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Abstract: In this project, we provide an algorithm to compute efficiently and accurately the
full outgoing modal Green’s kernel for the scalar wave equation in local helioseismology under
spherical symmetry. The cost of computing a full Green function is well-known to be expensive
and has prevented its extensive usage in local helioseismology. It is however necessary in order to
interpret properly the measurements. One application is the calculation of synthetic helioseismic
observables such as the cross-covariance or the power spectrum. Usually, it is supposed that the
observations are coming from a single height – the “solar surface” – which requires only the Green
kernel at the surface of the Sun. While yielding satisfactory comparison with helioseismic data
at low frequencies, more realistic observables take into account contributions from all depths.
This approach requires a full Green kernel, i.e. its values at all source and receiver depths. In
this work, we propose a two-step algorithm which with two simulations gives a full kernel for
each harmonic mode and frequency. Our method also accounts for the singularity of the Green
kernel analytically and avoids discretization with a Dirac source directly. This feature does not
only help to reduce the need for mesh refinement around the source, and but also provides more
accurate values of the Green’s kernel in this region. We also demonstrate numerically that using
integrated simulated observables leads to a significant travel-time difference compared to using just
single-depth observables. In addition, our algorithm is coupled with exact Dirichlet-to-Neumann
boundary condition, thus provides optimal accuracy in approximating the outgoing Green kernel.
We also evaluate the performance of the high-frequency approximations of the nonlocal radiation
boundary conditions in terms of helioseismic quantities. Until now, these comparisons were only
carried out under pure Atmo assumption, and analyzed in terms of relative error of numerical
solution in the atmosphere.

Key-words: modal Green kernel, local helioseismology, solar model S+Atmo, solar model
Val-C, Hybridizable Discontinuous Galerkin discretization (HDG), observables, travel-time, ex-
pected cross-covariance, power spectrum, data analysis, radiation boundary condition, Whittaker
functions.



Calcul e�cace du noyau de Green modal sortant pour l'équation

des ondes scalaire en héliosismologie

Résumé : En héliosismologie, la fonction de Green associée à l’équation des ondes scalaire permet
de représenter des observables importants tels que la corrélation croisée ou les spectres de puissance.
Elle joue donc un rôle central dans l’interprétation des mesures et son calcul est crucial. Toutefois, les
algorithmes de calcul existants ont des coûts de calcul encore trop élevés pour en faire une utilisation
extensive en héliosismologie locale. Pour contourner cette difficulté, on suppose que les observations sont
effectuées à une altitude fixe qui représente en quelque sorte une “surface solaire” et ainsi, on se contente
d’utiliser la fonction de Green définie à la surface. Bien que cela donne des comparaisons satisfaisantes
avec les données héliosismiques à basses fréquences, générer des observables plus réalistes demande de
prendre en compte les contributions de l’intérieur du Soleil, c’est-à-dire à différentes profondeurs. Pour
cela, on a besoin de la fonction de Green complète, c’est à dire, sa valeur doit être estimée pour toutes
les sources et à toutes les positions de récepteurs. Dans ce travail, nous proposons un algorithme en deux
étapes qui permet, à partir de seulement deux simulations, de construire le noyau de Green complet.
Notre méthode prend en compte la singularité du noyau sans avoir à discrétiser la source qui est une
distribution de Dirac. La méthode numérique mise en oeuvre repose sur une formulation HDG du
problème écrit en supposant la symétrie sphérique du soleil. Notre algorithme est focalisé sur la partie
régulière du champ d’onde et ainsi il ne nécessite pas un raffinement du maillage autour de la source
tout en nous donnant des valeurs plus précises pour les récepteurs proches de la source. Nous illustrons
numériquement comment l’utilisation d’intégrales pour les simulations change de façon significative le
temps de trajet par rapport aux solutions à profondeur fixe.Nous effectuons des simulations pour deux
modèles de Soleil qui sont couplés à une condition de radiation sortante utile pour tronquer l’atmosphère
du Soleil et définir ainsi un domaine de calcul. Quand notre algorithme est couplé avec la condition aux
limites Dirichlet-to-Neumann exacte, nous obtenons une précision optimale des quantités héliosismiques
covariance et spectre de puissance. Nous comparons également la qualité des observables en considérant
différentes approximations haute-fréquences de la condition de radiation non-locale, toujours pour le
calcul des mêmes quantités héliosismiques.

Mots-clés : Noyau de Green modal, héliosismologie locale, modèle solaire S+Atmo, modèle solaire
Val-C, discrétisation Galerkin hybride (HDG), observables, temps de parcours, covariance croisée, spectre
de puissance, analyse de données, condition aux limites de radiation, fonctions de Whittaker.
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1 Introduction

In this project, we propose an algorithm to compute efficiently and accurately the full outgoing modal
Green’s kernel for the scalar wave equation in local helioseismology under spherical symmetry. The goal
of local helioseismology is to reconstruct the interior of the Sun from observations of oscillations of the
acoustic waves at the surface due to convection. Due to the stochastic nature of the observations, the
helioseismic quantities (or products) of interest are the expectation value of the cross-covariance between
any two points at the surface or the power spectrum. In order to interpret the observations, one needs
to define a wave equation to model the propagation of acoustic wave equation in the Sun, written as
Lψ = s; and its outgoing Green’s kernel, denoted by G(x,y;ω), x,y ∈ R3, is the key ingredient to
compute synthetic observables and helioseismic products, cf. Section 8 for a detailed discussion on this
quantities. Spherical symmetry allows for the decomposition of G into spherical harmonic basis, and the
task of computing the 3D kernel is parallelly decomposed into that of outgoing modal Green kernels,
denoted by G`(r, s;ω), in terms of scaled depth1 r, s > 0, for each spherical modes ` and frequencies ω.
By the ‘full’ modal Green kernel, we mean the knowledge of G` on a [rmin, rmax] × [rmin, rmax] where
rmin > 0 is numerically small and rmax is a height in the atmosphere.

Current results in local helioseismology assume that the Sun has a surface that is well defined, in
r = 1, and work with simulated observables which are obtained from the solution of the wave equation at
the surface of the Sun. In this approach, calculating helioseismic products requires at most2 the values
of the Green kernel for sources placed in s = 1, i.e. G`(1, r). However, with the Sun being a plasma,
the observed oscillations are not just coming from the “surface” but represent an average over all depths

1They are scaled by the radius of the Sun R� such that r = 1 corresponds to the position R�.
2In fact, under simplifying assumption of sources, the expected value of the cross-covariance and the power spectrum

are given by G`(1, 1), e.g. [3, 14]. See also discussion in Section 8.

RR n° 9338
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weighted by the level of transparency (opacity). The computation of the helioseismic products now
requires the full Green function as defined above. Knowledge of a full Green function is also required to
interpret multi-height HMI (Helioseismic and Magnetic Imager) data [27] or to image the solar interior
using helioseismic holography [35]. With its importance as explained, the full Green kernel, is well-known
to be computationally expensive if the traditional method of computing the Green kernel is employed as
each simulation only gives the values of the Green kernel for one fixed source position. Our proposed
algorithm provides, in using only two implementations, the full Green function, for each spherical mode
` and frequency ω, thus in a square domain rather than just the union of two lines in the domain of
definition of G`.

To develop in details the method of computation, we first specify our working equation. With the
background of the Sun characterized by the density ρ and the sound speed c, both assumed to be
spherically symmetric, we start our investigation with the same scalar wave equation as in [3], and
denote by G its physical Green kernel,

−∇ ·
(

1

ρ(|x|)∇G(x, y)

)
− σ2(|x|)

ρ(|x|) c2(|x|)G(x, y) = δ(x− y) , (1.1)

with δ the Dirac function. Here, the ‘physical’ property is to be determined by the conjugate problem.
The quantity σ denotes the complex frequency and contains a model of attenuation γ such that:

σ2(|x|) = ω2 + 2 iω γ
(
|x|, ω

)
, with ω > 0 the angular frequency. (1.2)

However, similarly to [5, 4, 1], we work with conjugated equation obtained by Liouville change of unknown,
since the latter offers a natural setting to define the unique physical (also called “outgoing” or “radiation”)
kernel G, solution to(

−∆x −
σ2(|x|)
c2(|x|) + q(|x|)

)
G(x, y) = δ(x− y) , with q := ρ1/2 ∆ ρ−1/2 . (1.3)

From G, the physical Green kernel for the original problem (1.1) is defined by

G(x, y) := ρ1/2(x) ρ1/2(y)G(x, y) . (1.4)

Under spherical symmetry, where the physical parameters only depend on the radius, one works with the
modal function G`, which is a fundamental solution of,(

− d2

dr2
− σ2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2

)
G` = δ(r − s) , (1.5)

with r = |x| and s denotes the radial source position.
To obtain the modal Green function numerically, the current approach is to directly discretize (1.5)

using, e.g., a finite element or finite difference method, cf. [15, 3, 8]. Since each resolution in this
approach only gives the value of the Green function for a fixed source, it would thus be expensive
to employ it directly to give the “complete” Green kernel which requires arbitrarily high number of
sources. Additionally, unlike in applications such as seismology or inverse scattering in which one is mostly
interested in the far-field or the backscattered data obtained away from the source, in helioseismology,
values at the same height of the source are particularly important. However, the presence of the Dirac
reduces the numerical accuracy of the response in the region around the source. To overcome this problem,
one usually refines the mesh around the source when solving (1.5) leading to additional computational
cost, cf. [8, 14, 3]. With solar background, it is particularly expensive, since this extra-refinement comes
in addition to the one needed to capture the profile of Sun’s background beneath its surface.

The procedure we propose in this work is based on a well-known formula for Green kernel of the ODE
and comprises of two steps. One first obtains solutions of two boundary value problems with zero source:
one regular solution in a neighborhood of the origin and an outgoing one in an exterior neighborhood.
They are then ‘patched together’ by a Heaviside function to give the global modal Green kernel. The
importance here is that while these solutions are regular, the singularity of the Green kernel is captured

Inria



Modal outgoing Green’s kernels in helioseismology 7

exactly by the Heaviside function. Working with only regular solutions removes the need to refine the
mesh around the source position. In another word, with only two problems, one instantly obtains the
value of the modal Green kernel on a rectangle region away from the origin, and thus the 3D Green kernel
on a product of two punctured spheres. While the two-step procedure can be used with second-order
formulation (of the wave equation), it is more compatible with a first-order formulation. In our work, the
algorithm is implemented with Hybridizable Discontinuous Galerkin (HDG) discretization, which, with
unknowns being the numerical trace (boundary values), provides readily the derivatives of the solution,
needed for the calculation of the Wronskian in the aforementioned Green’s reconstruction formula. This
offers an advantage to second-order formulation which leads to a loss order of precision for the derivatives
computed from values of the displacement via a high-order finite difference scheme.

A second novelty of the work is in the numerical implementation and computation of the outgoing
Green’s kernel, and the investigation of the influence of radiation boundary conditions (RBC) on helio-
seismic products for realistic background. We carry out a comparison of the RBCs obtained in [4, 5] to
those in [3] for background S+Atmo and S+Val-C model in terms of power spectrum and time-distance
diagram. Until now, these comparisons were only carried out under pure Atmo assumption, and analyzed
in terms of relative error of numerical solution in the atmosphere. With the exact D-t-N coefficient as
reference, our investigation reconfirms that, among the high-frequency approximations of the nonlocal
RBC coefficent, those obtained in [4, 5] are more accurate than those in [3]. However, what is new
in our study is the highly accentuated difference in precision order of the two families in presence of a
physical background like that of the Sun. Those in [4, 5] produce helioseismic products with improved
precision, with three orders of magnitude difference compared to those in [3]. In particular, our study
narrows further to a comparison between Z

S-HF-1a
and Z`

A-HF-1
. The first one is independent of ` while

the second one is not. Another fundamental difference is in the different wavenumbers that were used
in high-frequency approximations to obtain them. Coefficients that are independent of ` are extremely
useful, since they are first choices for RBC to be used in discretization schemes in 3D for not containing
tangential differential operators. However being independent of ` means that in general they are expected
to provide less accuracy than those dependent on `. Our numerical investigations show that Z

S-HF-1a
gives

a substantial improvement compared to Z`
A-HF-1

in terms of helioseismic products, and thus provides a
reliable RBC for future considerations with 3D discretizations.

In terms of applications in helioseismology, our work is the first to compute the complete and high-
definition kernel for the solar model S, ([9]) with either ideal atmospheric pressure, thus called S+Atmo,
or with atmospheric model VAL-C [34], called S+VAL-C. In particular, G` is known on [ε, rmax]× [ε, rmax]
for a position rmax in the atmosphere in the S+Atmo, or in the chromosphere of the Sun for S+VAL-C. We
also note that this is the first time, that the modal Green kernel for the S+Atmo model is computed using
the exact Dirichlet-to-Neumann coefficient of [5]. Using this full kernel, we compute the power spectrum
for harmonic modes ` up to 2000 and frequency up to 12 mHz. The full Green kernel also allows us to
compute helioseismic products with integrated simulated observables. We demonstrate numerically that
using latter type of simulated observables leads to a significant travel-time difference compared to surface
observables.

The report is organized as follows. In Section 4, with justification given by the work of [2], we define
the physical Green kernel G and its harmonic expansion. We also explain the basis for the two approaches
using first-order system. The various RBCs are recalled and compared using the error with respect to
the analytical solution in Section 5. In Section 6, the method of HDG is explained, and is validated in
Section 7 using pure Atmo equation and its analytical solutions. In Section 7, also working with the same
toy equation, we show numerical results to validate the second approach. After, a preparatory discussion
to introduce the working notions and the helioseismic observables in Section 8, we compute the complete
Green kernel for S+Atmo and S+Val-C+Atmo together with the resulting helioseismic products in Section 9.
In this section, RBCs are compared in terms of helioseismic observables and the importance of the full
Green kernel to compute helioseismic products is emphasized.

RR n° 9338
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2 Preliminaries and notations

Let us give the symbols and notations used thorough the report, in particular, we place ourselves in the
context of helioseismology, that is, working with solar quantities. Each quantity is specifically introduced
at its first occurrence in the document.

Square root branch ( · )1/2 uses the principal argument with Arg(z) ∈ (−π, π].

2.1 Physical parameters

R� is the radius of the Sun given in m, R� = 695 510 000 m.

R is the (non-scaled) position along the Sun’s radius.

r is the scaled radius, r = R/R�.

Ra denotes the radial position (in meter) where the atmosphere begins, usually Ra = R�+ 500km.

ra = Ra/R� is the scaled radius where the atmosphere begins.

f is the frequency in Hz; in solar applications, the frequency typically ranges from 0 to 11 mHz.

ρ is solar density (in kg m−3), and ρ denotes the dimensionless density.

c is the background solar sound speed (given in m s−1).

c is the scaled solar sound speed given in s−1, c = c/R�.

α is the inverse density scale height defined by α = −∂Rρρ and α is the dimensionless version,
α = −∂rρ

ρ
.

H = α−1 is the dimensionless density scale height.

Under the assumption that the quantities attain a limit at infinity, we define

α∞ := lim
r→∞

α(r) , α′∞ := lim
r→∞

drα(r) . (2.1)

In particular, in the Atmo model,

α∞ = 6663.62 , α′∞ = 0 . (2.2)

This value of α∞ is also used in [3, Section 4.3.3].

2.2 Representation of the attenuation

The attenuation is encoded in (1.1) with the complex frequency σ, specifically with the term γ. In the
context of the solar scalar waves, it can for instance be taken as a constant with

γ

2π
= 20 µHz , constant solar attenuation. (2.3)

As an alternative, it can be represented with the power law [15, Eq. (79)] such that

γ(ω) = γ0

∣∣∣∣ ωω0

∣∣∣∣β . (2.4)

In [3, Eq. (4.14)], this formula is employed with
γ0

2π
= 8.58µHz ,

ω0

2π
= 3mHz , β = 5.77 . (2.5)

While ω0 and β remains the same in [15, Eq. (79)], γ0 takes the value
γ0

2π
= 4.29µHz . (2.6)

Inria
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2.3 Legendre functions

Legendre functions are solutions to the Legendre differential equations

d

dt
(1− t2)

d

dt
P + `(`+ 1)P = 0. (2.7)

Solutions that are polynomials of degree ` in t are call the Legendre polynomials and denoted by P`(t).
They are given by, cf. [25, Theorem 9.9]

P`(t) =
(−1)`

2` `!

d`

dt`
(1− t2)` =

1

2` `!

d`

d t`
(t2 − 1)` , ` = 0, 1, 2, . . . (2.8)

They have the orthogonality property,∫ 1

−1

Pn(t) Pm(t) dt =
2

2n+ 1
δnm . (2.9)

They also satisfy the recursive relation, cf. [29, Eqn 1.119 p. 22],

(`+ 1)P`+1(t) − (2`+ 1) tP`(t) + `P`−1(t) = 0 , ` = 1, 2, (2.10)

and
P0(t) = 1 , P1(t) = t . (2.11)

Thus
P`(1) = 1 , P`(−t) = (−1)` P`(t) ⇒ P`(−1) = (−1)` . (2.12)

We will also need the following result:

1

(4π)2

∑
`

∑
`′

(2`+ 1)(2`′ + 1)

∫
P`(cos θr̂1·r̂)P`′(cos θr̂2·r̂)dr̂ =

∑
`

2`+ 1

4π
P`(cos θr̂1·r̂2

). (2.13)

Proof. To prove it, we use the addition theorem of spherical harmonics (2.27) (twice) and the orthonor-
mality of the spherical harmonics (2.26)

1

(4π)2

∑
`

∑
`′

(2`+ 1)(2`′ + 1)

∫
P`(cos θr̂1·r̂)P`′(cos θr̂2·r̂)dr̂ (2.14)

=
∑
`

∑
`′

∑
m

∑
m′

Ym
` (θ1, φ1)Ym′

`′ (θ2, φ2)

∫
Ym
` (θ, φ)Ym′

`′ (θ, φ) sin θdθdφ (2.15)

=
∑
`

∑
m

Ym
` (θ1, φ1)Ym

` (θ2, φ2) (2.16)

=
∑
`

2`+ 1

4π
P`(cos θr̂1·r̂2

). (2.17)

The associated Legendre functions, or Ferrer’s functions are defined as, cf. [29, Eq. (1.138) p. 24] or
[25, Section 9.3.1 p. 238],

Pm` (t) := (1 − t2)m/2
dm

dtm
P`(t) , m = 0, 1, . . . , ` (2.18)

From [29, Eqn. (1.147) p. 24], we have

‖Pm` (·)‖2L2([−1,1]) =

∫ 1

−1

(Pm` (t))2 dt =
(` + m)!

(` + 1
2 ) (`−m)!

. (2.19)
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10 Barucq, Faucher, Fournier, Gizon & Pham

Thus one can introduce the normalized version

Nm
` (t) :=

Pm` (t)

‖Pm` (·)‖L2([−1,1])
(2.20)

thus

Nm
` (t) =

√
(` + 1

2 ) (`−m)!

(` + m)!
Pm` (t) =

√
(` + 1

2 ) (`−m)!

(` + m)!
(1 − t2)m/2

dm

dtm
P`(t) . (2.21)

Remark 1 (Comparison with Legendre definition in Matlab). This is taken from https: // fr. mathworks.
com/ help/ matlab/ ref/ legendre. html

1. The definition of Legendre polynomial P` in Matlab agrees with (2.8).

2. However, for the associated Legendre function, it is different from (2.18) by (−1)m. The Matlab
associated Legendre [Pmn ]Matlab(t) is computed by the intrinsic function legendre(n,X) which gives for
all values of m = 0, 1, . . . , n,

[Pm` ]Matlab(t) := (−1)m (1 − t2)m/2
dm

dtm
P`(t) , m = 0, 1, . . . , ` (2.22)

thus
[Pm` ]Matlab(t) = (−1)m Pm` (t) .

3. For their (fully) normalized associated Legendre function, the Matlab intrinsic function puts back
(−1)m, leading to the same definition

[Nm
` ]Matlab(t) = (−1)m

√
(` + 1

2 ) (`−m)!

(` + m)!
[Pm` ]Matlab(t) =

√
(` + 1

2 ) (`−m)!

(` + m)!
(1 − t2)m/2

dm

dtm
P`(t) .

(2.23)
thus

[Nm
` ]Matlab(t) = Nm

` (t)

This is obtained in Matlab by calling the intrinsic function legendre(n,X,‘norm’). 4

2.4 Spherical harmonics

We denote the spherical coordinates by (r, θ, φ) with 0 ≤ θ ≤ π the colatitude angle, while 0 ≤ φ ≤ 2π
is the longitudinal angle. The m-th spherical harmonic function of order ` is defined as [28, 14.30.1], see
also [11, Theorem 2.7] or [25, Eqn. 9.37 p. 238],

Ym
` (θ, φ) := Nm

` (cos θ)
eimφ

√
2π

=

√
(2`+ 1)

4π

(`− |m|)!
(`+ |m|)! P

|m|
` (cos θ) eimφ

m = −`, . . . , ` , ` = 0, 1, 2, . . .

(2.24)

where Pm` are the associated Legendre functions defined in (2.18). They satisfy

∆S1 Ym
` = −`(`+ 1) Ym

` . (2.25)

The {Ym
` }m=−`,...,`

`=0,1,2,...
form a complete orthononal system in L2(S2), cf. [25, Theorem 9.11 p. 238],

∫
S1

Ym
n (x̂) Ym̃

ñ (x̂) dσS1(x̂) = δmm̃ δnñ , (2.26)

where we note that dσS1 = sin θ dφ dθ.
In this report, we use the following properties of the spherical harmonics

Inria
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Modal outgoing Green’s kernels in helioseismology 11

– the addition theorem, cf. [11, 2.29],

∑̀
m=−`

Ym
` (θx, φx) Ym

` (θy, φy) =
2`+ 1

4π
P`(cos θx·y) , (2.27)

where θx·y is the angle between x and y, i.e.

cos θx·y =
x · y
|x| |y| . (2.28)

– the Gaunt formula [13, 4.6.3] in order to compute the integral of the product of three spherical
harmonics

Gaunt(`, `′, `′′,m,m′,m′′) :=

∫
S1

Ym
` (r̂)Ym′

`′ (r̂)Ym′′
`′′ (r̂) dσS1(r̂) (2.29)

=
4π

α`α`′α`′′

(
` `′ `′′

0 0 0

)(
` `′ `′′

m m′ m′′

)
, (2.30)

where α` =
√

4π/(2`+ 1) and the terms in parenthesis correspond to the Wigner-3j symbol, see
e.g. [13, p. 45]. The Wigner-3j is non-zero only if m′′ = −m−m′ and |`− `′| < `′′ < `+ `′.

2.5 Whittaker functions

For ` = 0, 1, 2, . . ., we consider a subclass of Whittaker functions which are solutions to

∂2
z W +

(
− 1

4
+
κ

z
+

1
4 − ( 1

2 + `)2

z2

)
W = 0 , κ ∈ C , µ ∈ C . (2.31)

A fundamental pair of solutions to (2.31) in an unbounded domain is given by the second Whittaker
functions W,

W
κ,`+

1
2

(z) , W−κ,`+ 1
2

(e−iπz) , −π2 ≤ Arg(z) < 3π
2 . (2.32)

On the other hand, a fundamental pair of solutions near originM and W,

M
κ,`+

1
2

(z) , W
κ,`+

1
2

(z) , |Arg z| ≤ π , (2.33)

are defined with,

M
κ,`+

1
2

(z) := e−
1
2 z z`+1 1

Γ(2`+ 2)

∞∑
k=0

(`+ 1− κ)k
(2`+ 2)k

zk

k!
, (2.34)

and for κ with κ− `− 1 6= 0, 1, 2, . . ., cf. [28, 13.14.8],

W
κ,`+

1
2

(z) = − e−
1
2 z z`+1

(2`+ 1)! Γ(−`− κ)

(
2`+1∑
k=1

(2`+ 1)! (k − 1)!

(2`+ 1− k)! (κ− `)k
z−k

−
∞∑
k=0

(`+ 1− κ)k
(2`+ 2)k k!

zk
[

ln z + ψ(`+ 1− κ+ k) − ψ(1 + k) − ψ(2`+ 2 + k)
])

.

(2.35)

M is referred to as the regular Whittaker M or the Buchholtz function M. It is the regular version
of the second Whittaker function3,

M
κ,`+

1
2

(z) =
M
κ,`+

1
2

(z)

Γ(2`+ 2)
=

M
κ,`+

1
2

(z)

(2`+ 1)!
. (2.36)

3It is what is given by the intrinsic Matlab routine whittakerM(a,b,z).
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12 Barucq, Faucher, Fournier, Gizon & Pham

The derivative of Mκ,µ and Wκ,µ can be obtained by the following connection formulae, [4],

M′κ,`+1/2(z) =

(
−1

2
− `

z

)
Mκ,`+1/2(z) +

(2`+ 1)√
z

M
κ− 1

2 ,`
(z) ; (2.37a)

W′κ,`+1/2(z) =

(
1

2
− `

z

)
Wκ,`+1/2(z) − 1√

z
W
κ+

1
2 ,`

(z) ; (2.37b)

W′κ,`+1/2(z) =

(
1

2
− κ

z

)
Wκ,`+1/2(z) − 1

z
Wκ+1,`+1/2(z) . (2.37c)

Further discussions are given in Appendix B.1.

3 Conjugate wave equation with dimensionless coe�cients

We choose 3D coordinate system with the Sun placed at the origin, and denoted by x̌ positions in this
system. With R� denoting the radius of the Sun, we introduced the scaled coordinates,

x =
x̌

R�
, R = |x̌| . (3.1)

We have
∇x = R�∇x̌ . (3.2)

We introduce scaled radius which is dimensionless,

r =
R

R�
. (3.3)

Define associated density function

r 7→ ρ(r) = ρ(R� r) . (3.4)

The dimensionless inverse density scale height is defined by

α(r) := −∂rρ(r)

ρ(r)
. (3.5)

The dimensionless density scale follows:

H(r) := α−1 . (3.6)

Since ∂r = R�∂R, in comparing α to α defined by

α(R) := −∂R ρ(R)

ρ(R)
, (3.7)

which is of unit m−1, we have

∂rρ =
R�
cρ

∂rρ ⇒ α = −∂Rρ
ρ

=
cρ
R�

∂rρ

cρ ρ
=

1

R�
α . (3.8)

In using the scaled sound speed
c :=

c

R�
, (3.9)

we render dimensionless the quantity
σ

c
. (3.10)
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Modal outgoing Green’s kernels in helioseismology 13

3.1 Original problem

We recall the main equation

−∇ ·
(

1

ρ
∇ ǔ

)
− σ2

ρ c2
ǔ = f̌ , with σ2 = ω2 + 2 iω γ . (3.11)

We first write the field u and the right-hand side f̌ in terms of the scaled radius:

u(x) := ǔ(R� x) , f(x) := f̌(R� x). (3.12)

Using (3.2), we have

− 1

R2
�
∇ ·
(

1

ρ
∇ u

)
− σ2

ρ (cR�)2
u = f . (3.13)

Multiply both sides with R2
�, we obtain

−∇ ·
(

1

ρ
∇ u

)
− σ2

ρ c2
u = R2

� f . (3.14)

3.2 Conjugated problem with dimensionless coe�cients

Similarly to [5], we work with the conjugated problem by introducing the change of unknown,

u(x) = ρ−1/2 u(x) . (3.15)

We define the dimensionless potential q,

q(x) := ρ1/2 ∆x ρ
−1/2 . (3.16)

The conjugated equation with dimensionless coefficients is

−∆xu −
σ2

c2
u + qu = g , (3.17)

with right-hand-side
g = ρ1/2R2

� f . (3.18)

4 Discussion on Green function

While the original equation is given in (1.1) and (3.14), we work with the conjugated version, given
in (3.17) in three dimensions after adimensionalization. Then, following the spherical symmetry, the
solution is decomposed onto the one-dimensional modal ones, over the domain [0, rmax], with rmax > 1,
using the adimensionalized version where the position r = 1 corresponds with the Sun’s “surface”. In
terms of boundary conditions, a Neumann-like one holds in 0, cf. Section 4, while radiation boundary
conditions are imposed in rmax, [3, 5].

Denote the Green kernel of the original problem with dimensionless coefficients by(
−∇x · (ρ−1∇xu) − σ2

ρ c2

)
G(x, s) = δ(x− s) , (4.1)

and that of the conjugate problem by,(
−∆x −

σ2(r)

c2(r)
+ q

)
G = δ(x− s) (4.2)
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14 Barucq, Faucher, Fournier, Gizon & Pham

with

q(r) =
α2(r)

4
+

α′(r)
2

+
α(r)

r
. (4.3)

They are related by
G(x,y) = ρ1/2(x) ρ1/2(y)G(x,y) . (4.4)

For more details on the transformation, cf. e.g. [5, 1] and [4, Appendix a].

Assumption 1. The sound speed c and attenuation coefficient γ are bounded functions, which are con-
stant outside of a compact set with c∞ and γ∞ denoting their respective values on the exterior domain.
We assume that

Supp (c− c∞) is compact (Assumption 1a) ,
Supp (γ − γ∞) is compact (Assumption 1b) .

(4.5a)
(4.5b)

Assumption 2. We assume that the background density ρ is such that α = −ρ′/ρ satisfies

α(r) ∈ C1(R+) ∩ L∞(R+) , lim
r→∞

α = α∞ ,

and α′(r) = (1 + r)−(1+ε) , ε > 0.
(4.6)

Note that the background quantities c and ρ for the Sun using model S+Atmo or S+Val-C+Atmo satisfy
these assumptions. Under Assumption 2, the potential q has a finite limiting value denoted by q∞, such
that

lim
r→∞

q = q∞ =
α2
∞
4
. (4.7)

Assumption 3. As r tends to 0, we assume that

lim
r→0

r2

(
σ2(r)

c2(r)
+ q(r)

)
= 0. (4.8)

Under Assumptions 1 to 3, we can apply the result of [2, Theorem 6.2] to obtain the physical Green
kernel. To state the proposition, we introduce the following notation. Define potential Q`,

Q`(r)

r2
= −σ

2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2
= −σ

2(r)

c2(r)
+

α2(r)

4
+

α′(r)
2

+
α(r)

r
+

`(`+ 1)

r2
, (4.9)

and operator L`,

L` := − d2

dr2
+

Q(r)

r2
= − d2

dr2
− σ2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2
. (4.10)

Proposition 1 (Expansion of Green kernel). Under Assumption 1–Assumption 3, the Schwartz’s
kernel G of the resolvent R := (−∆−κ2+q)−1 can be written as an expansion in spherical harmonic
basis with

G(x , y) =
1

|x| |y|
∞∑
`=0

∑̀
m=−`

Gm` (|x| , |y|) Ym
` (ŷ) Ym

` (x̂) , x,y not on the z-axis (4.11a)

(2.27)
=

1

4π |x| |y|
∞∑
`=0

(2` + 1) G`(|x| , |y|) P`(cos θx·y) , (4.11b)

where Gm` (r, s) = G`, i.e., independent of m, is the unique distributional solution to

L`G` = δ(r − s) , (4.12)

Inria



Modal outgoing Green’s kernels in helioseismology 15

satisfying the boundary condition,

lim
r→0

r−(`+1) G`(r) = 1 , (4.13)

at r = 0, and the asymptotic relation at infinity,

G` = eiϕ(r,k)
(
1 + o(1)

)
as r →∞ . (4.14)

In (4.14), the phase function is defined for some r0 > 0 as,

ϕ(r) :=

∫ r

r0

√
k2 − α

s
ds = kr − α

2k
log r + k−2o(1) , (4.15)

where

k =

√
σ2

c2∞
− α2

∞
4
. (4.16)

Furthermore, if ψ̃` and ψ` are two homogeneous solutions to L`w = 0 on (0, s) and (s,∞)
respectively with ψ̃` satisfying BC (4.13) at r = 0, and ψ` condition (4.14) as z →∞, we have

Gm` (r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r) ψ(s)

W(s)
. (4.17)

Here, H denoting the Heaviside function and W(s) :=W{ψ(s), ψ̃(s)}, denotes the Wronskian.

4.1 Remarks on boundary conditions

4.1.1 Boundary condition at zero

Using the Frobenius theory, e.g. [10, Theorem 4 p.165], the indicial equation at r = 0 for (4.10) is,

λ2 + λ + lim
r→0

r2

(
σ2(r)

c2(r)
+ q(r)

)
+ `(`+ 1) = 0 . (4.18)

Under assumption (4.8), this simplifies to

λ2 − λ − `(`+ 1) = 0 ⇒ λ = −` or λ = `+ 1 . (4.19)

The regular solution at r = 0 is given by λ = `+ 1, which explains the boundary condition (4.13). In the
case of (4.8), or other regular singular ODE with indicial roots of opposite signs, (4.13) can be replaced
by the boundary condition

lim
r→0

r
d

dr

(
G`(r)

r

)
= 0 , (4.20)

which also selects the regular solution at r = 0. This can be seen as follows.
A generic solution on the neighborhood of zero is a linear combination of a function that decays in

r`+1 and one that blows up in r−`; in particular, cf. [10, Theorem 4 p.165],

w(r) = a
(
r−` h(r) + c (log r) r`+1 g(r)

)
+ b r`+1 g(r) , r > 0 , (4.21)

for some constants a, b and c, and functions g(r) and h(r) which are C1 up to r = 0 with g(0) 6= 0, and
h(0) 6= 0. The presence of the log term is due to the integral difference of the two indicial exponents, i.e.
(`+ 1)− (−`) ∈ N. We have

r
d

dr

w

r
= a

(
(−`− 1) r−`−1 h(r) + c r` g(r) + (`) c (log r) r` g(r)

)
+ b ` r` g(r)

+ a
(
r−` h′(r) + c (log r) r`+1 g′(r)

)
+ b r`+1 g′(r) .

(4.22)
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16 Barucq, Faucher, Fournier, Gizon & Pham

For w of the form (4.21), in order for limr→0 r (w(r)/r)′ < ∞, the constant a has to be zero. In fact,
(4.20) is a stronger condition, and requires that this finite value is exactly zero, which is indeed satisfied
by w of the form (4.21) with a = 0,

lim
r→0

r

(
w(r)

r

)′
= lim

r→0

(
b ` r` g(r) + b r`+1 g′(r)

)
= 0 , ` ≥ 0 . (4.23)

Remark 2. One can also consider a condition such that limr→0 r
2(w/r)′ < ∞, which also selects the

regular family, i.e. which forces a = 0 when ` > 0. However, unlike the condition limr→0 r(w/r)
′ < ∞,

this condition does not imply a = 0 at ` = 0; in another word, it admits both the regular and singular
families,

r2 d

dr

w

r
= a ((−1)h(r) + c r g(r)) + a

(
r h′(r) + c (log r) r2 g′(r)

)
+ b r2 g′(r) . (4.24)

However, in using h(0) 6= 0, then the stronger condition limr→0 r
2(w/r)′ = 0 still rules out the singular

family for all ` ∈ N ∪ {0}. 4
In addition to being `-independent, the condition (4.20) is more natural and is simpler to implement

in a discretization scheme, in the sense that it will lead to a Dirichlet-type boundary condition as shown
below.

4.1.2 Outgoing boundary condition

For the numerical discretization on finite domain, we need to replace the outgoing condition (4.14) by one
on an artificial boundary. The condition (4.14) is replaced exactly by the exterior Dirichlet-to-Neumann
operator, see discussion in [5, Section 4.1]. In particular in the case of the solar atmosphere, if ρ and c are
extended according to the Atmo model on (rmax,∞), then we have an explicit expression for the D-t-N
coefficient (cf. [5]),

Z`DtN(r) := −2 i k
W′− iα

2k ,`+1/2
(−2ikr)

W− iα
2k ,`+

1
2

(−2ikr)
, (4.25)

where W is the Whittaker’s special function, cf. [5, 4], and k is defined by (4.16). The outgoing condition
(4.14) is then replaced by

∂nG` = Z`DtN(r)G` . (4.26)

Under more general assumptions of extensions, one does not have explicit description of the D-t-N.
However, if the extension still maintains the structure of Vω,γ∞ as discussed in Assumptions 1 to 3,
since we are working mode by mode, one can use the nonlocal radiation boundary condition, which is an
approximate condition,

Z`nonlocal(r) = i

(
σ2(r)

c2(r)
− q(r) − `(`+ 1)

r2

)1/2

. (4.27)

We will also investigate the performance of other approximate radiation conditions listed in Section 5.

4.2 Numerical calculation of the Green function

With rmax > ra, we consider the numerical calculation of the modal Green kernel (4.12),

L`G` = δ(r − s) ; (4.28a)

lim
r→0

r

(
G`
r

)′
= 0 ; (4.28b)

G′`(rmax) = Z•(rmax)G`(rmax) . (4.28c)

We recall the notation in (4.9) and (4.10),

L` = − d2

dr2
+

Q`
r2

with
Q`(r)

r2
= −σ

2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2
. (4.29)
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4.2.1 Approach 1

We rewrite the working ODE (4.28) in first-order formulation in order to apply the Hybridizable Dis-
continuous Galerkin (HDG) discretization method discussed in Section 6. Denote by G̃` = G`/r then G̃
solves4

− d

dr

(
r2 d

dr
G̃

)
+ Q` G̃` = r δ(r − s) ;

lim
r→0

r G̃′ = 0 , G̃′(r) =
(
− 1
r + Z•

)
G̃ at r = rmax ,

(4.30)

In using the first-order formulation, cf. Subsection 6.1, problem (4.30) is written as,



−r (r v)′ + Q(r)w = r2 δ(r − s) on ]0, rmax[ ;

r w′ − w = r v on ]0, rmax[ ;

lim
r→0

v = 0 ;

v =
(
− 1
r + Z•

)
w at r = rmax .

(4.31a)

(4.31b)

(4.31c)

(4.31d)

In our applications, we also use the generic right-hand side g = rδ(r− s), cf. (4.30), and u = G̃` = G`/r.
The numerical value of G` is obtained from the second component of (v, w) which solves (4.31), on
[0, rmax], i.e., G` = w.

Remark 3. With each implementation, i.e. with a fixed value of s ∈ (0, rmax), one obtains the value of
the Green kernel G`(r, s) on the vertical segment [0, rmax] × s0, and its symmetric reflection across the
diagonal r = s. In short, we obtain for each computation with a fixed source s, the value of G` on

[0 , rmax]r × {s0}
⋃

{s0}r × [0 , rmax]s . (4.32)

One can take advantage of the multiple right-hand sides features of direct solver such as MUMPS to calculate
at the same time and obtain the value of G` on several vertical line segments (and hence their symmetric
reflexion). This however requires the use of the same domain discretization for all of the right-hand sides.

4

4.2.2 Approach 2

We make use of the formula (4.17). Consider 0 < a < b < rmax, and ra < rmax. We construct the regular
homogeneous solution ψ on [0, b] and the Green function G` is then obtained on domain defined (4.17)
(see also Figure 1).

Step 1a Compute ψ(t) on [0, b]. The numerical value of ψ and ψ′ are obtained from (v, w) which

4This can be seen as follows.

−d2r
(
G̃`r

)
+

Q`

r2
G̃` r = δ(r − s) ⇒ −rG̃′′` − 2G̃′ +

Q`

r2
r G̃` = δ(r − s)

⇒ −G̃′′` − 2
G̃′

r
+

Q`

r2
G̃` = r−1 δ(r − s) ⇒ −r2G̃′′ − 2rG̃′ + Q` G̃` = r δ(r − s)

In using that (r2G̃′)′ = r2G̃′′ + 2rG̃′, we obtain −(r2 G̃′)′ + Q` = r δ(r− s). We carry out the same calculation to obtain

the RBC for G̃. Since G′` =
(
r G̃`

)′
= r G̃′` + G̃`. At r = rmax, we replace G′` in using this identity to obtain,

rmax G̃
′
`(rmax) + G̃`(rmax) = Z•(rmax) rmax G̃`(rmax) ⇒ G̃′`(rmax) =

(
− 1
rmax

+ Z•(rmax)
)
G̃`(rmax) .
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0 a b rmax
0

a

b

rmax

r

s

Figure 1: Domain of definition (shaded region) of modal Green kernel G`(r, s) obtained via Approach 2
by gluing together two homogeneous solution ψ to (4.33) on [0, b] and ψ̃ to (4.35) on [a, rmax] by formula
(4.17). In contrast, in Approach 1, with each resolution of (4.31) for a fixed source s0, one obtains the
value of the G` only on the horizontal segment [0, rmax]×s0 and its reflection across the diagonal {r = s}.

solves 

−r (r v)′ + Q(r)w = 0 on ]0, b[ ;

r w′ − w = r v on ]0, b[ ;

v (r = 0) = 0 ;

w = 1 at r = b ,

(4.33a)

(4.33b)

(4.33c)

(4.33d)

by letting
ψ(t) = w(t) , ψ′(t) = v +

w

r
. (4.34)

The second identity comes from the definition of v and w in (6.2), u =
w

r
and v = ru′ thus v = r

(w
r

)′
=

w′ − w

r
.

Step 1b Compute ψ̃(t) on [a, rmax] in a similar way. In particular, the numerical values of ψ̃ and ψ̃′
are obtained from (v, w) which solves

−r (r v)′ + Q(r)w = 0 on ]a, rmax[ ;

r w′ − w = r v on ]a, rmax[ ;

w = 1 at r = a ;

v =
(
− 1
r + Z•

)
w at r = rmax ,

(4.35a)

(4.35b)

(4.35c)

(4.35d)

by letting
ψ̃(t) = w(t) , ψ̃′(t) = v +

w

r
. (4.36)

Step 2 We put together the value of ψ on [0, b] and ψ̃ on [a, rmax] to obtain

G`(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r) ψ(s)

W{ψ(s) , ψ̃(s)}
. (4.37)

on
Ω :=

(
[a , rmax]r × [0, b]s

) ⋃ (
[0 , b]r × [a , rmax]s

)
. (4.38)
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Remark 4. This approach offers the following advantages.

– The functions ψ and ψ̃ are regular on their corresponding domain of computation, and there are
no singular sources. Because of the second reason, one does not need to refine the mesh around the
singularities of the source.

– One can take advantage of the feature of the HDG method which gives readily the derivative of the
solution. 4

5 Radiation boundary conditions

In this section, we recall the different radiation coefficient Z• derived in the literature. They comprise of
new coefficients derived in [4] and [5], and old ones in [3]. A preliminary comparison of their efficiency
was given in [4, 5], using the exterior Dirichlet problem under Pure Atmo assumptions (listed in (5.8))
and high-order finite difference. Since the corresponding solution for each Z• can be described explicitly
in terms of Whittaker functions, we revisit this problem and present a comparison based on analytical
errors.

5.1 Radiation boundary conditions

The choice of radiation boundary conditions Z• is investigated in [5, 3, 4] where several possibilities are
given to compromise between complexity and accuracy. Let us first review those different conditions,
where the exponent ` indicates that the condition depends on the mode, which means its implementation
in dimension higher than one is difficult. Overall, eleven conditions have been derived. We recall k is
defined in (4.16),

k =

√
σ2

c2∞
− α2

∞
4
. (5.1)

1. The reference coefficient Z`DtN corresponds with the exact Dirichlet-to-Neumann condition, with

Z`DtN := −2 i k

W′
−χ,`+ 1

2

(−2 i k rmax)

W−χ,`+ 1
2

(−2 i k rmax)
. (5.2)

It makes use of the Whittaker’s function W, and of

χ =
iα

2k
=

iα c2

2σ2
, where α = α∞ = α(rmax) . (5.3)

2. The nonlocal modal radiation coefficient Z`nonlocal is given by

Z`nonlocal = i
σ

c∞

(
1− c2

∞
σ2

(
α2
∞
4

+
α∞
rmax

+
`(`+ 1)

r2
max

))1/2

= i k

(
1 − α∞

r

1

k2
− `(`+ 1)

(rmax k)2

)1/2

.

3. The HF-family gives rise to five conditions, such that

Z
S-HF-0

= i k ,

Z
S-HF-1a

= i k − i

2 k

1

rmax
α∞ ,

Z`
S-HF-1b

= i k − i

2 k

1

rmax

(
α∞ +

`(`+ 1)

rmax

)
,

Z
A-HF-0

= i
σ

c∞
,

Z`
A-HF-1

= i
σ

c∞
+

c∞
2 iσ

(
`(`+ 1)

r2
max

+
α∞
rmax

+
α2
∞
4

)
.

(5.4)
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4. The SAI-family adds two conditions:

Z
SAI-0

= i k

(
1 − α∞

rmax

1

k2

)1/2

;

Z`
SAI-1

= ik

(
1 − α∞

rmax

1

k2

)1/2

− i

2

`(`+1)
r2max k(

1 − α∞
rmax

1
k2

)1/2
.

(5.5)

5. The RBC condition is
ZA-RBC-1 :=

1

rmax
+ Z

S-HF-0
. (5.6)

6. We finally include a “naive” condition analogous in the spirit of Sommerfeld condition:

ZNaive :=
1

rmax
+

α∞
2

+ i
σ

c∞
. (5.7)

5.2 Analytic solutions depending on the radiation condition

To investigate the efficiency of the radiation boundary conditions introduced above in approximating the
outgoing solution, we compare with respect to the exact one given using Z`DtN. To extract the analytic
solution, we consider the problem where the condition at the origin is replaced by a unitary Dirichlet
one in rmin 6= 0, and we use a homogeneous medium parameter, such that, in particular, α(r) = α∞ and
α′ = 0. Therefore, we consider the problem

(
− d2

dr2
− k2 +

α∞
r

+
`(`+ 1)

r2

)
w = 0 , in ]rmin, rmax[ ,

w(rmin) = 1 ,

dw

dr
(rmax) = Z• w(rmax) .

(5.8)

This problem is obtained from (4.28a) and (4.29) using the potential

QAtmo
`

r2
= −k2 +

α∞
r

+
`(`+ 1)

r2
. (5.9)

This is recalled in Subsection 7.1.
We denote the corresponding solution to (5.8) by wZ•,`,ω = wZ• , where the reference solution is given

by Z`DtN. As already mentioned, in [5, 4], we have carried out a preliminary study of this problem, using
finite difference discretization schemes and comparing the solutions wZ•,`,ω. In the following, we provide
an analytical evaluation of the efficiency of the radiation boundary conditions.

Let us first give the analytical form of wZ• . On [1,∞), a basis of linearly independent solutions is

W−χ , `+1/2(−2ikr) , Wχ , `+1/2(2ikr) , (5.10)

with χ given in (5.3). Thus, we have

wZ• = aZ•,` W−χ,`+1/2(−2 i k r) + bZ•,` Wχ,`+1/2(2 i k r) , (5.11)

and
w′Z• = −2 i kaZ•,` W′−χ,`+1/2(2ik r) + 2 i k bZ•,` W′χ,`+1/2(2ikr) .

The coefficients aZ•,` = aZ• and bZ•,` = bZ• are determined by the boundary conditions such that,
for (5.8),

AZ•,`

(
a`
b`

)
=

(
1
0

)
, (5.12)
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with matrix

AZ•,` :=

(
W−χ,`+1/2(−2 i k rmin) Wχ,`+1/2(2 i k rmin)

−2kiW′−χ,`+1/2(−2 i k rmax) 2kiW′χ,`+1/2(2 i k rmax)

)

− Z•

(
0 0

W−χ,`+1/2(2 i k rmax) Wχ,`+1/2(2 i k rmax)

)
.

(5.13)

The reference solution is given by the unique solution to (5.8) with Z`DtN, and is given by

wref(r) = wZ`
DtN

(r) =
W−χ,`+1/2(−2 i k r)

W−χ,`+1/2(−2 i k rmin)
, (5.14)

which verification is given in the following proposition.

Proposition 1. The exact solution to (5.8) with Z`
DtN

is given by (5.14).

Proof. We first rewrite the second row of ADtN, by substituting Z`DtN in (5.13) by its explicit expression
of (5.2). We have

[ADtN]21 = −2kiW′−χ,`+1/2(−2 i k rmax) −

−2 i k

W′
−χ,`+ 1

2

(−2 i k rmax)

W−χ,`+ 1
2

(−2 i k rmax)

W−χ,`+1/2(2 i k rmax) . (5.15)

We obtain readily that [ADtN]21 = 0.
We next consider the (2, 2) component. We have

[ADtN]22 = 2kiW′χ,`+1/2(2 i k rmax) −

−2 i k

W′
−χ,`+ 1

2

(−2 i k rmax)

W−χ,`+ 1
2

(−2 i k rmax)

Wχ,`+1/2(2 i k rmax);

= 2ki
W′χ,`+1/2(2 i k rmax) W−χ,`+1/2(−2 i k rmax) + W−χ,`+1/2(−2 i k rmax)Wχ,`+1/2(2 i k rmax)

W−χ,`+1/2(−2 i k rmax)
.

(5.16)
We next observe that the denominator of the right-hand side is given by the Wronskian,

W
{

Wχ,`+1/2(2 i k r) , W−χ,`+1/2(−2 i k r)
}

= det

(
Wχ,`+1/2(2 i k r) W−χ,`+1/2(−2 i k r)

2ikW′χ,`+1/2(2 i k r) −2kiW′−χ,`+1/2(−2 i k r)

)
= −2 k i Wχ,`+1/2(2 i k r) W′−χ,`+1/2(−2 i k r) − W−χ,`+1/2(−2 i k r) 2 i kW′χ,`+1/2(2 i k r) .

On the other hand, by [28, 13.14.30], the Wronskian has value

W
{

Wχ,`+1/2(2 i k r) , W−χ,`+1/2(e−πi 2 i k r)
}

= eiπχ . (5.17)

We thus obtain

[ADtN]22 =
−eχπi

Wχ,`+1/2(2 i k rmax)
. (5.18)

Putting together the above computations, we obtain the simplified form of AZ`
DtN

,

AZ`
DtN

:=

W−χ,`+1/2(−2 i k rmin) Wχ,`+1/2(2 i k rmin)

0
−eχπi

Wχ,`+1/2(2 i k rmax)
.

 (5.19)

As a result of which, we have(
aZ`

DtN

bZ`
DtN

)
= A−1

Z`
DtN

(
1
0

)
=

( 1
W−χ,`+1/2(−2 i k rmin)

0

)
(5.20)

which leads to the form of solution in (5.14).
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5.3 Analytic evaluation of the boundary condition e�ciency

The efficiency of the choice of Z• is assessed by comparing the coefficients aZ•,` and bZ•,` which define the
analytic solution from (5.11). They are compared with the reference ones given by (5.20). We introduce
the following norms to evaluate the difference,

ěZ•,` =
|aZ•,` − aZ`

DtN
,`|2 + |bZ•,`|2

|aZ`
DtN

,`|2
,

eZ•,` =
‖uZ`

DtN
,` − uZ•,`‖L2(rmin,rmax)

‖uZ`
DtN

,`‖L2(rmin,rmax)
.

(5.21)

In Figures 2 and 3, we picture the error norm ěZ• respectively without (γ = 0) and with (γ = 10−4)
attenuation, where the coefficients a` and b` are computed for all choices of impedance conditions using
(5.12) and (5.13). The computations use an interval between rmin = 0.95 and rmax = 1.05, with the
values of the parameters extracted from the Atmo model, for the scaled radius:

the (scaled) velocity is c = c/R� = 9.87× 10−6 s−1 and α∞ = 6663.62. (5.22)

In the figures, we investigate for the modes ` between 0 and 1000 and frequency ω/(2π) between 5.5 and
12 mHz.
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S-HF-0

(r̃)

0 250 500 750
`

(j) ěZ
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Figure 2: Comparison of the error norm ěZ• (5.21) for the different choices of boundary conditions, using
constant Atmo parameters (5.22) without attenuation (γ = 0).

The error in the coefficients aZ•,` and bZ•,` (Figures 2 and 3) represents well the error for the global
solution u (Figure 4). We observe the robustness of the different choices of impedance conditions: Z`nonlocal
gives the smaller error while Z`

SAI-1
and Z`

S-HF-1b
also behave well. In the family of conditions that do not

depend on `, Z
SAI-0

and Z
S-HF-1a

appears the most effective. We note that all conditions have difficulties
for high ` at low frequencies, and that ZNaive and Z

A-HF-0
perform poorly for any combination of ω and

`. This analytical evaluation of the efficiency confirms perfectly the numerical evaluation we provided in
[5].

6 Numerical implementation using HDG

For the discretization of the problem using inhomogeneous parameters, we use the Hybridizable Discon-
tinuous Galerkin (HDG) method, which works with first-order problems. Namely, the HDG method gives
access to the solution and its derivative with the same accuracy, such that we are able to readily compute
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Figure 3: Comparison of the error norm ěZ• (5.21) for the different choices of boundary conditions, using
constant Atmo parameters (5.22) with attenuation γ = 10−4.
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Figure 4: Comparison of the error norm eZ• (5.21) for the different choices of boundary conditions, using
constant Atmo parameters (5.22) without attenuation (γ = 0).

the Wronskian in the Approach 2. In addition, the global system is built for the numerical trace, that is,
it is only made of the degrees of freedom which are on the skeleton of the mesh (on the interfaces), hence
reducing the size of the linear system compared to standard DG method. We detail below the numerical
implementation.

6.1 First-order formulation

From (4.30), a prototype of the equations we have to solve is

−
(
r2 u′

)′
+ Q` u = g ; (6.1a)

lim
r→0

r u′ = 0 ; (6.1b)

u′(r) =
(
− 1
r + Z•

)
u at r = rmax . (6.1c)
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This is encountered in Approach 1, in which the generic right-hand side g, takes the form rδ(r − s). For
Approach 2, g = 0 and other types of boundary conditions are used, see Table 1.

We derive in details how (6.1) is written in first order formulation. The problems in Approach 2
are derived similarly with the only difference being the boundary conditions discussed in Table 1. We
introduce the new variables w and v, where we omit the index ` for clarity:

w := r u , v := r u′ , first-order variables. (6.2)

With this choice of variables, since
(r2 u′)′ = (r v)′ , (6.3)

equation (6.1a) is rewritten as

− (r v)
′

+
Q`
r
w = g ⇒ −r (r v)

′
+ Q` w = r g . (6.4)

The relation between w and v is given as,

rw′ = ru + r2u′ ⇒ rw′ = w + rv . (6.5)

The radiation condition in terms of (w, v) is obtained by multiplying both sides of (6.1c) by rmax, and by
using the definition of w and v. In short, the first-order problem associated with (6.1) is given in terms
of w and v by, 

− r(r v)′ + Qw = r g ,

r w′ − w = r v ,

lim
r→0

v = 0 , v(rmax) =
(
− 1

rmax
+ Z•

)
w(rmax) .

(6.6)

Here, the boundary conditions have been re-written accordingly, and we give in Table 1 the corre-
spondence between the conditions given in terms of u and the ones in terms of (w, v) in the first-order
formulation.

Boundary conditions Second-order for u First-order for (w, v), (6.6)

Dirichlet in r0 u(r0) = g w(r0) = r0 g

Limit at the origin limr→0 r u
′ = 0 limr→0 v = 0

Radiation boundary condition in r1 6= 0 u′ = (−1/r + Z•)u v = (−1/r + Z•)w

Table 1: Correspondence between the boundary conditions in terms of u (second-order formulation) and
in terms of (w, v) (first-order formulation).

6.2 Domain partition and jump operator

We consider a non-overlapping partition of the one-dimensional domain Ω := [rmin, rmax], in N elements
Ke:

[rmin , rmax] =

N⋃
e=1

Ke , (6.7)

such that the discretized domain is composed of N + 1 nodes {ri}N+1
i=1 . We denote by Σ the set of nodes,

using ΣB to denote the boundary nodes (that is, the two nodes that coincide with rmin and rmax) and
ΣI for the interior ones, between two elements Ke:

Σ =

N⋃
e=1

∂Ke , ΣB = {rmin, rmax} , ΣI = Σ \ ΣB . (6.8)
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At a node (i.e., interface point) r shared by elements K− and K+, we define the jump, denoted by
squared brackets, of a scalar function v by

JvK|r :=
(

lim
r→r+

v) ν∂K+(r) +
(

lim
r→r−

v) ν∂K+(r) . (6.9)

Here we denote by ν∂K the outward pointing normal vector of K defined along ∂K . For an interval
K = [a, b] with a < b then ∂K = {a, b} and our convention is νK(a) = −1 and νK(b) = 1.

At the boundary nodes of the domain, we use the same notation of the jump to refer to the trace on
the boundary. In particular, for the left boundary point, we have

JvK|rmin :=
(

lim
r→r+min

) ν∂K(rmin) = lim
r→r+min

v(r) , (6.10)

while for a right boundary point,

JvK|rmax :=
(

lim
r→r−max

) ν∂K(rmax) = − lim
r→r−max

v(r) . (6.11)

6.3 Derivation of the HDG problem

In the HDG method, one considers the variational solution (w, v) of (6.6) on each interval Ke together
with the selected boundary conditions at the end nodes (ΣB) from Table 1. On the interior nodes (ΣI)
a conservativity condition is imposed:

JwK
∣∣
ΣI

= 0 , JvK
∣∣
ΣI

= 0 . (6.12)

For the sake of clarity, we shall refer to a discretized element by K instead of Ke in the following.

6.3.1 Volume problem

Let us write the variational formulation for (6.6) on an interval K by integrating against a test function
φ to obtain the continuous local problem:

−
∫
K

(rv)′ r φ +

∫
K

Qwφ =

∫
K

r g φ ,∫
K

r w′φ −
∫
K

wφ =

∫
K

r v φ ,

(6.13)

where we define
Q(r)

r2
= − σ2

c2
+
α2

4
+
α′

2
+
α

r
+
`(`+ 1)

r2
. (6.14)

We carry out integration by parts to obtain

∫
K

r v (r φ)′ +

∫
K

Qwφ −
∑
r∈∂K

(r2 φ)|r (v ν∂K)|r =

∫
K

r g φ ;

−
∫
K

w (r φ)′ −
∫
K

wφ +
∑
r∈∂K

(r φ)|r (w ν∂K)|r =

∫
K

r v φ .

(6.15)

We now define the approximation variables wh and vh respectively for w| ◦
K

and v| ◦
K
. For the traces,

w|∂K and v|∂K are respectively approximated by ŵ and v̂. The quantities ŵ and v̂ are further called
the numerical traces. These numerical traces (at the nodes) are then expressed in terms of the auxiliary
unknown λ and of the traces of wh and vh, and a penalization parameter τK ,

ŵ ν∂K = λ ν∂K , r ∈ ∂K ;

v̂ ν∂K = vh ν∂K + τK (wh − λ) ν∂K , r ∈ ∂K .
(6.16)
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Here, λ, acts like a Lagrange multiplier and will play the role of the unknown in our global system.
By incorporating the approximation variables in (6.15), we have

∫
K

r vh (r φ)′ +

∫
K

Qwh φ −
∑
r∈∂K

(r2 φ)|r v̂ ν∂K |r =

∫
K

r g φ ;

−
∫
K

wh (r φ)′ −
∫
K

wh φ +
∑
r∈∂K

(r φ)|r ŵ ν∂K |r =

∫
K

r v φ .

(6.17)

We further rewrite by using (6.16) to replace the numerical traces ŵ and v̂ such that

∫
K

r vh (r φ)′ +

∫
K

Qwh φ −
∑
r∈∂K

(r2 φ)|r
(
vh ν∂K + τK (wh − λ) ν∂K

)∣∣∣
r

=

∫
K

r g φ ;

−
∫
K

wh (r φ)′ −
∫
K

wh φ +
∑
r∈∂K

(
r φ λ ν∂K

)∣∣∣
r

=

∫
K

r v φ .

(6.18)

We rewrite the first equation by carrying the (reverse) integration-by-parts to absorb the boundary term
in vh, ∫

K

r vh (r φ)′ −
∑
r∈∂K

(r2 φ)|r
(
vh ν∂K + τK (wh − λ) ν∂K

)
|r

= −
∫
K

(r vh)′ r φ−
∑
r∈∂K

(r2 φ)|r τK
(
wh ν∂K − λ ν∂K

)
|r .

(6.19)

The approximate local problem is given as
−
∫
K

(r vh)′ r φ +

∫
K

Qwh φ −
∑
r∈∂K

(r2 φ)|r τK
(
wh ν∂K − λ ν∂K

)
|r =

∫
K

r g φ ;

−
∫
K

wh (r φ)′ −
∫
K

wh φ +
∑
r∈∂K

(r φ λ ν∂K)|r =

∫
K

r v φ .

(6.20a)

(6.20b)

We see that the volume problem is local (independent) on each cell. We shall later sum over the cells to
build the global linear system for λ.

6.3.2 Interface and boundary problems

The local interface and boundary problems are now derived from the conservativity equation (6.12)

Jv̂K|r = 0 , r ∈ ΣI . (6.21)

and the boundary conditions. We first rewrite these jumps more explicitly in terms of the numerical
trace.

1. Jump at an interior node: Consider an interior point r shared by the element K− on the left
and K+ on the right. Using (6.16), the jump is given as

J v̂ K
∣∣∣
r

=
(
vK

+

h + τK
+

wK
+

h − τK+

λ
)
νK

+

(r) +
(
vK
−

h + τK
−
wK

−
h − τK− λ) νK

−
(r) , (6.22)

where we denote

lim
r→r+

vh = vK
+

h , lim
r→r+

wh = wK
+

h , and ν∂K+ = νK
+

, ν∂K− = νK
−
. (6.23)

2. Jump condition at a boundary node: For a boundary point r, the jump is given by

J v̂ K
∣∣
r

:=
(
vKh + τK wKh − τK λ

)
νK(r) . (6.24)
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Then, one can replace with the boundary conditions listed in Table 1. For instance, the radiation
boundary condition writes as

J v̂ K
∣∣
rN+1

=

(
− 1

rN+1
+ Z•

)(
ŵ ν∂Ω

)
|rN+1

with rN+1 = rmax. (6.25)

We are now ready to derive the local problems associated to the nodes. We distinguish between an
interior element and a boundary one. It is convenient to refer to the two nodes of an element Ke by

r(e,1) < r(e,2) , (6.26)

We write the restrictions of vh, wh and λ to an element Ke as

vKeh , wKeH , λKe = λ|Ke =

(
λ(e,1)

λ(e,2)

)
. (6.27)

Local problem for an interior element Consider interior intervalKe, it means that e = 2, . . . , N−1.
The interval Ke has a neighbor Ke−1 on the left and Ke+1 on the right. The two nodes of the element
Ke are further referred to as r(e,1) and r(e,2) for the left and right nodes respectively. The conservativity
condition (6.12) is written as, using the notation of (6.27) for λ,

(
vKeh + τKe wKeh − τKe λ(e,1)

)
νKe(r(e,1))

+
(
v
Ke−1

h + τKe−1 w
Ke−1

h − τKe−1 λ(e−1,2)
)
νKe−1(r(e,1)) = 0 ;(

v
Ke+1

h + τKe+1 w
Ke+1

h − τKe+1 λ(e+1,2)
)
νKe+1(r(e,2))

+
(
vKeh + τKe wKeh − τKe λ(e,2)

)
νKe(r(e,2)) = 0 .

(6.28)

Local problem for a boundary interval Specific to one-dimensional case, there are only two bound-
ary elements, labeled to as K1 and KN . One of the two nodes of the boundary element is an interior one,
where the conservativity condition is imposed. On the nodal boundary, one imposes the selected bound-
ary condition from Table 1. For instance, at the element K1 where the limit at the origin limr→0 v = 0
is imposed, we have

(
vK1

h + τK1 wK1

h − τK1 λ(1,1)
)
νK1(r(1,1)) = 0 ;

(
vK2

h + τK2 wK2

h − τK2 λ(2,1)) νK2(r(1,2))

+
(
vK1

h + τKe wK1

h − τKe λ(e,2)) νKe(r(1,2)) = 0 .

(6.29)

At the element KN where the radiation boundary condition is imposed, we have

(
vKNh + τKN wKNh − τKN λ(N,1)

)
νKN (r(N,1))

+
(
v
KN−1

h + τKN−1 w
KN−1

h − τKN−1 λ(N−1,2)
)
νKN−1(r(N,1)) = 0 ;

(
vKNh + τKN wKNh − τKN λ(N,2)

)
νKN (r(N,2)) =

(
− 1

r(N,2)
+ Z•

)
wKNh νKN (r(N,2)) .

(6.30)

6.3.3 Statement of the approximate problem

Using the HDG method, the approximate problem is the following.
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Find (wh, vh, λ) that solves

1. The local volume problem (6.20) on each interval Ke for e = 1, . . . N ,

2. together with the interface/nodal problem made of (6.28) and of the appropriate boundary conditions
such as, e.g., (6.29) and (6.30).

6.4 Discretization

6.4.1 Domain partition and discretization basis

Partition We start by creating a partition of the interval [rmin, rmax] with nodes r1 = 0, . . . , rN+1 =
rmax, which set is denoted by Σ = {r1, . . . , rN+1}.

1. This gives the N elements/intervals Ke for e = 1, . . . N , with

Ke = [r(e,1), r(e,2)] = [re , re+1] of length he = re+1 − re . (6.31)

2. Assign the discretization order (polynomial order) for each interval Ke. Denote this sequence by
p1 , . . . , , pN .

3. On the element Ke, associated with polynomial degree pe and me local degrees of freedom, denote the
associated basis on Ke by

φe1 , . . . , φ
e
` , . . . , φ

e
me . (6.32)

Using the Lagrange polynomials basis, we have me = pe + 1.

Discrete unknowns The unknowns are represented as a polynomial on each element Ke such that

wKeh :=

me∑
`=1

WKe
` φKe` ; vKeh :=

me∑
`=1

VKe` φKe` . (6.33)

The numerical trace is represented by a vector λ of length N + 1 with

λ =
(
λ1, . . . , λ3, . . . , λN+1

)
. (6.34)

Note that here we have a global indexing for λ. Since we are in one dimension, the number of degrees of
freedom for λ is Ndof := N + 1. The restriction of λ to the interval Ke is

λe := λ|Ke =

(
λ(e,1)

λ(e,2)

)
. (6.35)

For a generic element K, we also use notation for the restriction of λ,

λ|K =

(
λK1

λK2

)
. (6.36)

Connectivity map The connection map relates the global indexing of λ to the nodes of an element.
We define

β(e, i) = 2(e− 1) + i , 1 ≤ e ≤ N , i = 1, 2 (6.37)

such that the global index for the node i of the element e is given by β(e, i). The above definition also
implies,

β(e, 2) = β(e, 1) + 1 , 1 ≤ e ≤ N . (6.38)

We define the connectivity operator A which gives the restriction to an element Ke,

A :=

A
1

...
AN

 (6.39)
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Its components are defined as follows. With operator β defined in (6.37), we have,

for a vector of length Ndof x =

( x1

...
xNdof

)
,

Ae x =

(
xj
xj+1

)
where j is such that j = β(e, 1) .

(6.40)

That j + 1 = β(e, 2) is due to (6.38).
We also give the action of its transpose that goes from a local index to the global one (for the degree

of freedom of the numerical trace λ),

(Ae)t
(
a
b

)
= a ej + b ej+1 . (6.41)

Here, ei is the column unit vector of size mK whose components are zero except at position i, we have:

ei , ei elementary row and column unit vector respectively. (6.42)

6.4.2 Discretization of the local problem

Consider the local volume problem (6.20) on an interval K with

K = [rK1 , rK2 ] , ∂K = {rK1 , rK2 } (6.43)

with outward pointing normal ν∂K ,

νK1 := ν∂K(rK1 ) = −1 , νK2 := ν∂K(rK2 ) = 1 . (6.44)

Step 1 For the local volume problem (6.20), we replace wh and vh by their approximation forms of
(6.33), and the restriction (6.36) of λ to K. We rewrite the boundary term in (6.20a)

− τK
∑
r∈∂K

(r2 φKk )|r
(
wh ν∂K − λ ν∂K

)
|r

= − τK
∑
r∈∂K

(r2 φKk )|r
(
wh ν∂K

)
|r + τK

∑
r∈∂K

(r2 φKk )|r
(
λ ν∂K

)
|r .

The first term on the right-hand side can be written as

− τK
∑
r∈∂K

(r2 φKk )|r
(
wh ν∂K

)
|r

= −τK (rK2 )2 φKk (rK2 ) νK2

mK∑
`=1

WK
` φK` (rK2 ) − τK (rK1 )2 φKk (rK1 ) νK1

mK∑
`=1

WK
` φ

K
` (rK1 )

= −τK (rK2 )2 δkmK

mK∑
`=1

WK
` δ`mK + τK (rK1 )2 δk 1

mK∑
`=1

WK
` δl 1

= −τK (rK2 )2 δkmK WK
mK + τK (rK1 )2 δk1 WK

1 .

(6.45)

Here we have used the definition of the Lagrangian polynomial. Note that rK1 is the start point of K,
and in the index of the basis this corresponds to 1, while rK2 is the end point and in the index of the basis
this corresponds to mK , thus

φK` (rK1 ) = δ` 1 , φK` (rK2 ) = δ`mK . (6.46)

Similarly, for the second term in the right-hand side, we use

λ|rK1 = λK1 , λ|rK2 = λK2 , (6.47)
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and obtain

τK
∑
r∈∂K

(r2 φKk )|r
(
λ ν∂K

)
|r = νK2 τK (rK2 )2 φKk (rK2 ) λK2 + νK1 τK (rK1 )2 φKk (rK1 ) λK1

= τK (rK2 )2 δkmK λK2 − τK (rK1 )2 δk1 λ
K
1 .

(6.48)

The boundary term in (6.20b) is∑
r∈∂K

(r φ λ ν∂K)|r = δkmK νK2 λ
K
2 rK2 + δk1 ν

K
1 λK1 rK1 = δkmK λK2 rK2 − δk1 λ

K
1 rK1 . (6.49)

The discretized version of equation (6.20) in the basis {φK` } using test functions {φKk } is

−
mK∑
`=1

VK`

∫
K

(
φK` + r (φK` )′

)
r φKk +

mK∑
`=1

WK
`

∫
K

QφK` φ
K
k

− τK (rK2 )2 δkmK WK
mK + τK (rK1 )2 δk1 WK

1

+ τK (rK2 )2 δkmK λK2 − τK (rK1 )2 δk1 λ
K
1 =

∫
K

r g φKk ;

mK∑
`=1

WK
`

∫
K

φK` (φKk + r (φKk )′) +

mK∑
`=1

WK
`

∫
K

φK` φ
K
k

− δkmK λK2 rK2 + δk1 λ
K
1 rK1 +

mK∑
`=1

VK`

∫
K

r φK` φ
K
k = 0

(6.50a)

(6.50b)

with unknowns
WK , VK , λK1 , λK2 . (6.51)

Recall that δij = 1 for i = j and 0 for i 6= j.

Step 2 We next write problem (6.50) in matrix form. Note that each row of the local matrix and
right-hand side comes from testing with the test function φKk for k = 1, . . . ,mK . The column varies with
the degree of freedom of the unknowns (6.51).

Definition of local matrices Define the following local matrices of size mK ×mK . The first equation
in (6.50a) uses matrices

TKk` :=

∫
K

(
φK` + r (φK` )′

)
r φKk , (6.52)

and
QKk` :=

∫
K

φK` Qφ
K
k ; (6.53)

The second one (6.50b) uses

SKk` :=

∫
K

φK` (2φKk + r (φKk )′) , MKk` :=

∫
K

r φK` φ
K
k . (6.54)

To capture the boundary terms, we define

RK := − (rK2 )2 EmKmK + (rK1 )2 E11 . (6.55)

Here, we have used elementary matrices Eij whose components are zero except at position (i, j) where
they are equal to 1.
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Matrix form of local volume problem The matrix form of problem (6.50) is

AK
(
VK

WK

)
+ CK

(
λK1

λK2

)
=

(
FK

0

)
. (6.56)

Here 0 is a column vector of size mK . The unknowns are the local vectors of size mK ,

VK =

 VK1
...

VKmK

 , WK =

WK
1
...

VKmK

 and

λK1
λK2

 . (6.57)

The equation (6.50a) contributes the first block (of size mK×mK), and (6.50b) to the second block. The
matrix AK is of size (2mK)× (2mK) and defined as

AK :=

(
−TK QK + τKRK

MK SK

)
. (6.58)

The block RK is contributed by (6.45). We define matrix CK of size (2mK)× 2,

CK :=

(
− τK (rK1 )2 e1 τK (rK2 )2 emK

rK1 e1 −rK2 emK

)
, (6.59)

where ei is the column unit vector of size mK whose components is zero except at position i. The upper
block comes from the contribution of (6.48) and the second one from (6.49). The upper block of the local
right-hand side is

FK =

 FK1
. . .
FKmK

 , FKk :=

∫
K

r g φKk . (6.60)

6.4.3 Discretization of the local interface and boundary problem

Step 1 We first discretize the local interface problem contributed by each interval Ke. We simplify the
notation by writing

νKe(r(e,1)) = ν(e,1) , νKe(r(e,2)) = ν(e,2) . (6.61)

We use the basis functions to express vKeh and wKeh ,

vKeh =

me∑
`

Ve` φ
e
` , wKeh =

me∑
`

We
` φ

e
` , (6.62)

then

vKeh (r(e,1)) = VKe1 ;

v
Ke−1

h (r(e,1)) = v
Ke−1

h (r(e−1,2)) = Ve−1
me ;

v
Ke+1

h (r(e,2)) = v
Ke+1

h (r(e+1,1)) = Ve+1
1 ;

vKeh (r(e,2)) = Veme ,

and similarly for wKeh .
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For an interior element Equation (6.28) leads to

(
V(e,1) + τeW(e,1) − τe λ(e,1)

)
ν(e,1)

+
(
V(e−1,me) + τe−1 W(e−1,me) − τe−1 λ(e−1,2)

)
ν(e−1,2) = 0 ;(

V(e+1,1) + τe+1 We+1
1 − τe+1 λ(e+1,1)

)
ν(e+1,1)

+
(
V(e,me) + τeW(e,me) − τe λ(e,2)) ν(e,2) = 0 .

(6.63)

With 0 is a column vector of length 2, this is rewritten as

Be
(
Ve

We

)
+ Le

(
λ(e,1)

λ(e,2)

)
+ Re = 0 , for e = 2, . . . , N − 1 , (6.64)

with the local matrices and remainder term defined as follows. The local matrices Be is of size 2× (2me)
and is defined as

Be :=

(
ν(e,1) e1 τe ν(e,1) e1

ν(e,2) eme τe ν(e,2) eme

)
=
(
ν(e,1) ν(e,2)

)( e1 τe e1

eme τe eme

)
. (6.65)

Local matrix Le of size 2× 2 is defined as,

Le := −τe
(
ν(e,1) 0

0 ν(e,2)

)
. (6.66)

The remainder term Re is a column vector of length 2 and for e = 2, . . . , N − 1, is equal to

Re :=

(
ν(e−1,2) eme τe−1 ν(e−1,2) eme

01×me 01×me

)(
Ve−1

We−1

)
+

(
0 −τe−1ν(e−1,1)

0 0

)(
λ(e−1,1)

λ(e−1,2)

)

+

(
01×me 01×me

ν(e+1,1) e1 τe+1 ν(e+1,1) e1

)(
Ve+1

We+1

)
+

(
0 0

−τe+1ν(e+1,1) 0

)(
λ(e+1,1)

λ(e+1,2)

)
.

(6.67)

Recall that ei is an elementary row vector.

For left boundary interval On the first node K1 where we impose (6.29), we have
(
V(e,1) + τeW(e,1) − τe λ(e,1)

)
ν(e,1) = 0 ;(

V(e+1,1) + τe+1 We+1
1 − τe+1 λ(e+1,1)

)
ν(e+1,1)

+
(
V(e,me) + τeW(e,me) − τe λ(e,2)) ν(e,2) = 0 .

(6.68)

The local problem is also of the form

B1

(
V1

W1

)
+ L1

(
λ(1,1)

λ(1,2)

)
+ R1 = 02×1 . (6.69)

The matrices B1 and L1 are defined as in (6.65) and (6.66). Since there is no contribution from the left,
and only from the right (from K2)

R1 :=

(
01×me 01×me

ν(2,1) e1 τ2 ν(2,1) e1

)(
V2

W2

)
+

(
0 0

−τ2ν(2,1) 0

)(
λ(2,1)

λ(2,2)

)
. (6.70)
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For right boundary interval On the final element KN , the system depends on the choice of boundary
conditions, for instance, for the radiation boundary condition (6.30), we have

(
V(N,1) + τN W(N,1) − τN λ(N,1)

)
ν(N,1)

+
(
V(N−1,me) + τN−1 W(N−1,mN ) − τN−1 λ(N−1,2)

)
ν(N−1,2) = 0 ;

(
V(N,mN ) + τN W(N,mN ) − τN λ(N,2)) ν(N,2) =

(
− 1

r(N,2)
+ Z

)
λ(N,2)ν(N,2) .

(6.71)

Therefore, the local interface/boundary problem for KN is of the form

BN
(
VN

WN

)
+ LN

(
λ(N,1)

λ(N,2)

)
+ RN = 02×1 , (6.72)

where BN is defined as in (6.65). However LN is different due to the boundary condition, such that

LN :=

−τ
Nν(N,1) 0

0

(
1

r(N,2)
− Z − τN

)
ν(N,2)

 , radiation boundary condition . (6.73)

In addition, there is no contribution from the right, thus the remainder term takes the form,

RN :=

(
ν(N−1,2) emN τN−1 ν(N−1,2) emN

01×me 01×me

)(
VN−1

WN−1

)
+

(
0 −τN−1ν(N−1,1)

0 0

)(
λ(N−1,1)

λ(N−1,2)

)
.

(6.74)
On the other hand, assuming a Dirichlet boundary condition on w, one has

(
V(N,1) + τN W(N,1) − τN λ(N,1)

)
ν(N,1)

+
(
V(N−1,me) + τN−1 W(N−1,mN ) − τN−1 λ(N−1,2)

)
ν(N−1,2) = 0 ;

λ(N,2) = 0 .

(6.75)

As a result of this, the local interface/boundary problem for KN is of the same form of as in (6.72),
however BN and LN are different and are given by,

BN :=

(
ν(N,1) e1 τN ν(N,1) e1

01×mN 01×mN

)
; LN :=

(
−τNν(N,1) 0

0 1

)
. (6.76)

Step 2 We put together the local interface and boundary problems into a global form by using the
connectivity operator A of (6.41). Recall that we have derived the local interface problem contributed
by each interval Ke,

Be
(
Ve

We

)
+ Le

(
λ(e,1)

λ(e,2)

)
+ Re = 0 . (6.77)

To derive the problem for λ, we sum them up according to the correct contribution

N∑
e=1

(Ae)t
(

Be
(
Ve

We

)
+ Le

(
λ(e,1)

λ(e,2)

)
+ Re

)
= 0 . (6.78)

RR n° 9338



34 Barucq, Faucher, Fournier, Gizon & Pham

This gives5
N∑
e=1

(Ae)t
(

Be
(
Ve

We

)
+ Le

(
λ(e,1)

λ(e,2)

))
= 0 . (6.79)

6.5 Summary of discretized HDG formulation and algorithms

Here, we retain only the global index of the interval Ke, and write

λKe1 = λ(e,1) , λKe2 = λ(e,2) , VKe = Ve , WKe = We . (6.80)

We have introduced the restriction to Ke of the vector λ. We proceed similarly for the volume unknowns
(discretizing wh and vh),

We :=

(
Ve

We

)
, λe =

λ(e,1)

λ(e,2)

 . (6.81)

6.5.1 Local volume problem

From (6.50), we have obtained the local volume problem on an interval Ke, for e = 1, . . . , N ,

AeWe + CK λe =

(
Fe

0

)
.

with Ae defined by (6.58), Ce by (6.59) and Fe by (6.60). We can solve for We,

We = −(Ae)−1 CK λe + (Ae)−1

(
Fe

0

)
. (6.82)

6.5.2 Conservativity problem

From (6.79), we have obtained the conservativity condition and boundary conditions (at the left and
right boundary),

N∑
e=1

(Ae)t (BeWe + Leλe) = 0Ndof×1 . (6.83)

Use (6.82) to replace We in terms of λe,

N∑
e=1

(Ae)t
(

Be
(
− (Ae)−1CKλe + (Ae)−1

(
Fe

0me×1

) )
+ Leλe

)
= 0Ndof×1 .

5When count in terms of Ke, each condition at the interior, i.e. for rj with j = 2, . . . , N , is already doubled up. Thus
summing up gives

N∑
e=1

(Ae)t
(

Be
(
Ve

We

)
+ Le

(
λ(e,1)

λ(e,2)

)
+ Re

)
=

N∑
e=1

(Ae)t
(

B̃e + L̃e
(
λ(e,1)

λ(e,2)

))
.

where, for an interior element,
e = 1 , B̃e = 2Be , L̃e = 2Le .

For the boundary elements K1 and KN , we have

B̃1 =

(
ν(e,1) e1 τe ν(e,1) e1

2ν(e,2) eme 2τe ν(e,2) eme

)
, L̃1 := −τe

(
ν(e,1) 0

0 2ν(e,2)

)
,

and

B̃N =

(
2ν(e,1) e1 2τe ν(e,1) e1

ν(e,2) eme τe ν(e,2) eme

)
, L̃N := −τe

(
2ν(e,1) 0

0 ν(e,2)

)
.
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We move all terms acting as a right-hand side to the right:

N∑
e=1

(Ae)t Ke λe =

N∑
e=1

(Ae)t Se . (6.84)

Here, we have defined the local matrix Ke of size 2× 2,

Ke := −Be (Ae)−1 Ce + Le , (6.85)

and the local source Se,

Se := −Be (Ae)−1

(
Fe

0me×1

)
. (6.86)

Note that there is only the contribution of the volume source here.

6.5.3 Global problem

Replace λe = Aeλ in (6.84). The global unknown λ solves

K λ = S , (6.87)

where the global matrix K is of size Ndof ×Ndof, and the global right-hand side S of size Ndof,

K :=

N∑
e=1

(Ae)t KeAe , S :=

N∑
e=1

(Ae)t Se . (6.88)

We review in Algorithms 1 and 2 the overall procedure to solve the global and local problems respectively.

7 Validation of the HDG implementation

To validate our implementation, we compare with the analytical solutions that are obtained for different
combinations of boundary conditions. We first consider the boundary value problems, and the delta-Dirac
source is studied in Subsection 7.3, where we also compare between the Approaches 1 and 2. Here, the
analytical solutions are given for the solution u while our computations are done with the unknowns
(w, v) of the first-order problem (6.6). We remind the relations between those unknowns already given
in (6.2):

w := r u , v := r u′ . (7.1)

The correspondence between boundary conditions is given in Table 1.
To evaluate the accuracy, we compute the relative error in the same way as (5.21), and define

Ew =
‖wref − wHDG‖L2

‖wref‖L2

, (7.2)

and similarly for v, where the indexes ‘ref’ and ‘HDG’ refers to the reference solution and the numerical
one respectively.

7.1 Validation problems with zero sources

Analytical solutions can be derived in the case of homogeneous medium parameters (i.e., constant) and
depend on the choice of boundary conditions, as was done in Subsection 5.3 to investigate the efficiency
of the boundary conditions. For the validation of our HDG implementation, we will work with the Pure
atmo operator, obtained from (4.28a) and (4.29) using the potential

QAtmo
`

r2
= −k2 +

α∞
r

+
`(`+ 1)

r2
. (7.3)
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for e← 1 to N do
With interpolation degree pe, compute matrices of size me = pe + 1: Te (6.52), Qe (6.53), Se

and Me in (6.54) ;
/* Construction of local matrix Ke */
Compute matrices Ae defined by (6.58), (Ae)−1;
Compute matrix Ce defined by (6.59) ;
/* Computation of Be and Le */
Compute matrix Be for e = 1, . . . , N − 1 defined by (6.65) ;
Compute matrix Le defined by (6.66) for e = 1, . . . , N − 1 ;
Compute BN according to boundary condition ;
Compute LN according to boundary condition ;
Compute matrix Ke = −Be (Ae)−1 Ce + Le;
/* Construction of global matrix K (6.88) using the definition of the

connectivity matrix (6.40) and its transpose (6.41) */
for k ← 1 to 2 do

for `← 1 to 2 do
i = 2(e− 1) + k ;
j = 2(e− 1) + ` ;
Kij ← Kij + Kek`;

end
end
/* Construction of lobal rhs Se defined in (6.86) */
Compute upper block Fe defined by (6.60);

Compute Se = −Be (Ae)−1

(
Fe

0me×1

)
;

/* Construction of global rhs S (6.88) */
for k ← 1 to 2 do

i = 2(e− 1) + k ;
Si ← Si + Sek ;

end
end

Algorithm 1: Construction of global coefficient matrix K of size Ndof ×Ndof and global right-hand-
side K of length Ndof for linear system (6.87). Recall that Ndof = N + 1 where N is the number of
intervals in the partitioning of Ω = [0,R].

/* Resolution */
Solve the linear system Kλ = S constructed in Algorithm 1 ;
/* Post-processing */
for e← 1 to N do

/* Extract λe from λ using and the connectivity operator A (6.40) */
i = 2(e− 1) + 1;
λe1 = λi;
λe2 = λi+1 ;
/* Compute the unknowns We and Ve using (6.82) */

Compute
(
Ve

We

)
= −(Ae)−1

(
CK

(
λe1

λe2

)
+

(
Fe

0

))
. ;

end
Algorithm 2: Resolution (6.87) and post-processing.

and investigate the three following problems, using Dirichlet, Neumann and the radiation boundary
conditions.
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We first recall how the Whittaker equation is retrieved in this case to provide the exact solutions for
our validation tests. To be concise, we rewrite the prototype equation (4.28a) as,

−( r2 u′)′ + Q` u = g (7.4a)

⇔ −r2 u′′ − 2 r u′ + Q` u = g (7.4b)

⇔ −u′′ − 2

r
u′ +

Q`
r2
u =

g

r2
. (7.4c)

The unknown w defined by
u =

w

r
(7.5)

solves (
−d2

r −
Q`
r2

)
w =

g

r
. (7.6)

For Q` of the form (5.9), ODE (7.6) takes the form,(
−d2

r − k2 +
α∞
r

+
`(`+ 1)

r2

)
w =

g

r
. (7.7)

For g = 0, then the generic solutions of the above equation are obtained from the Whittaker equation
(2.31) via a change of variable, z = 2ei

π
2 k r cf. [3, Eqn. 2.3, 2.6], and are given as linear combinations

of any two of the following three Whittaker functions (depending on the interval where the ODE (7.6) is
considered),

w(r) = W−χ,`+1/2(−2 i k r) , w(r) = Wχ,`+1/2(2 i k r) , w(r) = Mχ,`+1/2(2 i k r) , (7.8)

with

χ =
iα

2k
=

iα c2
∞

2σ2
. (7.9)

The reference solution u is obtained by using relation (7.5). We refer to Subsection 2.5 for the definition
of the above Whittaker functions.

7.1.1 First validation problem

The first validation problem consists in imposing Dirichlet boundary conditions on both sides with,

Problem (7.13)

{
− ( r2 u′)′ + QAtmo

` u = 0 , r ∈ [rmin, rmax] ,

u(rmin) = τ0 , u(rmax) = τ1 .
(7.10)

The corresponding analytic solution for mode ` is given by

uref = a`
W−χ,`+1/2(−2ik r)

r
+ b`

Wχ,`+1/2(2ikr)

r
, (7.11)

where a` and b` solve the linear system (see Subsection 5.2)W−χ,`+1/2(−2 i k rmin)

rmin

Wχ,`+1/2(2 i k rmin)

rmin

W−χ,`+1/2(−2 i k rmax)

rmax

Wχ,`+1/2(2 i k rmax)

rmax

(a`
b`

)
=

(
τ0

τ1

)
. (7.12)

Problem (7.13) is equivalent to first-order problem on [rmin, rmax],
− r(r v)′ + QAtmo

` w = r g ,

r w′ − w = r v ,

w(rmin) = rmin τ0 , w(rmax) = rmax τ1

(7.13)
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whose exact solutions are obtained by using the identities (6.2),

wref = a` W−χ,`+ 1
2

(−2ik r) + b` W
χ,`+

1
2

(2ikr) ; (7.14a)

vref = −2 i k a` W′
−χ,`+ 1

2

(−2ik r) + 2 i k b` W′
χ,`+

1
2

(2ikr) − w

r
. (7.14b)

We note that the w in the above first order system is also the same w given by relation (7.5). The
boundary conditions are obtained via the correspondance in Table 1.

7.1.2 Second validation problem

The second validation problem is given by the boundary condition that treats the singularity at the origin
and a Dirichlet condition on the right side, such that,

Problem (7.17)

− ( r2 u′)′ + QAtmo
` u = 0 , r ∈ [0, rmax] ,

lim
r→0

r u = 0 , u(rmax) = τ1 .
(7.15)

Here the exact solution is in terms of the regular WhittakerM function or of the Buchholtz function M,

uref = τ1
Mχ,`+1/2(2ikr)

Mχ,`+1/2(2ikrmax)

rmax

r
= τ1

Mχ,`+1/2(2ikr)

Mχ,`+1/2(2ikrmax)

rmax

r
. (7.16)

Problem (7.17) is equivalent to the first-order problem on [0, rmax],
− r(r v)′ + QAtmo

` w = r g ,

r w′ − w = r v ,

v(0) = 0 , w(rmax) = rmax τ1 .

(7.17)

The exact solutions to (7.17) are

wref = τ1 rmax

Mχ,`+1/2(2ik r)

Mχ,`+1/2(2ik rmax)
= τ1 rmax

Mχ,`+1/2(2ik r)

Mχ,`+1/2(2ik rmax)
, (7.18a)

vref = w′ − w

r
(7.18b)

= τ1 rmax 2ik
M′χ,`+1/2(2ik r)

Mχ,`+1/2(2ik rmax)
− τ1 rmax

r

Mχ,`+1/2(2i k r)

Mχ,`+1/2(2ik rmax)
(7.18c)

= τ1 rmax 2ik
M′χ,`+1/2(2ik r)

Mχ,`+1/2(2ik rmax)
− τ1 rmax

r

Mχ,`+1/2(2i k r)

Mχ,`+1/2(2ik rmax)
. (7.18d)

7.1.3 Third validation problem

Eventually, with Z`DtN given in (5.2), we consider the case with the radiation boundary condition with,

Problem (7.21)


(
− d

dr
r2 d

dr
+ QAtmo

`

)
u = 0 , r ∈ [rmin, rmax] ,

u(r = rmin) = τ0 , u′(rmax) = (−1/rmax + Z`DtN)u(rmax) .

(7.19)

The exact solution to (7.19) is given by

uref = τ0
W−χ,`+1/2(−2ikr)

W−χ,`+1/2(−2ikrmin)

rmin

r
. (7.20)

Problem (7.19) is equivalent to the first-order problem (7.21),
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− r(r v)′ + QAtmo

` w = r g ,

r w′ − w = r v ,

v(rmin) = rmin τ0 , v(rmax) = (−1/rmax + Z`DtN)w(rmax)

(7.21)

with analytic solutions,

wref = τ0 rmin

W−χ,`+1/2(−2ik r)

W−χ,`+1/2(−2ik rmin)
; (7.22a)

vref = w′ − w

r
(7.22b)

= −τ rmin2ik
W′−χ,`+1/2(−2ik r)

W−χ,`+1/2(−2ik rmin)
− τ rmin

r

W−χ,`+1/2(−2i k r)

W−χ,`+1/2(−2ik rmin)
. (7.22c)

7.2 Numerical validation

We probe our numerical implementation with the three problems introduced above. We select the fol-
lowing constant parameters:

c = c/R� = 10−4 s−1 , α = 60 , (7.23)

and investigate the case with attenuation and without (γ = 0).

Validation problem of type Dirichlet-Dirichlet For Problem (7.13), we consider the interval
[0.5, 1], and picture the comparison between the analytic solution and the approximation using the
HDG method in Figure 5. In Figure 6, we plot a restriction of the interval for better visualization, and
compare the results for different modes. Then, in Figures 7 and 8, we illustrate the case with attenuation,
using γ = 10−4. Visually, we cannot observe any difference between the analytical and computational
solutions. To further validate the implementation, we picture the relative error (7.2) for different order
of polynomials in Figure 9.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−1
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r

R
e
(w

)

analytic numeric

Figure 5: Real parts of the analytic and numerical solution for Problem (7.13) with Dirichlet boundary
conditions τ0 = 0 and τ1 = 1, for a computational interval [0.5, 1] at frequency 6 mHz for mode ` = 0
without attenuation (γ = 0). The numerical solution uses polynomials of order 4 and discretization step
10−3 (i.e., 501 elements).

We observe the convergence of the method with a relative error that reaches 10−6 for sufficiently
high order of approximation. The pattern of the convergence is different between w and v such that
the convergence of v is faster than in w, but both eventually reach the same precision. Here, we do not
observe a difference between the mode 0 and 100 in terms of accuracy.
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Figure 6: Real parts of the analytic and numerical solution for Problem (7.13) with Dirichlet boundary
conditions τ0 = 0 and τ1 = 1 at frequency 6 mHz without attenuation (γ = 0). The original computational
interval is [0.5, 1]. The numerical solutions use polynomials of order 4 and discretization step 10−3 (i.e.,
501 elements).
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Figure 7: Imaginary parts of the analytic and numerical solution for Problem (7.13) with Dirichlet
boundary conditions τ0 = 0 and τ1 = 1, for a computational interval [0.5, 1] at frequency 6 mHz for mode
` = 0 with attenuation γ = 10−4. The numerical solution uses polynomials of order 4 and discretization
step 10−3 (i.e., 501 elements).

Validation problem of type Neumann-Dirichlet For Problem (7.17), we consider the interval [0, 1]
and show the solutions in Figure 10, where we focus on the interval near the origin. The evolution of the
relative error with the order of the polynomials is shown in Figure 11.

This test-case allows us to validate the boundary condition at the origin, and we observe similar
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Figure 8: Imaginary parts of the analytic and numerical solution for Problem (7.13) with Dirichlet
boundary conditions τ0 = 0 and τ1 = 1 at frequency 6 mHz with attenuation γ = 100 µHz. The original
computational interval is [0.5, 1]. The numerical solutions use polynomials of order 4 and discretization
step 10−3 (i.e., 501 elements). The analytic solution w is given by (7.14a).
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(a) Without attenuation, γ = 0.
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(b) With attenuation γ = 10−4.

Figure 9: Evolution of the relative error (7.2) for Problem (7.13) with Dirichlet boundary conditions
τ0 = 0 and τ1 = 1 at frequency 6 mHz for a computational interval [0.5, 1]. The numerical solutions use
a discretization step 10−3 (i.e., 501 elements) and we vary the polynomial order.

accuracy as in the previous case only with Dirichlet boundary conditions, where the relative error given
by (7.2) reaches about 10−6.

Validation problem of type Dirichlet - DtN Finally, we validate the HDG implementation in the
case of a radiation boundary condition with Problem (7.21). We consider the interval [0.5, 1] and the
DtoN condition given (5.2). The analytical and numerical solutions are represented in Figure 12, where
we restrict the interval near the radiation boundary. In Figure 13, we provide the evolution of the relative
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Figure 10: Imaginary parts of the analytic and numerical solution for Problem (7.17) with Dirichlet
boundary condition τ1 = 1 at frequency 6 mHz with attenuation γ = 10−4. The original computational
interval is [0, 1]. The numerical solutions use polynomials of order 4 and discretization step 10−3 (i.e.,
1001 elements). The analytic solution w is given by (7.18b).
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(a) Without attenuation, γ = 0.
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(b) With attenuation γ = 100 µHz.

Figure 11: Evolution of the relative error (7.2) for Problem (7.17) with Dirichlet boundary condition
τ1 = 1 at frequency 6 mHz for a computational interval [0, 1]. The numerical solutions use a discretization
step 10−3 (i.e., 1001 elements) and we vary the polynomial order.

error with the order of the polynomial approximation.
From these three test-cases, we have been able to validate our numerical implementation using the

HDG method. The accuracy for Dirichlet, Neumann and radiation boundary conditions is assessed, and
we obtain similar accuracy in all cases, with a relative error that reaches 10−6. Both the two variables of
the first-order HDG problem have been validated (w and v).

7.3 Validation of point-source problem

We now consider the more interesting configuration of having a delta-Dirac right-hand side at position s,
with the radiation boundary condition on the right end and the Neumann-like condition in zero, which
amounts to solving the problem,

Problem (7.25)

− ( r2 u′)′ + QAtmo
` u = r δ(r − s) , r ∈ [0, rmax] ,

lim
r→0

r u = 0 , dru(rmax) = (−1/rmax + Z)u(rmax) .
(7.24)

As discussed in Subsection 6.1, the above problem is equivalent to
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Figure 12: Imaginary parts of the analytic and numerical solution for Problem (7.21) with Dirichlet
boundary condition τ0 = 1 at frequency 6 mHz with attenuation γ = 10−4. The original computational
interval is [0.5, 1]. The numerical solutions use polynomials of order 4 and discretization step 10−3 (i.e.,
1001 elements). Exact solution w is given by (7.22a).
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Figure 13: Evolution of the relative error (7.2) for Problem (7.21) with Dirichlet boundary condition τ0 =
1 at frequency 6 mHz for a computational interval [0.5, 1]. The numerical solutions use a discretization
step 10−3 (i.e., 1001 elements) and we vary the polynomial order.


− r(r v)′ + QAtmo

` w = r2 δ(r − s) ,
r w′ − w = r v ,

lim
r→0

v = 0 , v(rmax) =
(
− 1

rmax
+ Z

)
w(rmax) .

(7.25)

In Subsection 4.2, we have given two ways to compute the solution with either
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1. using a direct discretization: this is the Approach 1 of Subsection 4.2.1,

2. assembling the solutions of two boundary value problems, as explained in Proposition 1: this is our
Approach 2 (Subsection 4.2.2).

We next give the explicit form for the exact solution w to (7.25).

7.3.1 Analytic solution

The exact solution w to (7.25) is also the solution to(
−d2

r − k2 +
α∞
r

+
`(`+ 1)

r2

)
w = δ(r − s) . (7.26)

It is thus given by

wref(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r) ψ(s)

W{ψ(s) , ψ̃(s)}
, (7.27)

where H is the Heavyside function and ψ and ψ̃ are given by

ψ =Mχ,`+1/2(2ikr) or Mχ,`+1/2(2ikr) , (7.28a)

ψ̃ = W−χ,`+1/2(−2ikr) + aWχ,`+1/2(2ikr) . (7.28b)

The constant a is determined by the boundary condition at r = rmax,

2ik
(
−W′−χ,`+1/2(−2ikrmax) + aW′χ,`+1/2(2ikrmax)

)
= (Z•)

(
W−χ,`+1/2(−2ikrmax) + aWχ,`+1/2(2ikrmax)

) (7.29)

such that

a =
2ikW′−χ,`+1/2(−2ikrmax) + (Z•)W−χ,`+1/2(−2ikrmax)

2ikW′χ,`+1/2(2ikrmax)− (Z•)Wχ,`+1/2(2ikrmax)
. (7.30)

We note that when Z = Z`DtN then a = 0. We also note that ψ and ψ̃ can be chosen as constant multiples
of the solutions of the boundary value problems given in (7.17) and (7.21) respectively.

Computation of the Wronskian Here we will give explicit expression for the Wronskian of ψ and ψ̃
given in (7.28).

1. If in (7.28a) we work with ψ =Mχ,`+1/2(2ikr), we have that

W =

∣∣∣∣ Mχ,`+1/2(2ikr) W−χ,`+1/2(−2ikr) + aWχ,`+1/2(2ikr)
2ikM′χ,`+1/2(2ikr) 2ik(−W′−χ,`+1/2(−2ikr) + aW′χ,`+1/2(2ikr))

∣∣∣∣ = 2ik (C1 + aC2) , (7.31)

with

C1 =

∣∣∣∣Mχ,`+1/2(2ikr) W−χ,`+1/2(−2ikr)
M′χ,`+1/2(2ikr) −W′−χ,`+1/2(−2ikr)

∣∣∣∣ =
1

Γ(2`+ 2)

∣∣∣∣Mχ,`+1/2(2ikr) W−χ,`+1/2(−2ikr)
M′χ,`+1/2(2ikr) −W′−χ,`+1/2(−2ikr)

∣∣∣∣
=

1

Γ(1 + `+ χ)
(−1)`+1 ,

(7.32)
and

C2 =

∣∣∣∣Mχ,`+1/2(2ikr) Wχ,`+1/2(2ikr)
M′χ,`+1/2(2ikr) W′χ,`+1/2(2ikr)

∣∣∣∣ =
1

Γ(2`+ 2)

∣∣∣∣Mχ,`+1/2(2ikr) Wχ,`+1/2(2ikr)
M′χ,`+1/2(2ikr) W′χ,`+1/2(2ikr)

∣∣∣∣
= − 1

Γ(`+ 1− χ)
.

(7.33)
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2. If in (7.28a) we work with ψ = Mχ,`+1/2(2ikr), then

W(s) = 2i k (C̃1 + a C̃2) , (7.34)

with
C̃1 =

Γ(2`+ 2)

Γ(1 + `+ χ)
(−1)`+1 , C̃2 = − Γ(2 + 2`)

Γ(`+ 1− χ)
. (7.35)

For the above result, we have used [28, 13.14.27] which gives∣∣∣∣Mχ,`+1/2(2ikr) W−χ,`+1/2(−2ikr)
M′χ,`+1/2(2ikr) −W′−χ,`+1/2(−2ikr)

∣∣∣∣ =
Γ(2`+ 2)

Γ(1 + `+ χ)
e(`+1)πi =

Γ(2`+ 2)

Γ(1 + `+ χ)
(−1)`+1 ,

and [28, 13.14.26], ∣∣∣∣Mχ,`+1/2(2ikr) Wχ,`+1/2(2ikr)
M′χ,`+1/2(2ikr) W′χ,`+1/2(2ikr)

∣∣∣∣ = − Γ(2 + 2`)

Γ(`+ 1− χ)
.

Exact solution with Z`
DtN

As mentioned earlier a = 0, the analytical solution (7.27) has the simplified
form,

wref(r, s) = −H(s− r)Mχ, `+1/2(2ikr) W−χ, `+1/2(−2iks)

2 i k Γ(2`+2)
Γ(1+`+χ) (−1)`+1

− H(r−s)W−χ, `+1/2(−2ikr) Mχ, `+1/2(2iks)

2 i k Γ(2`+2)
Γ(1+`+χ) (−1)`+1

.

(7.36)
If the regular solution ψ (7.28a) is obtained with M, we have an equivalent expression for the exact
solution,

wref(r, s) = −H(s−r)Mχ, `+1/2(2ikr) W−χ, `+1/2(−2iks)

2 i k 1
Γ(1+`+χ) (−1)`+1

− H(r−s)W−χ, `+1/2(−2ikr)Mχ, `+1/2(2iks)

2 i k 1
Γ(1+`+χ) (−1)`+1

.

(7.37)
This simplifies to

w(r, s) =
(−1)`+2Γ(1 + `+ χ)

2ik

(
H(s− r)Mχ, `+1/2(2ikr) W−χ, `+1/2(−2iks)

+ H(r − s) W−χ, `+1/2(−2ikr)Mχ, `+1/2(2iks)

)
.

(7.38)

The specific calculation is written in Subsection 7.3.1.

Remark 5 (Relation to the Helmholtz equation). When α = 0, the first equation of (7.25) reduces to(
− d2

dr2
+ k2 +

`(`+ 1)

r2

)
w`(r, s) = δ(r − s) . (7.39)

With zero right-hand-side, the equation(
− d2

dr2
+ k2 +

`(`+ 1)

r2

)
G = 0 , (7.40)

can be rewritten as the spherical Bessel equation(
− d2

dz2
− 2

z

d

dz
− 1 +

`(`+ 1)

z2

)
g = 0 . (7.41)

By putting back the term r, i.e., for g(z) = g̃(z)
z , then g̃(z) solves(

− d2

dz2
− 1 +

`(`+ 1)

z2

)
g̃ = 0 (7.42)
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We now carry out the change of variable z = kr, thus g̃(kr) = G(r) with G(r) solving (7.39).
In short, for the solution ψ(r) on [0, b] and outgoing solution ψ̃(r) on [a, rmax] to (7.40), we choose

ψ(r) = r j`(k r) , ψ̃(r) = r h
(1)
` (k r) . (7.43)

Note that h
(1)
` = j` + iy`, using [28, 10.50.1], their Wronskian is given by

W{j`(t) , h
(1)
` (t)} = i W{j`(t) , y`(t)} =

i

t2
, (7.44)

and

W{ψ(r), ψ̃(r)} =

∣∣∣∣∣ rj`(kr) rh
(1)
` (kr)

j`(kr) + rkj′`(kr) h
(1)
` (kr) + k r kh

(1)′
` (kr)

∣∣∣∣∣
= kr2

∣∣∣∣∣j`(kr) h
(1)
` (kr)

j′`(kr) h
(1)′
` (kr)

∣∣∣∣∣ = kr2 i

(kr)2
=

i

k
.

(7.45)

Using formula (4.37), the Green function to (7.39) when α = 0 is then

w`(r, s) = ik
(

H(s− r) r j`(kr) sh
(1)
` (ks) + H(r − s) r h

(1)
` (kr) s j`(ks)

)
= ik r s

(
H(s− r) j`(kr) h

(1)
` (ks) + H(r − s) h

(1)
` (kr) j`(ks)

)
.

(7.46)

In addition, when ` = 0,

j0 =
sin z

z
, h

(1)
0 =

eiz

iz
, (7.47)

such that

ψ̃(r) = r
sin(k r)

kr
=

sin(k r)

k
, ψ(r) = r

eikr

ikr
=
eikr

ik
, (7.48)

and

w0(r, s) = ik r s

(
H(s− r) sin(k r)

k r

eiks

i k s
+ H(r − s) e

ikr

i k r

sin(k s)

k s

)
=

1

k

(
H(s− r) sin(k r) eiks + H(r − s) eikr sin(k s)

)
.

(7.49)

4

7.3.2 Numerical experiments

We validate our HDG implementation by comparing the numerical solution with the analytical one. The
constant parameters are selected to take the value in the solar atmosphere, extracted from the Atmo
model, which are scaled such that we take

c = 6.86× 109/R� = 9.87× 10−6 s−1 ; α = 6663.62 . (7.50)

The (scaled) radius varies from 0 to 1.05 and we consider a fixed source in s = 1. We investigate
different frequencies (6 and 10 mHz), and modes (` = 0 and ` = 100), as well as the case with or without
attenuation, respectively with γ = 0 and γ = 0.1. The comparisons between the two approaches and
the analytical solution are pictured Figures 14 and 15 where, for the sake of clarity (because of the fast
oscillations), we zoom on an interval around the source location. In the case of Approach 2, we take the
parameters

a = 10−25 , b = rmax = 1.05 (7.51)

which give the interval of computation for ψ and ψ̃, see (4.33) and (4.35).
We observe that the two approaches capture well the analytical solution, and we cannot distinguish the

difference between them. However, in the Approach 1, which discretizes the delta-Dirac source function
on the right-hand side, the singularity remains at the source position, leading to drastic inaccuracy at
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(b) Imaginary part at 6 mHz for ` = 0, γ = 0.
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(d) Imaginary part at 6 mHz for ` = 0, 2πγ = 0.1mHz.

Figure 14: Comparisons of the solutions at 6 mHz for mode ` = 0 without attenuation (γ = 0, on top)
and with attenuation (2πγ = 0.1mHz, at the bottom) for a source located in s = 1.
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(b) Imaginary part at 10 mHz for ` = 0, 2πγ = 0.1mHz.
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(c) Real part at 10 mHz for ` = 100, 2πγ = 0.1mHz.
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(d) Imaginary part at 10 mHz for ` = 100, 2πγ =
0.1mHz.

Figure 15: Comparisons of the solutions at 10 mHz for mode ` = 0 and ` = 100 with attenuation
2πγ = 0.1mHz, for a source located in s = 1.

this location. While the singularity is only contained in the real part without attenuation (γ = 0),
when incorporating the attenuation, the singularity (leading to an inaccurate solution) also appears in
the imaginary part. This observation highlights a major difficulty of the naive discretization approach:
the discretization of the source needs to be carefully addressed. This is even more important as, in
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helioseismology, one is mostly interested by the value of the solution at the source location (namely,
G`(1, 1)). In order to overcome the issue, one needs to refine around the source position, as advocated
in [8, 14, 3]. This can however be cumbersome when several sources must be taken into account, such
that the mesh for the numerical resolution must be updated for every source to take into account the
refinement, or that one uses the same mesh but which would be over-refined everywhere. On the other
hand, Approach 2 provides the accurate solution at the source position, without any need for specific
discretization.

In Table 2, we give the relative errors between the approaches, computed on the whole interval (from
0 to rmax), using (7.2). For the Approach 1, the relative error excludes the source position, which shows
the singularity of the delta-Dirac source. It confirms the accuracy of the numerical solutions, with a
relative error that is always less than 0.1%. We also observe that the Approach 2 gives slightly better
results.

Table 2: Relative error (7.2) between the analytical solution and the computations using Approach 1 or 2.
For Approach 1, due to the singularity of the delta-Dirac function, the solution at the source position is
not taken into account in the relative errors. The error is multiplied by 100 to give the result in percent.

3 mHz Approach 1 Approach 2
` = 0 , γ = 0 2.4× 10−2% 6.9× 10−3%
` = 100, γ = 0 1.8× 10−2% 6.6× 10−3%
` = 0 , γ = 10−4 1.8× 10−4% 5.5× 10−5%
` = 100, γ = 10−4 1.8× 10−4% 5.5× 10−5%

10 mHz Approach 1 Approach 2
` = 0 , γ = 0 2.1× 10−2% 9.9× 10−3%
` = 100, γ = 0 2.2× 10−2% 9.4× 10−3%
` = 0 , γ = 10−4 6.3× 10−3% 8.3× 10−3%
` = 100, γ = 10−4 6.3× 10−3% 8.3× 10−3%

8 Observables in local helioseismology

In helioseismology, the data are time series representing the surface oscillations Φ(r̂1, tj) at spatial points
r̂1 on the CCD (charge-coupled device) camera and at times tj . The data can come from satellites such
as MDI (Michelson doppler imager) on board of the SOHO (solar and heliospheric observatory) satellite
(from 1996 to 2010) [31] or the HMI (helioseismic and magnetic imager) on board of the SDO (solar
dynamics observatory) satellite since 2010 [32] but also from ground-based telescopes such as the GONG
(global oscillation network group) network (since 1996) [18].

The temporal resolution ht is of one minute for MDI and GONG, and of 45 s for HMI. This resolution
determines the Nyquist frequency – the highest frequency that can be observed – ωmax/(2π) = 1/(2ht)
(∼ 11.1 mHz for HMI and 8.33 mHz for MDI and GONG). The spatial resolution is linked to the number
of pixels of the instrument which is of 4000 by 4000 for HMI (4k×4k) 1000 by 1000 for MDI (1k×1k).
GONG had initially a 256 × 256 camera which was replaced by a 1k × 1k camera in 2001. One pixel
is around 0.03 heliographic degrees for HMI and 0.12 heliographic degrees for MDI and the actual data
from GONG (which has a spatial step of 1.45 Mm at the disk center).

In this section, we define some classic quantities used in local helioseismology such as the cross-
covariance function, the power spectrum and the wave travel times. These quantities will be used in
Section 9 to compare the different boundary conditions and to show the importance of the knowledge of
the full Green kernel.
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8.1 Classical helioseismic quantities

8.1.1 Observables

In order to analyse the data, a relationship between the observed wavefield Φ and the modeled wave
displacement ξ is necessary. It can be written formally as

Φ(r̂1, tj) = Or̂1

(
ξ(r, tj)

)
, (8.1)

where r̂1 is a point on the camera, tj is the time and O is an operator that depends on the point r̂1 and
on the wave displacement at any location r in the solar interior. The data are then generally Fourier
transform to the frequency domain

Φ(r̂1, ωk) =
ht
2π

Nt/2−1∑
j=−Nt/2

Φ(r̂1, tj)e
iωktj , (8.2)

where T is the observation time, Nt = T/dt the number of data samples during the time T , and tj = jdt
is the discrete time variable. The inverse Fourier transform is defined as

Φ(r̂1, tj) = hω

Nt/2−1∑
k=−Nt/2

Φ(r̂1, ωk)e−iωktj , (8.3)

where hω = 2π/T is the frequency spacing, and ωk = khω. We suppose that the observable operator O
does not depend on time and we can thus write equivalently (8.1) in the frequency domain

Φ(r̂1, ωk) = Or̂1

(
ξ(r, ωk)

)
. (8.4)

Remark 6. An example of such operator often used to interpret Dopplergrams [7] [6] is an approximation
of the line-of-sight velocity such that

Or̂1

(
ξ(r, ωk)

)
= −iωk̂l(r̂1) · ξ(r1, ωk), (8.5)

where l̂(r̂1) is the line-of-sight unit vector corresponding to the observation point r̂1 and r1 = (1, r̂1) is
the 3D point at the solar surface. It requires the knowledge of the 3D displacement and cannot be obtained
directly in the framework of this report.

8.1.2 Filtering

To analyze the data, the observable is generally decomposed into spherical harmonics such that

Φ(r̂1, ωk) =

Lmax∑
l=0

l∑
m=−l

Φml (ωk)Ym
l (θ1, φ1), (8.6)

where

Φml (ωk) =

∫ 2π

0

∫ π

0

Φ(θ, φ, ωk)Ym
l (θ, φ) sin θdθdφ. (8.7)

Of course, θ and φ are only available on a discrete grid and the integral needs to be replaced by a sum at
available locations. Similarly to the Nyquist frequency for ω, the largest available harmonic degree Lmax

is π/hθ = Nθ where hθ = π/Nθ is the number of available pixels. Thus, due to the number of pixels on
the camera, Lmax = 1000 for MDI and 4000 for HMI.

Depending on the considered problem the data are then filtered in order to be more sensitive to the
desired quantity. The filtered observable Φ̃ml (ωk) is obtained by multiplying by a filter F

Φ̃m` (ωk) = Φm` (ωk)Fm` (ωk), (8.8)
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where Fml (ωk) is the spherical harmonic coefficient of the filter F(ωk). In this report, we use a phase-speed
filter

Fm` (ωk) = exp

(
− (|ωk|R�/`− vi)2

2δv2
i

)
, (8.9)

where vi is the mean velocity and δvi the standard deviation. Other classical filters can be used for
example to select a range of harmonic degrees between L0 and L1

Fm` (ωk) = δ[L0,L1], (8.10)

or similarly a range of frequencies [ω0, ω1]. The δ can be replaced by a smoother filter (Gaussian, smooth
rectangle) in order to avoid edge effects (aliasing).

The filtered data can then be transformed back to spatial variables

Φ̃(r̂1, ωk) =

Lmax∑
`=0

∑̀
m=−`

Φ̃m` (ωk)Y m` (θ1, φ1). (8.11)

Assumption 4. We suppose that the filter does not depend on longitude (and thus not on the azimuthal
order m) and is the same at all spatial locations on the camera (for all points r̂ on the solar surface).

8.1.3 Cross-covariance and power spectrum

As the sources due to convection have zero mean, the expectation value of the observable E[Φ(r̂1, ωk)] is
equal to zero and thus the data cannot be analyzed directly on the observed signal. Thus, one generally
considers the cross-covariance between any two points at the solar surface. In the frequency domain it
just corresponds to a multiplication and

C(r̂1, r̂2, ωk) = Φ̃(r̂1, ωk)Φ̃(r̂2, ωk). (8.12)

The expectation value of the cross-covariance is denoted by

C(r̂1, r̂2, ωk) = E[Φ̃(r̂1, ωk)Φ̃(r̂2, ωk)]. (8.13)

To facilitate the derivation of C in Subsection 8.2.3, we also define the expectation value of the cross-
covariance for unfiltered data

Cu(r̂1, r̂2, ωk) = E[Φ(r̂1, ωk)Φ(r̂2, ωk)]. (8.14)

The power spectrum is

P`,m(ωk) = E[|Φ̃ml (ωk)|2]

=

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

C(r̂1, r̂2, ωk)Ym
l (θ1, φ1)Ym

l (θ2, φ2) sin θ1dθ1dφ1 sin θ2dθ2dφ2. (8.15)

It corresponds to the spherical harmonic transform (in r̂1 and r̂2 of the expectation value of the cross-
covariance.

8.1.4 Travel-time and amplitude measurements

In time-distance helioseismology, the travel-time (τ) and amplitude (a) between the observed and a
reference cross-covariance are often used. They are defined as the solution of the minimization problem
, ∫ ∞

−∞
w(t)

[
C(r̂1, r̂2, t)− aCref(r̂1, r̂2, t− τ)

]2
dt, (8.16)

where w is a window function chosen in order to select a given wave packet (for example the first arrival
wave packet, see e.g. Fig. 1 in [26] for a sketch). The reference cross-covariance Cref can be obtained
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Ass. Source Surface Integrated Depth

Observable Φsurf(r̂1, ωk) = Φint(r̂1, ωk) = Φdepth(r̂1, ωk) =
ψ(R�, r̂1, ωk)

∫
K(r, r̂1)ψ(r, r̂1, ωk)dr ψ(rfh(r̂1), r̂1, ωk)

(8.36) (8.39)(∗) (8.41)(∗) (8.42)(∗)
Cross-covariance (8.37) (8.46) (8.47) (8.48)

(8.38) (8.51) (8.52) (8.53)

Power spectrum (8.37) (8.56) (8.61) (8.64)
(8.38) (8.65) (8.66) (8.68)

Table 3: Summary of the three defined observables and the corresponding equations to compute the
expectation value of the cross-covariance and the power spectrum depending on the hypothesis on the
source covariance matrix. The unknown ψ is solution the wave equation given by (8.21).
(∗) These expressions are for the unfiltered data.

by averaging the observations or computed from a reference solar model. Linearizing around reference
values such that τ = τ0 + δτ and a = 1 + δa, the solution of the minimization problem at first order is,
cf. [26, Equation 6 and 7]

δτ(r̂1, r̂2) =

∫ ∞
−∞

Wτ (r̂1, r̂2, t)
(
C(r̂1, r̂2, t)− Cref(r̂1, r̂2, t)

)
dt, (8.17)

δa(r̂1, r̂2) =

∫ ∞
−∞

Wa(r̂1, r̂2, t)
(
C(r̂1, r̂2, t)− Cref(r̂1, r̂2, t)

)
dt (8.18)

where the weighting functions Wτ and Wa are given by, cf. [26, Equation 8 and 9],

Wτ (r̂1, r̂2, t) = − w(t)∂tCref(r̂1, r̂2, t)∫∞
−∞ w(t′)∂tCref(r̂1, r̂2, t′)2dt′

, (8.19)

Wa(r̂1, r̂2, t) =
w(t)Cref(r̂1, r̂2, t)∫∞

−∞ w(t′)Cref(r̂1, r̂2, t′)2dt′
. (8.20)

8.2 From the scalar wave solution to simulated observables

In order to consider a scalar problem instead of solving for the full 3D wave displacement ξ, we follow
the approach of [15] and solve an equation for the quantity ψ = ρc2∇ · ξ which is (up to the minus sign)
the Lagrangian perturbation of the pressure. It satisfies

Lψ := −∇ ·
(

1

ρ
∇ψ
)
− σ2

ρc2
ψ = s, (8.21)

where s(r, ωk) is a stochastic source that represents the excitation of waves due to convection. It is a
random process with zero mean and covariance matrix M(r, r′, ωk).

We consider three different possible observables Φ(r̂1, ωk) (and their associated filtered version Φ̃(r̂1, ωk))
for this scalar problem:

– the observable at the surface which is classically used for helioseismic studies. In this case, the
operator O is given by

Or̂1

(
ξ(r, ωk)

)
= ρ(r1)c2(r1)∇ · ξ(r1, ωk), (8.22)

where r1 = (1, r̂1), and the observable Φsurf(r̂1, ωk) is directly the solution of (8.21) at the solar
surface

Φsurf(r̂1, ωk) = ψ(r1, ωk). (8.23)

It supposes that the Sun is a solid body with a clearly defined surface at height 1 corresponding to
the solar radius in unscaled quantities.
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– the observable integrated over depth. As the Sun is a plasma, the observables cannot be considered
to come only from the solar surface but correspond to a weighted average

Φint(r̂1, ωk) =

∫
K(r, r̂1)ψ(r, r̂1, ωk)dr, (8.24)

where K is called the contribution function6. In our numerical experiments, we use an approxima-
tion and consider that K is roughly a Gaussian that peaks at a given depth rfh(r̂1)

K(r, r̂1) =
1√

2π σ
exp

(
− (r − rfh(r̂1))2

2σ2

)
, (8.25)

where σ R� = 50 km and

rfh(r̂1) = req + (rpole − req) cos2(θ1) cos2(φ1), (8.26)

with req R� = 0 km, and rpole R� = 300 km. With this simplified formula the observed height at
the equator is req while it is rpole at the pole. The integral must theoretically be done over the full
depth range but it can in practice be done only from a few hundred kilometers below the surface
as deeper layers inside the Sun are optically thick.

– the observable at a given height. To avoid the integration from (8.24), it is possible simplify the
previous approach and to define a formation height7

rfh(r̂1) = argmaxr K(r, r̂1). (8.27)

We then define a third possible observable which corresponds to the solution of the wave equation
at the formation height rfh(r̂1)

Φdepth(r̂1, ωk) = ψ(rfh(r̂1), r̂1, ωk). (8.28)

In the next subsections, we derive the expressions to compute these observables as well as the expectation
value of the cross-covariance and the power spectrum as a function of the Green’s function Legendre
coefficients. A summary of the results is given in Table 3.

Remark 7. Integrating the observable over height (and thus the full Green kernel) is also required if
we define our observable as a perturbation to the emergent intensity due to acoustic oscillations. In
this case, the background emergent intensity is defined in an equilibrium state (perfect sphere of radius
R� with background sound speed c0 and density ρ0). The oscillations perturb the solar surface and the
thermodynamical quantities and thus the observed intensity. For adiabatic oscillations, the Lagrangian
perturbations of density, pressure and temperature are linked to the divergence of the displacement and
thus to the unknown of our scalar equation ψ. We could then define the function K̃ such that, at first
order,

δI(r̂1, ωk) =

∫
K̃(r, r̂1)ψ(r, r̂1, ωk)dr. (8.29)

Example of intensity perturbations computed with such an approach can be found in [36].

6The contribution function expresses how much of the observable is coming from the depth r at the position r̂1. It
depends on the opacity which is a function of pressure, temperature and chemical composition of the Sun. An example of
contribution function can be seen in [22, e.g. Fig. 1] and the expression of the contribution function corresponds to the
term inside the integral in [22, Eq. 3].

7The formation height is the height from which most of the photons are emitted and which thus contributes the most
to the observable. It is increasing towards the limb which implies that the observable is coming from a height with lower
density and temperature at the limb compare to the disk center. The emitted intensity is thus decreasing with latitude
which makes the limb appears darker than the center of the Sun, an optical phenomenon called limb darkening.
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8.2.1 Connection to the Green kernel

The solution of (8.21) can be obtained from the Green’s function of the linear operator L

ψ(r1, ωk) =

∫
G(r1, r, ωk)s(r, ωk)dr. (8.30)

For a radially symmetric background, the Green’s function can be written as a function of the Legendre
coefficients G` solutions of (1.5) (see Proposition 1)

G(r1, r, ωk) =
1

4πr1r

∑
`

(2`+ 1)G`(r1, r, ωk)P`(cos θr̂1·r̂). (8.31)

Thus, the three possible observables can be obtained from the solution of the modal ODE as

Φsurf(r̂1, ωk) =
1

4π

∑
`

(2`+ 1)

∫ G`(1, r, ωk)

r
P`(cos θr̂1·r̂) s(r, ωk)dr, (8.32)

Φint(r̂1, ωk) =
1

4π

∑
`

(2`+ 1)

∫
K(r′, r̂1)

∫ G`(r′, r, ωk)

rr′
P`(cos θr̂1·r̂) s(r, ωk)drdr′, (8.33)

Φdepth(r̂1, ωk) =
1

4πrfh(r̂1)

∑
`

(2`+ 1)

∫ G`(rfh(r̂1), r, ωk)

r
P`(cos θr̂1·r̂) s(r, ωk)dr. (8.34)

Note that due to seismic reciprocity we have G(r1, r, ωk) = G(r, r1, ωk) and Gl(r1, r, ωk) = Gl(r, r1, ωk).
Thus the Green’s function and consequently the observable Φsurf can be obtained from the computation
of a single Green’s function (at all harmonic degrees l) with a source located at the solar surface, while
Φint requires the full Green’s function for all sources and receivers (in the support of K) and Φdepth needs
the Green’s function at all heights r1 corresponding to the observation points r̂1.

8.2.2 Assumptions on the sources of excitation

To obtain the Φ(r̂1, ωk) one needs to generate a realization of the random process s. This source term
corresponds to the stochastic excitation of the wave by convection.

Assumption 5. The source term is a Gaussian process with zero-mean and source covariance matrix M

E[s(r, ωk)s(r′, ωk)] := M(r, r′, ωk). (8.35)

Assumption 6. The sources satisfy Assumption 5 and are spatially uncorrelated

E[s(r, ωk)s(r′, ωk)] = M(r, r, ωk)δ(r − r′). (8.36)

While Assumption 5 can be justified by the law of larger number, Assumption 6 should be taken with
care as the sources have a horizontal correlation length depending on the scales we are interested in (e.g
∼ 1 − 2 Mm for granulation, ∼ 30 Mm for supergranulation, see e.g. [17]) and an unknown vertical
correlation length. An example of source covariance matrix with a correlation length in time and space
is given in [16], although they considered uncorrelated sources for their numerical examples as it greatly
simplifies the computations.

As little is known about the source covariance matrix M , simple forms are often assumed in order to
reduce the computational cost.

Assumption 7. The sources satisfy Assumption 6 with a covariance matrix M that depends only on
depth

M(r, r, ωk) = M(r, ωk). (8.37)

This is the most commonly used simplification and includes for example the choice from [6, 24] where
M(r, r, ωk) = δ(r − rs), where rs is the height where the sources are generated.

A more physical assumption coming from the geophysics litterature [33, 12] is that the energy is
equipartitioned. It was introduced in helioseismology in [15].
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Assumption 8. The sources satisfy Assumption 6 with a covariance matrixM and the energy is equipar-
titioned which implies for our problem that [15]

M(r, r, ωk) = Π(ωk)

(
γ(r)

ρ(r)
+

c(r)

2ρ(r)
δ(r − 1)

)
, (8.38)

where Π is a function that describes the time correlations of the sources.

8.2.3 Expectation value of the cross-covariance as a function of the Green function

In this subsection, we give the expressions of the expectation value of the cross-covariance as a function
of the Green kernel under the different assumptions on the source covariance matrix. We suppose that
at least Assumption 6 (spatially uncorrelated sources) is satisfied.

Unfiltered data Using the definition of the observables Φsurf , Φint and Φdepth given by (8.23), (8.24)
and (8.28), the expectation value of the cross-covariance for unfiltered data is given by

Cu
surf(r̂1, r̂2, ωk) := E[Φsurf(r̂1, ωk)Φsurf(r̂2, ωk)] =

∫
G(1, r̂1, r, ωk)G(1, r̂2, r, ωk)M(r)dr, (8.39)

Cu
int(r̂1, r̂2, ωk) := E[Φint(r̂1, ωk)Φint(r̂2, ωk)] (8.40)

=

∫ ∫ ∫
K(r′, r̂1)K(r′′, r̂2)G(r′, r̂1, r, ωk)G(r′′, r̂2, r, ωk)M(r)drdr′dr′′, (8.41)

Cu
depth(r̂1, r̂2, ωk) := E[Φdepth(r̂1, ωk)Φdepth(r̂2, ωk)] =

∫
G(rfh(r̂1), r̂1, r, ωk)G(rfh(r̂2), r̂2, r, ωk)M(r)dr.

(8.42)

Without any additional on the source covariance, the expressions for the expectation value of the filtered
cross-covariance are lengthy and not instructive. We will thus derive these expressions only in the case
of Assumptions 7 and 8.

Under Assumption 7, using the representation of the 3D Green function from Proposition 1 and the
result (2.13), one obtains

Cu
surf(r̂1, r̂2, ωk) =

∑
`

2`+ 1

4π
P`(cos θr̂1·r̂2

)

∫
|G`(1, r, ωk)|2M(r, ωk)dr, (8.43)

Cu
int(r̂1, r̂2, ωk) =∑

`

2`+ 1

4π
P`(cos θr̂1·r̂2

)

∫ ∫ ∫
K(r′, r̂1)K(r′′, r̂2)

G`(r′, r, ωk)G`(r′′, r, ωk)

r′r′′
M(r, ωk)drdr′dr′′,

(8.44)

Cu
depth(r̂1, r̂2, ωk) =

1

rfh(r̂1)rfh(r̂2)

∑
`

2`+ 1

4π
P`(cos θr̂1·r̂2

)

∫
G`(rfh(r̂1), r, ωk)G`(rfh(r̂2), r, ωk)M(r, ωk)dr. (8.45)

Filtered data Under Assumption 7, it is now also possible to write the expression of the expectation
value of the cross-covariance for filtered data. Projecting Φ̃ into spherical harmonics and using the
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definition of the filtered data (8.8), we obtain similar expressions than above but now with the filter

Csurf(r̂1, r̂2, ωk) =
∑
`

2`+ 1

4π
F2
`P`(cos θr̂1·r̂2

)

∫
|G`(1, r, ωk)|2M(r, ωk)dr, (8.46)

Cint(r̂1, r̂2, ωk) =∑
`

2`+ 1

4π
F2
`P`(cos θr̂1·r̂2

)

∫ ∫ ∫
K(r′, r̂1)K(r′′, r̂2)

G`(r′, r, ωk)G`(r′′, r, ωk)

r′r′′
M(r, ωk)drdr′dr′′,

(8.47)

Cdepth(r̂1, r̂2, ωk) =

1

rfh(r̂1)rfh(r̂2)

∑
`

2`+ 1

4π
F2
`P`(cos θr̂1·r̂2

)

∫
G`(rfh(r̂1), r, ωk)G`(rfh(r̂2), r, ωk)M(r, ωk)dr. (8.48)

Here, we used again the addition theorem and the orthonormality of spherical harmonics.
If moreover we have Assumption 8, then it was shown in [15] that∫
G(r1, r, ωk)G(r2, r, ωk)M(r, ωk)dr =

Π(ωk)

2ωk
Im[G(r1, r2, ωk)], (8.49)

=
1

4πr1r2

Π(ωk)

2ωk

∑
`

(2`+ 1)Im[Gl(r1, r2, ωk)]P`(cos θr̂1·r̂2
). (8.50)

For the last equality, we use Proposition 1. In this case, the expressions for the expectation value of the
cross-covariance become

Csurf(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

∑
`

(2`+ 1)F2
` Im[Gl(1, 1, ωk)]P`(cos θr̂1·r̂2

), (8.51)

Cint(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

∑
`

(2`+ 1)F2
`

∫ ∫
K(r, r̂1)K(r′, r̂2)

Im[Gl(r, r
′, ωk)]

rr′
drdr′P`(cos θr̂1·r̂2

),

(8.52)

Cdepth(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

1

rfh(r̂1)rfh(r̂2)

∑
`

(2`+ 1)F2
` Im[Gl(rfh(r̂2), rfh(r̂1), ωk)]P`(cos θr̂1·r̂2

). (8.53)

Remark 8. For a radially symmetric medium, under the hypotheses (8.37) or (8.38), the expectation
value of the cross-covariance for surface observations depends only on the angle between the observation
points r̂1 and r̂2 (see (8.46) and (8.51)). In this case, we simply write Csurf(θ, ω). 4

To evaluate Csurf , one only needs to evaluate the Green’s function for a source at the surface while a
source at a given height (that differs depending on co-latitude and longitude) is required for Cdepth and
the full Green function for Cint. Thanks to the approach 2 to compute the Green function proposed in
this report, the computation time required to compute Cint or Cdepth is only twice as much as the one
to compute Csurf using the approach 1 (as two simulations are required for the approach 2 but the full
Green function is obtained while approach 1 requires one simulation but gives only the Green function
for one source location).

Note that the number of Green functions to be computed is independent of the hypothesis on the
source covariance matrix. However the computational cost to evaluate the expectation of the cross-
covariance is larger if one only supposes that the sources are uncorrelated as an extra integral over depth
must be performed (see e.g (8.39) compared to (8.46) and (8.51)).

Time-distance diagram The inverse Fourier transform in time of the expectation value of the cross-
covariance C(r̂1, r̂2, t) is called the time-distance diagram and allows for a visual representation of how
waves propagating through the solar interior are observed at the surface as a function of time and distance
(see e.g. Fig. 12 in [15]). In order to compute the time-distance diagram, the Green function must be
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computed for all harmonic degrees ` and frequencies ωk in order to be able to perform the Legendre
and inverse Fourier transform. It is thus important to have an efficient method to compute the full
Green function as this routine should be called many times. It is however embarrassingly parallel as the
frequencies and harmonic degrees are independent.

8.2.4 Power spectrum as a function of the modal Green function

If the only assumption is that the sources are spatially uncorrelated, then the expressions of the power
spectrum are obtained by plugging (8.39), (8.42), and (8.41) into the definition of the power spectrum
(8.15) and cannot be further simplified.

If we assume also (8.37) then the horizontal integrals can be done analytically using the orthonormality
of spherical harmonics (2.26) and we obtain for the case of surface data

P`,msurf(ωk) =

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

Csurf(r̂1, r̂2, ωk)Ym
l (θ1, φ1)Ym

l (θ2, φ2) sin θ1dθ1dφ1 sin θ2dθ2dφ2, (8.54)

=
∑
`′

2`′ + 1

4π
F2
`′

∫
|G`′(1, r, ωk)|2M(r, ωk)dr

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

P`′(cos θr̂1·r̂2
)Ym

` (θ1, φ1)Ym
` (θ2, φ2) sin θ1dθ1dφ1 sin θ2dθ2dφ2, (8.55)

= F2
`

∫
|G`(1, r, ωk)|2M(r, ωk)dr, (8.56)

where we used the addition theorem (2.27).
In the case of integrated data, the power spectrum is given by

P`,mint (ωk) =

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

Cint(r̂1, r̂2, ωk)Ym
l (θ1, φ1)Ym

l (θ2, φ2) sin θ1dθ1dφ1 sin θ2dθ2dφ2, (8.57)

=
∑
`′

2`′ + 1

4π
F2
`′

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

P`′(cos θr̂1·r̂2
)Ym

l (θ1, φ1)Ym
l (θ2, φ2) (8.58)

∫ ∫ ∫
K(r′, r̂1)K(r′′, r̂2) sin θ1dθ1dφ1 sin θ2dθ2dφ2

G`′(r′, r, ωk)G`′(r′′, r, ωk)

r′r′′
M(r, ωk)drdr′dr′′.

(8.59)

The main difference with Psurf is that the functions K depend on r̂1 and r̂2 and the horizontal integrals
cannot be evaluated as easily as before. One solution is to evaluate these integrals numerically, however
it can become cumbersome for high harmonic degrees. It is also possible to decompose K into spherical
harmonics

K(r′, r̂1) =
∑
`1

`1∑
m1=−`1

K`1,m1(r′)Ym1

`1
, (8.60)

and to use the Gaunt formula (2.30) in order to compute analytically the integral of the product of three
spherical harmonics, to obtain,

P`,mint (ωk) =
∑
`′

F 2
`′

`+`′∑
`1=|`−`′|

`+`′∑
`2=|`−`′|

L∑
m′=−L

Gaunt(`, `′, `1,m,−m′,−m+m′)

Gaunt(`, `′, `2,m,m′,−m−m′)
∫
K`1,−m+m′(r′)

r′

∫
K`2,−m−m′(r′′)

r′′∫
G`′(r′, r, ωk)G`′(r′′, r, ωk)M(r, ωk)drdr′dr′′. (8.61)

Here L = min(`′, `1, `2) and we have use the fact that the Gaunt integrals are non-zeros only if the sum
of the three m is equal to 0.
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For data whose formation height is varying, the power spectrum is given by

P`,mdepth(ωk) =

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

Cdepth(r̂1, r̂2, ωk)Ym
l (θ1, φ1)Ym

l (θ2, φ2) sin θ1dθ1dφ1 sin θ2dθ2dφ2, (8.62)

=
∑
`′

2`′ + 1

4π
F2
`′

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

P`′(cos θr̂1·r̂2
)Ym

l (θ1, φ1)Ym
l (θ2, φ2) (8.63)

∫ G`′(rfh(r̂1), r, ωk)G`′(rfh(r̂2), r, ωk)

rfh(r̂1)rfh(r̂2)
M(r, ωk)dr sin θ1dθ1dφ1 sin θ2dθ2dφ2. (8.64)

It is possible to write that rfh(r̂1) =
∫
δ(r′ − rfh(r̂1))dr′ and to project the Dirac delta function into

spherical harmonics in order to evaluate analytically the horizontal integrals as previously. However, the
convergence of the Dirac delta function into spherical harmonics is very slow and many coefficients would
need to be kept. It is thus more efficient to evaluate numerically these integrals.

With energy equipartition (8.38), the expressions of the power spectrum further simplify

P`,msurf(ωk) =
Π(ωk)

2ωk
F2
` Im[G`(1, 1, ωk)], (8.65)

P`,mint (ωk) =
Π(ωk)

2ωk

∑
`′

F 2
`′

`+`′∑
`1=|`−`′|

`+`′∑
`2=|`−`′|

L∑
m′=−L

Gaunt(`, `′, `1,m,−m′,−m+m′)

Gaunt(`, `′, `2,m,m′,−m−m′)
∫
K`1,−m+m′(r′)

r′

∫
K`2,−m−m′(r′′)

r′′
Im [G`′(r′, r′′, ωk)] dr′dr′′,

(8.66)

P`,mdepth(ωk) =
Π(ωk)

2ωk

∑
`′

2`′ + 1

4π
F2
`′

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

P`′(cos θr̂1·r̂2
)Ym

l (θ1, φ1)Ym
l (θ2, φ2) (8.67)

Im [G`′(rfh(r̂1), rfh(r̂2, ωk)]

rfh(r̂1)rfh(r̂2)
sin θ1dθ1dφ1 sin θ2dθ2dφ2. (8.68)

With observations at the surface, the power spectrum (at a given ` and ωk) is proportional to the
imaginary part of the Green function Legendre coefficient G` with a source and receiver at the surface.
With integrated data, the knowledge of the full Green function for all sources and receivers is still required.

Remark 9. For surface data, under hypothesis (8.37) and (8.38), the expectation value of the cross-
covariance depends only on the angle between r̂1 and r̂2 and the expression of the power spectrum simplifies
to

P`,msurf(ωk) =
2`+ 1

2

∫ π

0

Csurf(θ, ωk)P`(cos θ) sin θdθ. (8.69)

In this case, the power spectrum is then independent of m and corresponds to the Legendre transform of
the expectation value of the cross-covariance C.

9 Numerical experiments with solar models

Now that our HDG implementation has been validated from the analytical solution, we perform numerical
experiments using inhomogeneous medium parameters that follow the solar profiles. Our code is written
in Fortran90, and combine mpi and OpenMp parallelism8. Furthermore, our code is linked with the library
Arb, [19] for the efficient computation of the special functions.

9.1 Model parameters from S+Atmo and S+Val-C

The propagation of the scalar waves is governed by the medium wave speed c and the inverse density scale
height α, together with its derivative α′. In the interior of the Sun, these are extracted from the model

8The code used, Haven will soon be made available online and will be open-source.
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S of [9]. In the atmosphere, we consider two models: Atmo, where the velocity is smoothly extended to a
constant and the density follows an exponential decay ([14, 15]); and the model Val-C, [34]. Consequently,
we designed the two solar profiles, S+Atmo and S+Val-C, which we picture in Figure 16. In particular, we
see that the atmospheric profile given by the model Val-C contains a drastic increase of both parameters
c and α, while the profile of the Atmo models is smooth.
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Figure 16: Profiles of the solar parameters, the model S is used for the interior and is combined with the
atmospheric models Atmo or Val-C.

For the computation using model S+Atmo, as the models are artificially smoothed, the interval of
computation is ended as soon as the wave speed is constant and the density exponentially decaying
(which means that α is constant). This amounts to

r ∈ [0, 1.0008] , scaled computational interval for model S+Atmo. (9.1)

On the other hand, the profile S+Val-C is given for

r ∈ [0, 1.00365] , scaled computational interval for model S+Val-C. (9.2)

9.2 Power spectrum and numerical e�ciency of the radiation conditions

One of the main quantity in numerical helioseismology is the power spectrum P. Under the hypothesis
of energy equipartition (8.38) and supposing that the data are observed at the surface of the Sun, it is
directly proportional to the imaginary part of the Green’s function as given by (8.65):

P`,msurf(ω) =
Π(ω)

2ω
Im[G`(1, 1, ω)]. (9.3)

The scaling function Π depends only on the frequency and can be given, for example, by [15, Eq. (85)],

Π(ω) =

(
1 +

( |ω| − ω0

ω1

)2
)−1

with
ω0

2π
= 3.3 mHz and

ω1

2π
= 0.6 mHz. (9.4)

We picture the power spectrum for the model S+Atmo in Figure 17, for frequencies from 1 mHz to 12
mHz and modes from 1 to 1000. For the computations, we use a constant attenuation γ/(2π) = 20 µHz.
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(a) Power spectrum.
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(b) Power spectrum on a logarithmic scale.

Figure 17: Power spectrum (9.3) associated with the model S+Atmo using radiation boundary condition
Z`DtN. It uses a constant attenuation γ/(2π) = 20 µHz.

Note that, contrary to the existing literature, our computation uses the exact Dirichlet-to-Neumann map
condition Z`DtN given in (5.2).

The high-frequency waves have less energy than the ones below the acoustic cut-off as high-frequency
waves are propagating in the atmosphere and are only partly reflected back to the interior of the Sun (see
Subsection 9.3). To clearly see the structure of the power spectrum at high frequencies, we also represent
the spectrum on a logarithmic scale.

In order to compare the models S+Atmo and S+Val-C, we plot some slices of the power spectrum at
fixed harmonic degree ` = 200 in Figure 18. These simulated data are compared with a slice of the
power spectrum from HMI (observed) data. The HMI power spectrum have been computed from one
month of data in December 2010. In order to reduce the noise, we compute the power spectrum daily and
average over the 31 realizations, see e.g., Section 2 of [21] for details. At low-frequency, Figure 18(a), the
computations using the two models are very similar, and we have a good correspondence with the peak
locations of the observed HMI data. The shift in the peak location is known as the “surface effect” in
helioseismology as in due to the imperfect modeling of the surface by the background model S [30]. The
widths of the peaks can be adjusted by tuning the attenuation term γ in (1.1). The attenuation should
be a function of frequency and harmonic degree which was not done for this study (see e.g. Fig. 8 in [15].

On the other hand, for frequencies above the acoustic cut-off, Figure 18(b), the models S+Atmo and
S+Val-C give different solutions, while none of them agree with the HMI data. Contrary to waves below
the cut-off which are trapped inside the Sun, high-frequency waves are traveling into the atmosphere and
are partly reflected back inside the Sun. They are thus carrying information not only about the interior
but also about the structure of the atmosphere. The use of high-frequency waves to learn about the
atmosphere is an interesting inverse problem but it probably requires a more sophisticated wave equation
as magnetic phenomena are very important in this area.

After this comparison between models and data, we investigate the efficiency of the radiation boundary
conditions for the computation of the power spectrum. In Subsection 5.3, we have evaluated their
performances analytically, using the reference solutions with homogeneous background parameters. Here,
we compare the efficiency for computations using the solar model S+Atmo, where the reference solution is
given by the solution of (7.25) using the exact Dirichlet-to-Neumann map condition Z`DtN, see Figure 17.
Our computational interval uses a scaled radius from 0 to 1.0008, that is, the boundary condition is set
as soon as the velocity is constant and the density exponentially decaying. It is the smallest possible
interval, and it allows us to clearly identify the performance in the choice of conditions. Therefore, we
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Figure 18: Comparison of the computed power spectra (9.3) using solar models S+Atmo and S+Val-C
with the HMI observed data at harmonic degree ` = 200. In each of the plots, the three functions are
normalized to have their maximum at 1.

evaluate the performance with the relative error

ePZ•(ω, `) =
‖P`surf,Z•(ω) − P`

surf,Z`
DtN

(ω) ‖
‖P`

surf,Z`
DtN

(ω) ‖ , (9.5)

where the index Z• indicates the choice of condition and P`
surf,Z`

DtN

is the reference power spectrum

computed with Z`DtN, pictured in Figure 17. The relative errors for a choice of six conditions are shown
in Figure 19, in particular, we focus on the conditions that do not depend on `.

We see that the nonlocal boundary condition provides the more accurate results, and that the maxi-
mum error is on a line that corresponds to the cut-off frequency, in particular for high-degree modes. On
the other hand, Z`

A-HF-1
gives the worst results, while all other conditions give very similar errors, with a

slight advantage towards Z
SAI-0

and Z
S-HF-1a

. To confirm the observations, we provide the means of the
relative errors:

mean
(
ePZ`

nonlocal

)
= 1× 10−5 ,

mean
(
ePZ

S-HF-0

)
= 9.26× 10−3 ,

mean
(
ePZ

S-HF-1a

)
= 9.10× 10−3 ,

mean
(
ePZ`

A-HF-1

)
= 4.53× 10−1 ,

mean
(
ePZA-RBC-1

)
= 9.28× 10−3 ,

mean
(
ePZ

SAI-0

)
= 9.10× 10−3 .
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Figure 19: Relative error (9.5) for the power spectrum associated with the model S+Atmo depending on
the choice of radiation boundary condition, placed in rmax = 1.0008. The computations use a constant
attenuation γ/(2π) = 20 µHz.

9.3 In�uence of the radiation conditions on the time-distance diagram

In this subsection, we use the set-up from [14] in order to see the difference between Z
S-HF-1a

and Z`
A-HF-1

in terms of time-distance diagram. They are both high-frequencies approximations of the nonlocal RBC
coefficient, however the first one is obtain in expansion with respect to k−1 while the latter in terms of
σ−1. Also Z`

A-HF-1
depends on ` but not Z

S-HF-1a
, meaning that Z

S-HF-1a
it is much more convenient to be

implemented in 3D. In order to study the behaviour of waves below and above the acoustic cut-off, we
select frequencies around ωL/(2π) = 3 mHz and ωH/(2π) = 6.5 mHz respectively by using a Gaussian
filter,

F̃•(ωk) = exp

(
− (|ωk| − ω•)2

2σ2
F

)
, for • = L,H, (9.6)

and σF/(2π) = 0.3 mHz. We then filter around a given velocity by applying a phase-speed filter as defined
in (8.9)

F̂•(ωk)` = exp

(
− (|ωk|R�/`− v•)2

2δv2

)
, (9.7)

with parameters vL = 125.2 km s−1, vH = 250.4 km s−1 and δv = 12.3 km s−1. The final filter F•(ωk)` is
given by

F•(ωk)` = F̃•(ωk) F̂•(ωk)` . (9.8)

To compute the time-distance diagram, we first compute the expectation value of the cross-covariance
for surface data Csurf using (8.51) (under the energy equipartition hypothesis (8.38)). In this case, the
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cross-covariance depends only on the angle θ between the two observation points,

Csurf(θ, ωk) =
Π(ωk)

8πωk

∑
`

(2`+ 1) F`(ωk)2 Im[Gl(1, 1, ωk)] P`(cos θ) , (9.9)

with Π defined in (9.4) and F` in (9.8). The time-distance diagram is next obtained from the inverse
Fourier transform of Csurf(θ, ωk), i.e.

Csurf(θ, tj) = hω

Nt/2−1∑
k=−Nt/2

Csurf(θ, ωk) e−iωk tj . (9.10)

In the above expression, the frequency resolution in frequency domain hω = 5 µHz, and Nt = 215.
We represent Csurf(θ, t) associated with filters FL and FH in Figure 20 and Figure 21 respectively. In

Figures 20(b) and 21(b), we show cuts through the first and second skips for the boundary conditions
Z
S-HF-1a

and Z`
A-HF-1

. We have the following observations:

– In Figures 20(a) and 21(a), the time-distance diagram shows clearly different skips (three in Figure 20(a)
and two in Figure 21(a)) corresponding to waves going directly from r̂1 to r̂2, or being reflected at the
surface once or several times.

– For waves below the acoustic cut-off (Figure 20), both boundary conditions looks similar because waves
are reflected before the boundary due to the stratification. Nonetheless, we still observe a difference
between the approximations of the RBCs, of about 3 to 4 order of magnitudes, with a clear advantage
towards Z

S-HF-1a
in Figure 20(c).

– Above the cut-off, Figure 21, we can visually observe the difference in the solutions for the two boundary
conditions. The condition Z

S-HF-1a
gives the appropriate result (that is, the closest to the Z`DtN) and

we still have between 2 to 3 orders of magnitude difference in the accuracy, see Figure 21(c).

Thus, making the expansion of the boundary condition with respect to the wavenumber that depends
on the stratification leads to an improved performance, even with a condition that is independent of the
harmonic degree `.

9.4 Comparisons of the Green's kernel

While the analysis of data (cross-covariance or power spectrum) supposing that the Sun has a real surface
uses only the Green’s function at the surface, the full Green kernel is required when the solar surface
is considered as optically thin. We illustrate here the computational Approach 2, which gives access
to the Green’s kernel G`(r, s, ω), for all r and s. For each frequency and each mode, we only need two
simulations to assemble the function, which we compare for two solar models, S+Atmo and S+Val-C+Atmo.
For boundary conditions, we use Z`DtN for the model S+Atmo and Z`nonlocal for the model S+Val-C+Atmo,
the kernels are pictured in Figures 22 and 23, for different frequency and modes, using for attenuation
the power law given by (2.4) and (2.5).

We see that the wavelength reduces when the waves reach the atmosphere, for the two choices of
models. Between the models S+Atmo and S+Val-C, there is a difference in amplitude in the solutions,
see Figure 23, that must come from the increase of the model parameters in Figure 16. Nonetheless, the
patterns for the two models are quite similar. At a fixed frequency (i.e., 7 mHz in Figure 23), we observe
that increasing the mode results in that the waves are concentrated near the position (r = 1, s = 1),
while at lower modes, the whole map has similar magnitude. In this case of (relative to the frequency)
high modes, this area near the surface overpowers any other interval of the Green’s function.

In the following section, we specifically make use of the Green’s functions for the quantities of interest
of helioseismology. We remind that the computation of G from G simply needs a multiplication by the
density profile as given in (4.4).
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Figure 20: Time-distance diagram representing the expectation value of the filtered cross-covariance given
in (9.10) with a phase-speed filter centered at 3 mHz (i.e. with FL(ω)` in (9.8)) as a function of separation
distance and time: two-dimensional diagram and sections for θ = 14◦ and θ = 28◦, indicated by the red
dashed lines on the left panel.

9.5 On the importance of the approach 2 for time-distance helioseismology

From the full Green’s function G`(r, s) computed for all sources s and receivers r using Approach 2,
we can compute efficiently the cross-covariance by taking into account the contributions from different
depths using (8.52)

Cint(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

Lmax∑
`=0

(2`+ 1) P`(cos θ)

∫ ∫
K(r, r̂1)K(r′, r̂2)

Im[Gl(r, r
′, ωk)]

rr′
drdr′ , (9.11)

or (8.53)

Cdepth(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

1

rfh(r̂1) rfh(r̂2)

Lmax∑
`=0

(2`+ 1) Im[Gl(rfh(r̂2), rfh(r̂1), ωk)]P`(cos θr̂1·r̂2
), (9.12)

and compare it with the classic approach (8.51)

Csurf(r̂1, r̂2, ωk) =
Π(ωk)

8πωk

Lmax∑
`=0

(2`+ 1) Im[Gl(1, 1, ωk)] P`(cos θr̂1·r̂2
). (9.13)
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Figure 21: Time-distance diagram representing the expectation value of the filtered cross-covariance
given in (9.10) with a phase-speed filter centered at 6.5 mHz (i.e. with FH(ω)` in (9.8)) as a function of
separation distance and time: two-dimensional diagram and sections for θ = 36◦ and θ = 72◦, indicated
by the red dashed lines on the left panel.

Contrary to Subsection 9.3, we do not use a specific filter to select particular waves but just keep the
harmonic degrees up to Lmax = 300. The function Π is the same than before and is given by (9.4). For
our numerical experiments, we work with a simplified contribution function K given in (8.25)

K(r, r̂1) =
1√

2π σ
exp

(
− (r − rfh(r̂1))2

2σ2

)
(9.14)

and formation height in (8.26)

rfh(r̂1) = req + (rpole − req) cos2(θ1) cos2(φ1), (9.15)

with

σ R� = 50 km ; req R� = 0 km , and rpole R� = 300 km . (9.16)

In our numerical experiments, we compute the cross-covariance using Lmax = 300 in (9.11)–(9.13). We
then take the inverse Fourier transform and represent the cross-covariance as a function of time for points
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Figure 22: Solar Green’s functions G`(r, s, ω) for the model S+Atmo, for mode ` = 0.
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Figure 23: Imaginary parts of the solar Green’s functions G`(r, s, ω) for the models S+Atmo and S+Val-C.
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r̂1 = (π/2, 0) at the equator and r̂2 = (2π/3, 0) corresponding to a latitude of 30◦ in Figure 25,

C•(r̂1, r̂2, tj) = hω

Nt/2−1∑
k=−Nt/2

C•(r̂1, r̂2, ωk) e−iωk tj ; with • = surf, int,depth (9.17)

We use the same frequency space hω and Nt as in (9.10). The integration in (9.12) is theoretically going
form 0 to infinity. However, due to the shape of the function K (and more generally to the opacity of
the Sun), we integrate from −300 km to +500 km which corresponds to a distance of at least 4σ to the
center of the Gaussian. The integration is done using the trapezoidal rule.

In order to have a better idea of the differences between the three definitions of the cross-covariances,
Csurf , Cint and Cdepth (given in (9.17)), we compute the travel-time perturbation δτ using (8.17),

δτ(r̂1, r̂2) =

∫ ∞
−∞

Wτ (r̂1, r̂2, t)
(
C(r̂1, r̂2, t)− Cref(r̂1, r̂2, t)

)
dt,

with Wτ (r̂1, r̂2, t) = − w(t)∂tCref(r̂1, r̂2, t)∫∞
−∞ w(t′)∂tCref(r̂1, r̂2, t′)2dt′

,

(9.18)

and the amplitude differences δa using (8.18),

δa(r̂1, r̂2) =

∫ ∞
−∞

Wa(r̂1, r̂2, t)
(
C(r̂1, r̂2, t)− Cref(r̂1, r̂2, t)

)
dt ,

with Wa(r̂1, r̂2, t) =
w(t)Cref(r̂1, r̂2, t)∫∞

−∞ w(t′)Cref(r̂1, r̂2, t′)2dt′
.

(9.19)

As it is the usual choice in helioseismology, we first use Cref := Csurf for Figure 26. However, Cint is
supposed to be a better representation of the observed cross-covariance and we also use it as reference,
Cref := Cint, for Figure 27. For our numerical experiment, we fix r̂1 the equator r̂1 = (π/2, 0) and vary
r̂2 in the form r̂2 = (θ2, 0). We represent δτ and δa as functions of θ2 ∈ [0, π/2]. We note that when
θ2 → 0, we approach the ‘limb’ (or the edge) of the Sun.

In order to compute the weighting functionWτ in (9.18) andWa in (9.19), one needs a window function
w in order to select the first-skip wave packet. We follow [21] to use w in the form of a rectangular function,
of width 20 mins with center tctr

w(θr̂1·r̂2
, t) =

{
1 , |t− tctr(θr̂1·r̂2

)| ≤ 10min ;

0 , otherwise
. (9.20)

The center tctr(θr̂1·r̂2
) is obtained using the ray approximation and is ploted in Figure 24. Similar

numerical values for centers can be found in the second column of Table A.1 of [20]. The derivative
of Cref is computed using sixth-order finite differences. The integrals in frequencies are going from
−ωmax to ωmax where ωmax is the Nyquist frequency in the case of observations. For example, for HMI
ωmax/(2π) = 11.1 mHz, see Section 8. Here, we use ωmax/(2π) = 12 mHz and integrate using the
trapezoidal rule.

We have the following observations.

– Close to the equator the cross-covariances are close to each other and there is only a small time-lag
as the formation height rfh(r̂2) is close to the solar surface (8.26). However, getting closer to the limb
(θ2 → 0), the formation height is around 300 kms above the surface, generating a travel-time difference
of about 0.3 s. This difference is significant as the measurements of travel-times to infer the meridional
flow at the surface of the Sun are smaller than 1 s [21].

– On the other hand, depending on the formulation, the amplitude of the cross-covariance changes but
there is no general trend depending on θ2. The amplitude differences are up to 2% and are more
difficult to interpret than travel-time measurements. Such measurements have not yet been used to
infer the solar interior so it is not clear if this modeling error is significant or not.
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Figure 24: Function tctr(θ) used for the computation of the weighting function w (9.20).

As mentioned above, since our numerical experiments currently use a simplified contribution function
K, we expect more definitive conclusions with a more accurate contribution function, e.g. one computed
from the opacity in the solar atmosphere. Nonetheless, we already observe that integrating over depth
leads to significant differences compared to computations at a fixed height, see Figure 27.
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Figure 25: Comparison of the expectation value of the cross-covariance function C(r̂1, r̂2, t) between the
points r̂1 = (π/2, 0) and r̂2 = (2π/3, 0) as a function of time for the different types of observables Csurf ,
Cint and Cdepth as defined by (8.51)–(8.53) under the hypothesis of energy equipartition (8.38).

10 Conclusion

In this work, we have proposed a two-step algorithm to compute efficiently and accurately the full outgoing
modal Green kernels for the scalar wave equation in local helioseismology under spherical symmetry. It
gives G`(r, s) for all pairs of sources and receivers at a given frequency and harmonic degree from only
two simulations. It is computationally way more efficient than the classical method (approach 1) which
requires as many simulations as sources and it is more accurate as it treats analytically the singularity at
the source location. Without this two-step algorithm, the full Green’s kernel are expensive to compute
which limited their use in local helioseismology.

Below are the tasks that were carried out in this work.

1. The implementation of the algorithm with the HDG discretization is validated with analytical
solutions for the pure Atmo problem.

2. The algorithm with the HDG discretization and exact DtN coefficient is used to obtain high-
definition modal Green kernels for realistic solar background.
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Figure 26: Travel time δτ(r̂1, r̂2) (8.17) and amplitude δa(r̂1, r̂2) (8.18) between Csurf and Cint or Cdepth.
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Figure 27: Travel time δτ(r̂1, r̂2) (8.17) and amplitude δa(r̂1, r̂2) (8.18) between Cint and Csurf or Cdepth.
The point r̂1 is fixed at the equator r̂1 = (π/2, 0) and the point r̂2 = (θ2, 0) is varying with 0 < θ2 < π/2.

3. Explicit expressions of helioseismic products (power spectrum and cross-covariance) are derived in
terms of Green’s function under varying assumptions on the correlation of sources and different
types of simulated observables.

4. We have investigated the influence of the radiation boundary conditions on the helioseismic products
and confirmed the robustness of those obtained in [4, 5]. In particular, we have shown that among
the family of high-frequency approximations of the RBC, the conditions that are independent of
the harmonic mode provides high-accuracy results.

5. We have presented an application where the full Green kernel allows for a more physical treatment
of the Sun’s surface, being optically thin. We have shown that using depth-integrated observables
lead to a significant travel-time difference compared to taking into account only the contributions
from the surface.
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A Further discussion on modal Green's function

A.1 Modal Green's formula with Heaviside function

In this appendix, we characterize a Green function associated to operator L,

Lu := −
(
a(r)u′

)′
+ b(r)u , (A.1)

on (0,∞). In particular, we derive the formula of the Green kernel built from two homogeneous solutions
associated to L, employed in Subsection 4.2.2. We first introduce the needed notations. Denote by

D := C∞c (0,∞) . (A.2)

the space of smooth and compactly supported functions on (0,∞). We follow usual convention and
consider the (translated) delta-distribution δ(r − s) given by

〈δ(r − s) , φ(r)〉D′,D = φ(s) , (A.3)

and we denote by H the Heaviside function. We denote byW{ψ(s) , ψ̃(s)} the Wronskian of two functions
ψ and ψ̃, i.e.,

W{ψ(s) , ψ̃(s)} := ψ(s) ψ̃′(s) − ψ̃(s)ψ′(s) . (A.4)

We also write the left and right-hand-side limit of a function as,

f(s±) := lim
r→s±

f(r) . (A.5)

For simplicity, we assume a(r) > 0 ∈ C1(0,∞) and b(r) ∈ C(0,∞) with b(r) ∈ O(r−1) and a(r)
constant outside of a compact neighborhood of r = 0.

Proposition 2. A Green function G defined (A.8) is in C(0,∞) ∩ C2
(
0, s) ∪ (s,∞)

)
. Its jump at r = s

is given by

G′(s−) − G′(s+) =
1

a(s)
. (A.6)

As a result, G has the form,

G`(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r) ψ(s)

a(s)W(s)
, (A.7)

where ψ̃` and ψ` are two homogeneous solutions associated to L, with Lψ̃ = 0 on (0, s) and Lψ = 0 on
(s,∞), and W(s) := W{ψ(s) , ψ̃(s)}.

Proof. Statement 1 By definition, G(r) = Gs(r) is a distributional solution on [0,∞) to

−
(
a(r)G′

)′
+ b(r)G = δ(r − s) . (A.8)

The regularity imposed on G is observed from the fact that two distributional derivations result in a delta
distribution. In addition, G is a classical solution i.e. C2 on (0,∞) \ {s}. Specifically,

−
(
a(r)G′

)′
+ b(r)G = 0 on (0, s) ∪ (s,∞) . (A.9)

The derivatives in (A.8) are distributional derivatives, and for a test function φ ∈ C∞c (0,∞), we have〈
G , −(a(r)φ′(r))′ + b(r)φ(r)

〉
D′,D = φ(s) . (A.10)
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With G being a continuous function on (0,∞), its action can be written as

I :=
〈
G , −(a(r)φ′(r))′ , φ(r)

〉
D′,D =

∫ ∞
0

G(r)
(
− (a(r)φ′)′ dr ; (A.11a)

⇒ I =

(∫ s

0

+

∫ ∞
s

)
G(r)

(
− (a(r)φ′)′ dr . (A.11b)

and (A.10) can be written as

I +

∫ ∞
0

b(r)φ(r) ds = φ(s) . (A.12)

Integrate each integral by parts, we obtain

I =

(∫ s

0

+

∫ ∞
s

)
G′(r) a(r)φ′(r) dr − G(s−) a(s−)φ′(s−) + G(s+) a(s+)φ′(s+)︸ ︷︷ ︸

= 0

. (A.13)

Since G, a and φ are continuous at r = rs, the above jump is zero. Continue to integrate the above
integrals by parts

I = −
(∫ s

0

+

∫ ∞
s

)
(G′a(r))′ φ(r) dr + G′(s−) a(s−)φ(s−) − G′(s+) a(s+)φ(s+) . (A.14)

Substitute this back in the left-hand-side of (A.12), we obtain

−
(∫ s

0

+

∫ ∞
s

)
(G′a(r))′ φ(r) dr +

∫ ∞
0

b(r)φ(r) dr

+ G′(s−) a(s−)φ(s−) − G′(s+) a(s+)φ(s+) = φ(s) .

(A.15)

⇒
(∫ s

0

+

∫ ∞
s

)(
− (G′a(r))′ + b(r)

)
φ(r) dr︸ ︷︷ ︸

=0 due to (A.9)

+ G′(s−) a(s−)φ(s−) − G′(s+) a(s+)φ(s+) = φ(s) .

(A.16)
We thus arrive at

G′(s−) a(s−)φ(s−) − G′(s+) a(s+)φ(s+) = φ(s) . (A.17)

Since a > 0 and with φ chosen so that φ(s) > 0, we obtain the value of the jump of G′ at r = s.

Statement 2 From its properties obtained in Statement 1, we next obtain (A.7). If we define

ψ(r) := G|(0,s) , ψ̃(r) := G|(s,∞) , (A.18)

using (A.9), we have that ψ and ψ̃ are two homogeneous solutions associated to L on (0, s) and (s,∞)
respectively. In addition, they satisfy the continuity and jump (A.6) at r = s,(

ψ(s) −ψ̃(s)

ψ′(s) −ψ̃′(s)

)(
1
1

)
=

(
0
1
a(s)

)
. (A.19)

⇒
(

1
1

)
= − 1

W(s)

(
−ψ̃′(s) ψ̃(s)
−ψ′(s) ψ(s)

)(
0
1
a(s)

)
= − 1

a(s)W(s)

(
ψ̃(s)
ψ(s)

)
. (A.20)

Thus
G(r, s) = H(s− r)ψ(r) + H(r − s) ψ̃(r)

= −H(s− r)ψ(r)
ψ̃(s)

a(s)W(s)
− H(r − s) ψ̃(r)

ψ(s)

a(s)W(s)
.

(A.21)
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Remark 10. Instead of (A.18), a more constructive approach to obtain G is specified by a boundary
condition at r = 0 and as r →∞. These boundary conditions determine a basis of family of homogeneous
solutions {cy1} and {dy2} associated to L and these conditions and on (0, s), (s,∞) respectively. Then

G =

{
c y1(r) , 0 ≤ r < s

d y2 , r > s
, (A.22)

with constants c and d are determined from the continuity and jump condition at r = s,(
y1(s) −y2(s)

y′1(s) −y′2(s)

)(
c
d

)
=

(
0
1
a(s)

)
(A.23)

⇒
(
c
d

)
= − 1

W{y1 , y2}(s)

(−y′2(s) y2(s)

−y′1(s) y1(s)

)(
0
1
a(s)

)
= − 1

W{y1, y2}(s)

(
y2(s)
y1(s)

)
, (A.24)

and
G(r, s) = −H(s− r) y1(r)

y2(s)

W{y1, y2}(s)
− H(r − s) y2(r)

y1(s)

W{y1, y2}(s)
. (A.25)

4

A.2 Expansion of 3D kernel in spherical harmonics

Here we verify the expansion (4.11) of G,(
−∆x −

σ2(r)

c2(r)
+ q

)
G = δ(x− s) (A.26)

in terms of the spherical harmonics and the modal outgoing kernel G` given by (4.17). We recall the
modal operator,

L` := − d2

dr2
+

Q(r)

r2
= − d2

dr2
− σ2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2
. (A.27)

For g ∈ L2
c(R

3), and u = (−∆− σ2(r)
c2(r) + q)−1, we write u and g in their harmonic expansion, for x not

on the z-axis,

u =

∞∑
`=0

∑̀
m=−`

wm`
r

Ym
` , g =

∞∑
`=0

∑̀
m=−`

hm`
r

Ym
`

with
wm`
r

=

∫ π

0

∫ 2π

0

u(r, θ, φ) Ym
` (θ, φ) sin θ dφ dθ .

Substitute the two expansions in the equation(
−∆ − σ2(r)

c2(r)
+ q

)
u = g

⇒
(
−∆ − σ2(r)

c2(r)
+ q

) ∞∑
`=0

∑̀
m=−`

wm`
r

Ym
` =

∞∑
`=0

∑̀
m=−`

gm` Ym
` ,

(A.28)

and we obtain
L` w

m
` = hm` , with hm` = r gm` .

The outgoing-ness of u, given by the outgoing resolvent, means that modal solutions wm` are regular (i.e.
it satisfies (4.13)) at r = 0 and inherits the outgoing condition (4.14). This also implies it is given by the
outgoing modal Green kernel G` (4.17),

wm` =

∫ ∞
0

Gm` (r, r̃)hm` (r̃) dr̃ .
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Injecting this gives,

u(x) =
1

|x|
∞∑
`=0

∑̀
m=−`

(∫ ∞
0

Gm` (r, r̃)hm` (r̃) dr̃

)
Ym
` (θ, φ)

=
1

|x|
∞∑
`=0

∑̀
m=−`

(∫ ∞
0

Gm` (r, r̃)

(∫ π

0

∫ 2π

0

r̃ g(y)Ym
` (θ̃, φ̃) sin θ̃ dφ̃ dθ̃

)
dr̃

)
Ym
` (θ, φ)

=

∫
R3
y

( ∞∑
`=0

∑̀
m=−`

Gm` (|x|, |y|)
|x| |y| Ym

` (θy, φy) Ym
` (θx, φx)

)
g(y) dy

The second form of G comes from the property of the spherical harmonics, cf. [11, 2.29],

∑̀
m=−`

Ym
` (θx, φx) Ym

` (θy, φy) =
2`+ 1

4π
P`(cos θx·y) . (A.29)

For an L2
loc, it suffices to have the definition off a set of measure zero. However, we can define the

value of G for these values.

Source on z-axis but not at the origin For y0 on the z-axis but not the origin

G(x , y0) := lim
ε→0+

1

2πε

∫
Cε

G(x , z) dσ(z) , (A.30)

where Cε is the circle formed by the intersection of sphere of radius of |y| and the cylinder of radius ε
aligned along the z-axis,

Cε := {x ∈ R3||x| = |y0|}
⋂
{x = (x, y, z) ∈ R3|x2 + y2 = ε2} .

We consider the surface integral

1

2πε

∫
Cε

G(x , z) dσ(z) =
1

2π

∞∑
`=0

∑̀
m=−`

Gm` (|x|, |z|)
|x| |z| Ym

` (θx, φx)

∫ 2π

0

Ym
` (θz, φz) dφz

=

∞∑
`=0

G0
`(|x|, |z|)
|x| |z| Y0

` (θx, φx)Y0
` (θz) .

(A.31)

Since ∫ 2π

0

eimφdφ = 2πδm0 , (A.32)

taking the limit as ε→ 0+, we obtain, for y0 6= (0, 0, 0) on the z-axis

G(x,y0) =

∞∑
`=0

G0
`(|x|, |y0|)
|x| |y0|

Y0
` (θx) Y0

` (0) . (A.33)

Source at the origin For y = (0, 0, 0), define

G(x , y0) := lim
ε→0+

1

4πε2

∫
S(0,ε)

G(x , z) dσ(z)
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We first simplify the integrand in the limit,

1

4πε2

∫
S(0,ε)

G(x , z) dσ(z) =
1

4π

∞∑
`=0

∑̀
m=−`

Gm` (|x|, ε)
|x| ε Ym

` (θx, φx)

∫ π

0

∫ 2π

0

Ym
` (θz, φz) sin θz dφz dθz

=
1

4π

G0
0(|x|, ε)
|x| ε

⇒ G(x , 0) :=
1

4π

1

|x| lim
ε→0+

G0
0(|x|, ε) .

(A.34)
On the other hand, for ε > 0, G0

0(|x|, ε) is the outgoing distributional solution of,

L0G0 = δ(r − ε) , ε > 0 .

and thus is given by,

G0(r, s) = −H(s− r) ψ̃0(r)
ψ0(s)

W(s)
− H(r − s)) ψ0(r)

ψ̃0(s)

W(s)
. (A.35)

Here W(s) :=W{ψ(s), ψ̃(s)}, the Wronskian. Note indicial roots of the equation is 0 and 1. The choice
of ψ0 is modulo a constant multiple. We can choose9 ψ0 so that (without changing the overall G0

0)

lim
s→0

ψ̃0(s)

W(s)
= −1 . (A.37)

The choice leads to,
lim

r>ε,ε→0+
G0(r , ε) = ψ0(r) .

In this way, we have reconciled with the direct method10 to obtain G when y = (0, 0, 0).

A.3 Other variants of the modal Green functions

Variants independent on m As introduced in Section 4, we work with the modal Green function Gm`
cf. (4.12) associated to operator L` (4.10) which does not depend on the index m,(

− d2

dr2
+

Q(r)

r2

)
G` = δ(r − s) . (A.38)

For this reason, we also write Gm` simply as G`,

Gm` (r, s) = G`(r, s) . (A.39)

9With choice of ψ̃0 �xed, consider ψ0 = d yreg where yreg is a �xed regular homogeneous solution on (0,∞), and

d a constant to be determined. For all nonzero d, using {ψ̃0, dy2} in (A.35) gives the same expression of G0
0, since

W{d yreg , ψ̃0} = dW{yreg , ψ̃0}. We next choose d so that

lim
s→0

ψ̃0(s)

W{d yreg(s) , ψ̃0(s)}
= −1 . (A.36)

10In the latter approach, one starts with the equation 3D,
(
−∆− σ2(r)

c2(r)
+ q(r)

)
Φ = δ(x). Since Φ only has radial

dependence, we look for Φ(x) of the form Φ(x) =
g(r)
r

which solves
(
− d
dr2
− σ2(r)

c2(r)
+ q
)
g = δ(r). Choose g = ψ̃0, where

ψ̃0 an outgoing solution to L0 on (0,∞).
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One can also work with the unreduced unknown (employed in the HDG pre-formulation) G̃` = G`
r , which

solves11 (
− d2

dr2
− 2

r

d

dr
+

Q(r)

r2

)
G̃` =

1

r
δ(r − s) (A.40a)

⇔
(
−r2 d

2

dr2
− 2r

d

dr
+ Q(r)

)
G̃` = r δ(r − s) . (A.40b)

We also note the variant G̃̃` =
G`
rs

which solves12(
− d2

dr2
− 2

r

d

dr
− Q(r)

r2

)
G̃̃` =

1

r s
δ(r − s) (A.41a)

⇔
(
− d2

dr2
− 2

r

d

dr
− Q(r)

r2

)
G̃̃` =

1

r2
δ(r − s) (A.41b)

⇔
(
−r2 d

2

dr2
− 2r

d

dr
− Q(r)

)
G̃̃
m

` = δ(r − s) . (A.41c)

Variants dependent on m In applications, one usually works with a fixed source, and hence rather
than considering G(r, s) as a Schwartz kernel, one considers it as a function of receptor’s position. In
particular, for a fixed source s, G is a function x 7→ G(x, s) with s being a parameter, and expansion
(4.11) gives the harmonic expansion,

G(x , s) =

∞∑
`=0

∑̀
m=−`

(
G`(|x| , | s|)
|x|

Ym
` (ŝ)

|s|

)
Ym
` (x̂) , for x, s not on the z-axis . (A.42)

In this perspective, one can work with the scaled modal Green function

r 7→ Gm` (r, s) , with s := |s| (A.43)

which solves (
− d2

dr2
− Q(r)

r2

)
Gm` = Ym

` (s) δ(r − s) , s := |s| . (A.44)

Equivalently, one can work with the reduced scaled modal Green function

r 7→ G̃m` (·, s) , s := |s| (A.45)

which solves (
− d2

dr2
− 2

r

d

dr
+

Q(r)

r2

)
G̃m` =

Ym
` (ŝ)

s
δ(r − s) ;

⇔
(
− d2

dr2
− 2

r

d

dr
+

Q(r)

r2

)
G̃m` =

Ym
` (ŝ)

r
δ(r − s) ;

(A.46)

11This can be seen as follows. Replace G` in its ODE by rG̃`, substitute in the ODE satis�ed by G`(A.38)

−
d2

dr2
(r G̃`) −

Q(r)

r2
(rG̃`) = δ(r − s) ⇔ −r

d

dr
G̃` − 2

d

dr
G̃` −

Q(r)

r2
(rG̃`) = δ(r − s)

⇒ −
d2

dr2
G̃` −

2

r

d

dr
G̃` −

Q(r)

r2
G̃` =

1

r
δ(r − s) .

12Replace Gm` in its ODE by rsG̃̃`, substitute in the ODE satis�ed by G` (A.38),

−
d2

dr2
(r s G̃̃`) −

Q(r)

r2
(r s G̃̃`) = δ(r − s) ⇔ −r s

d2

dr2
G̃̃` − 2 s

d

dr
G̃̃
m

` −
Q(r)

r2
(rsG̃̃

m

` ) = δ(r − s)

⇒ −
d2

dr2
G̃̃` −

2

r

d

dr
G̃̃` −

Q(r)

r2
G̃̃` =

1

r s
δ(r − s) .
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An equivalent form of (A.46) more convenient for numerical discretization is

(
−r2 d

2

dr2
− 2r

d

dr
+ Q(r)

)
G̃m` = rYm

` (ŝ) δ(r − s) ;

⇔
(
−r2 d

2

dr2
− 2r

d

dr
+ Q(r)

)
G̃m` = sYm

` (ŝ) δ(r − s) .
(A.47)

Note that r2d2
r − 2r dr is also written as drr2dr . We also have the variant G̃̃

m

` which solves

(
− d2

dr2
− 2

r

d

dr
− Q(r)

r2

)
G̃̃
m

` =
1

r s
Ym
` (ŝ) δ(r − s) (A.48a)

⇔
(
− d2

dr2
− 2

r

d

dr
− Q(r)

r2

)
G̃̃
m

` =
1

r2
Ym
` (ŝ) δ(r − s) (A.48b)

⇔
(
−r2 d

2

dr2
− 2r

d

dr
− Q(r)

)
G̃̃
m

` = Ym
` (ŝ) δ(r − s) . (A.48c)

Unlike G`, G̃` and G̃̃` which do not depend on m, Gm` ,G̃m` and G̃̃ do. We give a list of summary of
their relations,

Gm` (r, s) = G`(r, s) ; G̃m` (r, s) =
Gm` (r, s)

r
; G̃̃

m

` (r, s) =
Gm` (r, s)

r s
; (A.49a)

Gm` (r, s) = Ym
` (ŝ)Gm` (r, s) , G̃m` (r, s) =

Gm` (r, s)

r
= Ym

` (ŝ)
G`(r , s)

r
; (A.49b)

G̃̃
m

` (r, s) =
Gm` (r, s)

r s
= Ym

` (ŝ)
G`(r , s)

r s
(A.49c)

Corresponding harmonic expansions In terms of these modal kernels, the harmonic expansion of
the 3D Green kernel G, for x and y not on the z-axis, is

G(x,y) =
1

|x| |y|
∞∑
`=0

∑̀
m=−`

Gm` (|x| , |y|) Ym
` (x̂) Ym

` (ŷ)
(2.27)

=
1

|x| |y|
∞∑
`=0

G`(|x| , |y|)
(2`+ 1)

4π
P`(cos θx·y)

(A.50a)

=
1

|y|
∞∑
`=0

∑̀
m=−`

G̃m` (|x| , |y|) Ym
` (x̂) Ym

` (ŷ) =
1

|y|
∞∑
`=0

G̃`(|x| , |y|)
(2`+ 1)

4π
P`(cos θx·y)

(A.50b)

=

∞∑
`=0

∑̀
m=−`

G̃̃
m

` (|x| , |y|) Ym
` (x̂) Ym

` (ŷ) =

∞∑
`=0

G̃̃`(|x| , |y|)
(2`+ 1)

4π
P`(cos θx·y) (A.50c)

where θx·y is the angle between x and y, i.e.

cos θx·y =
x · y
|x| |y| . (A.51)
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Using the scaled version, the harmonic expansion of G(x,y) takes the form,

G(x,y) =
1

|x| |y|
∞∑
`=0

∑̀
m=−`

Gm` (|x| , |y|) Ym
` (x̂) (A.52a)

=
1

|y|
∞∑
`=0

∑̀
m=−`

G̃m` (|x| , |y|) Ym
` (x̂) (A.52b)

=

∞∑
`=0

∑̀
m=−`

G̃̃
m

` (|x| , |y|) Ym
` (x̂) . (A.52c)

When y is on the z-axis, then only the mode with m 6= 0 are involved in both (A.52) and (A.50). This
affects the expressions (A.52) using the scaled modal kernel more, since in (A.50) the expression using
P` is applicable despite the position of y,

G(x,y) =
1

|x| |y|
∞∑
`=0

G0
`(|x| , |y|) Y0

` (x̂) (A.53a)

=
1

|y|
∞∑
`=0

G̃0
`(|x| , |y|) Y0

` (x̂) (A.53b)

=

∞∑
`=0

G̃̃
0

`(|x| , |y|) Y0
` (x̂) . (A.53c)

B Further remarks on Whittaker functions

B.1 Connection formula for Whittaker functions

Connection formula for Whittaker M The identity for the derivative of M can be obtained from
[28] as follows. From [28, Eq. (13.15.15)], we have

dn

dzn

(
e

1
2 z zµ−

1
2 Mκ,µ(z)

)
= (−1)n(−2µ)n e

1
2 z zµ−

1
2 (n+1) M

κ− 1
2n,µ−

1
2n

(z) . (B.1)

Take n = 1 and µ = `+ 1/2 in (B.1). The left-hand-side is

d

dz

(
e

1
2 z z` Mκ,`+1/2(z)

)
=

1

2
e

1
2 z z` Mκ,`+1/2(z) + `e

1
2 z z`−1 Mκ,`+1/2(z) + e

1
2 z z`

d

dz
Mκ,`+1/2(z) .

(B.2)

Using the definition (a)n =
Γ(a+ n)

Γ(a)
identity (−a)n = (−1)n(a− n+ 1)n, cf. [28, Eq. (5.2.6)],

(
− 2
(
`+ 1

2

))
1

=
(
− 2`− 1

)
1

= (−1)((2`+ 1)− 1 + 1)1 = −(2`+ 1)1 = −Γ(2`+ 2)

Γ(2`+ 1)

= − (2`+ 1)!

(2`)!
= −(2`+ 1).

(B.3)

The right-hand side is

(−1)(−2
(
`+ 1

2

)
)1 e

1
2 z z`+

1
2−

1
2 (1+1) M

κ− 1
2 ,`+1/2− 1

2
(z) = (2`+ 1)e

1
2 z z`−1/2 M

κ− 1
2 ,`

(z). (B.4)

By dividing both sides (i.e. (B.2) and (B.4)) by e
1
2 zz`, we obtain

1

2
Mκ,`+1/2(z) +

`

z
Mκ,`+1/2(z) +

d

dz
Mκ,`+1/2(z) =

(2`+ 1)√
z

M
κ− 1

2 ,`
(z), (B.5)
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which can be written as

d

dz
Mκ,`+1/2(z) = −

(
1

2
+

`

z

)
Mκ,`+1/2(z) +

(2`+ 1)√
z

M
κ− 1

2 ,`
(z). (B.6)

Connection formula for Whittaker M One can obtain the identity for M by dividing both sides
by Γ(2`+ 2)

M′κ,`+1/2(z) =

(
−1

2
− `

z

)
Mκ,`+1/2(z) +

(2`+ 1)√
z

Γ(2`+ 1)

Γ(2`+ 2)
M

κ− 1
2 ,`

(z).

Using the identity that Γ(2`+ 2) = (2`+ 1) Γ(2`+ 1), the right-hand side further simplifies as

M′κ,`+1/2(z) =

(
−1

2
− `

z

)
Mκ,`+1/2(z) +

1√
z
M

κ− 1
2 ,`

(z). (B.7)

Connection formula for Whittaker W We start from [28, Eq. (13.15.25)], with one-time differenti-
ation,

d

dz

(
e−

1
2 z zµ−

1
2 Wκ,µ(z)

)
= −e−

1
2 z zµ−1 W

κ+
1
2 ,µ−

1
2

(z) . (B.8)

The left-hand-side gives

e−
1
2 zzµ−

1
2

((
−1

2
+

µ− 1
2

z

)
Wκ,µ(z) + W′κ,µ(z)

)
(B.9)

Put this expression back into (B.8) and divide both sides by e−
1
2 zzµ−

1
2(

−1

2
+

µ− 1
2

z

)
Wκ,µ(z) + W′κ,µ(z) = − 1√

z
W
κ+

1
2 ,µ−

1
2

(z) . (B.10)

After rearrangement, we obtain

W′κ,µ(z) =

(
1

2
− µ− 1

2

z

)
Wκ,µ(z) − 1√

z
W
κ+

1
2 ,µ−

1
2

(z) . (B.11)

We can also start from [28, Eq. (13.15.26)], with one-time differentiation,

z
d

z
z

(
e−

1
2 z zκ−1 Wκ,µ(z)

)
= −e−

1
2 z zκ Wκ+1,µ(z) . (B.12)

The left-hand-side gives

z e−
1
2 z zκ−1

((
1 − z

2
+ (κ− 1)

)
Wκ,µ(z) + zW′κ,µ(z)

)
= e−

1
2 z zκ

((
κ − z

2

)
Wκ,µ(z) + zW′κ,µ(z)

) (B.13)

Put this back into (B.12) and divide both sides by e−
1
2 z zκ(

κ − z

2

)
Wκ,µ(z) + zW′κ,µ(z) = − Wκ+1,µ(z) . (B.14)

After rearrangement and divide both sides by z, we obtain

W′κ,µ(z) =

(
1

2
− κ

z

)
Wκ,µ(z) − 1

z
Wκ+1,µ(z) (B.15)
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B.2 Relation to Bessel functions

Following [23, p.305], the Whittaker functions are related to the Bessel functions by

M0,µ(i z̃) = Γ(1 + µ) 22µ e−i
π
4 (2µ−1) z̃1/2 Jµ(− z̃

2
) ;

W0,µ(i z̃) =

√
π

2
z̃

1
2 e−i

π
4 (1+2µ) H(2)

µ

(
z̃

2

)
;

W0,µ(−i z̃) =

√
π

2
z̃

1
2 ei

π
4 (1+2µ) H(1)

µ

(
z̃

2

)
.

(B.16)

The spherical Bessel functions z` are solutions to(
− d2

dz2
− 2

z

d

dz
− 1 +

`(`+ 1)

z2

)
z` = 0 , (B.17)

while general Bessel functions Zν are solutions to(
− d2

dz2
− 1

z

d

dz
− 1 +

ν

z2

)
Zν = 0. (B.18)

The spherical Bessel functions of the first kind are denoted by j`, second y` and third h
(1)
` = j` + iy` and

h
(2)
` = j` − iy`, cf. [28, 10.47.3–10.47.6]

j`(z) =

√
1

2

π

z
J
`+

1
2

(z) = (−1)`
√

1

2

π

z
Y−`− 1

2
(z) ;

h
(1)
` (z) =

√
1

2

π

z
H

(1)

`+
1
2

(z) .

(B.19)

They can be defined explicitly, cf. [28, 10.49.1–10.49.7]. In particular, for a specifically defined series
ak(`+ 1

2 ) cf. [28, 10.49.1],

h
(1)
` = eiz

∑̀
k=0

ik−`−1 ak(`+ 1
2 )

zk+1
.

When z̃ := 2 k r, and µ = `+ 1
2 , then

e−i
π
4 (2µ−1) = e−i

π
4 2` = e−i

π
2 ` = (−i)` , e± i

π
4 (1+2µ) = e± i

π
2 (`+1)

and (B.16) simplifies to

M0,`(i 2 k r) = Γ(`+ 3
2 ) 22`+1 (−i)` (2 k r)1/2 J`+1/2(−k r)

=
√
π Γ(`+ 3

2 ) 22`+1 (−1)` i`+1 (2 k r) j`(−k r)

=
√
π Γ(`+ 3

2 ) 22`+1 i`+1 (2 k r) j`(k r) .

(B.20)

In the last equation, we have also used jn(z) = (−1)njn(z), cf. [28, 10.47.14]. The relation between the
Whittaker W and the Bessel functions (B.16) simplifies to

W0,`+1/2(i 2 k r) =

√
π

2
(2 k r)

1
2 i−`−1 H

(2)

`+
1
2

(k r) =
k r

i`+1
h

(2)
` (k r) ;

W0,`+1/2(−i 2 k r) =

√
π

2
(2 k r)

1
2 i`+1 H

(1)

`+
1
2

(k r) = i`+1 k r h
(1)
` (k r) .

(B.21)
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