctuations and thus the interaction energy; this
corresponds to a heating term. As a result of the competition between both effects, it has
been predicted that phononic collective modes acquire, at large times, a temperature kB T that
decreases proportionally to the energy scale mc2 where m is the atomic mass and c the speed
of sound.

The precise value of the asymptotic ratio kB T/(mc2) depends on the loss process and the
geometry [11]. An intrinsic homogeneous loss process present in cold atoms setup is a three-
body loss process where a loss event corresponds to an inelastic collision involving three atoms
and amounts to the loss of the three atoms. In [13], the asymptotic ratio kB T/(mc2) associated
to this three-body losses has been experimentally observed, and its value is in agreement with
theoretical predictions. On the other hand, there was up to now no experimental evidence of
an asymptotic ratio kB T/(mc2) in the case of a one-body loss process [14]. A one-body loss
process corresponds to a uniform loss rate: each atom has the probability Γ d t to be lost during
a time-interval d t, regardless both of its position and its energy. In this paper, we demonstrate
the presence of an asymptotic value of the ratio kB T/(mc2) for one-dimensional harmonically
confined quasicondensates submitted to one-body losses, and our results are in agreement
with theoretical predictions.

2 Description of the experiment and data analysis

We use an atom-chip set-up, described in detail in [15], to produce ultracold gases of 87Rb
atoms, polarized in the stretch state |F = 2, mF = 2〉 and confined in a very elongated magnetic
trap. The transverse confinement is realized by three parallel wires aligned along z, running
an AC current modulated at 400 kHz, together with a homogeneous longitudinal magnetic
field B0 = 2.4G [16]: atoms are confined transversely in the time-averaged potential and the
transverse oscillation frequency ω⊥/(2π), which depends on the data-set, lies in the interval
[1.5-4.0]kHz. A longitudinal harmonic confinement of frequencyωz/(2π) = 9.5 Hz is realized

1Other approaches such as the Keldish formalism have been developped [12].
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Figure 1: Implementation of one-body losses in our magnetically-confined gas and
data analysis. (a) sketch of the MW coupling between the trapped and untrapped
state. (b) A typical density profile n0(z), obtained averaging over about 20 images.
The data to which it corresponds (5th data point of data set 6) is the encircled data
point in Fig.(a). The shape expected for a quasicondensate is shown in green, with
the peak density np as single fitting parameter. (c) Density ripples power spectrum
for the same data as (b), together with the theoretical fit yielding the temperature T .
The red solid line in (b) is the density profile expected for a cloud at a temperature
T using the Yang-Yang equation of state and the local density approximation.

by a pair of wires perpendicular to z. Using standard radio-frequency (RF) evaporative cooling,
we prepare clouds whose temperature T and chemical potential2 µp, depending on the data
set, lie in the range µp/(2π~) ∈ 1.0−3.1kHz and T ∈ 40−75nK. The ratios kB T/(~ω⊥) and
µp/(~ω⊥) lie in the range 0.3−0.7 and 0.6−1.2 respectively such that the clouds are quasi-one-
dimensional. The clouds lie deep in the quasicondensate regime [17], which is characterized
by strongly reduced density fluctuations – the two-body zero distance correlation function
g(2)(0) being close to one – while longitudinal phase fluctuations are still present. We then
increase the frequency of the RF knife by about 25 kHz, so that it no longer induces losses but
ensures the removing of residues of three-body recombination events.

In contrast to the three-body process, no intrinsic process leads to a one-body loss term
in our experiment and one-body losses have to be engineered. We introduce homogeneous
one-body losses by coupling the trapped atoms to the untrapped state |F = 1, mF = 1〉,
which lies at an energy ~ωHFS + (3/2)µBB0 below the trapped state |F = 2, mF = 2〉, where
ωHFS ' 6.8347GHz is the hyperfine splitting of the 87Rb ground state. Coupling is realized by
a microwave (MW) field produced by a voltage-controlled oscillator connected to an antenna
placed a few centimeter away from the atomic cloud. We use a noise-generator to produce a
MW power spectrum which presents a rectangular shape 200 kHz wide. Its central frequency
ω0 may be varied in time. During the preparation phase of our ultra-cold cloud, ω0 is chosen
such that the transition is shifted from resonance by about 5 MHz so that the MW does not
induce any noticeable losses. At time t = 0, we suddenly shift ω0 to its resonance value to in-
duce losses. The large width of the MW power spectrum, compared toω⊥ and to the chemical
potential of the atoms, ensures that the loss rate is homogeneous over the size of the atomic
cloud and is not affected by interaction effects. We adapt the loss rate Γ adjusting the power
of the MW field.

We analyze the atomic cloud using absorption images taken after a time of flight t f = 8ms
following the sudden switch off of the confining potential. We acquire an ensemble of about

2The energy offset used for chemical potential is the energy of the transverse ground state, i.e. ~ω⊥.
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20 images taken in the same experimental conditions. The fast transverse expansion of the
cloud provides an effective instantaneous switch off of the interactions with respect to the
longitudinal motion and the gas evolves as a non-interacting gas for t f . Averaging over the
data set, we extract the longitudinal density profile n0(z). The longitudinal velocity width,
of the order of kB T/(~np), where np is the peak linear density [18], is small enough so
that the longitudinal density profile is not affected by the time-of-flight and n0(z) is equal
to the density profile of the cloud prior to the trap release. From n0(z), we extract the to-
tal atom number and the peak density np. The latter is obtained by fitting the central part
of the measured density profile with the profile expected for a gas lying in the quasiconden-
sate regime. To compute the quasicondensate density profile we rely on the local density
approximation (LDA): the gas at position z is described by a homogeneous gas at chemical
potential µ(z) = µp −mω2

z z2/2, and the linear density is derived from µ(z) using the equa-
tion of state of a homogeneous quasicondensate. The latter, which relies the chemical poten-
tial µ to the linear density n, is µ = ~ω⊥(

p

1+ 4na3D − 1), where a3D is the 3D scattering
length [19, 20]. For na3D � 1 it reduces to the pure 1D expression µ = g1Dn , where the 1D
coupling constant3 is g1D = 2~ω⊥a3D [21]. At larger na3D it includes the effect due to the
transverse swelling of the wavefunction. The longitudinal quasicondensate profile extends
over 2R, where R =

Æ

2µp/(mω2
z ). Fig. (1)(b) shows a typical experimental density profile

n0, together with the theoretical quasicondensate profile. The good agreement between most
of the cloud’s shape and the calculated profile confirms that the cloud lies deep into the quasi-
condensate regime. It also confirms that the loss rate is small enough so that the cloud shape
has time to follow adiabatically the atom number decrease.

Temperature determination is realized by the well-established density-ripple thermometry
method [13,22–25]. This thermometry uses the fact that thermally excited phase fluctuations
initially present in the cloud transform into density fluctuations during t f such that single shot
images of the cloud presents large random density ripples. From the set of acquired images,
we extract the power spectrum of the density ripples. More precisely, we extract from each
image ρq =
∫ R
−R dzδn(z)eiqz where δn(z) = n(z) − n0(z) and we then compute the density

ripple power spectrum 〈|ρq|2〉, from which we remove the expected flat-noise contribution of
optical shot noise. The power spectrum is then fitted with the expected power spectrum for a
quasicondensate of peak density np confined in a harmonic longitudinal potential, calculated
using the LDA approximation [25], with the temperature as fitting parameter4. Fig. 1(c)
shows an example of a power spectrum (corresponding to the encircled data point in Fig.
(2)(a)), together with the theoretical fit yielding the temperature T . This thermometry probes
fluctuations whose wavelengths are much larger than the healing length ξ = ~/pmgnp such
that the temperature corresponds to the temperature of the phononic collective modes.

3 Experimental results

We investigate the time evolution of the atomic cloud for 6 different data sets which correspond
to different transverse oscillation frequencies – i.e. different interaction 1D effective coupling
constant –, different initial situations – i.e. different atom number and temperature – and
different MW power – i.e. different 1-body loss rate. They are listed in table (1).

We plot in Fig. (2)(a) the time evolution of the total atom number for the different data

3In our case, ω⊥� ~/(ma2
3D) such that we are far from confinement-induced resonance.

4 We take into account the finite imaging resolution by multiplying the theoretical power spectrum with e−k2σ2

where σ is the rms width of the imaging point-spread-function. Due to finite depth-of-focus, σ depends on the
size of the cloud along the imaging axis, which itself depends on ω⊥. Thus σ may depend on the data set but for
a given data set we use the same σ for all evolution times.
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Table 1: Data sets presented in this paper, with the associated symbol used in the
figures 2 and 3.

data-set number ω⊥/(2π) (kHz) Γ (s−1) Symbol

1 1.5 3.8 J
2 1.5 1.6 F
3 2.1 5.2 •
4 3.1 4.9 �
5 3.1 2.5 N
6 4.0 4.5 I
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Figure 2: (a) Evolution of the total atom number for the different sets of data shown
in semi-log scale. The loss rate Γ for each data set is deduced from an expontential
fit, shown as dashed line. (b) Evolution of the energy scale mc2

p for same data sets
as a function of Γ t. Both plots use the color codes of table. 1

sets. The exponential decrease of the atom number, shown by the good agreement with ex-
ponential laws represented by straight line in the semi-log plot, confirms that we realized a
uniform one-body loss process. The loss rate varies by roughly a factor 2 between different
data sets. As pointed out in the introduction, a relevant energy scale is mc2

p where cp is the

sound velocity computed at the center of the cloud, which fulfills mc2
p = n∂nµ|n=np

. For pure

1D quasicondensates, mc2
p = g1Dnp where np is the peak density. In our data sets the linear

densities can reach values which are not small compared to 1/a3D and we use the more gen-
eral expression mc2

p = np g1D/
Æ

1+ 4npa3D. The evolution of the energy mc2
p for the data sets

is shown in Fig. (2)(b). The variation of mc2
p during time is as large as a factor 2.5.

The time evolution of the ratio y = kB T/(mc2
p) is shown in Fig. (3)(a) for all the data sets.

Theory for 1D harmonically confined gases [11] predicts that y converge at long times towards
the asymptotic value y theo

∞ = 0.75, shown as solid black line in Fig. (3)(a). The observed
behavior is compatible with this prediction: the spread of values of y among different data
sets decreases as Γ t increases and at long times, all data gather around y theo

∞ = 0.75, regardless
of the loss rate Γ and of the transverse oscillation frequency. For the data sets 2,3 and 6, y
deviates by no more than 20% from y theo

∞ over the whole time evolution while mc2
p decreases

by a factor up to 2.5. For all data sets y is about stationnary for times t > 0.7/Γ and we
note y∞ the mean value of y for times t > 0.7/Γ . Fig. (3)(c) shows y∞, plotted versus the
transverse oscillation frequency. Results are close to y theo

∞ , with |y∞ − y theo
∞ |/y theo

∞ < 0.2.
The observed discrepancy between y∞ and y theo

∞ may be due on the one hand to our finite
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Figure 3: (a) Time evolution of the ratio y = kB T/(mc2
p) for the different data sets,

shown as a function of Γ t. The solid horizontal line shows y theo
∞ = 0.75. The dashed-

dotted lines are the computed expected time evolutions corresponding to initial sit-
uations of the data set 1 and 5. (b) For each data set, when available, mean value
of y for times larger than 0.7/Γ . Error bars show the standard deviation among the
data points that fulfill Γ t > 0.7.

thermometry precision (the value y∞ is within one error bar of y∞ for most data sets) and
on the other hand to the fact that the criteria Γ t > 0.7 might be insufficient to unsure the
asymptotic value of y has be attained.

Quantitative experimental investigation of the time-evolution of y under the effect of losses
is difficult with our data sets. The reason is that the initial condition we produce are such that
the maximal deviation between y(t = 0) and y theo

∞ is comparable to our thermometry resolu-
tion. We attribute this to the preparation scheme where, for our experimental procedure, three-
body losses during the evaporative cooling probably impose a value of y close to 0.75 [13].
On the theoretical side, for a given initial condition, the expected time evolution of y can be
computed using the dynamical equations derived in [11]. For pure 1D harmonically confined
cloud the equation reduces to d y/d(Γ t) = y/3+1/4. To take into account the 3D effect due to
transverse swelling of the wave-function, we solved numerically the general equations given
in [11]. We show in dashed-dotted black lines in Fig. (3)(a) the expected time-evolution for
initial conditions corresponding to the 1st and the 5th data sets. The expected convergence of
y towards y theo

∞ is found to be very slow for the data set 5. Here transverse swelling effects
slow down the dynamics5. Experimentally, the convergence appears to be slightly faster. For
initial situations corresponding to the data set 1 on the other hand, transverse swelling effects
are expected to speed up the dynamics. Data are consistent with this behavior.

4 Conclusion

In this paper, we identify for the first time the asymptotic temperature of a 1D quasicondensate
submitted to a 1-body loss process: more precisely, we show that the ratio kB T/(mc2

p) reaches
an asymptotic value, close to the theoretical prediction of 0.75. In a previous work [14] which
investigates the evolution of the temperature of a quasicondensate under the effect of losses,
1D quasicondensates were shown to reach lower ratios kB T/(mc2

p), in disagreement with the-

5Because of transverse swelling effect at large density, for some initial parameters, the function y(t) could even
be not monotonous.
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oretical predictions. The difference between the work [14] and the present work is two-fold.
First, in [14] the out-coupling is realised with a monochromatic field, in which case, for chemi-
cal potential of the order of the transverse trapping frequency, homogeneity of the loss process
is not guaranteed. Such an inhomogeneity makes the loss process sensitive to the energy of
the atoms; a phenomena not accounted for by the model. In this paper the use of a wide
MW power spectrum ensures the homogeneity of the losses. Second, the data sets in [14] for
which ratios y lower than expected are reported, correspond to losses engineered via a radio-
frequency field that couples magnetic states within the hyperfine level F = 2: in opposition
to what happens when using microwave outcoupling to F = 1, the transfer of the trapped
atoms, which are in the |F = 2, mF = 2〉 state, to untrapped states |F = 2, m′F ≤ 0〉 involves
the intermediate state |F = 2, mF = 1〉 which is held in the magnetic trap. Since both states
contribute to the images and a priori host uncorrelated fluctuations, one expects a decrease of
the density ripple power spectrum and thus of the fitted temperature.

This work leads to many open-questions. First, the thermometry we use probes the collec-
tive modes which lie in the phononic regime6, while theoretical predictions [26] indicate that
collective modes of higher frequency reach, under the effect of losses, higher temperatures. As
already pointed out in [26], for clouds confined in a smoothly varying potential, information
on higher frequency collective modes may be retrieved from the wings of the cloud, namely
the part of the density profile that extends beyond the size of R of a quasicondensate. Indeed,
as losses occur, we observe the growing of the fraction of atoms present in the wings and the
density in the wings typically largely exceed that expected for a cloud at thermal equilibrium
at a temperature equal to the temperature extracted from the density ripple thermometry, as
is shown in Fig. (1). This call for further theoretical and experimental investigations. Second,
the theoretical prediction that for phonons the ratio kB T/(mc2) reaches an asymptotic value
is a priori also valid in higher dimensions. It is an open question whether coupling to higher
frequency collective modes, an inefficient process in 1D [26], prevents the phonon modes to
attain this asymptotic behavior. Finally, it would be interesting to extend the investigation of
the effect of losses to regimes different from the (quasi-)condensate regime. In the case of 1D
Bose gases with contact interactions, that are described by the Lieb-Liniger model, a descrip-
tion in terms of the evolution of the distribution of rapidities [27] would permit to generalize
the studies to all possible states of the gas.
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