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Eye-Gaze Activity in Crowds: Impact of Virtual Reality and Density
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Figure 1: Our objective is to analyze eye-gaze activity within a crowd to better understand walkers’ interaction neighborhood
and simulate crowd behaviour. We designed 2 experiments where participants physically walked both in a real and virtual street
populated with other walkers, while we measured their eye-gaze activity (red circle). We evaluated the effect of virtual reality on
eye-gaze activity by comparing real and virtual conditions (left and middle-right) and investigated the effect of crowd density (right).

ABSTRACT

When we are walking in crowds, we mainly use visual information
to avoid collisions with other pedestrians. Thus, gaze activity should
be considered to better understand interactions between people in a
crowd. In this work, we use Virtual Reality (VR) to facilitate motion
and gaze tracking, as well as to accurately control experimental
conditions, in order to study the effect of crowd density on eye-gaze
behavior. Our motivation is to better understand how interaction
neighborhood (i.e., the subset of people actually influencing one’s lo-
comotion trajectory) changes with density. To this end, we designed
two experiments. The first one evaluates the biases introduced by
the use of VR on the visual activity when walking among people,
by comparing eye-gaze activity while walking in a real and virtual
street. We then designed a second experiment where participants
walked in a virtual street with different levels of pedestrian density.
We demonstrate that gaze fixations are performed at the same fre-
quency despite increases in pedestrian density, while the eyes scan
a narrower portion of the street. These results suggest that in such
situations walkers focus more on people in front and closer to them.
These results provide valuable insights regarding eye-gaze activity
during interactions between people in a crowd, and suggest new
recommendations in designing more realistic crowd simulations.

Keywords: Gaze Activity, Locomotion, Crowd, Virtual Reality,
Eye-tracking, Collision Avoidance

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization— Visualization design and evaluation methods

1 INTRODUCTION

In this work, we leverage the power of Virtual Reality (VR) to
study human locomotion in dynamic environments, for the purpose
of modeling and simulating virtual crowds. Modeling crowds re-
quires to design numerical models of local interactions which define
by whom and how each individual (or agent) is influenced by the
movement of others. The question of the who is also known as the
interaction neighborhood [57]. Several models have been proposed
for this neighborhood, such as a fixed number of nearest agents [59],
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or any agents closer than a distance threshold [21], but these solu-
tions were arbitrarily designed based on the study of trajectories.
However, it was recently demonstrated that a combined analysis of
gaze and trajectory data is meaningful for exploring these questions,
e.g., that agents with a high risk of collision are more gaze at [36].
Thus, it is important to develop experimental protocols seeking to
simultaneously study gaze and motion data. As such experiments
remain difficult to perform in real conditions, VR therefore presents
unique opportunities for such studies.

In this paper, our objective is to further understand how eye-gaze
activity is influenced by the number of people we are interacting
with in a crowd, as a mean of better understanding interaction neigh-
borhood as well as collision avoidance manoeuvres. More precisely,
as gaze is indicative of how people take into account other individ-
uals to navigate in crowds [36], we wonder how eye-gaze activity
features will be influenced by the density of the crowd. Does the
frequency with which people observe other individuals increase with
density, enabling them to take a larger number of neighbours into ac-
count to adjust their trajectory? Or, on the contrary, is the number of
neighbours taken into account constant over time, while people pay
more attention to those presenting the greatest risk of collision? To
answer these questions, we conducted two VR experiments precisely
controlling the visual neighbourhood of an immersed walker, while
simultaneously measuring his/her movement and eye-gaze activity:

1. In a first experiment, we estimate the biases induced by the
use of VR on eye-gaze activity. We asked participants to walk
an existing street, and recorded both their eye-gaze activity
and their visual environment. We then reproduced the same
situation in VR using a digital replica of the street. We com-
pared the eye-gaze activity of participants under these two
conditions. Results show a strong similarity in the eye-gaze
activity, while highlighting some quantitative changes that we
attribute to the difference in the eye-tracking devices we used
as well to the differences in the visual content in the real and
virtual conditions.

2. In a second experiment, we evaluate the influence of crowd
density on eye-gaze activity. We asked participants to navigate
a virtual street populated with different densities of virtual char-
acters. Results show an influence of density on gaze deploy-
ment, where participants look more at the center of their visual
field as density increases, tending to observe more passers-by
in front of them while scanning frequency remains identical.

Our contribution is therefore twofold. We are contributing to the



validation of VR as a tool for studies coupling eye-gaze activity and
navigation, showing important similarities of virtual compared to
real behaviours. We also propose new ways to improve crowd simu-
lation algorithms by improving knowledge about how the interaction
neighborhood of walkers might be visually evaluated by viewers.

2 RELATED WORK
2.1 Kinematics of interactions between walkers
2.1.1 Pairwise interactions

There is a growing interest in the literature about interactions be-
tween walkers, especially focusing on how two walkers avoid each
other. It was first studied through the lens of kinematic analysis
trajectories performed in real conditions, showing that collision
avoidance adjustments are performed only when walkers are on a
collision course [41]. More precisely, they showed that walkers trig-
ger motion adaptations only if the future distance of closest approach
is below 1m [41]. These adjustments are done by changing speed or
orientation of the walking trajectories [3,23,40] and are influenced
more by situational factors such as crossing angle or crossing order,
rather than personal factors such as personality or gender [28].

Those studies performed in real conditions faced the difficulty
of reproducing the same stimulus for each participants. Therefore,
several studies [2, 9, 39,41] have been conducted to evaluate the
differences in the manoeuvers to perform a collision avoidance with
a static or dynamic virtual human in a real and virtual environ-
ment. These experimental studies used various VR setups such as
an HMD and a CAVE, as well as a multitude of locomotion tech-
niques (joystick, physically walk,...). These studies converged to
the same conclusion: virtual reality is a relevant tool to study the
kinematics of collision avoidance between walkers. It preserves
the nature of motion adaptations but some quantitative differences
should be considered. They may be explained by misperception of
distances observed in virtual reality [31,45]. Virtual reality exper-
iments were then recently designed to investigate the information
extracted from the motion of the walker to avoid (global vs. local
motion cues) [33] as well as the effect of eye contact on collision
avoidance behaviour [32,38].

2.1.2 Multiple interactions

In the context of crowd simulation, it is important to understand more
than pairwise interactions only, but as well how these interactions
combine and what is the interaction neighbourhood of the walker.
In other terms, who influences one’s motion when navigating in a
crowded situation. In a real environment, Dicks et al. [17] designed
an experiment where participants had to avoid one or two oncoming
walkers. They showed that participants took longer to complete
the task when they avoid a collision with two walkers. Meerhof et
al. [37] proposed another experimental approach, comparing dyadic
(1vs.1) and tryadic (1vs.2) situations of collision avoidance in a 90°
crossing setup. Results showed that tryadic situations can result both
in sequential or simultaneous interactions, and that additional work
is needed to identify the conditions which invite for such interactions
when multiple walkers are involved. Rio and al. [48] studied the
behaviour of a participant within a group of virtual walkers whose
heading and speed were manipulated. In such a situation, the influ-
ence of neighbour was described as a linear function of distance and
does not depend on the eccentricity of the other walkers within the
participants’ field of view.

In close relation to our present research topic, several studies
also investigate the effect of density on walker behaviours. One
concept developed was named “fundamental diagram” [51] and
characterized the relation between speed (or flow) and density in
self-organized pedestrian motions. Authors showed a decrease of
walking speed with the increase of density, which is also influenced
by cultural factors [12]. Bruneau et al. [8] showed that the decision
of going through or around a group of virtual walkers is influenced

by group density. Using a critical threshold of density to guide the
decision to avoid a group of walkers, they proposed an adaptation
of RVO model [62] to take into account the presence of groups in
a crowd simulation. Finally, in a VR experiment, Dickinson et al.
recently reported that high crowd density has a negative influence on
the affective state of participants, where the task was perceived as
uncomfortable [16]. Authors also reported more direction changes
and stops in the case of high density levels.

These previous studies provided us with interesting findings to
understand how walkers interact with each other but several ques-
tions regarding the definition of interaction neighborhood remain
unclear. In particular, while it is possible to analyse the trajectory
performed by the walker varying the conditions of interaction, it
is challenging to define who in the crowd was responsible for the
motion adaptations observed. To go further in the analysis, we be-
lieve that the study of gaze behaviour would provide relevant insight.
Indeed, vision is fundamental in the control of locomotion and it was
shown that gaze is directed towards the elements of the environment
which maximize the level of information to navigate safely [34]. Ina
steering task, previous works demonstrated that gaze anticipates the
change of direction of walking to collect information about the future
direction of motion [5], and this is also true in VR [7]. The following
section will present first the definitions and methods in relation to
the measure of gaze activity and then the studies investigating gaze
behaviour of a walker interacting with their environment.

2.2 Gaze activity and interactions while walking

Eye trackers are devices recording the positions of eyes over time,
which is used to characterize the gaze behaviour. The gaze be-
haviour can be described as a succession of fixations which last for
about 200 — 300ms, separated by fast eye movement called saccades
(30 — 50ms) [42]. Depending on the field of application, different
measurements (e.g., duration, amplitude, spatial distribution) can be
taken from these variables to study eye activity [29].

Gaze tracking data is used to understand how human interact with
their environment, as visual attention reveals some mechanisms to
process visual information [35]. For instance, a specific task requires
specific information and lead to specific gaze activity patterns [61].
When walking, gaze is attracted by zones which maximize the level
of information that can be used to navigate safely [34]. Cinelli et
al. [13] observed participants going through 2 motor-driven sliding
doors, and concluded that gaze fixations depend on the complexity
of door movements. Few studies considered collision avoidance be-
tween walkers. Kitazawa and Fujiyama [27] studied the relationship
between gaze and the Personal Space and observed that gaze alloca-
tion was equally distributed between ground, objects and pedestrians.
Croft et al. [15] studied avoidance strategies between two partici-
pants with different velocities, paths and gaze behaviour conditions
and found that they predict crossing order. Finally, Jovancevic-Misic
and Hayhoe [25] demonstrated that gaze strategies depend on the be-
haviour of surrounding people, where participants typically looked
more at near actors displaying risky behaviours than at other actors.

The integration of eye-tracking capabilities in VR devices such
as HMDs greatly facilitates studies on gaze activity. For instance,
several studies [11,56] analysed how visual cues displayed by multi-
ple agents in a crowd affect the gaze of another walker. In particular,
they demonstrated that a shared gazed from at least two persons
could lead to joint attention with another walker encountered. In a
different context, Jovancevic et al. [24] asked participants to walk in
VR among a few virtual humans (VH) and studied the distribution
of gaze fixations in the environment depending on the nature of
interactions with VHs, i.e. they focus on following rather than on
avoiding. More recently, Meerhoff ez al. [36] demonstrated that gaze
is attracted toward pedestrians with the highest risk of collision when
walking in a virtual crowd. However, as the number of such VR
studies increases, it also becomes necessary to evaluate the biases



possibly induced on gaze activity by the use of VR. Similar gaze
behaviors were found during experiments conducted in both virtual
and real environments where participants sat on a chair and observed
either a realistic avatar [49] or a light [44], despite differences in
head rotations [44]. Same conclusions were reached in a recent
study [6], where participants had to avoid another pedestrian while
walking in either a virtual or a real environment.

In conclusion, despite its relevancy to provide additional knowl-
edge on interaction neighbourhood, very few studies were conducted
on the analysis of gaze activity in virtual crowds. In the present pa-
per, we are interested in gaze movements performed by a participant
walking through a crowd of virtual humans. We are more specifically
interested in the effect of the level of density on the gaze, i.e., how
the crowd density will impact the spatial and temporal distributions
of the fixations and the gaze pattern. Furthermore, there is still a
lack of work dealing with the bias induced by VR on gaze activity,
especially for complex and dynamic situations. This observation
allows us to establish our objectives as detailed below.

3 OVERVIEW

Our objective is to explore and further understand the interaction
neighborhood of people walking in busy environments, with the
particular interest of relying on the analysis of the walker’s eye-
gaze activity. We choose to perform this study in VR, to facilitate
the control of experimental conditions, the replication over several
participants, as well as the measure of the eye-gaze activity. To this
end, we conducted two experiments, the first one allowed us to study
the bias induce by VR on eye-gaze activity (Section 4). The second
experiment focused on the impact of crowd density on eye-gaze
activity (Section 5). We decided to carry out these experiments
based on the task of walking in a busy street. The advantage of
using such a task is to correspond to a daily-life situation, with no
ambiguity on how to realize it: participants simply have to walk and
to follow the direction of the street as they commonly do. Having a
clear and simple task is important to us, as we know that the nature
of the task has a direct impact on the eye-gaze activity [61].

3.1 Apparatus & Task

Participants walked the real, or digital reproduction, of Vasselot
street, in the city of Rennes,France (see Figure 1). The digital repro-
duction was designed by Archivideo, with professional centimetric
geometrical precision and textures generated from real photos. Slight
differences between the RE and VE were however still present, due
to minor differences in the exact localization or aspect of some ob-
jects, such as chairs at the terraces of cafés, billboards, etc. In both
RE and VE, we were interested in recording participants’ eye-gaze
activity while they interacted with other pedestrians in the street:

* Real Environment (RE): participants wore in the Tobii pro
glasses 2 eye-tracking, which recorded both their eye-gaze
activity (50Hz,4 eye cameras) and a video of their visual field
(scene camera: 25Hz, 90° field of view,H.264 1920x1080
pixels)

¢ Virtual Environment (VE): participants were immersed in the
VE using a FOVE HMD (70Hz, 100° FoV), which comes
with an integrated eye-tracker (100Hz). The virtual scene was
rendered using Unity. Participants freely moved in a physical
space (gymnasium) of 20m x 6m, while their position was
tracked with a 23-camera motion capture system (Qualisys).

In both RE or VE, participants were asked to navigate in a street
while avoiding collision with pedestrians and to stop when they
were in front of a specific shop. They had to perform multiple
round trips between two specifics shops (separated by 20m). Fig-
ure 1-middle-left) gives an example of the virtual conditions, where
participants were asked to navigate in the virtual street by walking
in the gymnasium.

For the virtual condition, the virtual humans were driven by
RVO [55], an open-source crowd simulator often used in video-
games [54]. Its computational performances enable to have multiple
agents avoiding collisions with other obstacles without impacting the
framerate, which is crucial for VR experiments. In our experiments,
RVO parameters were the following: each agent was represented by
a 0.5m-radius cylinder, took into account a maximum of 7 neigh-
bours in a 5m space around them, was assigned a random speed
€ [0.95,1.25m/s, and were set up to perform collision-avoidance
manoeuvres 3s before a potential collision. We chose a distribution
centered around 1.1m/s instead of 1.3m/s for the agent’s comfort
speed as participant are walking slower in VR [1,10].

3.2 Participants

Twenty-one unpaid participants, recruited via internal mailing lists
among students and staff, volunteered for the experiment. They were
all naive to the purpose of the experiment, had normal or corrected-
to-normal vision, and gave written and informed consent. The study
conformed to the declaration of Helsinki, and was approved by the
local ethical committee. Data from one participant was removed
from the first experiment a posteriori because the tracking ratio was
lower than 80% in the RE. Similarly, because of incorrect calibration
of the eye-tracking device in the virtual conditions, data from 4 other
participants was removed a posteriori from the first experiment,
and of 3 participants from the second experiment. Therefore, only
the data from sixteen participants (4F, 12M; age: avg.=24.9+3.2,
min=20, max=30) was used for the first experiment and the data
from eighteen participants (4F, 14M; age: avg.=25.5 4.0, min=20,
max=36) was used for the second experiment.

3.3 Analysis
3.3.1 Eye Data Collection

It is important to distinguish the difference between gaze activity
and eye movements. Eye movement refers to the local coordinates
of the gaze relative to the head. Gaze activity, on the other hand,
corresponds to the global coordinates of the gaze in the world space
[20], which therefore also accounts for head rotations. In our case,
we recorded eye movements, and assume that the head movements
contribution is not significant. Qualitatively speaking we observe
that participants do not significantly move the head when performing
the task at hand, i.e. reaching destination 20m further down a Sm-
wide street. The movement of the eyes recorded will therefore be
close to the gaze activity, and this is the reason why we talk about eye-
gaze activity in this work.Furthermore in case of sudden movements,
it has been shown that the eyes initiate the movement, then the
head, and finally the body, both in RE or VE [43,47], thus resulting
in a saccade. In this paper we are only interested by the location
of fixations, and therefore will not analyse eye movements during
saccades. In conclusion, to study eye-gaze activity we used the 2D
location of the gaze in the recorded video of the environment seen
by the participant. For the RE, a camera placed at the center of the
eye-tracking glasses, just above the nose (see Figure 2-a), recorded
what participants saw over time. Gaze coordinates correspond to
pixel positions in this video. For the VE we recreated the same
protocol by placing a camera with the same characteristics between
the participant’s two eyes in the VE (see Figure 2-b).

3.3.2 Fixations Computation

Our eye-gaze activity analysis relies, as in many other studies on
gaze, on the measure of visual fixations. As for other studies, our first
important task is therefore to accurately register the fixations and the
saccades [22]. Depending on the task and situation several methods
have been proposed in the literature to compute fixations [26], each
with advantages and limitations depending on the situation. In our
situation, gaze fixations are computed based on the 2D gaze location
of participants in the recorded images (real or virtual) over time.



Figure 2: Setup used to collect gaze location for both real (a) and
virtual (b) conditions. For each condition, 2D gaze location is displayed
in the image recorded by the real or virtual camera (in black).

The method used to computed fixations is inspired by the
dispersion-based algorithms (I-DT) described by Salvucci et al. [50].
We first compute the maximum distance between 2D gaze locations
and their centroid over a sliding window of 100 ms. After identifying
all the points where this distance is less than a threshold of 1.5°, we
process each identified point by accumulating in the same fixation
the neighbouring points if they respect these two conditions:

* mean(GazeD) < 1.5°,
* std(GazeD) — StdInit < 0.4°,

where GazeD is the list of distances between the fixation’s cen-
troid and all gaze points currently belonging to that fixation, and
StdInit the standard deviation of GazeD at the start of the fixation.
In our analyses, we chose a circle with a radius of 1.5°, as the diam-
eter of the fovea is about 3°, while the threshold for variance was
chosen empirically and set to 0.4°. Additional information about the
pseudo-code for computing fixations is provided as supplemental
material.

3.3.3 Independent Variables

As our goal is to understand eye-gaze activity while walking in
crowds of different densities, as well as the biases that can be intro-
duced by VR, we considered two main aspects of participants’ gaze
fixations. The first aspect relates to the characteristics of fixations,
namely the average duration and the amplitude of saccades. The sec-
ond aspect relates to where participants looked in the scene, through
the coverage of the fixations:

Fixation descriptors

* Average duration of fixations (ms). This feature informs about
time spent on each object to extract visual information.

* Amplitude of saccades (degree). This feature informs about
the distance separating successive targets. It is computed as
the distance between two successive fixations.

eye-gaze spatial distribution These features describe eye-gaze ac-
tivity over the whole navigation task. For each condition and each
participant, we computed a fixation map according to the defini-
tion given by Wooding et al. [60]. To create a fixation a map, we
start with a blank image and then, for each fixation, we addition a
gaussian at the center of the fixation. We use a standard deviation
o of 1.5° for the gaussian, which will approximate the fovea. The
fixation map will be represented as a heat-map, and for the sake of
visibility, we will display the logarithm values of this map. From
this map, we calculated two metrics:

* Peakpixation 1s the maximum value of the fixation map normal-
ized over the number of fixations. It describes where partici-
pant’s focused more their gaze during the task.

* Coverage the number of pixels in the fixation map superior
to a threshold D.,;; over the size of the image, as defined by
Wooding et al. [60]. We choose D, so has to not consider
isolated fixations, i.e., fixations at a larger distance than 2¢
(3°) from any another fixation. As a result, D is computed
as follows:

1 1 5

2nc? + 2m02°¢

Dcyip = M
where the first term of Equation 1 is the peak value of the
gaussian representing each fixation in the fixation map, and
the second term the value at 26.

3.3.4 Statistical Analysis

We set the level of significance to o¢ = 0.05. A Shapiro Wilk test was
performed to evaluate whether the distribution of our data followed
a normal distribution. When comparing Real vs. Virtual conditions
(Experiment 1), we conducted paired t-tests. In Experiment 2, we
investigated the effect of density in Virtual conditions by conducting
either a Friedman test with Wilcoxon-signed rank post tests when
the distribution was not normal, and a one-way repeated measures
analysis of variance (ANOVA) with post-hoc paired t-tests otherwise.
Greenhouse-Geisser adjustments to the degrees of freedom were
applied, when appropriate, to avoid any violation of the sphericity
assumption. For the post-hoc tests, we adjusted the p value to
account for multiple comparisons using the Benjamini-Hochberg
procedure [4] with a false discovery rate of 0.1.

4 REAL VS. VIRTUAL VALIDATION

The goal of this first experiment is to evaluate whether the eye-gaze
activity of a human walking a street is biased in VR conditions
compared to real ones. While Berton et al. [6] showed qualitative
similarities when considering an interaction between two walkers, it
is not yet established how these results generalize to more complex
scenarios involving larger numbers of pedestrians. In particular, our
experiment aims at assessing the following hypotheses:

H1.1 The scene is displayed through a HMD in the VE. This
reduces the field of view of participants in comparison with
RE. As a consequence, we expect gaze spatial distribution to
be different in the VE. Consistently, we expect the amplitude
of eye saccades, as well as the area covered by the gaze, to be
smaller in the VE.

H1.2 The feature of the RE are accurately reproduced in VE
(same street, buildings, geometry and same density of peo-
ple) and the participants’ task remains identical. We therefore
expect the duration of gaze fixations to be similar in both con-
ditions, as participants should take similar visual information
to perform the task in RE and VE.

H1.3 The task is to walk toward the opposite side of the street,
which is a central point in the participants field of vision. We
thus expect to observe gaze fixations to be centered in the field
of view.

4.1 Procedure

Participants were asked to physically walk through the real, and
then, the virtual street (see Section 3). They performed the RE
first because the parameters of the virtual condition were adjusted
to be as similar as possible to the RE, in terms of visual density
of pedestrians encountered. As all participants could not perform
the RE under the exact same experimental conditions, we chose to
minimize differences in terms of brightness and crowd by conducting
the real condition during lunchtime over several days. The virtual
counterpart was then conducted approximately one week later.
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Figure 3: Generation of the virtual scenarios. a) Video recording when a participant walked in the real street. b) Density of people seen by
participants over the normalized duration of the trial, estimated by tracking people visible in the video recording using deep learning algorithm. c)
Virtual scenario, reproducing qualitatively similar situations in the virtual conditions in terms of virtual characters encountered, as seen by the
participant. b) Density of individuals actually seen by the participant over the normalized duration in both the real (blue) and the virtual trial (red).

To enable comparisons between RE and VE, we first estimated for
each trial the number of people they saw in the RE. We then created
a specific stimuli that reproduced this same number. To this end, we
detected and tracked people visible in the video recorded through
the Tobii glasses (see Figure 3a-b) using a combination of two
neural networks: Yolo [46] and DeepSort [58]. Based on tracking
information, we categorized people into 3 categories: standing,
walking in the same direction, or walking in the opposite direction
to the participant. We generated scenarios with similar features by
spawning virtual characters in the street accordingly (see Figure 3c-d
for examples of generated feature values). The similarities between
the generated RE and VE are analysed and discussed below.

Finally, participants wore Tobii eye-tracking glasses in the RE,
whilst the Fove HMD was used in the VE. They performed 4 trials
in each condition, as well as 2 initial training trials to get accommo-
dated to VR. The experiment lasted approximately 10min for the
RE, and approximately 15min for the VE.

4.2 Analysis & Results
4.2.1 Comparison between real and virtual stimuli

As mentioned above, the VE were generated so as to reproduced sim-
ilar distributions of people compared to each corresponding real trial.
These generated scenarios were also verified by the experimenter
prior to the VE. To this end, we ran the same tracking techniques
on virtual stimuli to estimate the number of characters seen by par-
ticipants. Figure 4 presents the average number of individuals seen
by each participant across trials, for both Re and VE. While inter-
participant differences exist, and are expected as the RE could not
be controlled in terms of pedestrian activity in the street, results
show that the number of individuals seen is quite similar in both RE
and VE, suggesting that the real and virtual stimuli presented were
mostly similar in this aspect.

4.2.2 Fixations and Saccades

The average duration of fixations is illustrated in Figure 5-a) and
is influenced by the condition (t(15)=3.9, p<0.005, r=0.71), where
the duration of fixations was significantly longer in VE (252.5 £
42.4ms) than in RE (204.8 +30.4ms). The amplitude of saccades
is illustrated in Figure 5-b) and is also influenced by the condition
(t(15)=4.1, p<0.001, r=0.72), where the amplitude of saccades is
significantly larger in RE (6.9 £ 1.3°) than in VE (5.3 +1.4°).

4.2.3 Gaze spatial distribution

The average Peakriyation 1s illustrated in Figure 6-a), and is influ-
enced by the condition (T =0, Z = 3.51, p < 0.001, r = 0.88),
where results show that the peak value is significantly higher for
the VE (0.18) than for the RE (0.11). Coverage is illustrated in
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Figure 6-b), but we did not find significant differences between RE
and VE (p = 0.14).

A visual representation of these results is provided in Figure 7,
which displays the fixation maps for both the RE and VE. In partic-
ular, it is noticeable that gaze locations seem to follow a centered
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Figure 7: Heat-map (log-transformed) of the gaze fixation distribution
for both RE and VE

distribution for both conditions. While the center of this distribu-
tion is approximately at the center of the 1920 x 1080 image on
the x-axis for both conditions (RE: Peak, = 965 + 56pixel, VE:
Peak, = 962 £ 68pixel), it appears to be higher on the y-axis for
the RE than for the real one (RE: Peaky, = 717 &= 102pixel, VE:
Peaky = 526 & 65pixel). To identify whether this difference could
be due to a shift of the horizontal reference axis between the RE and
VE (i.e., an angle between the Tobii camera axis and HMD virtual
camera axis), we asked two volunteers to identify (by clicking with
the mouse button) the horizon line at the end of the street in a selec-
tion of 100 images randomly extracted from the video recordings of
real trials, as well as in 100 images from virtual trials. The distribu-
tion of the altitude of the horizon line in images follows a normal
distribution with a average coordinate of 804.5 = 112.8 pixel for the
real images and an average coordinate of 597.6 4= 86.6 pixel for the
virtual ones , showing therefore a difference of 206.9 pixels between
these two centres (equivalent to an angular difference of 9.7°).

4.2.4 Gaussian model for gaze prediction

The spatial distribution of the fixations follows a centered distribu-
tion that decreases exponentially around the center, as shown in the
log scale heat-maps in Figure 7. We fit a Gaussian model on this
distribution, which estimated parameters (Ux, Wy, Ox and Oy) are
presented in Table 1 with the corresponding coefficient of correlation
(R?, with p<0.05). It is also interesting to mention that the vertical
difference in the location of the center of gaze fixations as estimated
by our Gaussian model fitting is of 7.75°, which is relatively close to
the angular difference observed in the altitude of horizon estimated
from the real and virtual images (9.7°).

4.3 Discussion

In this first experiment we show that there are several differences
in the walker’s eye-gaze activity between the RE and VE. First,
saccades are of a greater amplitude in the RE than in the VE. In
addition, the value of Peakrixqion 1s different, indicating that the
gaze is more intensely focused on the center of the visual field in VR.
Moreover, the fitting of the Gaussian model on the distribution of
fixations location distribution resulted in a correlation coefficient of
0.77 for both conditions, that we estimate to be sufficiently high to
validate this choice. A larger value is computed for ¢ in the RE. All
these differences are consistent with hypothesis H1.1. Nevertheless,
no statistical difference is observed for coverage, which does not
allow us to fully confirm the hypothesis. Note that our hypothesis
was founded on the restriction of the field of view due to the use
of HMDs. However, the performed task, i.e., walking straight in a
street, may not require the exploration of peripheral areas. If true,
users may not have to compensate such a reduction.

A statistical difference is however present for the duration of
fixation, thus invalidating our second hypothesis H1.2. We interpret
that the cause of this difference is possibly due to the level of detail
in the digital replica of the street. In spite of the high quality of the
digital scene, there are always missing details, e.g., birds, or sounds,

Conditions Ly Ly o7 oy R’
RE 0.15° 8.10° | 7.69° | 6.93° | 0.77
VE —0.57° | 0.35° [ 6.11° | 5.08° | 0.77
Table 1: u,, uy, o, and o, of the gaussian distribution for the gaze
location in the image and R? between this distribution and the initial

distribution with respect to the experimental conditions.

that could have attracted the visual attention of our participants in
RE, and provoked faster fixations.

We also find a significant difference in the altitude of the gaze cen-
ter between RE and VE. This difference appears to be well explained
by a difference in the orientation of the eye-trackers reference hori-
zontal axis between the two conditions. Finally, participants display
a similar eye-gaze behavior as they have a centered distribution for
gaze location toward their goal, validating thus Hypothesis H1.3.

Therefore, our experiment highlights the importance of the digital
content when performing gaze studies in VR, as eye-gaze activity
seems to be affected by the richness and realism of this content.
Despite our experiment being based on high-fidelity urban digital
mockups, we cannot claim that we were able to reproduce all the de-
tails of reality. Nevertheless, these results provide valuable insights
to understand which aspects of eye-gaze activity are qualitatively
similar between RE and VE, to further explore using VR aspects
about navigating in a crowd which are not possible in real situa-
tions. We thus believe that VR is a valid tool to study such activity,
while experimenters should remain aware that some elements in real
environments may distract walkers’ gaze more.

5 EFFECT OF CROWD DENSITY ON EYE-GAZE BEHAVIOUR

The goal of this experiment is to evaluate the impact of crowd density
on eye-gaze activity, by leveraging the use of VR to accurately
control the number of displayed characters. When density increases,
walkers have more frequent interactions and face more people. In
this experiment we aim at assessing the following hypotheses:

H2.1 As the amount of visual information increases with den-
sity, we expect that the duration of fixations will decrease ac-
cordingly. By increasing the scanning frequency, participants
will be able to consider more elements in the VE.

H2.2 In addition, we also expect participants’ gaze to be more
focused towards the center of the visual field, since pedestrians
with the highest risk of collision are typically the ones in front
of them. In particular, we expect that the amplitude of the
saccades, as well as the area covered by the gaze, will decrease
as the density of the crowd increases. This also implies that the
gaze will be more intense in the center of the field of vision.

5.1 Procedure

In Experiment 2, participants were immersed in the same VE as
described in Section 3, and were instructed to navigate in the vir-
tual street through a crowd walking in a unidirectional flow in the
opposite direction. Our objective for this experiment is to study the
impact of crowd density on eye-gaze activity. In particular, for a
specific crowd density d, we generated a scenario with d virtual
characters every 15 meters at the start of the trial. These characters
were driven by the RVO crowd simulator, similarly to the previous
experiment (see details in Section 3.1). Participants were asked
to navigate through the crowd for approximately 20m, so different
speeds of virtual humans did not affect the visual densities for such
a short period. Participants were presented in random order with 6
different conditions of densities: d € [2,5,10, 14, 18,24] (Figure 10).
For each density, participants had to perform 4 repetitions. Par-
ticipants performed in total 24 trials, and the experiment took on
average 20 minutes per participant.
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Table 2: u,, uy, o, and o, of the gaussian distribution for the gaze
location in the image and R? between this distribution and the initial
distribution with respect to the density conditions.

Conditions ™ Uy o7 o7 R?

d:2 —0.72° 0.02° 5.06° 5.82° 0.75
d:5 —1.08° —0.11° 4.38° 5.39° 0.79
d: 10 —1.22° —0.55° 4.21° 4.64° 0.83
d: 14 —0.69° —1.01° 4.26° 4.53° 0.84
d: 18 —1.05° —-0.91° 4.07° 4.01° 0.87
d:24 —0.87° —1.36° 4.26° 4.45° 0.83

5.2 Analysis & Results
5.2.1 Fixation descriptors

The analysis on average duration of fixations shows an effect of
density (x2(5) = 14.15873, p < 0.01463). However, this is not
confirmed by post-hoc pairwise comparisons. Nevertheless, for
illustrative purposes, this result is displayed in Figure 8-a. Den-
sity has however a strong effect on the amplitude of saccades
(F(2.69,45.8) = 18.4, p < 0.000001, etalz, =0.51), where post-hoc
analysis shows that the amplitude of saccades is significantly larger
when navigating in a crowd with a density of 2 and 5 than for any
other condition (Figure 8-b).

5.2.2 Gaze spatial Distribution

The average Peakpiyation 1s illustrated in Figure 9-a). An ANOVA
shows an effect of the density (F(5,85) =2.74, p < 0.05(=0.024),
eta%, = 0.14), which is not confirmed by post-hoc pairwise com-
parisons. We however find an effect of density on Coverage
(x*(5) = 15,77778, p = 0,00751), where post-hoc analysis shows
that the coverage is larger when navigating in a crowd with a density
of 2 than for any other condition (Figure 9-b).

Fixation maps are also displayed for each condition in Figure 10.
For each density, the gaze location follows a centered distribution,
furthermore it seems that the coverage by the gaze is decreasing as
the density of the crowd is increasing, especially on the vertical-axis.

5.2.3 Gaussian model for gaze prediction

As in the precedent experiment, the spatial distribution of the fixa-
tions follows a centered distribution that decreases around the center,

as shown in the log scale heat-maps in Figure 10. We fitted a Gaus-
sian model on the gaze location distribution. The estimated Gaussian
parameters (U, Uy, Ox and Oy) are reported in Table 2, with the cor-
responding correlation coefficient (R2, with p<0.05). Qualitatively,
the o values decreased with the increase of density, especially on
the vertical-axis.

5.3 Discussion

In this second experiment we show some differences in the walker’s
eye-gaze activity when crowd density increases. In particular, we
show statistical differences in the amplitude of the saccades and the
area covered by the gaze. These two variables increase when the
crowd density decreases. Furthermore, this result is also supported
by the Gaussian model fittings. The ¢ parameter, which is correlated
with the coverage, decreases with the increasing crowd density, espe-
cially on vertical-axis. However, there is no statistical difference for
PeakFixqation, Which indicates that walker’s gaze is not more intense
in the center of the field of vision as expected. From all these results,
we can only partially validate our second hypothesis H2.2. Never-
theless, it seems that a Gaussian model could be used to estimate the
distribution of gaze location as the correlation coefficient is high for
each condition of density.

Concerning the duration of the fixations, post-hoc analysis did
not allow to validate that density has an impact on this data, thus
invalidating our hypothesis H2.1. Participants took the same amount
of time to search for visual information regardless of the crowd
density present in front of them. Finally, it can be noted that re-
gardless of crowd density, participants display mostly a similar
eye-gaze behaviour, as they show a centered distribution of gaze
positions toward their objective. These results are in line with pre-
vious work [61] showing that eye-gaze activity is dependent of the
task. In conclusion, these results indicate that participants’ gaze is
more focused toward the direction of the goal they have to reach as
crowd density increases. Their scanning range decreases, showing
that they visually take into account mainly pedestrians and visual
cues in front of them.

6 GENERAL DISCUSSION
6.1 Crowd simulation

The motivation of this work was the modelling and simulation of
crowds behaviour. In particular, Experiment 2 presented in Section
5 explores the question of interaction neighborhood, and how it
varies with increasing densities. We first show that density has no
significant effect on the duration of fixations. From the perspective
of crowd modelling, this let us think that the number of interaction
neighbors tends to remain constant with density. Indeed, an increase
in the number of neighbors would probably have asked participants
to visually scan them faster. For a similar situation such as an
opposite crowd in a street, we thus recommend to work with a
constant number of neighbors in simulations (i.e., the number of
simulated interactions for each agent). A more detailed analysis
of the observed characters would however be required to evaluate
whether some of them are observed multiple times.

Concerning the selection features to use to select neighbor agents,
we recommend ordering them by risk of collision (which can be
estimated in different ways, as discussed in [36]). Indeed, even
though coverage did not significantly change with density, our results
reveal that gaze tends to refocus around the visual center when
density increases: this is the area where characters presenting the
highest risk of collision in this bidirectional traffic condition.

6.2 Limitations

Section 4.3 attributes changes in eye-gaze behaviour between RE
and VE to the lack of some details in the virtual scene. This inter-
pretation is corroborated by previous studies [53]. In particular, the
digital scene did not incorporate sound simulation. Locomotion and
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Figure 10: Virtual street with all the different crowd densities. For each density, the fixation area (log-transformed) is displayed on top of the image

collision avoidance, is mainly controlled from visual information.
As an example, Silva [52] showed that, with 3 pedestrians or more,
the emission of sound has no effect on the manoeuvres performed by
participants. However, gaze activity was not explored in this work,
and a sound can certainly easily attract our attention, thus impacting
some characteristics of our gaze activity [14].

In the second experiment on crowd density, virtual humans had
to avoid any collision with the participant. We did not want to have
participants traversed by virtual characters, that would have nega-
tively impacted immersion. In RE, the level of attention paid by
surrounding people to their navigation can vary a lot. As an example,
the use of cellular phone while walking affect gait kinematics when
avoiding other pedestrians [30]. These differences in the behaviour
of neighbors may also induce a change in the participants’ behaviour.
We believe that, generally, the reduction of the field of view by the
Fove HMD may have an impact on the eye-gaze behaviour. This
was already outlined by previous studies [6,44]. However, in our
case, we think that this impact was limited, especially because the
task was to walk straight ahead in a street. The goal as well as
the oncoming obstacles were always visible in the central vision
area. Nevertheless, we are interested in extending the number of
situations and to address the case of crossing traffic. The width of
the field of view would certainly take a greater importance then. It
is also possible that performing the task in a street (RE and VE)
may have overly normalized eye-gaze behaviour, leading to little
effect of density on the studies variables. In a next step, we would
therefore be interested in studying such eye-gaze behaviours in more
open places, in order to evaluate whether normalizing the reaction
of our participants in a closed-space (street) was indeed overly con-
straining their eye-gaze activity. In addition, it is important to note
that the method we used to compute fixations cannot be applied to
all situations, as it assumes small head movements. We used this
method for a fair comparison with RE where the capture of head
movement in a street is challenging. With the use of VR, we would
then be able to compute these motions in order to adapt our analysis
to more complex scenario. Furthermore, several recent studies ex-
plored the coupled analysis of locomotion and gaze and considered,
for instance, walking speed [18]. In this work we have focused
solely on the eye-gaze activity, but we intend to focus on this type of
study in our future work. Finally, it would have been interesting to
have a larger number of participants in this study, so as to improve
the accuracy of the fitted Gaussian models as well as to study more

sensitive metrics, such as the inter-individual variability in gaze data
in VR [19], which we plan to explore in the future.

7 CONCLUSION & FUTURE WORKS

In this paper we have carried out two experiments on the study of
eye-gaze activity while walking in a street. Our first experiment
was to study the activity of the gaze while navigating in a real and
a virtual environment in order to evaluate the impact of VR on the
eye-gaze activity. Our results show a qualitatively similar eye-gaze
activity with some quantitative differences. In our second experiment
we studied the impact of crowd density on a walker’s gaze in VR.
Our results demonstrate an influence of density on gaze deployment,
where it decreases as the density increases while navigating in a
street full with an opposite crowd. For such situation, this indicates
that in high densities, walkers have a tendency to focus more their
gaze in front of them. Consequently, they will visually take more
into account people in front them than people in their surroundings.
We are able to provide guidelines for the design of models of local
interaction for crowd simulators.

More importantly, this work opens new perspectives for future
research. The modeling of crowds raises plenty of questions. In
first place, we have studied the effect of density in the case of
an oncoming traffic in a street only. It is first required to explore
more traffic conditions to get a deeper understanding of interaction
neighborhood. For example, in the case of crossing flows or in a
more open space, we expect the gaze to explore more the peripheral
areas of the field of vision. It would be also very interesting to try
to saturate one’s visual field with many interactions of importance
(e.g., many characters all on a collision course) to explore the limits
of visual integration and observe if walkers apply a specific strategy
in such cases. Nevertheless, if peripheral vision gets more important
in new scenarios, it would be certainly required to re-evaluate eye-
gaze activity when using HMDs with a wide field of vision, that are
becoming more and more popular. Finally, as we have highlighted
the possible role of other sensory channels on visual attention (e.g.,
sound or touch), we would like to integrate higher fidelity scenes
and VR rendering techniques in our experimental VR platform.
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