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Introduction

Mathematical modeling of epidemic spread and estimation of key parameters from data provided much insight in
the understanding of public health problems related to infectious diseases. These models are naturally parametric
models, where the present parameters rule the evolution of the epidemics under study.

Multidimensional continuous-time Markov jump processes (Z (t)) on Zp form a usual set-up for modeling
epidemics on the basis of compartmental approaches as for instance the SIR-like (Susceptible-Infectious-Removed)
epidemics (see Part I of these notes and also [2], [36], [84]). However, when facing incomplete epidemic data,
inference based on (Z (t)) is not easy to be achieved.

There are different situations where missing data are present. One situation concerns Hidden Markov Models,
which are in most cases Markov processes observed with noise. It corresponds for epidemics to the fact that the ex-
act status of all the individuals within a population are not observed, or that detecting the status has some noise (see
[23] for instance). Another situation comes from the fact that observations are performed at discrete times. They
can also be aggregated (e.g. number of infected per day). A third case, for multidimensional processes, is that some
coordinates cannot be observed in practice. While the statistical inference has a longstanding theory for complete
data, this is no longer true for many cases that occur in practice. Many methods have been proposed to fill this gap
starting from the Expectation-Maximization algorithm ([35], [91]) up to various Bayesian methods ([26], [107]),
Monte Carlo methods ([52], [105]), based on particle filtering ([42], [43]), Approximate Bayesian Computation
methods ([9], [15], [115], [121]), maximum iterating filtering ([71]), Sequential Monte Carlo or Particle MCMC
([3], [38]), see also the R package POMP ([90]). Nevertheless, these methods do not completely circumvent the
issues related to incomplete data. Indeed, as summarized in [19], there are some limitations in practice due to the
size of missing data and to the various tuning parameters to be adjusted.

The aim of this part is to provide some tools to estimate the parameters ruling the epidemic dynamics on the
basis of available data. We begin with a chapter about inferential methodology for stochastic processes which is
not specific to applications to epidemics but is the backbone of the various inference methods detailed in the next
chapters of this part.

The methods used to build estimators are linked with the precise nature of the observations, each kind of obser-
vations generating a different statistical problem. We detail these facts in the first chapter. We have intentionally
omitted in this chapter the additional problem of noisy observations, which often occurs in practice. This is another
layer which comes on top. It entails Hidden Markov Models and State space Models (see [23] or [125]) and also
the R-package Pomp ([90]).

Chapter 2 is devoted to the statistical inference for Markov chains. Indeed, discrete time Markov chains models
are interesting here because many questions that arise for more complex epidemic models can be illustrated in this
set-up.

We had rather focus here on parametric inference since epidemic models always include in their dynamics
parameters that need to be estimated in order to derive predictions. At the early stage of an outbreak, a good
approximation for the epidemic dynamics is to consider that the population of Susceptible is infinite and that
Infected individuals evolve according to a branching process (see Part I, Section ?? of these notes). We also
present in this chapter some classical statistical results in this domain.

As detailed in Part I, Chapter ??, epidemics in a close population of size N are naturally modeled by pure
jump processes (Z N(t)). However, inference for such models requires that all the jumps (i.e. times of infection
and recovery for the SIR model) are observed. Since these data are rarely available in practice, statistical methods
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often rely on data augmentation, which allows us to complete the data and add in the analysis all the missing
jumps. For moderate to large populations, the complexity increases rapidly, becoming the source of additional
problems. Various approaches were developed during the last years to deal with partially observed epidemics.
Data augmentation and likelihood-free methods such as the Approximate Bayesian Computation (ABC) opened
some of the most promising pathways for improvement (see e.g. [18], [102]). Nevertheless, these methods do not
completely circumvent the issues related to incomplete data. As stated also in [19], [28], there are some limitations
in practice, due to the size of missing data and to the various tuning parameters to be adjusted (see also [2], [106]).

In this context, it appears that diffusion processes satisfactorily approximating epidemic dynamics can be prof-
itably used for inference of model parameters for epidemic data, due to their analytical power (see e.g. [46], [110]).
More precisely, when normalized by N, (ZN(t) = N−1Z N(t)) satisfies an ODE as the population size N goes to
infinity and moreover, in the first part of these notes, it is proved that the Wasserstein L1-distance between (ZN(t))
and a multidimensional diffusion process with diffusion coefficient proportional to 1/

√
N is of order o(N−1/2) on

a finite interval [0,T ] (see Part I, Sections ?? and ??). Hence, in the case of a major outbreak in a large community,
epidemic dynamics can be described using multidimensional diffusion processes (XN(t))t≥0 with a small diffu-
sion coefficient proportional to 1/

√
N. We detail in Chapter 3 the parametric inference for epidemic dynamics

described using multidimensional diffusion processes (XN(t))t≥0 with a small diffusion coefficient proportional to
1/
√

N based on discrete observations. Since epidemics are usually observed over limited time periods, we consider
the parametric inference based on observations of the epidemic dynamics on a fixed interval [0,T ].

The last chapter is devoted to the inference for the continuous time SIR model. We present several algorithms
which address the problem of incomplete data in this set-up: Expectation-Maximization algorithm, Monte Carlo
methods and Approximate Bayesian Computation methods. Finally, all the classical statistical results required for
this part are detailed in the Appendix.



Chapter 1

Observations and Asymptotic Frameworks

Multidimensional continuous-time Markov jump processes (Z (t)) on Zp form a usual set-up for modeling epi-
demics on the basis of compartmental approaches as for instance the SIR-like (Susceptible-Infectious-Removed)
epidemics (see Part I of these notes and also [2], [36], [84]). However, when facing incomplete epidemic data,
inference based on (Z (t)) is not easy to be achieved.

Assume that a stochastic process (Z (t), t ∈ [0,T ]) models the epidemic dynamics with parameters associated
with this process (transition kernels depending on a parameter θ for Markov chains, drift and diffusion coefficients
for a diffusion process, infinitesimal generator for a Markov pure jump process). The observed process corresponds
to the value θ0 of this parameter. This value θ0 is called the true (unknown) parameter value. Our concern here is
the estimation of θ0 from the observations that are available and the study of their properties. The methods used
to build estimators are linked with the precise nature of the observations, each kind of observations generating
a different statistical problem. We detail these facts in the next sections. We have intentionally omitted in this
chapter the additional problem of noisy observations, which often occurs in practice. This is another layer which
comes on top. It entails Hidden Markov Models and State space Models (see [23] or [125]) and also the R-package
Pomp ([90]).

1.1 Various kinds of observations and asymptotic frameworks

As developed in Part I of these notes, the epidemic dynamics is modeled by a stochastic process (Z (t)) defined on
[0,T ] with values in Rp, which describes at each time t the number of individuals in each of the p health states (e.g.
p = 3 for the SIR model). Inference for epidemic models is complicated by the fact that collected observations
usually do not contain all the information on the whole path of (Z (t),0≤ t ≤ T ). Moreover, the inference method
relies on an asymptotic framework which allows us to control the properties of estimators. We detail here in
a general set-up these facts, which are not specific to the inference for epidemic dynamics, but rely on general
properties of inference for stochastic processes, this knowledge being useful for applications to epidemics.

1.1.1 Observations

Historically, continuous observation of (Z (t),0≤ t ≤ T ) was systematically assumed in the literature concerning
the statistics of continuous time stochastic processes (see [69], [97], [98]). It is justified by the property that the-
oretical results can be obtained. However, many various cases can occur in practice. Among them, including the
complete case, the more frequent are
Case (a). Continuous observation of (Z (t)) on [0,T ].
Case (b). Discrete observations: (Z (t1), . . . ,Z (tn)) with 0≤ t1 < t2 < · · ·< tn ≤ T .
Case (c). Aggregated observations (J0, . . . ,Jn−1) with Ji =

∫ ti+1
ti Z (s)ds.

Case (d). Model with latent variables: Some coordinates of (Z (t), t ∈ [0,T ]) are unobserved.

Case (a) corresponds to complete data. For the SIR epidemics, it means that the times of infection and recovery
are observed for each individual in the population. Case (b) corresponds to the fact that observations are made at
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6 CHAPTER 1. OBSERVATIONS AND ASYMPTOTIC FRAMEWORKS

successive known times (one observation per day or per week during the epidemic outburst (see [12], [27], [18],
[28]). Case (c) occurs in epidemics when the available observations are the number of Infected individuals and
Removed per week for instance. Case (d) deals with the fact that, in routinely collected observations of epidemic
models, one or several model variables are unobserved (or latent) (see e.g. [23], [42] for general references and
[18], [19], [71], [72], [107], [121] for applications to epidemics).

1.1.2 Various asymptotic frameworks

Taking into account an asymptotic framework is necessary to study and compare the properties of different esti-
mators. It is also a preliminary step for the study of non-asymptotic properties. While for i.i.d. observations, the
natural asymptotic framework is that the number n of observations goes to infinity, for stochastic processes various
approaches are used according to the model properties or to the available observations. Two different situations
need to be considered according to the time interval of observation [0,T ], where T either goes to infinity or is fixed.

1.1.2.1 Increasing time of observation [0,T ] with T → ∞

If (Z (t)) on [0,T ] is continuously observed, a general theory is available for ergodic processes and for stationary
mixing processes. Inference can also be performed for some special models but does no longer rely on a general
theory. This occurs for supercritical branching processes and for the explosive AR(1) process.

Let us consider the case of discrete observations of a continuous time process with regular sampling ∆. The
observations are: (Z (t1),Z (t2), . . . ,Z (tn)) with ti = i∆ and T = n∆.
Two distinct cases arise from the study of parametric inference for diffusion processes
(1) The sampling interval ∆ is fixed ( T = n∆ and n→ ∞).
(2) The sampling interval ∆ = ∆n→ 0 with T = n∆n→ ∞ as n→ ∞.
Since the likelihood is not explicit and difficult to compute, it raises many theoretical problems. References for the
inference in these cases are Kessler [86], [87] followed by many others [88].

In practice, when a sampling interval ∆ is present in the data collecting, it might be important to take it explicitly
into account. Deciding whether ∆ is small or not depends more on the time scale than on its precise value. However
this parameter ∆ explicitly enters in the estimators, and some estimators with apparently good properties for ∆ fixed
might explode for small ∆. It corresponds in theory to different rates of convergence for the various coordinates
of the unknown parameter θ as n→ ∞. This typically occurs for discrete observations of a diffusion process (see
Section 1.2).

1.1.2.2 Fixed observation time [0,T ]

Several asymptotic frameworks are used.

(1) Discrete observations on [0,T] with T = n∆n fixed
The sampling interval ∆n→ 0 while the number of observations n tends to infinity.
For diffusion processes, only parameters in the diffusion coefficient can be estimated (see [49], [74]).

(2) Observation of k i.i.d. sample paths of (Z i(t),0≤ t ≤ T ), i = 1, . . .k with k→ ∞.
Observations of (Z i(t)) can be continuous or discrete.This framework is relevant for panel data which describe for
instance the dynamics of several epidemics in different locations. It allows us to include covariates or additional
random effects in the model. The assumption is that the number of paths k goes to infinity (see e.g [60]).

(3) Presence of a “Small parameter” ε > 0 : (Z ε(t),0≤ t ≤ T ), and ε → 0.
Inference is studied in the set-up of a family of stochastic models (Z ε(t),0 ≤ t ≤ T ) depending on a parameter
ε > 0. Such a family of processes naturally appears in the theory of "Small perturbations of dynamical systems",
where (Xε(t)) denotes a diffusion process with small diffusion coefficient εσ(·) (see e.g. [45]). The presence of
a small parameter occurs in the study of epidemics in large closed populations of size N, when they are density
dependent. The small parameter ε is associated to the population size N by the relation ε = 1/

√
N leading to the
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family of processes Z ε(t) = ε2Z (t) (normalization by the population size of the process). From a probability
perspective, we refer to Part I, Sections ?? and ?? (see also [40, Chapter 8]). For statistical purposes, we investi-
gate in Chapter 3 of this part the asymptotic framework "ε→ 0" and, for discrete observations, the cases where the
sampling interval ∆ can be fixed or ∆ = ∆n→ 0.

(4) Asymptotics on the initial population number.
It consists in assuming that one coordinate of (Z (t)) at time 0 satisfies that Z i(0) = M → ∞. The parametric
inference for the continuous time SIR model is performed in this framework (see the results recalled in Section 4.2
or [2]). This is also used for subcritical branching processes where the initial number of ancestors goes to ∞ (see
e.g.[60]).

1.1.3 Various estimation methods

As pointed out in the introduction of this part, we are mainly concerned by the problem of parametric inference.
There exist several estimation methods.

Maximum Likelihood Estimation
This entails that one can compute the likelihood of the observation. For a continuously observed process, this is
generally possible, but for a discrete time observation of a continuous-time process or for other kinds of incomplete
observations, it is often intractable. This opens the whole domain of stochastic algorithms which aim at complet-
ing the data in order to estimate parameters with Maximum Likelihood methods. In particular, the well-known
Expectation-Maximisation algorithm ([35]) and other related algorithms (see e.g. [3], [91], [107]) are based on
the likelihood. For regular statistical models, Maximum Likelihood Estimators (MLE) are consistent and efficient
(best theoretical variance).

Minimum Contrast Estimation or Estimating Functions
When it is difficult to use the accurate (exact) likelihood, pseudo-likelihoods (contrast functions; approximate like-
lihoods,..), or pseudo -score functions (approximations of the score function, estimating functions) are often used.
When they are well designed, these methods lead to consistent estimators converging at the right rate. They might
loose the efficiency property of MLE in regular statistical models (see e.g. [124] for the general theory and [32],
[68] for stochastic processes).

Empirical and non-parametric Methods
This comprises all the methods that rely on limit theorems (such as the ergodic theorem) associated with various
functionals of the observations. Among these methods, we can refer to Moments methods and Generalized Mo-
ment Methods (see e.g. [124] for the general theory and [65] for discrete observation of continuous-time Markov
processes).

Algorithmic Methods
Many methods have been developed to perform estimation for incomplete data. It is difficult to be exhaustive.
Let us quote [3], [38] for Particle Markov Monte Carlo methods; [10], [15], [17], [115], [121] for Approximate
Bayesian Computation; [26], [102] for Bayesian MCMC; [71], [90] for iterated filtering and the R-package POMP.
In the last chapter of this part, MCMC and ABC methods are detailed for the SIR model.

1.2 An example illustrating the inference in these various situations

Let us investigate here the consequences of these various situations for the statistical inference on a simple stochas-
tic model for describing a population dynamics: the AR(1) model which is a simple model for describing dynam-
ics in discrete time, its continuous time description corresponding to the Ornstein–Uhlenbeck diffusion process.
Besides studying a simplified population model, the main interest of this example lies in the property that compu-
tations are explicit for the various inference approaches listed in the previous section.
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1.2.1 A simple model for population dynamics: AR(1)

The AR(1) model is a classical model for describing population dynamics in discrete time. On (Ω,F ,P) a prob-
ability space, let (εi) be a sequence of i.i.d. random variables on R with distribution N (0,1). Consider the
autoregressive process on R defined, for i≥ 0,

Xi+1 = aXi + γεi+1, X0 = x0. (1.2.1)

In order to compare this model with its continuous time version, the Ornstein–Uhlenbeck diffusion process, we
assume that a > 0 and that x0 is deterministic and known. The observations are (Xi, i = 1, . . . ,n) and the unknown
parameters (a,γ)∈ (0,+∞)2. The distribution Pn

a,γ of the n-tuple (X1, . . . ,Xn) is easy to compute, since the random
variables (Xi−aXi−1, i= 1, . . . ,n) are independent and identically distributed N (0,γ2). If λn denotes the Lebesgue
measure on Rn, then

dPn
a,γ

dλn
(xi, i = 1, . . . ,n) =

1
(γ
√

2π)n
exp(− 1

2γ2

n

∑
i=1

(xi−axi−1)
2).

Hence, the loglikelihood function is

logLn(a,γ) = `n(a,γ) =−
n
2

log(2π)− n
2

logγ
2− 1

2γ2

n

∑
i=1

(Xi−aXi−1)
2. (1.2.2)

The maximum likelihood estimators are

ân =
∑

n
i=1 Xi−1Xi

∑
n
i=1 X2

i−1
; γ̂

2
n =

1
n

n

∑
i=1

(Xi− ânXi−1)
2. (1.2.3)

The properties of (ân, γ̂
2
n ) can be studied as n→ ∞: (ân, γ̂

2
n ) is strongly consistent:

(ân, γ̂
2
n )→ (a,γ2) a. s. under Pa,γ as n→ ∞.

The rates of convergence differ according to the probabilistic properties of (Xi).
(1) If 0 < a < 1, (Xi) is a Harris recurrent Markov chain with stationary distribution
µa,γ(dx) = N (0, γ2

1−a2 ). The estimators ân, γ̂
2
n are asymptotically independent and satisfy(√

n(ân−a)√
n(γ̂2

n − γ2)

)
→N2

(
0,
(

1−a2 0
0 2γ4

))
. (1.2.4)

(2) If a = 1, (Xi) is a null recurrent random walk and n(ân−1) converges to a non-Gaussian distribution, while γ̂2
n

has the properties of Case (1).
(3) If a > 1 and x0 = 0, (Xi) is explosive. One can prove that an(ân−a) converges to a random variable Y = ηZ,
where η ,Z are two independent random variables, Z ∼N (0,1) and η is an explicit positive random variable. The
estimator γ̂2

n keeps the properties of Case (1).

1.2.2 Ornstein–Uhlenbeck diffusion process with increasing observation time

This section is based on Chapter 1 of [48] where all the statistical inference is detailed. It is presented here
as a starting point for problems that arise when dealing with epidemic data. In order to investigate the various
situations detailed in Section 1.1, let us now consider the continuous time version of the AR(1) population model,
the Ornstein–Uhlenbeck diffusion process defined by the stochastic differential equation

dξt = θξtdt +σdWt ; ξ0 = x0. (1.2.5)
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where (Wt , t ≥ 0) denotes a standard Brownian motion on (Ω,F ,P), and x0 is either deterministic or is a random
variable independent of (Wt). Then, (ξt , t ≥ 0) is a diffusion process on R with continuous sample paths. This
equation can be solved, setting Yt = e−θ tξt , so that

ξt = x0eθ t + eθ t
∫ t

0
e−θsdWs. (1.2.6)

Let us first consider the case where (ξt) is observed with regular sampling intervals ∆. The observations
(ξti ; i = 1, . . . ,n) with ti = i∆ satisfy

ξti+1 = eθ∆
ξti +σeθ(i+1)∆

∫ (i+1)∆

i∆
e−θsdWs. (1.2.7)

Hence, (ξti+1 − eθ∆ξti) is independent of Fti , where Ft = σ(ξ0,Ws,s ≤ t) and the sequence (ξti , i ≥ 0) is the
autoregressive model AR(1) defined in (1.2.1) setting

Xi = ξti , a = eθ∆, γ
2 =

σ2

2θ
(e2θ∆−1), (1.2.8)

since the random variables ((σeθ(i+1)∆ ∫ (i+1)∆
i∆ e−θsdWs),1≤ i≤ n) are independent Gaussian N (0,γ2).

Cases (1), (2), (3) of the AR(1) are respectively {θ < 0}, {θ = 0} and {θ > 0}.

Case (a) Continuous observation on [0,T ].
Let us first start with the parametric inference associated with the complete observation of (ξt) on [0,T ] . The space
of observations is (CT ,CT ), the space of continuous functions from [0,T ] into R and CT is the Borel σ -algebra.
associated with the topology of uniform convergence on [0,T ]. Let Pθ ,σ2 denote the probability distribution on
(CT ,CT ) of the observation (ξt ,0 ≤ t ≤ T ) satisfying (1.2.5) . It is well known that if σ2 6= τ2, the distributions
Pθ ,σ2 and Pθ ,τ2 are singular on (CT ,CT ) (see e.g. [97]). Indeed, the quadratic variations of (ξt) satisfy, as ∆n =
ti− ti−1→ 0,

n

∑
i=1

(ξti −ξti−1)
2→ σ

2T in Pθ ,σ2 -probability.

Therefore, the set A = {ω,∑n
i=1(ξti −ξti−1)

2→ σ2T} satisfies Pθ ,σ2(A) = 1 and Pθ ,τ2(A) = 0 for τ2 6= .σ2.
A statistical consequence is that the diffusion coefficient is identified when (ξt) is continuously observed.

We assume that σ is fixed and known and omit it in this section. Let P0,σ2 = P0 the distribution associated
with θ = 0 (i.e dξt = σdWt ). The Girsanov formula gives an expression of the likelihood function on [0,T ],

LT (θ) =
dPθ

dP0
(ξt ,0≤ t ≤ T ) = exp

(
θ

σ2

∫ T

0
ξt dξt −

θ 2

2σ2

∫ T

0
ξ

2
t dt

)
. (1.2.9)

Substituting (ξt) by its expression in (1.2.5), the MLE is

θ̂T =

∫ T
0 ξtdξt∫ T
0 ξ 2

t dt
= θ +σ

∫ T
0 ξtdWt∫ T
0 ξ 2

t dt
. (1.2.10)

The estimator θ̂T defined in (1.2.10) reads as

θ̂T = θ +
MT

〈M〉T
with Mt =

1
σ

∫ t

0
ξsdWs. (1.2.11)

where (Mt) is a (Ft)-martingale in L2 with angle bracket 〈M〉t (i.e. the process such that (M2
t −〈M〉t) is a martin-

gale). Noting that 〈M〉T → ∞ as T → ∞, the law of large numbers yields that
MT

〈M〉T
→ 0. Hence the MLE defined
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by (1.2.10) is consistent. As for the AR(1)- model, the rate of convergence of θ̂T to θ depends on the properties of
(Mt). Three different cases can be listed as T → ∞:
(1) {θ < 0}: (ξt) is a positive recurrent process with stationary distribution N (0, σ2

2|θ | ) and
√

T (θ̂T − θ)→L

N (0,2|θ |).
(2) {θ = 0}: (ξt) is a null recurrent diffusion; T θ̂T converges to a fixed distribution.
(3) {θ > 0}: (ξt) is a transient diffusion; eθT (θ̂T − θ) converges in distribution to Y = η Z, where η ,Z are two
independent random variables, Z ∼N (0,1) and η is an explicit a positive random variable.

Case (b)-1 Discrete observations with sampling interval ∆ fixed.
Let ti = i∆,T = n∆ and assume that the number of observations n→ ∞.
Using (1.2.8), (Xi = ξti) is an AR(1) with a = eθ∆ ,γ2 = σ2v(θ) with v(θ) = 1

2θ
(e2θ∆−1).

Let φ∆ : (0,+∞)2→ R× (0,+∞)

φ∆ : m =

(
a
γ2

)
→

(
θ = loga

∆

σ2 = a2−1
2loga ∆γ2

)
.

This is a C1-diffeomorphism and the MLE for θ and σ2 can be deduced from (ân, γ̂
2
n ) obtained in Section 1.2.1.

This yields

θ̂n =
1
∆

log

(
∑

n
i=1 Xi−1Xi

∑
n
i=1 X2

i−1

)
; σ̂

2
n =

1
n

n

∑
i=1

(Xi− exp(θ̂n∆) Xi−1)
2.

These two estimators inherit the asymptotic properties of the maximum likelihood estimators (ân, γ̂
2
n ) obtained in

Subsection 1.2.1, their asymptotic variance is obtained using Theorem A.1.1 stated in the Appendix, Section A.1.2
(see also [124], Theorem 3.1). Therefore, (θ̂n, σ̂

2
n ) is consistent and, using that an(m̂n−m) converges to a random

variable Y yields

an

(
θ̂n−θ

σ̂2
n −σ2

)
→L ∇xφ∆(m)Y, (1.2.12)

where an is respectively for Cases (1), (2), (3) the matrix(√
n 0

0
√

n

)
,

(
n 0
0
√

n

)
,

(
en∆θ 0

0
√

n

)
.

In particular, for Case (1) where Y ∼N2(0,Σ), the limit distribution N2(0,∇xφ∆(m)Σ(∇xφ(m))∗) where Σ is
the matrix obtained in (1.2.4).

Looking precisely at the theoretical asymptotic variance of θ̂n obtained in (1.2.12), we can observe that, for
small ∆, this variance is 2|θ |

∆
and therefore explodes. It corresponds to the property that

√
n is not the right rate of

convergence of θ for small ∆.

Case (b)-2 Discrete observations with sampling interval ∆ = ∆n→ 0
We just detail Case (1), which corresponds to the ergodic Ornstein–Uhlenbeck process, first studied in [86]. Under
the condition n∆2

n→ 0, the estimators θ̂n, σ̂
2
n are consistent and converge at different rates under Pθ ,(√

n∆n(θ̂n−θ)√
n(σ̂2

n −σ2)

)
L→N2

(
0,
(

2|θ | 0
0 2σ4

))
. (1.2.13)

Case (c)-1 Aggregated observations on intervals [i∆,(i+1)∆] with ∆ fixed.
Assume now that the available observations are aggregated data on successive intervals, (Ji) with

Ji =
∫ ti+1

ti
ξs ds. (1.2.14)
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The inference problem has first been studied by [56], [55] for an ergodic stationary diffusion process. It entails
that θ < 0 and that X0 is random, independent of (Wt , t ≥ 0), distributed according to the stationary distribution of
(ξt), N (0, σ2

2|θ | ).
The process (Ji)i≥0 is a non-Markovian strictly stationary centered Gaussian process. Using (1.2.6) and

(1.2.14), Ji and Ji+1 are linked by the relation

Ji+1− eθ∆Ji =
σ

θ

∫ (i+1)∆

i∆
(eθ∆− eθ((i+1)∆−s))dWs (1.2.15)

+
σ

θ

∫ (i+2)∆

(i+1)∆
(eθ((i+2)∆−s)−1)dWs.

Hence, for all i≥ 1, (Ji+1−eθ∆Ji) is independent of (J0, . . . ,Ji−1) and (Ji) possesses the structure of an ARMA(1,1)
process, for which the statistical inference is derived with other tools. Indeed,

Var(Ji) = σ
2r0(θ) ; Cov(Ji,J j) = σ

2ri− j(θ) with

r0(θ) =
1

θ 2

(
∆+

1− eθ∆

θ

)
; rk(θ) =−

1
2θ 3 e−θ∆(eθ∆−1)2 eθ∆|k| if k 6= 0.

Its spectral density has also an explicit expression, fθ ,σ2(λ ) = σ2 fθ (λ ).
The likelihood function is known theoretically but its exact expression is intractable. Instead of the exact

likelihood, a well-known method to derive estimators is to use the Whittle contrast Un(θ ,σ
2) which provides

efficient estimators. It is based on the periodogram: if j denotes now the complex number j2 =−1,

Un(θ ,σ
2) =

1
2π

∫
π

−π

(
log fθ ,σ2(λ )+

In(λ )

fθ ,σ2(λ )

)
dλ , with In(λ ) =

1
n
|

n−1

∑
k=0

Jke− jkλ |2.

The estimators are then defined as any solution of Un(θ̃n, σ̃
2
n ) = infθ ,σ2 Un(θ ,σ

2). This yields consistent and
asymptotically Gaussian estimators at rate

√
n.

Case (c)-2 Aggregated observations on intervals [i∆,(i+1)∆] with ∆ = ∆n→ 0.

Let us now consider the case of ∆ = ∆n → 0,T = n∆n → ∞ as n→ ∞. Let Ji,n =
∫ (i+1)∆n

i∆n
ξsds. Assume that

θ < 0. The diffusion is positive recurrent with stationary measure µθ ,σ2(dx) ∼N (0, σ2

2|θ | ) . The following two
convergences hold in probability (see [56]).

1
n

n−1

∑
i=0

(∆−1
n Ji+1,n−∆

−1
n Ji,n)

2 → 2
3

σ
2, while

1
n

n−1

∑
i=0

(ξ(i+1)∆n −ξi∆n)
2 → σ

2.

Hence, for small ∆n, the heuristics 1
∆n

Ji,n ∼ ξi∆n is too rough and does not yield good statistical results. The two
processes corresponding to these two kinds of observations are structurally distinct: (ξi∆n) is an AR(1) process
while ( 1

∆n
Ji,n) is ARMA(1,1). Ignoring this can lead to biased estimators.

1.2.3 Ornstein–Uhlenbeck diffusion with fixed observation time

Case (a) Continuous observation on [0,T ]
As in Section 1.2.2 Case (a), the parameter σ2 is identified from the continuous observation of (ξt). Therefore we
assume that σ2 is known. The expression for the likelihood (1.2.9) holds. We get that, without additional assump-
tions, as for instance the presence of a small parameter ε , the MLE given in (1.2.10) θ̂T has a fixed distribution.
On a fixed time interval, parameters in the drift term of a diffusion cannot be consistently estimated.
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Case (b)-1 Discrete observations with fixed sampling ∆

The number of observations n is fixed. Without additional assumptions, neither θ nor σ2 can be consistently esti-
mated.

Case (b)-2 Discrete observations with sampling ∆n→ 0
Let ∆ = ∆n = T/n→ 0 as n→ ∞. Equation (1.2.7) holds and (1.2.2) is the likelihood. The maximum likelihood
estimator θ̂n satisfies

θ̂n =
1

∆n
log

(
1+∆n

∑
n
i=1 ξti−1(ξti −ξti−1)

∆n ∑
n
i=1 ξ 2

ti−1

)
. (1.2.16)

Since ti = i T
n , using the property of stochastic integrals and the Lebesgue integral yields that, under Pθ ,

n

∑
i=1

ξti−1(ξti −ξti−1)→
∫ T

0
ξsdξs in probability;

n

∑
i=1

∆n ξ
2
ti−1
→
∫ T

0
ξ

2
s ds a.s.

Therefore, as n→ ∞, θ̂n converges to the random variable θT =
∫ T

0 ξsdξs∫ T
0 ξ 2

s ds
. Hence θ̂n is not consistent. Note that θT

is precisely the MLE for θ obtained for continuous observation, which possesses good properties only if T → ∞.
The story is different for the estimation of σ2. The normalized quadratic variations of (ξt) is a consistent estimator
of σ2 and ∑(ξti −ξti−1)

2→ σ2T in probability. Moreover,

σ̃
2 =

1
T

n

∑
i=1

(ξti −ξti−1)
2 satisfies that

√
n(σ̃2−σ

2)→N (0,2σ
4). (1.2.17)

Note that this result holds whatever the value of θ .

Case (c)-1 Aggregated observations on intervals [i∆,(i+1)∆] with ∆ fixed
As in Case (b)-1, θ and σ2 cannot be consistently estimated.

Case (c)-2 Aggregated observations on intervals [i∆,(i+1)∆] with ∆ = ∆n→ 0
This has been studied in [56]. Then, as ∆n→ 0, in probability,

n−1

∑
i=0

(∆−1
n Ji+1,n−∆

−1
n Ji,n)

2→ 2
3

σ
2T while

n−1

∑
i=0

(ξ(i+1)∆n −ξi∆n)
2→ σ

2T.

Here again, the heuristics 1
∆n

Ji,n ∼ ξi∆n is too rough and does not yield good statistical results.

1.2.4 Ornstein–Uhlenbeck diffusion with small diffusion coefficient

This asymptotic framework is "ε → 0". It naturally occurs for diffusion approximations of epidemic processes.
The equation under study is now

dξt = θξtdt + εσdWt ξ0 = x0. (1.2.18)

We detail the results for fixed observation time [0,T ].

Case (a) Continuous observation on [0,T ]
As before, we assume that σ2 is known and omit it. Let Pε

θ
the distribution on (CT ,CT ) of (ξt) satisfying (1.2.18).

The likelihood is now

LT,ε(θ) =
dPε

θ

dPε
0
(ξs,0≤ s≤ T ) = exp(

θ

ε2σ2

∫ T

0
ξs dξs−

θ 2

2ε2σ2

∫ T

0
ξ

2
s ds ). (1.2.19)

θ̂T,ε = θ + εσ

∫ T
0 ξtdWt∫ T
0 ξ 2

t dt
. (1.2.20)
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Therefore θ̂T,ε → θ in probability under Pε
θ

as ε → 0. Moreover, using results of [92]),

ε
−1(θ̂T,ε −θ)→L N (0,τ2), with τ

2 =
2θσ2

x2
0(e

2θT −1)
.

Case (b)-1 Discrete observations with fixed sampling interval ∆

If ∆ is fixed, only θ can be consistently estimated (see [61]). This is detailed in Chapter 3, Section 3.5. Setting
a = eθ∆, and Xi = ξi∆, then, using (1.2.1),

Xi = aXi−1 + εγηi, where γ
2 =

e2θ∆−1
2θ

σ
2,

and (ηi) i.i.d. N (0,1) random variables. Using (1.2.2) and (1.2.3) yields

âε,∆ = a+ εγ
∑

n
i=1 Xi−1ηi

∑
n
i=1 X2

i−1
.

Therefore, as ε → 0, âε,∆ is consistent and

ε
−1(âε,∆−a)→N (0,V∆), with V∆ = γ

2 e2θ∆−1
x2

0(e
2θT −1)

= σ
2 (e2θ∆−1)2

2x2
0θ(e2θT −1)

.

Note that for small ∆, V∆ ∼ ∆

x2
0(e

2θT−1)
σ2.

Case (b)-2 Discrete observations with sampling ∆ = ∆n→ 0
This was first studied in [57], [119] and is detailed in Chapter 3. Let T = n∆n (the number of observations n→∞ as
∆n→ 0). Both θ and σ can be estimated from discrete observations. One can prove that they converge at different
rates: under Pθ as ε → 0,n→ ∞,(

ε−1(θ̂ε,n−θ√
n(σ̂2

n −σ2

)
→N2

(
0,

(
2θσ2

x2
0(e

2θT−1)
0

0 2σ4

))
. (1.2.21)

1.2.5 Conclusions

This detailed example based on the Ornstein–Uhlenbeck diffusion studied under various asymptotic frameworks
and various kinds of observations shows that, before estimating parameters ruling the process under study, one has
to carefully consider how the available observations are obtained from the process and to study their properties.
Some approximations are relevant and keep good statistical properties, while other ones lead to estimators which
are not even consistent.





Chapter 2

Inference for Markov Chain Epidemic Models

In order to present an overview of the statistical problems, we first detail the statistical inference for Markov chains.
Indeed, discrete time Markov chains models are interesting here because many questions that can arise for more
complex models can be illustrated in this set-up. Moreover, continuous-time stochastic models are often observed
in practice at discrete times, which might sum up to a Markov chain model. Therefore, this point of view allows
us to illustrate some classical statistical methods for stochastic models used in epidemics. We have rather focus
here on parametric inference since epidemic models always include in their dynamics parameters that need to
be estimated in order to derive predictions. A recap on parametric inference for Markov chains is given in the
Appendix, Section A.2.1, together with some notations and basic definitions. We apply in this chapter these results
on some classical stochastic models used in epidemics (see Part I, Chapter ?? and also [2], [36]).

2.1 Markov chains with countable state space

Markov chain models occur when assuming that a latent period of fixed length follows the receipt of infection
by any susceptible. According to the epidemic model, the state space of the Markov chain can be finite if the
epidemics takes place in a fixed finite population, countable (birth and death processes, branching processes, open
Markov Models detailed in Part I, Chapter ?? of these notes), or continuous (see e.g. the simple AR(1) dynamic
model).

Let us first consider a Markov chain (Xn) with finite state space E = {0, . . . ,N} and transition matrix (Q(i, j), i, j∈
E). Assume that X0 = x0 is deterministic and known. Our aim is to estimate the transition matrix Q, which corre-
sponds to q = N(N +1) parameters since, for all i ∈ E, ∑

N
j=0 Q(i, j) = 1.

Following the definitions recalled in Section A.2 in the Appendix, denote by PQ the distribution on (EN,E N) of
(Xn) and Fn = σ(X0, . . . ,Xn). Let µn =⊗n

k=1νk with νk(·) the measure on E such that νk(i) = 1 for i ∈ E.
For A a subset of E, let δA(·) denote the Dirac function: δA(x) = 1 if x ∈ A, δA(x) = 0 if x /∈ A. Define

Ni j
n =

n

∑
k=1

δ{i, j}(Xk−1,Xk); Ni.
n =

n

∑
k=1

δ{i}(Xk−1). (2.1.1)

Using (2.1.1), the likelihood and the loglikelihood read as

Ln(Q) =
dPQ

dµn
(Xk,k = 1, . . . ,n) =

n

∏
k=1

Q(Xk−1,Xk) = ∏
i, j∈E

Q(i, j)Nn
i j , (2.1.2)

`n(Q) = ∑
i, j∈E

Ni j
n logQ(i, j). (2.1.3)

15



16 CHAPTER 2. INFERENCE FOR MARKOV CHAIN EPIDEMIC MODELS

The computation of the Maximum Likelihood Estimator, (Q̂n(i, j,), i, j ∈ E), corresponds to the maximization of
`n(Q) under the (N +1) constraints {∑N

j=0 Q(i, j) −1 = 0} . This yields that

Q̂n(i, j) =
Ni j

n

Ni.
n
. (2.1.4)

Since the random variables (Ni j
n , i 6= j) are equal to the number of transitions from i to j up to time n and Ni.

n is the
time spent in state i up to time n, the estimators Q̂n(i, j) are equal to the empirical estimates of the transitions.

To study the properties of the MLE, we assume

(H1) The Markov chain (Xn) with transition matrix Q is positive recurrent aperiodic on E.

Denote by λQ(·) the stationary distribution of (Xn). Then, the following holds.

Proposition 2.1.1. Under (H1), the MLE (Q̂n(i, j), i, j ∈ E) is strongly consistent and, under PQ,
√

n
(
Q̂n(i, j)−Q(i, j)

)
0≤i≤N,0≤ j≤N−1→L Nq(0,Σ) with q = N(N +1),

Σi j,i j =
Q(i, j)(1−Q(i, j))

λQ(i)
; Σi j,i j′ =−

Q(i, j)Q(i, j′)
λQ(i)

; Σi j,i′ j′ = 0 if i′ 6= i.

Proof. Under (H1), successive applications of the ergodic theorem yield that, almost surely under PQ,
1
n Ni j

n → λQ(i)Q(i, j), 1
n Ni.

n → λQ(i) so that Q̂n(i, j)→ Q(i, j).
Let us study (Q̂n(i, j)−Q(i, j)). For 0≤ i≤ N,0≤ j ≤ N−1, define

Y i j
k =

(
δ{ j}(Xk)−Q(i, j)

)
δ{i}(Xk−1), Mi j

n =
n

∑
k=1

Y i j
k . (2.1.5)

Then

Q̂n(i, j)−Q(i, j) =
Ni j

n −Q(i, j)Ni.
n

Ni.
n

=
Mi j

n

Ni.
n

=
∑

n
k=1 Y i j

k
Ni.

n
. (2.1.6)

Clearly, EQ(Y
i j
k |Fk−1) = 0 and (Mi j

n ) is a centered Fn-martingale with values in Rq. Its angle bracket is the ran-
dom matrix 〈M〉n with indices (i j),(i′ j′)

〈M〉i j,i′ j′
n =

n

∑
k=1

EQ(Y
i j
k Y i′ j′

i |Fk−1).

Straightforward computations yield that

EQ(Y
i j
k Y i j

k |Fk−1)) = Q(i, j)(1−Q(i, j))δ{i}(Xk−1),

EQ(Y
i j
k Y i j′

k |Fk−1)) =−Q(i, j)Q(i, j′)δ{i}(Xk−1) if j′ 6= j and

EQ(Y
i j
k Y i′ j′

i |Fk−1) = 0 if i′ 6= i.

Define the q-dimensional matrix JQ by

JQ(i j, i j) = Q(i, j)(1−Q(i, j))λQ(i),

JQ(i j, i j′) =−Q(i, j)Q(i, j′)λQ(i) for j′ 6= j and
JQ(i j, i′ j′) = 0 if i′ 6= i.

Then, the ergodic theorem yields that 1
n 〈M〉

i j,i′ j′
n → JQ(i j, i′ j′) a.s. under PQ.

Applying the Central Limit Theorem for multidimensional martingales (see Appendix, Section A.4.2 ) yields that,
under PQ, 1√

n Mn →N (0,JQ) in distribution. Finally, using that 1
n Ni.

n → λQ(i) a.s., an application of Slutsky’s
lemma to (2.1.6) achieves the proof of Proposition 2.1.1.
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2.1.1 Greenwood model

This is a basic model which was introduced by Greenwood [59] to study measles epidemics in United Kingdom.
It is an SIR epidemic in a finite population of size N. The latent period is fixed and equal 1 with infectiousness
confined to a single time point. At the moment of infectiousness of any given infective, the chance of contact
with any specified susceptible, sufficient or adequate to transmit the infection is p = 1− q. Infected individuals
are removed from the infection chain. At time 0, assume that the number of Susceptible S0 and Infected I0 verify
S0 + I0 = N.
Denote by Sn, In the number of Susceptible and Infected at time n. Then, for all n≥ 0,

Sn = In+1 +Sn+1, (2.1.7)

and, at each generation the actual number of new cases has a Binomial distribution depending on the parameter
p. In the Greenwood model, the chance of a susceptible of being infected depends only on the presence of some
infectives and not on their actual number. Hence, if In = 0, the epidemic terminates immediately since there is no
further infectives. If In ≥ 1, the conditional distribution of In+1 given the past Fn = σ((Si, Ii), i = 0, . . .n) is

L (In+1|Fn) = Bin(Sn, p) and Sn+1 = Sn− In+1.

The process keeps going on up to the time where there is no longer Infected in the population. Noting that
Fn = σ(Si, i = 0, . . .n), (Sn) is a Markov chain on {0, . . . ,S0} with transition matrix

Qp(i, j) =
(

i
i− j

)
pi− j(1− p) j if 0≤ j ≤ i≤ S0; Qp(i, j) = 0 otherwise. (2.1.8)

Parametric inference
Assume that the successive numbers of Susceptible (s0,s1, . . . ,sn) have been observed up to time n. In this model,
(Sn) decreases with n, and extinction occurs after a geometric number of generations. Therefore, the inference
framework is to assume that S0 (hence N)→ ∞.
Let Pp the probability associated to the Markov chain with transition Qp and initial condition s0. The likelihood
associated with parameter p and observations (s1, . . . ,sn) is, if s0 ≥ s1 · · · ≥ sn,

Ln(p;s1, . . . ,sn) =
n

∏
k=1

Pp(Sk = sk|Sk−1 = sk−1) =C(s0, . . . ,sn)ps0−sn(1− p)∑
n
k=1 sn . (2.1.9)

All the quantities independent of p have been gathered in the term C(s0, , . . . ,sn). They depend on the model
and the observations, and therefore have no influence on the estimation of p. Elementary computations yield that
the value of p that maximizes the likelihood is

p̂n =
s0− sn

∑
n−1
k=0 sk

=
1

“mean time to infection”
.

Another approach for estimating parameters of a stochastic process is the Conditional Least Squares (CLS)
method. This is the analog of the traditional Least Squares method for i.i.d. observations. It is especially relevant
when computing the likelihood is intractable. Noting that Ep(Sk|Fk−1) = (1− p)Sk−1, it reads as

Un(p,S1, . . . ,Sn) =
n

∑
k=1

(Sk−Ep(Sk|Fk−1))
2 =

n

∑
k=1

(Sk− (1− p)Sk−1))
2 . (2.1.10)

The associated Conditional Least Squares estimator is

p̃n = 1− ∑
n
k=1 sk−1sk

∑
n
k=1 s2

k−1
. (2.1.11)

A concern in statistics is to answer the question: how does such an estimator (or other ones) behave according to
the asymptotic framework (here S0→ ∞). Is one of these two estimators better?
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2.1.2 Reed–Frost model

It is also a chain Binomial SIR model relevant to model the evolution of an ordinary influenza in a small group
of individuals. The latent period is long with respect to a short infectious period and new infections occur at
successive generations separated by latent periods. It is assumed that latent periods are equal to 1, contacts between
Susceptibles and Infected are independent, and that the probability of contact between a Susceptible and an Infected
is p = 1− q. Therefore the probability of a Susceptible escaping infection given I Infected is qI , and if Fn =
σ((S0, I0), . . . ,(Sn, In)),

L (In+1|Fn) = Bin(Sn, pn) with pn = 1−qIn and Sn+1 = Sn− In+1.

Then (Sn, In) is a Markov chain on N2 with probability transitions,

Qq((sn, in),(sn+1, in+1)) =

(
sn

sn+1

)
(qin)sn+1(1−qin)in+1 if sn+1 + in+1 = sn,

= 0 otherwise.

Parametric inference
Assume that the successive numbers of Susceptible and Infected have been observed up to time n and consider the
estimation of q = 1− p. Denote Pq the probability associated with the Markov chain with transition Qq and initial
condition (s0, i0). Then, if sk+1 + ik+1 = sk for k = 0, . . . ,n−1,

Ln(q;(s1, i1 . . . ,(sn, in)) =
n−1

∏
k=0

(
sk

sk+1

)
(qik)sk+1(1−qik)ik+1 . (2.1.12)

Therefore, logLn(q) =C((sk, ik))+∑
n−1
k=0(sk+1ik logq+ ik+1 log(1−qik)).

Differentiating with respect to q yields

d logLn

dq
=

1
q

n−1

∑
k=0

ik
1−qik

(sk+1− skqik).

The maximum likelihood estimator q̂n of q is a solution of the equation

n−1

∑
k=0

ik
1−qik

(sk+1− skqik) = 0.

Its properties can be studied as the number of observations increases (implying that the initial population grows to
infinity).

Here a problem which occurs in practice already appears in this simple model, the case of “Partially Observed
Markov Processes”: it corresponds to the fact that both coordinates (Sn, In) are not observed, but only the suc-
cessive numbers of Infected individuals (Ik,k = 0, . . . ,n− 1) are available. In the special case of Hidden Markov
Models (see the Appendix, Section A.1.2 for the definition of H.M.M.), the theory for inference is now well
known ([23], [125]), while there is no general theory for partially observed Markov processes. Many methods and
algorithms have been proposed to deal with it in practice (see e.g. [38], [43], [71]). For applications specific to
epidemics, many authors have addressed this problem (see e.g. [26], [30], [67], [71], together with the development
of packages (see R package POMP [89])

2.1.3 Birth and death chain with re-emerging

We consider now the example of an epidemic model with re-emerging in a large infinite population. It can be
described by a birth and death chain on N with reflection at 0. This models for instance farm animals epidemics
when infection can also be produced by the environment. Let p,q denote the birth rate and death rates with
{0 < p,q < 1, p+ q < 1}. We assume that I0 = i0 ≥ 1 and that (In), the number of infected at time n, evolves as
follows:
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- if k ≥ 1, then P(In+1 = k+1|In = k) = p, P(In+1 = k−1|In = k) = q, P(In+1 = k|In = k) = 1− p−q;

- if k = 0, then P(In+1 = 1|In = 0) = p, P(In+1 = 0|In = 0) = 1− p (re-emerging probability).

The Markov chain (In) is irreducible aperiodic on N and, if p < q, (In) is positive recurrent with stationary
distribution

λ(p,q)(i) =
(

1− p
q

)(
p
q

)i

.

Parametric inference
Let Θ = {(p,q),0 < p < q < 1 with p+ q < 1} and let θ0 be the true parameter value. Assume that I0 = i0 > 0
is non-random and fixed and consider the estimation of θ = (p,q) ∈ Θ based on the observation of the successive
numbers of Infected up to time n.
Let (Qθ (i, j), i, j ∈ N) denote the transition kernel (In):

- if i 6= 0, then Qθ (i, j) = pδ{i+1}( j)+qδ{i−1}( j)+(1− p−q)δ{i}( j),

- if i = 0, then Qθ (0, j) = pδ1( j)+(1− p)δ0( j).

Noting that for j 6= {i−1, i, i+1}, Ni j
n = 0, the loglikelihood `n(θ) satisfies

`n(θ) = ∑
i, j∈ N

Ni j
n logQθ (i, j)

= Bn log p+Dn logq+Rn log(1− p−q)+N0,0
n log(1− p), with

Bn = ∑
i≥0

Ni,i+1
n , Dn = ∑

i≥1
Ni,i−1

n , Rn = ∑
i≥1

Ni,i
n . (2.1.13)

Since the Markov chain (In, In+1) is positive recurrent on N2 with stationary measure λθ (i)Qθ (i, j), we can study
directly the limit behaviour of `n(θ). Applying the ergodic theorem to (In, In+1) yields that, almost surely under
Pθ0 ,

1
n

Ni,i+1
n → p0λθ0(i) for i≥ 1,

1
n

Ni,i−1
n → q0λθ0(i),

1
n

Ni,i
n → r0λθ0(i),

1
n

N0,0
n → (1− p0

q0
)(1− p0).

Therefore, using (2.1.13),

1
n

Bn→ p0,

1
n

Dn→ q0×
p0

q0
= p0,

1
n

Rn→
r0 p0

q0
,

1
n

N0,0
n → (1− p0

q0
)(1− p0).

Joining these results, under Pθ0 , as n→ ∞,

1
n
`n(θ)→ p0 log p+ p0 logq+

r0 p0

q0
logr+(1− p0

q0
)(1− p0) log(1− p) := J(θ0,θ).
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We can check directly that θ → J(θ0,θ) possesses a unique global maximum at θ0. The associated maximum
likelihood estimator θ̂n is

p̂n =
1
n

Bn; q̂n =
Bn

Dn +Rn
(1− 1

n
Bn). (2.1.14)

Successive applications of the ergodic theorem yield that (p̂n, q̂n) converges Pθ0 a.s. to (p0,q0).

To study the limit distribution of (p̂n, q̂n), we use the results of Section A.2.1.1 in the Appendix. Let Q =
(Q(i, j)) denote the (unnormalized) transition kernel on N×N:

Q(i, i+1) = 1 = Q(i, i) for i ∈ N and
Q(i, i−1) = 1 for i≥ 1.

According to (A.2.1), the family (Qθ ,θ ∈Θ) is dominated by Q with associated function fθ (i, j):

fθ (i, i+1) = p for i≥ 0,
fθ (i, i−1) = q for i≥ 1,

fθ (i, i) = 1− p−q,

fθ (0,0) = 1− p.

Except the compactness assumption of Θ (only required for the consistency of the MLE), the Markov chain
satisfies Assumptions (H1)–(H8) of Section A.2.1.1, Therefore, under Pθ0 ,

√
n
(

p̂n− p0
q̂n−q0

)
→L N (0, I−1(θ0)),

with, using Definition (A.2.5),

I(θ0) = ∑
i≥0

λθ0(i) ∑
j≥0

∇θ fθ0(i, j)∇∗
θ

fθ0(i, j)
fθ0(i, j)2 Qθ0(i, j).

Hence I(θ0) can be explicitly computed: for θ = (p,q), we get

I(p,q) =

(
r+p2

p(1−p)r
p
qr

p
qr

p(1−p)
rq2

)
⇒ I−1(p,q) =

(
p(1− p) −pq

−pq q2(p2+r)
p(1−p)

)
. (2.1.15)

2.1.4 Modeling an infection chain in an Intensive Care Unit

This example is taken from Chapter 4 of [36]. It aims at describing nosocomial infections (i.e. infections acquired
in a hospital). The incidence of these infections is highest in an Intensive Care Unit, which is characterized by a
small number of beds (about 10 beds at most) and rapid turnover of patients by way of admission and discharge.
There are two routes for infection (colonization) for a patient.

- The endogenous route (α mechanism): bacteria are already present in a newly admitted patient but at low
undetectable levels and resistant bacteria develop because of antibiotic treatments during the stay. Let e−α =
(1−a) the probability per individual per time unit of getting infected by this route.

- The exogenous route (β transmission): it models the probability of infection of a Susceptible by an Infected
in the ICU per time unit, e−β = (1−b).

To describe the composition of the ICU in terms of Infected and Susceptible individuals on long time intervals,
a Markov chain model can be used as follows. Each patient has probability d of being discharged by unit of time.
Discharge and admission take place every day at noon; new admitted individuals are susceptible. Observations are
obtained from a bookkeeping scheme that concerns the state of the ICU immediately after discharge (12h05).
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Consider the simplest example, an ICU with two beds. It corresponds to three possible states: State 0 (both
patients are Susceptible), State 1 (one Susceptible, one Infected) and 2 (both are Infected). Denote by Xn the
composition of the ICU at time n. Let us compute according to θ = (a,b,d) the transition matrix Qθ of (Xn).
Introduce X̄n+1 the state of the ICU just before discharge (at 11h55) on the next day. If Xn = 0, P(X̄n+1 = 0) = a2,
P(X̄n+1 = 1) = 2a(1−a) and P(X̄n+1 = 2) = (1−a)2. If Xn = 1, P(X̄n+1 = 1) = ab, and P(X̄n+1 = 2) = (1−ab).
Finally, if Xn = 2, P(X̄n+1 = 2) = 1. This yields that, after discharge (12h05), Xn+1 = 0,1,2 with respective
probabilities,

Qθ =

 (a+(1−a)d)2 2(1−a)(1−d)(a+(1−a)d) (1−a)2(1−d)2

abd +(1−ab)d2 2(1−ab)d(1−d)+ab(1−d) (1−ab)(1−d)2

d2 2d(1−d) (1−d)2

 .

Let Θ = (0,1)3. Assume that the states (Xi) of the ICU after discharge have been observed up to time n. The
maximum likelihood estimator of θ reads, using (2.1.1),

`n(θ) =
n

∑
k=1

logQθ (Xk−1,Xk) = ∑
i, j∈{0,1,2}

Ni j
n logQθ (i, j),

θ̂n = argsupθ∈Θ `n(θ).

Since (Xn) is a positive recurrent Markov chain on {0,1,2}, we can apply the results stated in the Appendix, Sec-
tion A.2. The MLE θ̂n is consistent and converges at rate

√
n to a Gaussian law N3(0, I−1(θ)), where I(θ) is the

Fisher information matrix defined in (A.2.5).

Assume now that there is no systematic control of the exact status of the patients after discharge, but that each
patient is tested with probability p. Then, the observations are no longer (Xn), but (Yn), with conditional transition
matrix (Tp(i, j) = P(Yn = j|Xn = i),0≤ i, j ≤ 2),

Tp =

(1− p)2 2p(1− p) p2

p(1− p) p2 +(1− p)2 p(1− p)
p2 2p(1− p) (1− p)2

 .

If only (Yn) is observed, we have to deal with a Hidden Markov Model (Xn,Yn) as defined in the Appendix, Section
A.1.2. The estimation of θ or (θ , p) has to take into account this additional noise to be efficient (see e.g [23]).

2.2 Two extensions to continuous state and continuous time Markov chain models

2.2.1 A simple model for population dynamics.

The AR(1) model is a classical model of population dynamics with continuous state space and allows us to illustrate
explicitly various inference questions. Consider the autoregressive process on Rs introduced in Section 1.2.1
defined by

X0 = x0; and for i≥ 1,Xi = aXi−1 + γεi,

where (εi) is a sequence of i.i.d. random variables on R with distribution fθ (x)dx, independent of X0.
This is a Markov chain on (R,B(R)) with transition kernel Qθ ,a(x,dy) = fθ (y−ax)dy. If X0 is known, choosing
as dominating kernel the Lebesgue measure on R, the likelihood reads as

Ln(a,θ) =
n

∏
i=1

fθ (Xi−aXi−1).

The Gaussian AR(1) corresponds to εi ∼N (0,γ2):

Qa,γ2(x,dy) =
1

γ
√

2π
exp−( 1

2γ2 (y−ax)2)dy, and
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Ln(a,γ2) =
n

∏
i=1

1
γ
√

2π
exp(− 1

2γ2 (Xi−aXi−1)
2),

`n(a,γ2) = −(n/2) logγ
2−1/(2γ

2)
n

∑
i=1

(Xi−aXi−1)
2.

The properties of the MLE have been presented in Chapter 1.

2.2.2 Continuous time Markov epidemic model

We just recall here results for the SIR Markov jump process (see Section 4.2). Assume that the jump process
(Z N(t)) is continuously observed on [0,T ]. Its dynamics is described by the two parameters (λ ,γ). The Maximum
Likelihood Estimator (λ̂ , γ̂) is explicit (see [2] or Section 4.2). Indeed, let (Ti) denote the successive jump times
and set Ji = 0 if we have an infection and Ji = 1 if we have a recovery. Let KN(T ) = ∑i≥0 1Ti≤T . Then

λ̂N =
1
N

∑
KN(T )
i=1 (1− Ji)∫ T

0 SN(t)IN(t)dt
=

1
N

# Infections∫ T
0 SN(t)IN(t)dt

,

γ̂N =
1
N

∑
KN(T )
i=1 Ji∫ T

0 IN(t)dt
=

# Recoveries
“Mean infectious period”

.

As the population size N goes to infinity, (λ̂N , γ̂N) is consistent and

√
N
(

λ̂N−λ

γ̂N− γ

)
→N2

(
0, I−1(λ ,γ)

)
, where I(λ ,γ) =

 ∫ T
0 s(t)i(t)dt

λ
0

0
∫ T

0 i(t)dt
γ

 ,

and (s(t), i(t)) is the solution of the ODE associated with the limit behaviour of the normalized process (Z N(t)/N):
ds
dt =−λ s(t)i(t); di

dt = λ s(t)i(t)− γi(t).

The matrix I(λ ,γ) is the Fisher information matrix of this statistical model.

2.3 Inference for Branching processes

At the early stage of an outbreak, a good approximation for the epidemic dynamics is to consider that the population
of Susceptible is infinite and that Infected individuals evolve according to a branching process (see Section ?? of
Part I). We present here some classical statistical results in this domain. This Markov chain model is an example
of non-ergodic processes which leads to different statistical results.

2.3.1 Notations and preliminary results

Some basic facts on discrete time branching processes (or Bienaymé–Galton–Watson processes) are given in Part
I, Section ?? of these notes (see also the classical monographs on branching processes [6] or [79]). We complete
these facts with some properties useful for the inference.

Consider an ancestor Z0 = 1 has ξ0 children according to an offspring law G defined by

P(ξ0 = k) = pk, k ≥ 0 and ∑
k≥0

pk = 1.

Let m =E(ξ0) and g(s) =E(sξ0). The i-th of those children has ξ1,i children, where the random variables {ξk,i,k≥
0, i≥ 1} are i.i.d. with distribution G. Let Zn denote the number of individuals in generation n. Then,

Zn+1 =
Zn

∑
i=1

ξn,i. (2.3.1)
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Denote by E = {∃ n, Zn = 0} the set of extinction.
If m≤ 1 and if p1 6= 1, the process Zn has a probability q = 1 of extinction.
If m > 1, the process is supercritical and has a probability of extinction q < 1, which is the smallest solution of the
equation g(s) = s on [0,1]. The set Ec is equal to {ω,Zn(ω)→ ∞}.

This extinction probability is an important parameter for the early stages of an epidemic. It corresponds to the
probability of a minor outbreak.
We complete the results given in Part I, Section ??. Let Fn = σ(Z0, . . . ,Zn) and define Wn = m−nZn. Then (Wn) is
a Fn-martingale.

Theorem 2.3.1. Assume that m > 1 and that the offspring law G has finite variance σ2. Then, there is a non-
negative random variable W such that

(i) Wn→W as n→ ∞ a.s. and in L2.

(ii) {W > 0}= {Zn→ ∞}= Ec and {W = 0}= {limn Zn = 0}= E.

(iii) Moreover, EW = 1, var(W ) = σ2

m(m−1) .

Corollary 2.3.2. If m > 1, then, almost surely

1
mn

n

∑
i=1

Zi→
m

m−1
W ;

1
mn

n

∑
i=1

Zi−1→
1

m−1
W. (2.3.2)

Proof. We write ∑
n
i=1 Zi = ∑

n
i=1 mi Zi

mi . Using Theorem 2.3.1, Zn
mn →W a.s. An application of the Toeplitz lemma

stated below and some algebra yield the two results.

Lemma 2.3.3. (Toeplitz Lemma) Let (an) a sequence of non-negative real numbers and (xn) a sequence on R. If
∑

n
i=1 ai→ ∞ and if (xn)→ x ∈ R as n→ ∞, then

∑
n
i=1 aixi

∑
n
i ai

→ x as n→ ∞.

Assume that the offspring distribution Gθ (·) depends on a parameter θ with finite mean m(θ) > 1 and finite
variance σ2(θ). Denote by Pθ the law on (NN,B(NN)) of the branching process (Zn) with offspring law Gθ (·).
Then (Zn,n≥ 0) is a Markov chain with state space N, initial condition Z0 = 1 and transition matrix,

Qθ (i, j) = G?i
θ ( j), (2.3.3)

where ? denotes the convolution product of two functions and f ?i is the i-fold convolution product of f (·). Let µi
denote the measure µi(k) = 1 for all k ∈ N, λn =⊗n

i=1µi. Then, the likelihood reads as

dPθ

dλn
(Z0, . . . ,Zn) = Ln(θ) =

n

∏
i=1

G?Zi−1
θ

(Zi); `n(θ) =
n

∑
i=1

log(G?Zi−1
θ

(Zi)). (2.3.4)

Under this expression, studying the likelihood for general offspring laws is intractable. We detail in the next section
a framework where it is possible to study this likelihood, and in the next section another method based on Weighted
Conditional Least Squares.
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2.3.2 Inference when the offspring law belongs to an exponential family

Among parametric families of distributions, exponential families of distributions, widely used in statistics, provide
here a nice framework to study this likelihood. A short recap is given in the Appendix Section A.1.2 (see e.g. the
classical monograph [11] for the complete exposition).

Assume that the offspring law is a power series distribution:

p(k) = A(ζ )−1 ak ζ
k, with A(ζ ) = ∑

k≥0
akζ

k. (2.3.5)

Setting θ = logζ , Θ = {θ ∈ R, A(eθ )< ∞}, h : k→ h(k) = ak and φ : θ → φ(θ) = logA(log(eθ )), we get that it
is a special case of an exponential family of distributions on N with T (X) = X and

p(θ ,k) = h(k)exp(kθ −φ(θ)). (2.3.6)

The random variable X satisfies that

m(θ) := Eθ (X) = ∇θ φ(θ); σ
2(θ) :=Varθ (X) = ∇

2
θ φ(θ). (2.3.7)

Moreover, if X1, . . . ,Xn are i.i.d. with distribution (2.3.5), then

P(X1 + · · ·+Xn = k) = H(n,k)exp(kθ −nφ(θ)) where H(n,k) = h∗n(k). (2.3.8)

Therefore for offspring distributions satisfying (2.3.5) or (2.3.6), the transition kernel is

Qθ (i,k) = H(i,k)exp(kθ − iφ(θ)).

Let us note that several families of classical distributions on N are included in this set-up:

- Geometric distributions on N∗ with parameter p (i.e. P(X = k) = p(1− p)k−1):
θ = log(1− p); h(k) = 1 and φ(θ) = log eθ

1−eθ
.

- Binomial distributions (B(N, p), p ∈ (0,1)) with N fixed:
θ = log p

1−p , h(k) = N!
k!(N−k)! and φ(θ) = N log(1+ eθ ).

- Poisson distributions P(λ ): θ = logλ , h(k) = 1
k! and φ(θ) = eθ .

- Negative Binomial distributions (N B(r, p), p ∈ (0,1)) with r fixed (i.e. P(X = k) = Γ(k+r)
Γ(r)k! pr(1− p)k:

θ = log(1− p), h(k) = (k+r)...(r+1)
k! and φ(θ) = r log(1− eθ )).

Let us come back to the likelihood (2.3.4). Let θ0 ∈Θ be the true value of the parameter. We assume

(A1) The offspring distribution Gθ belongs to an exponential power series family: For all k ∈ N, Gθ (k) =
h(k)exp(kθ −φ(θ)).

(A2) Θ is a compact subset of {θ ,∑k≥0 h(k)eθk < ∞}, θ0 ∈ Int(Θ).

(A3) For all θ ∈Θ, m(θ)> 1 and σ2(θ) finite.

(A4) There exists a δ > 0 such that E(Y 2+δ ) = µ2+δ < ∞ where Y ∼ Gθ .
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Consider the estimation of θ when the successive generation sizes (Z1, . . .Zn) are observed. Under (A1)–(A3), the
loglikelihood is, using (2.3.8),

`n(θ) =C(Z0, . . . ,Zn)+
n

∑
i=1

(θZi−φ(θ)Zi−1), (2.3.9)

with C(Z0, . . . ,Zn) =∑
n
i=1 logH(Zi−1,Zi). The constant C(Z0, . . . . ,Zn) depends only on the observations and brings

no information on θ .
The M.L.E θ̂n, defined as any solution of ∇θ `n(θ) = 0, satisfies

n

∑
i=1

Zi−∇θ φ(θ̂n)
n

∑
i=1

Zi−1 = 0.

Using that ∇θ φ(θ) = m(θ) (see (2.3.7)), θ̂n satisfies

m(θ̂n) =
∑

n
i=1 Zi

∑
n
i=1 Zi−1

. (2.3.10)

By Theorem 2.3.1, m(θ0)
−nZn converges a.s. and in L2 under Pθ0 to a random variable W such that W > 0 on Ec,

the non-extinction set, which satisfies Pθ0(E
c) = 1−q > 0 under (A3).

Theorem 2.3.4. Assume (A1)–(A4).Then, on Ec, m(θ̂n) satisfies

(i) m(θ̂n)→ m(θ0) a.s. under Pθ0 .

(ii) m(θ0)
n/2(m(θ̂n)−m(θ0))→L

√
(m(θ0)−1)σ2(θ0)η−1 N, where η ,N are independent r.v.s, N ∼N (0,1),

and η is the positive variable defined by η2 =W on Ec.

Clearly, m(θ) is the parameter that is naturally estimated here.

Proof. Let us write

m(θ̂n) =

∑
n
i=1 Zi
mn

∑
n
i=1 Zi−1

mn

.

Using Corollary 2.3.2, both terms of the above fraction converge a.s. so that m(θ̂n)→ m(θ0) a.s.
Let us prove (ii). The score function reads as

∇θ `n(θ) =
n

∑
i=1

Zi−m(θ)
n

∑
i=1

Zi−1 =
n

∑
i=1

(Zi−m(θ)Zi−1).

Under Pθ0 , ∇θ `n(θ0) is a centered Fn-martingale (Mn) with increments Xi = Zi−m(θ0)Zi−1. Conditionally on
Fi−1, Xi is the sum of Zi−1 independent centered random variables so that

Eθ0(X
2
i |Fi−1) = σ

2(θ0)Zi−1; 〈M〉n = σ
2(θ0)

n

∑
i=1

Zi−1.

Hence

s2
n(θ0) = Eθ0(〈M〉n) = σ

2(θ0)
n

∑
i=1

m(θ0)
i−1 = σ

2(θ0)
m(θ0)

n−1
m(θ0)−1

.

Therefore s2
n(θ0)→ ∞ as n→ ∞ and

s2
n(θ0)

m(θ0)n →
σ2(θ0)

m(θ0)−1
. (2.3.11)
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Let us check the conditions of the Central limit theorem for martingales (see A.4.1) recalled in the Appendix Under
(A3), (Mn) is a square integrable centered Fn-martingale such that Eθ0(〈Mn〉) = sn(θ0)

2→ ∞. Let us check (H2).
We have

1
sn(θ0)2 〈Mn〉=

mn(θ0)

s2
n(θ0)

σ2(θ0)

mn(θ0)

n

∑
i=1

Zi−1.

Hence according to Corollary 2.3.2 and Theorem 2.3.1, 1
sn(θ0)2 〈Mn〉 →W in probability under Pθ0 with W > 0 on

Ec and Eθ0(W ) = 1. Therefore we can set W = η2 and obtain (H2).
It remains to check the asymptotic negligibility Assumption (H1’). We have, for Xi = Zi−m(θ0)Zi−1,

Eθ0(|Xi|2+δ |Fi−1) = Zi−1Eθ0(|Y −m(θ0)|2+δ ).

Under (A4), using that Eθ0(|Y −m(θ0)|2+δ )≤C(µ2+δ +m(θ0)
2+δ )< ∞ yields

1

s2+δ
n

n

∑
i
Eθ0(|Xi|2+δ |Fi−1) = (

1
sδ

n
)Eθ0(|Y −m(θ0)|2+δ )(

1
s2

n

n

∑
i=1

Zi−1). (2.3.12)

Using Corollary 2.3.2 and (2.3.11) yields that the last term of (2.3.12) is bounded in probability under Pθ0 . Since
δ > 0, the first term of (2.3.12) tends to 0, which achieves the proof of (H1’).
Therefore, we get that on the non-extinction set , under Pθ0 ,

(
Mn

sn
,
〈M〉n

s2
n

)→L (ηN,η2), (2.3.13)

with η ,N independent, η =W 1/2 and N ∼N (0,1).
To study the limit distribution of m̂n, we write

m̂n−m(θ0) =
∑

n
i=1(Zi−m(θ0)Zi−1)

∑
n
i=1 Zi−1

= σ
2(θ0)

Mn

〈Mn〉
.

This yields that

m(θ0)
n/2(m̂n−m(θ0)) = σ

2(θ0)
m(θ0)

n/2

sn

Mn
sn
〈Mn〉

s2
n

.

Using (2.3.11) and (2.3.13) achieves the proof of (ii).

Let us stress that here, contrary to the previous models, the Fisher information, Eθ 〈M〉n = σ2(θ)m(θ)n−1
m(θ)−1

converges to infinity at a much faster rate than “usually” for m(θ) > 1. Indeed, the information contained in
(Z1, . . . ,Zn) is of the same order as the information in the last observation Zn. In that respect, the model is explosive
in terms of growth of information.

Note that this result could be obtained using the MLE Heuristics presented in the Appendix, substituting
√

n
by sn and using that
∇2

θ
`n(θ) =−∇2

θ
φ(θ)∑

n
i=1 Zi−1 =−σ2(θ)∑

n
i=1 Zi−1 =−〈M(θ)〉n.

Now we have estimated m(θ) instead of θ . To estimate θ , we just have to consider the application θ → m(θ).
Assuming that there exists φ differentiable such that φ(y) = θ = m−1(y), an application of Theorem A.1.1 yields
the result for θ .

2.3.3 Parametric inference for general Galton–Watson processes

We assume now that the offspring distribution G(·) has mean m and finite variance σ2 and consider the Galton–
Watson process with initial condition Z0 = 1 and offspring distribution G. We assume

(B1) The offspring law G satisfies m > 1 and σ2 < ∞.
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(B2) The offspring law G has a finite moment of order 4: E(Y 4) = µ4 < ∞ where Y ∼ G.

On the basis on the successive population sizes (Z1, . . . ,Zn), we are concerned with the estimation of θ =
(m,σ2). Denote by Pθ the distribution on (NN,B(NN)) of (Zn). Under (B1), the branching process is supercritical
(m > 1) and the non-extinction set Ec has a positive probability. Clearly, studying estimators based on (2.3.4) is
intractable. Therefore, we had rather study estimators based on Conditional Least Square methods. The conditional
mean and variance of Zn with respect to Fn−1 write

Eθ (Zn|Fn−1) = mZn−1; Varθ (Zn|Fn−1) = σ
2Zn−1. (2.3.14)

On the non-extinction set Ec, let us consider the contrast function (which is a weighted Conditional Least Square
method):

Un(θ) =
n

∑
i=1

1
Zi−1

(Zi−mZi−1)
2. (2.3.15)

Note that Un(θ) only depends on m and therefore σ2 cannot be estimated using Un.
Define m̃n as a solution of

Un(m̃n) = minθ∈ΘUn(θ).

Hence it satisfies ∇θUn(m̃n) = 0, which yields

m̃n =
∑

n
i=1 Zi

∑
n
i=1 Zi−1

. (2.3.16)

The simplest approach for estimating σ2 is to use the residual variance:

σ̃
2
n =

1
n

n

∑
i=1

1
Zi−1

(Zi− m̃nZi−1)
2. (2.3.17)

Then the following holds.

Theorem 2.3.5. Assume (B1)–(B2). Then, on the non-extinction set Ec, the estimators (m̃n, σ̃
2
n ) defined in (2.3.16)–

(2.3.17) satisfy, as n→ ∞, under Pθ ,

(i) m̃n→ m almost surely.

(ii) mn/2(m̃n−m)→L

√
(m−1)σ2 η−1 N, where η ,N are independent r.v.s, N ∼N (0,1), η is the positive

variable defined by η2 =W.

(iii) σ̃2
n → σ2 in probability under Pθ .

(iv)
√

n(σ̃2
n −σ2)→L N (0,2σ4).

Proof. The study of the asymptotic properties of m̃n is similar to the previous section, since m̃n has the same
expression with respect to the observations that m̂n(θ). The proofs of (iii) and (iv) are derived from [60], Chapter
3. Let us prove (iii). We have σ̃2

n −σ2 = 1
n (A

1
n +A2

n +A3
n) with

A2
n = (m− m̃n)

2(
n

∑
i=1

Zi−1),

A3
n = 2(m− m̃n)

n

∑
i=1

(Zi−mZi−1) and

A1
n =

n

∑
i=1

Xi with Xi =
1

Zi−1
(Zi−mZi−1)

2−σ
2. (2.3.18)
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Let us study the first term A1
n. It is a centered Fn-martingale under Pθ . The computation of Eθ (X2

i |Fi−1) relies on
the property that, for i.i.d. random variables Yi with E(Yi) = m,VarYi = σ2 and finite fourth moment E(Y 4) = µ4,
Ȳ = 1

n ∑
n
i=1 Yi satisfies

E(Ȳ −m)4 =
3σ4

n2 +
1
n3 (µ4−3σ

4).

Hence on the non-extinction set Ec,

〈A1〉n =
n

∑
i=1

(2σ
4 +

1
Zi−1

(µ4−3σ
4)). (2.3.19)

Hence Var(An
1)≤ 2n(σ4 +µ4). Therefore, applying a strong law of large numbers for martingales ([64], Theorem

2.18) yields 1
n A1

n→ 0 Pθ -a.s.
The second term is A2

n =
(
mn(m̃n−m)2

)( 1
mn ∑

n
i=1 Zi−1

)
. By (ii) and Corollary 2.3.2, we get that these two terms

converge in distribution so that A2
n is bounded in probability.

Noting that Mn = ∑
n
i=1(Zi−1−mZi−1) is the martingale studied in the previous section yields that A3

n = [mn/2(m−
m̃n)][

1
mn/2 Mn]. By (ii) [mn/2(m− m̃n)] converges in distribution. The CLT for (Mn) stated in (2.3.13) yields that

mn/2Mn converges in distribution. Hence, A3
n is also bounded in probability. Joining these results yields that

1
n (A

1
n +A2

n +A3
n)→ 0, which achieves the proof of (iii).

Let us prove (iv). The previous computations yield that n−1/2A2
n and n−1/2A3

n both converge to 0. The martin-
gale (A1

n) is centered square integrable and s2
n = Eθ 〈M〉n satisfies 1

n s2
n→ 2σ4. Condition (H1’) is satisfied assuming

the existence of a moment of order 4+δ with δ > 0 for the offspring law G. Therefore, the CLT for martingales
(see Theorem A.4.1) yields that 1

n 〈M〉n→ 2σ4 a.s. Joining these results achieves the proof of (iv).

With similar arguments, one can prove the asymptotic independence of (m̃n, σ̃
2
n ).

The extinction probability is an important parameter in many applications. In the early stages of an epidemic,
the extinction probability corresponds to the probability of a minor outbreak. However, unless the extinction
probability q is a function of m and σ2 only, it cannot be consistently estimated observing the generation sizes. A
parametric setting (Gθ ,θ ∈ Θ) is required for the offspring law. Let g(θ ,s) denote the generating function of Gθ

and define
q̃n = inf{s,g(s, θ̃n) = s}.

Then, according to [60], under additional regularity assumptions, q̃n is consistent if θ̃n is consistent, and converges
at the same rate m(θ0)

n/2 as θ̃n.

2.3.4 Examples

Example 1. Let us consider the supercritical branching process with offspring law Poi(λ ) with λ > 1 and initial
condition Z0 = 1. Theorem 2.3.4 applies here and yields that, under Pλ0 , on the non-extinction set Ec,

λ̂n =
∑

n
i=1 Zi

∑
n
i=1 Zi−1

→ λ0 a.s.,

λ
n/2
0 (λ̂n−λ0) →

√
(λ0−1)λ0 η

−1N, with η ,N independent N ∼N (0,1),η2 =W,

where W > 0 on Ec, EW = 1,VarW = 1
λ0−1 .

Example 2. Consider now the supercritical branching process with offspring law the Geometric distribution
G on N∗ with parameter p (G(k) = p(1− p)k−1,k ≥ 1). First, note that Pp(E) = 0 and if Y ∼ G , E(Y ) = 1/p and
VarY = 1−p

p2 . Assume that 0 < p < 1 and that Z0 = 1. Theorem 2.3.4 yields that, under Pp0 ,

1
p̂n

=
∑

n
i=1 Zi

∑
n
i=1 Zi−1

→ 1
p0

a. s.,
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p0
−n/2(

1
p̂n
− 1

p0
) →

√
(1− p0)2

p3
0

η
−1N with η

2 =W,E(W ) = 1,VarW = 1.

To estimate p, an application of Theorem A.1.1 with φ(y) = 1/y yields that, under Pθ0 ,

p̂n =
∑

n
i=1 Zi−1

∑
n
i=1 Zi

→ p0, p−n/2
0 (p̂n− p0)→

√
p0(1− p0) η

−1W.

Example 3. Consider the general fractional linear branching process with offspring law G: G(0) = a,G(k) =
(1− a)p(1− p)k−1,k ≥ 1. Then the mean offspring is m = 1−a

p and σ2 = (1−a)
p2 (1− p+ a). Assume that m > 1,

the extinction set has probability q = a
1−p . On Ec, m is estimated at rate mn/2 while σ2 is estimated at rate

√
n.

Therefore, q̂n, which depends on m̂n and σ̂2
n , is estimated at rate

√
n.

2.3.5 Variants of Branching processes

A large class of branching processes are used for modeling Epidemic dynamics. It encompasses subcritical or
critical branching processes (a), branching processes with immigration (b), multitype branching processes with
immigration, Crump-Mode-Jagers branching process, which are continuous time branching processes which are
no longer Markov if the time between successive generations is not exponential (c).

Case (a) can be studied either assuming that the initial population size {Z0 → ∞} or conditionally on late
extinction (leading to quasi-stationary distributions). Cases (b) and (c) can be studied along similar lines than the
ones in the previous section. Stating all these results is beyond the scope of these notes. We had rather choose to
present accurately the simplest case, which already contains many problems arising in these other models.





Chapter 3

Inference Based on the Diffusion Approximation of
Epidemic Models

3.1 Introduction

The contents of this chapter is mainly based on the three papers [61], [62] and [63].

In the first part of these notes, several mathematical models have been proposed to describe Epidemic dynam-
ics in a closed homogeneous community. The properties of the stochastic SEIR model have been studied in the
first part of these notes. Several mathematical formalisms were proposed to describe transitions of individuals
between states: ODE/PDE ([36]), difference equations and continuous or discrete-time stochastic processes (see
Part I, Sections of these notes and also [33], [36]), such as point processes, Pure jump processes, renewal pro-
cesses, branching processes, diffusion processes. When data are available, key parameters can be estimated using
these models through likelihood-based or M-estimation methods sometimes coupled to Bayesian methods (see e.g.
[36]). However, these data are most often partially observed (e.g. infection and recovery dates are not observed
for all individuals during the outbreak, not all the infectious individuals are reported) and also temporally and/or
spatially aggregated. In this case, estimation via likelihood-based approaches is rarely straightforward, regardless
to the mathematical formalism.

For instance, the natural modeling of epidemics by pure jump processes presents systematically the drawback
that inference for such models requires that all the jumps are observed. Since these data are rarely available in
practice, statistical methods rely on data augmentation in order to complete the data and add in the analysis all
the missing jumps. For moderate to large populations, the complexity increases rapidly, becoming the source of
additional problems. Various approaches were developed during the last years to deal with partially observed epi-
demics. Data augmentation and likelihood-free methods such as the Approximate Bayesian Computation (ABC)
opened some of the most promising pathways for improvement (see e.g.[18], [102]). Nevertheless, these methods
do not completely circumvent the issues related to incomplete data. As stated also in [28], [19], there are some
limitations in practice, due to the size of missing data and to the various tuning parameters to be adjusted (see also
[2], [106]). Moreover, identifiability issues are rarely addressed.

In this context, it appears that diffusion processes, satisfactorily approximating epidemic dynamics (see e.g. [46],
[110]), can be profitably used for inference of model parameters from epidemiological data. In Part I, Sec-
tions ?? and ??, the Markov jump process (Z N(t)) in a closed population of size N, when normalized by N,
(ZN(t) = N−1Z N(t)) satisfies an ODE as the population size N goes to infinity. In Section ??, it is proved the
Wasserstein L1-distance between (ZN(t)) and a multidimensional diffusion process with diffusion coefficient pro-
portional to 1/

√
N is of order o(N−1/2) on a finite interval [0,T ]. Hence, epidemic dynamics can be described

using multidimensional diffusion processes (XN(t))t≥0 with a small diffusion coefficient proportional to 1/
√

N.
Since epidemics are usually observed over limited time periods, we consider in what follows the parametric infer-
ence based on observations of the epidemic dynamics on a fixed interval [0,T ]. Let us stress that this approach

31
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assumes a major outbreak in a large community.

Historically, statistics for diffusions were developed for continuously observed processes which renders pos-
sible getting an explicit formulation of the likelihood ([92], [97]). In this context, two asymptotics exist for esti-
mating parameters in the drift coefficient of a diffusion continuously observed on a time interval [0,T ]: T → ∞

for recurrent diffusions and {T fixed and the diffusion coefficient tends to 0}. As mentioned above, in practice,
epidemic data are not continuous, but partial, with various mechanisms underlying the missingness and leading to
intractable likelihoods: trajectories can be discretely observed with a sampling interval (low frequency or high fre-
quency observations, i.e. n→ ∞); discrete observations can correspond to integrated processes; some coordinates
can be unobserved. Since the 1990s, statistical methods associated to the first two types of data have been devel-
oped (e.g. [49], [50], [55]), [87]). Recently proposed approaches for multidimensional diffusions are based on the
filtering theory ([42], [51]). Concerning diffusions with small diffusion coefficient from discrete observations, it
was first studied in [47], [57], [119], and more devoted to epidemic dynamics in [61], [62]. Statistical inference
for diffusion processes entails some special features, that we recall for sake of clarity in A.3. It reveals that, in
the context of discrete observations, it is important to distinguish parameters in the drift and parameters in the
diffusion coefficients because they are not estimated at the same rate. We detail and extend here some recent work
([61], [62], [63]) where we focus on the parametric inference in the drift coefficient b(α,Xε(t)) and in the diffusion
coefficient εσ(β ,Xε(t)) of a multidimensional diffusion model (Xε(t))t≥0 with small diffusion coefficient, when
it is observed at discrete times on a fixed time interval in the asymptotics ε → 0.

Section 3.2 presents the diffusion approximation of the Markov jump process describing the epidemic dynamics
starting from its Q- matrix and detail these approximations for several epidemic models studied in Part I of these
notes, where another method is used to get these approximations (see Part I, Sections ?? and ??). We then consider
the parametric inference when the epidemic dynamics is observed at discrete times on a finite interval, which
corresponds to one outbreak of the epidemics. The inference is studied for small sampling intervals (Section
3.4) and fixed sampling intervals (Section 3.5). On simulated data sets of two epidemic models, the SIR and
the SIRS with seasonal forcing (see [84, Chapter 5]), we study the properties of our estimators based on discrete
observations of these two jump Markov processes, and compare our results to the optimal inference for these jump
processes, which is obtained when all the jumps (i.e. observations of all the times of infection and recovery within
the population) are observed (Section 3.6).

It often occurs that in practice some components of the epidemics are not observed. In the SIR epidemics,
the successive numbers of Susceptible for instance might be unobserved and the data consist of the successive
increments of the number of Infected on each time interval. We study in Section 3.7 the inference when one
coordinate of the process is observed at discrete times. We detail the results on two examples, the 2-dimensional
Ornstein–Uhlenbeck diffusion process and the diffusion approximation of the SIR-model when only the successive
numbers of Infected are available (Section 3.7.2.1). Finally, Section 3.7.2.2 is devoted to the estimation based on
the real data set on Influenza epidemics, which is described by an SIRS epidemic model.

3.2 Diffusion approximation of jump processes modeling epidemics

This section starts from the definition of the stochastic epidemic model by a Pure jump Markov process (Z N(t)) on
Zd specified by its Q - matrix. We detail how to get the diffusion approximation of (Z N(t)) from this description,
which is another way for getting the diffusion process obtained in Part I, Section ?? of these notes. Using limit
theorems for stochastic processes, we characterize the limiting Gaussian process. Then, based on the theory
of small perturbations of dynamical systems ([45]), we link the normalized process to a diffusion process with
small diffusion coefficient. These approximations are then applied to SIR, SEIR, and SIRS models for epidemic
dynamics.

3.2.1 Approximation scheme starting from the jump process Q-matrix

Let (Z N(t)) a multidimensional Markov jump process with state space E ⊂ Zp which describes the epidemic
dynamics in a closed population of size N, the integer “p” corresponding to the number of health states in the
infection dynamics model.
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This process is described by an initial distribution on E and a collection of non-negative functions (β j(t, ·) :
E→ R+) indexed by j ∈ Zp, j 6= (0, . . . ,0), that satisfy,

∀i ∈ E,0 < ∑
j∈Zp

β j(t, i) = β (t, i)< ∞. (3.2.1)

These functions are the transition rates of the process (Z N(t)) with Q(t)-matrix having as elements

qi,i+ j(t) = β j(t, i) if j 6= 0, and qi,i(t) =−β (t, i) for i, i+ j ∈ E. (3.2.2)

Another useful description of (Z N(t)) is based on the joint distribution of its jump chain and holding times. The
process stays in each state i ∈ E during an exponential time E (β (t, i)), and then jumps to the state i+ j according
to a Markov chain (Xn) with transition probabilities P(Xn+1 = i+ j | Xn = i) = β j(t, i)/β (t, i).

We consider the class of density dependent Markov jump processes (Z N(t)) which possess a limit behaviour when
normalized by the population size N. Let us define the two sets

E = {0, . . . ,N}p E− = {−N, . . . ,N}p. (3.2.3)

The state space of (Z N(t)) is E and its jumps belong to E−.
From the original jump process (Z N(t)) on E = {0, . . . ,N}p, let

ZN(t) =
Z N(t)

N
with state space EN = {N−1i, i ∈ E}. (3.2.4)

Its jumps are now y = j/N and transition rates from z ∈ EN to z+ j/N at time t defined using (3.2.2),

qN
z,z+y(t) = βNy(t,Nz). (3.2.5)

Denote for x = (x1, . . . ,xp) ∈ Rd , [x] = ([x1], . . . , [xp]) ∈ Zp, where [xi] is the integer part of xi.

We assume in the sequel that (Z N(t)) is density dependent, i.e. there exist a collection of functions β j : R+×
[0,1]p→ R+ such that,

(H1) ∀ j, ∀z ∈ [0,1]p 1
N β j(t, [Nz])→ β j(t,z) as N→ ∞ locally uniformly in t.

(H2) ∀ j ∈ E−, β j(t,z) ∈C2(R+, [0,1]p).

Then, define the two functions bN(t,z) and b(t,z) : R+ × [0,1]p → Rp and the two p× p positive symmetric
matrices ΣN and Σ (with the notation M? for the transposition of a matrix or of a column vector j in E),

bN(t,z) =
1
N ∑

j∈E−
β j(t, [Nz]) j; b(t,z) = ∑

j∈E−
β j(t,z) j; (3.2.6)

Σ
N(t,z) =

1
N ∑

j∈E−
β j(t, [Nz]) j j?; Σ(t,z) = ∑

j∈E−
β j(t,z) j j?. (3.2.7)

Under (H1) the functions b(t,z) and Σ(t,z) are well defined and b(t,z) is Lipschitz under (H2). Therefore, there
exists a unique smooth solution z(t) to the ODE

dz
dt

= b(t,z(t))dt ; z(0) = x. (3.2.8)

Let ∇zb(t,z) denote the gradient of b(t,z)

∇zb(t,z) =
(∂bi

∂ z j
(t,z)

)
1≤i, j≤p . (3.2.9)
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The resolvent matrix Φ(t,u) associated with (3.2.8) is defined as the solution

dΦ

dt
(t,s) = ∇zb(t,z(t))Φ(t,s); Φ(s,s) = Ip. (3.2.10)

Under (H1), (H2) the following holds: if ZN(0)→ x as N→ ∞, then, locally uniformly in t,

∀t ≥ 0, lim
N→∞

‖ ZN(t)− z(t) ‖= 0 a.s. (3.2.11)

where z(t) is solution of (3.2.8).
Let (D,D) denote the space of “cadlag” functions { f : R+→ Rp} endowed with the Skorokhod topology. Then,

√
N(ZN(t)− z(t))t≥0→ (G(t))t≥0 in distribution in (D,D), (3.2.12)

where (G(t)) is a centered p-dimensional Gaussian process with covariance matrix

Cov(G(t),G(r)) =
∫ t∧r

0
Φ(t,u)Σ(u,z(u)) Φ

?(r,u)du. (3.2.13)

The proofs of these results are given under a general form in Part I, Sections ?? and ?? of these notes, and based
on this presentation in [61], [62].

Heuristically, there is an approach which yields the diffusion approximation of (ZN(t)); it rests on an expansion of
the generator AN of (ZN(t)) (3.2.4). For f ∈C2(R+×Rp,R), it reads as

AN f (t,z) = ∑
j∈E−

β j(t,Nz)( f (t,z+
j

N
)− f (t,z)).

A Taylor expansion of AN f (t,z) yields, using (H1), (H2) and (3.2.6), for j = ( j1, . . . , jp)
∗ ∈ E−,

AN f (t,z) = ∑
j∈E−

Nβ j(t,z)( f (t,z+
j

N
)− f (t,z))+o(1/N)

=(∇z f (t,z))? b(t,z)+
1

2N

(
∑

j∈E−
β j(t,z)

d

∑
k,l=1

jk jl ∇
2
zkzl

f (t,z)

)
+o(1/N)

=(∇z f (t,z))? b(t,z)+
1

2N

d

∑
k,l=1

Σkl(t,z) ∇
2
zkzl

f (t,z)+o(1/N),

where the last equality is obtained using (3.2.7). The first two terms of the last expression correspond to the
generator of a diffusion process on Rp with drift coefficient b(t, ·) and diffusion matrix 1

N Σ(t, ·),

dXN(t) = b(t,XN(t))dt +
1√
N

σ(t,XN(t))dB(t) ; XN(0) = x, (3.2.14)

where (B(t)t≥0) is a Brownian motion on Rp defined on a probability space (Ω,(Ft)t≥0,P) independent of XN(0),
and σ(t, ·) is a square root of Σ(t, ·): σ(t,z) σ(t,z)? = Σ(t,z).

These approaches can be connected together a posteriori using the theory of random perturbations of dynamical
systems ([7], [45]) and the following theorem.

Theorem 3.2.1. Setting ε = 1/
√

N, the paths of XN(·) satisfy, as ε → 0,

XN(t) = Xε(t) = z(t)+ εg(t)+ ε
2Rε(t), with sup

t≤T
‖ εRε(t) ‖→ 0 in probability, (3.2.15)

where z(t) is the solution of (3.2.8), B(t) is a p-dimensional Brownian motion and (g(t)) is the process satisfying
the SDE

dg(t) = ∇zb(t,z(t))g(t)dt +σ(t,z(t))dB(t), g(0) = 0.
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This stochastic differential equation can be solved explicitly and we get, using (3.2.10), that

g(t) =
∫ t

0
Φ(t,s)σ(s,z(s))dB(s). (3.2.16)

Hence, (g(t)) is a centered Gaussian process having the same covariance matrix (3.2.13) as the process (G(t))
defined in (3.2.12). Therefore, for ε = 1/

√
N,
√

N(ZN
t − z(t))t≥0 and ε−1 (Zε(t)− z(t))t≥0 converge to a Gaussian

process having the same distribution.

It is moreover proved in Part I, Section ?? of these notes, that the Wasserstein L1 distance between (ZN(t)) and
(XN(t)) converges to 0.

3.2.2 Diffusion approximation of some epidemic models

3.2.2.1 The diffusion approximation applied to the SIR epidemic model

We apply first the generic method leading successively to b(·), Σ(·) and (XN) described in 3.2.1 to the SIR model
introduced iin Part I, Chapter ?? of these notes through the 2-dimensional continuous-time Markov jump process
Z N(t) = (S(t), I(t)) to build the associated SIR diffusion process. Along to its initial state Z N(0) = (S(0), I(0)),

the Markov jump process is characterized by two transitions, (S, I)
λ
N SI
−→ (S−1, I +1) and (S, I)

γI−→ (S, I−1). Pa-
rameters λ and γ = 1/d represent the transmission rate and the recovery rate (or the inverse of the mean infection
duration d), respectively. The rate λSI/N translates two main assumptions: the population mix homogeneously
(same λ for each pair between one S and one I) and the transmission is proportional to the fraction of infectious
individuals in the population, I/N (frequency-dependent formulation of the transmission term).

The diffusion approximation of the process(Z N(t)) describing the epidemic dynamics can be summarized by three
steps. The original SIR jump process in a closed population has state space {0, . . . ,N}2, the jumps j are (−1,1)
and (0,−1) with transition rates,

q(S,I),(S−1,I+1) = λS
I
N

= β(−1,1)(S, I); q(S,I),(S,I−1) = γI = β(0,−1)(S, I).

Normalizing (Z N(t)) by the population size N, we obtain, setting z = (s, i) ∈ [0,1]2, as N→ ∞,

1
N

β(−1,1)([Nz])→ β(−1,1)(s, i) = λ si;
1
N

β(0,−1)([Nz])→ β(0,−1)(s, i) = γi.

These two limiting functions clearly satisfy (H1)–(H2). Finally, the two functions given in (3.2.6), (3.2.7) are well
defined and now depend on (λ ,γ).
Set θ = (λ ,γ) and denote by b(θ ,z) and Σ(θ ,z) the associated functions. We get

b(θ ,(s, i)) =
(
−λ si

λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si −λ si
−λ si λ si+ γi

)
. (3.2.17)

Assume that Z N(0) satisfies (N−1S(0),N−1I(0))→ x = (s0, i0) with s0 > 0, i0 > 0, s0 + i0 ≤ 1 as N → ∞.
Then the associated ODE is, using (3.2.8),

ds
dt

=−λ si ;
di
dt

= λ si− γi ; (s(0), i(0)) = (s0, i0). (3.2.18)

The diffusion approximation of the SIR epidemics obtained in (3.2.14) is the solution of the SDE

dSN(t) =−λSN(t)IN(t)dt +
1√
N

√
λSN(t)IN(t) dB1(t), SN(0) = s0,

dIN(t) = (λSN(t)IN(t)− γIN(t))dt− 1√
N

(√
λSN(t)IN(t) dB1(t)−

√
γ IN(t) dB2(t)

)
,

IN(0) = i0,
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where (B(t)) is standard two-dimensional Brownian motion and σ(θ ,z) corresponds to the Choleski decomposi-
tion of Σ(θ ,z) = σ(θ ,z)σ?(θ ,z),

σ(θ ,(s, i)) =
( √

λ si 0
−
√

λ si
√

γi

)
.

In order to visualize the influence of the population size N on the sample paths of the normalized jump pro-
cess ZN(t) = Z N(t)/N, several trajectories have been simulated using an SIR model with parameters (λ ,γ) =
(0.5,1/3), so that R0 = λ/γ = 1.5. Results are displayed in Figure 3.2.1. We observe that, as the population size
increases, the stochasticity of sample paths decreases. However, it still keeps a non-negligible stochasticity for a
large population size (N = 10000). Since the peak of IN(t) is quite small (about 0.08 here), this can be explained
by a moderate size of the ratio “signal over noise” even for large N (here of order 0.08/0.01).

Figure 3.2.1: Five simulated trajectories of the proportion of infectious individuals over time using the SIR Markov
jump process for (s0, i0) = (0.99,0.01) (λ ,γ) = (0.5,1/3) and for each N = {400,1000,10000} (from left to right).

3.2.2.2 The diffusion approximation applied to the SIRS epidemic model with seasonal forcing

Another important class of epidemics models is the SIRS model, which allows possible reinsertion of removed

individuals into S class. The additional transition reads as (S, I)
δ (N−S−I)−→ (S+ 1, I), where δ is the average rate

of immunity waning. To mimic recurrent epidemics, additional mechanisms need to be considered. Indeed, to
avoid that successive epidemics cycles die out, one way is to introduce an external immigration flow. Hence,
one possible model to describe recurrent epidemics is the SIRS model with seasonal transmission (at rate λ (t)),
external immigration flow in the I class (at rate η) and, when the time-scale of study is large, demography (with
birth and death rates equal to µ for a stable population of size N). Seasonality in transmission is captured using a
time non-homogeneous transmission rate, expressed under a periodic form

λ (t) := λ0(1+λ1 sin(2πt/Tper)) (3.2.19)

where λ0 is the baseline transition rate, λ1 the intensity of the seasonal effect on transmission and Tper is introduced
to model an annual or t seasonal trend (see [84], Chapter 5). Typically for modeling Influenza epidemics, we fixed
it at T = 365.
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Assuming again a constant population size, we obtain a new two-dimensional system with four transitions for
the corresponding Markov jump process:

(S, I)
λ (t)

N S(I+Nη)
−→ (S−1, I +1) ; (S, I)

µS−→ (S−1, I);

(S, I)
(γ+µ)I−→ (S, I−1) ; (S, I)

µN+δ (N−S−I)−→ (S+1, I).

Figure 3.2.2 illustrates the dynamics of the SIRS model (in ODE formalism) which is forced using sinusoidal
terms. In particular, given the parameter values we have chosen, we can notice two distinct regimes: one with
annual cycles (top graph) and the other with biennial dynamics (middle graph). The qualitative changes in model
dynamics are explored by modifying a control parameter or bifurcation parameter (here λ1) and constructing a
bifurcation diagram.

Figure 3.2.2: Proportion of infected individuals, I(t), over time (top and middle panels) simulated using the ODE
variant of the SIRS model with N = 107, Tper = 365, µ = 1/(50× Tper), η = 10−6, (s0, i0) = (0.7,10−4) and
(λ0,γ,δ ) = (0.5,1/3,1/(2× 365)). The top panel corresponds to λ1 = 0.05, the middle panel to λ1 = 0.1. The
bottom panel represents the bifurcation diagram with respect to λ1.

The diffusion approximation is built following the same generic scheme of Section 3.2.1 as for the SIR model
in Section 3.2.2.1. The four jumps j corresponding to functions β j are j∗ = (−1,1);(−1,0);(0,−1);(1,0) leading
to

β(−1,1)(t,S, I) =
λ (t)

N
S(I +Nη), β(0,−1)(t,S, I) = (γ +µ)S,

β (0,−1)(t,S, I) = (γ +µ)S, β(1,0)(t,S, I) = µN +δ (N−S− I)S.

The jump process is time-dependent and so we have to check (H1b)–(H2). Straightforward computations yield
that they are satisfied since, for (s, i) ∈ [0,1]2,

β(−1,1)(t,(s, i)) = λ (t)s(i+η); β(−1,0)(t,(s, i)) = µs;
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β(0,−1)(t,(s, i)) = (γ +µ)i; β(1,0)(t,(s, i)) = µ +δ (1− s− i).

Finally, setting θ = (λ0,λ1,γ,δ ,η ,µ), the associated drift function b(θ , t,(s, i)) and diffusion matrix Σ(θ , t,(s, i))
are

b(θ , t,(s, i)) =

(
−λ (t)s(i+η)+δ (1− s− i)+µ(1− s)

λ (t)s(i+η)− (γ +µ)i

)
, (3.2.20)

Σ(θ , t,(s, i)) =

(
λ (t)s(i+η)+δ (1− s− i)+µ(1+ s) −λ (t)s(i+η)

−λ (t)s(i+η) λ (t)s(i+η)+(γ +µ)i

)
. (3.2.21)

Therefore, the associated ODE is, using (3.2.20),

ds
dt

= −λ (t)s(i+η)+δ (1− s− i)+µ(1− s), s(0) = s0;

di
dt

= λ (t)s(i+η)− (γ +µ)i, i(0) = i0.

Choosing σ(θ , t,(s, i)) such that σ(θ , t,(s, i))σ(θ , t,(s, i))? = Σ(θ , t,(s, i)), we obtain that the approximating dif-
fusion XN(t) satisfies

dXN(t) = b(θ , t,(SN , IN))dt +
1√
N

σ(θ , t(SN , IN)); XN(0) = x. (3.2.22)

3.2.2.3 A Minimal model for Ebola Transmission with temporal transition rate

According to [21], a basic model for Ebola dynamics consists in a SEIR model with temporal transmission rate. In
a rough approximation, assuming homogeneous mixing in a size N community yields, setting Z N(t) = (S,E, I),

(S,E, I)
λ (t) SI

N−→ (S−1,E +1, I);

(S,E, I) νE−→ (S,E−1, I +1);

(S,E, I)
γI−→ (S,E, I−1).

The diffusion approximation has drift and diffusion matrix given by, for z = (s,e, i),

b(θ , t,z) =

 −λ (t)si
λ (t)si−νe

νe− γi

 ; Σ(θ , t,z) =

 λ (t)si −λ (t)si 0
−λ (t)si λ (t)si+νe −νe

0 −νe νe+ γi

 .

Two questions concerning the inference arise in this model: the non-parametric estimation of λ (·) and the
presence of random effects since the dynamics are observed in different locations.

3.2.2.4 Two variants of the SEIRS model with demography

In Part I, Chapter ?? of these notes, an example of SEIRS model with demography is proposed (see Example ??).
Removed individuals loose their immunity at rate δ ; there is an influx of susceptible at rate µN and individuals,
whichever type, die at rate µ . Hence, 9 jumps are present in this model, for (s,e, i,r), which yields for Z = (S,E, I),

(S,E, I)
λ

SI
N−→ (S−1,E +1, I), (S,E, I) νE−→ (S,E−1, I +1),

(S,E, I)
µN+δ (N−S−E−I)−→ (S+1,E, I), (S,E, I)

µI+γI−→ (S,E, I−1).

(S,E, I)
µS−→ (S−1,E, I), (S,E, I)

µE−→ (S,E−1, I), (S,E, I)
µ(N−S−E−I)−→ (S,E, I).
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This yields, setting z = (s,e, i) and θ = (λ ,ν ,γ,δ ,µ)

b(θ ,z) =

−λ si+µ(1− s)+δ (1− s− i− e)
λ si− (µ +ν)e
νe− (γ +ν)i

 ;

Σ(θ ,z) =

λ si+µ(1+ s)+δ (1− s− i− e) −λ si 0
−λ si λ si+(µ +ν)e −νe

0 −νe νe+(γ +ν)i

 .

3.3 Inference for discrete observations of diffusions on [0,T]

Our concern here is parametric inference for these models. Statistical inference for discretely observed diffusion
processes present some specific properties (see Section A.3 in the Appendix) that lead us to consider distinct
parameters in the drift coefficient (here α) and in the diffusion coefficient (β ). The state space of the diffusion
is Rp, and the parameter set Θ is a subset of Ra×Rb, with α ∈ Ra,β ∈ Rb. For instance, the SIR diffusion
approximation corresponds to p = 2 and α = β = (λ ,γ).

In order to deal with general epidemics, we consider time-dependent diffusion processes on Rp with small
diffusion coefficient ε = 1/

√
N satisfying the stochastic differential equation (SDE):

dX(t) = b(α, t,X(t))dt + εσ(β , t,X(t)) dB(t) ; X(0) = x, (3.3.1)

where (B(t)t≥0) is a p-dimensional Brownian motion defined on a probability space (Ω,(Ft)t≥0,P), b(α, t, ·) :
Rp→ Rp and σ(β , t, ·) : Rp→ Rp×Rp and x is non-random fixed.

Since epidemic dynamics are usually observed at discrete times, our aim is to study the estimation of θ = (α,β )
based on the observations

(X(tk),k = 1 . . .n) with tk = k∆; T = n∆ (sampling interval ∆). (3.3.2)

For observations on a fixed time interval, [0,T ], there are distinct asymptotic results according to ∆.

(1) High frequency sampling ∆ = ∆n→ 0: The number of observations n = T/∆n goes to ∞ while T = n∆n is
fixed. There is a double asymptotic framework: ε → 0 and ∆→ 0 (or n = T/∆→ ∞) simultaneously. Let
us stress that we shall use both notations for this second asymptotics n→ ∞ or ∆→ 0. Although it might
be confusing, it is sometimes better to state results according to the number of observations and sometimes
according to the sampling interval ∆.

(2) Low frequency sampling ∆ is fixed: It leads to a finite number of observations n = T/∆. Results are obtained
in the asymptotic framework ε → 0.

At first glance, the low frequency sampling seems a priori a suitable framework for epidemic data. However,
both high and low frequency observations could be appropriate in practice because the choice of the statistical
framework depends more on the relative magnitudes between T , ∆ and the population size N (= ε−2) than on their
accurate values.

From a statistical point of view, the sequence (X(tk)) is a time-dependent Markov chain and therefore the like-
lihood depends on its transition probabilities. However, the link between the parameters present in the SDE and
the transition probabilities of (X(tk)) is generally not explicit, which leads to intractable likelihoods. This is a well
known problem for discrete observations of diffusion processes. Alternative approaches based on M-estimators
or contrast functions (see e.g. [124] for independent random variables, [88] for stochastic processes) have to be
investigated (see also the recap presented in Section A.3 in the Appendix of this part).

After the statement of some preliminary results, we present successively the statistical inference for high fre-
quency sampling, where the asymptotics is ε = 1/

√
N→ 0, ∆n = T/n→ 0 (Section 3.4), and for the low frequency

sampling, ε = 1/
√

N→ 0, ∆ fixed (Section 3.5).
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3.3.1 Assumptions, notations and first results

Let θ0 be the true value of the parameter and Θ the parameter set. Denote by Mp(R) the set of p× p matrices. We
first assume that b(α, t,z) and σ(β , t,z) are measurable in (t,z), Lipschitz continuous with respect to the second
variable and satisfy a linear growth condition: for all t ≥ 0,z,z′ ∈ Rp, there exists a global constant K such that

(S1): ∀θ ∈Θ, ‖ b(α, t,z)−b(α, t,z′) ‖+ ‖ σ(β , t,z)−σ(β , t,z′) ‖≤ K ‖ z− z′ ‖.

(S2): ∀(α,β ) ∈Θ,‖ b(α; t,z) ‖2 + ‖ σ(β ; t,z) ‖2≤ K(1+ ‖ z ‖2).

(S3): ∀(β , t,z), Σ(β ; t,z) = σ(β ; t,z)σ?(β ; t,z) is non-singular.

Assumptions (S1)–(S3) are classical assumptions that ensure that, for all θ , (3.3.1) admits a unique strong solution
(see e.g. [83, Chapter 5.2.B]).

Another set of assumptions is required for the inference:

(S4): Θ = Ka×Kb is a compact set of Ra+b, θ0 ∈ Int(Θ).

(S5): For all t ≥ 0, b(α; t,z) ∈C3(Ka×R+×Rp,Rp) and σ(β ; t,z) ∈C2(Kb×R+×Mp(R)).

(S6): α 6= α ′⇒ b(t;α,z(α, t)) 6≡ b(t;α ′,z(α ′, t)).

(S7): β 6= β ′⇒ Σ(t;β ,z(α0, t)) 6≡ Σ(t;β ′,z(α0, t)).

Assumptions (S4)–(S5) are classical for the inference for diffusion processes. Usually, it is sufficient in (S5) to
deal with C2 functions. The additional differentiability condition comes from regularity conditions required on
α → Φ(α, t,s). Indeed, (S5) on b(α, t,z) ensures that the function Φ(α, t, t0) belongs to C2(Ka× [0,T ]2,Mp).
Assumption (S6) is the usual identifiability assumption for a diffusion continuously observed on [0,T ] and (S7) is
an identifiability assumption for parameters in the diffusion coefficient.

Since (X(t)) is a diffusion process on (Ω,(Ft)t≥0,P), the space of observations is (CT = C([0,T ],Rp),CT )
where CT is the Borel σ -algebra on C([0,T ],Rp). Let Pθ = Pα,β the probability distribution on (CT ,CT ) of
(X(t)),0≤ t ≤ T ) satisfying (3.3.1). Let G n

k denote the σ -algebra σ(X(s),s≤ kT
n ).

For g(θ , t,z) : Θ× [0,T ]×Rp→ Rp, ∇zg(·) is the Mp matrix

∇zg(·) = (
∂gi

∂ z j
(θ , t,z))1≤i, j≤p and ∇θ g(·) = (

∂gi

∂θ j
(θ , t,z)) (3.3.3)

If z = z(θ , t), then
∇θ (g(θ , t,z(θ , t))) = ∇θ g(·)+∇zg(·)∇θ z(·). (3.3.4)

Quantities are indexed by θ (resp. α or β ) when they depend on both α,β (resp.α or β ). Introducing the depen-
dence with respect to t,θ in (3.2.8), (3.2.10), (3.2.16) yields,

∂ z
∂ t (α, t) = b(α, t,z(α, t)); z(α,0) = x0,

g(α,β , t) =
∫ t

0 Φ(α, t,u)σ(β ,u,z(α,u))dB(u), with Φ(α, ·) such that
∂Φ

∂ t (α, t,u) = ∇zb(α, t,z(α, t))Φ(α, t,u) , Φ(α,u,u) = Ip.

(3.3.5)

The expansion (3.2.15) holds for time-dependent diffusion processes.

Proposition 3.3.1. Assume (S1)–(S5). Then, under Pθ , (X(t),0 ≤ t ≤ T ) satisfies that, uniformly with respect to
θ ,

X(t) = z(α, t)+ εg(θ , t)+ ε2Rε(θ , t), with
limε→0,r→∞ Pθ (supt≤T ‖ Rε(θ , t) ‖> r) = 0

supt≤T ‖ Rε(θ , t) ‖ has uniformly bounded moments.
(3.3.6)
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Proposition 3.3.2. Under (S1)–(S5), the process (g(θ , t)) satisfies using (3.3.5)

∀s < t, g(θ , t) = Φ(α, t,s)g(θ ,s)+
∫ t

s
Φ(α, t,u)σ(β ,u,z(α,u))dB(u),

where the two terms of the r.h.s. above are independent random variables.

Proposition 3.3.3. Assume (S1)–(S2). If moreover b(α, ·) and σ(β , ·) have uniformly bounded derivatives, there
exist constants only depending on T and θ such that

(i) ∀t ∈ [0,T ], Eθ (‖Rε(θ , t)‖2 <C1,

(ii) ∀t ∈ [0,T ], as h→ 0, Eθ (‖Rε(θ , t +h)−Rε(θ , t)‖2)<C2h.

We refer to [7], [45], and [57] for the proofs of these propositions for θ fixed. Assumption (S4) allows us to
extend these results to θ ∈Θ.

3.3.2 Preliminary results

Let us define using (3.3.5) the random variables,

Bk(α,X) = X(tk)− z(α, tk)−Φ(α, tk, tk−1) [X(tk−1)− z(α, tk−1)] . (3.3.7)

Then the following holds.

Lemma 3.3.4. Assume (S1)–(S4). Then, under Pθ , as ε → 0,

Bk(α,X) = ε
√

∆ Tk(θ)+ ε
2Dε

k(θ ,∆) with sup
k
Eθ ||Dε

k(θ ,∆)||2 ≤C∆, and

Tk(θ) =
1√
∆

∫ tk

tk−1

Φ(α, tk,u)σ(β ,u,z(α,u))dB(u),

where C a constant independent of θ ,ε,∆.

Therefore, the random variables Tk(θ) are p-dimensional G n
k -measurable independent Gaussian random vari-

ables with covariance matrix

Sk(α,β ) = Sk(θ) =
1
∆

∫ tk

tk−1

Φ(α, tk,s)Σ(β ,s,z(α,s))Φ?(α, tk,s)ds. (3.3.8)

Proof. Using Propositions 3.3.1 and 3.3.2 yields that

Dε
k(θ ,∆) = Rε(θ , tk)−Φ(α, tk, tk−1)Rε(θ , tk−1)

= Rε(θ , tk)−Rε(θ , tk−1)− (Φ(α, tk, tk−1)− Ip)Rε(θ , tk−1)

= Rε(θ , tk)−Rε(θ , tk−1)−∆∇zb(α, tk−1,z(α, tk−1))Rε(θ , tk−1)

+∆
2OP(1).

An application of Proposition 3.3.3 together with (S4) yields the result.

Define the two random matrices

Σk(β ) = Σ(β , tk,X(tk)), σk(β ) = σ(β , tk,X(tk)). (3.3.9)

Then, for small ∆, we have using (3.3.9)

Lemma 3.3.5. Assume (S1)–(S5). Then, under Pθ , as ε,∆→ 0,

||Sk(θ)−Σk−1(β )|| ≤ Kε sup
θ ,t≤T

||g(θ , t)||+∆sup
θ ,z
||∇zΣ(β ,s,z)|| ≤ εC1OP(1)+C2∆.
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The proof is straightforward using (S1), (S5) and Proposition (3.3.6).
Let us now state some preliminary results on the random variables Bk(α,X) defined in (3.3.7) useful for the

inference.

Under Pθ0 , Proposition 3.3.1 yields that Bk(α,X) converges to Bk(α,z(α0, ·)) and that Bk(α0,X) converges to
Bk(α0,z(α0, ·)) = 0 a.s. Let us define on [0,T ]

Γ(α0,α, t) = b(α0, t,z(α0, t))−b(α, t,z(α, t))−∇zb(α, t,z(α, t))(z(α0, t)− z(α, t)). (3.3.10)

The sequence Bk(α,z(α0, ·)) satisfies:

Lemma 3.3.6. Assume (S1), (S2), (S4). Then, as ∆→ 0, there exists a constant C such that

1
∆

Bk(α,z(α0, ·)) = Γ(α0,α, tk−1)+∆‖α−α0‖rk(α0,α)

with sup
k,α∈Ka

‖rk(α0,α)‖ ≤C.

Proof. Using (3.3.7), (3.3.10) and that Φ(α, tk, tk−1) = Ip +∆∇zb(α, tk−1,z(α, tk−1))+∆2O(1), yields

Bk(α,z(α0, ·)) =
∫ tk

tk−1

(b(α0,s,z(α0,s))−b(α,s,z(α,s)))ds

+(Ip−Φ(α, tk, tk−1))(z(α0, tk−1)− z(α, tk−1))

= ∆Γ(α0,α, tk−1)+∆
2 ‖α−α0‖rk(α0,α).

Assumptions (S1), (S2) and (S4) ensure that the remainder term has order ∆2 uniformly in k,α .

Consider now the random variables Bk(α,X)

Lemma 3.3.7. Assume (S1)–(S5). Then, under Pθ0 , as ε,∆→ 0, the following holds for all k ≤ n,

1
∆
(Bk(α,X)−Bk(α0,X)) =

1
∆

Bk(α,z(α0, ·))+ ε||α−α0||ηk(α0,α,ε,∆)

= Γ(α0,α, tk−1)+ ||α−α0||(∆O(1)+ εOP(1)),

where ηk = ηk(α0,α,ε,∆) is G n
k−1-measurable and uniformly bounded in probability .

Proof. Using (3.3.6) and (3.3.7), we get that

Bk(α,X)−Bk(α0,X) =

Bk(α,z(α0, ·))+ ε(Φ(α0, tk, tk1)−Φ(α, tk, tk1))(g(θ0, tk−1)+ εRε(θ0, tk−1)).

By (S1)–(S5), ∥∥Φ(α0, tk, tk1)−Φ(α, tk, tk1)
∥∥

≤ 2∆‖∇zb(α0, , tk−1,z(α0, tk−1))−∇zb(α, , tk−1,z(α, tk−1))‖ .

Now, this term is bounded by K∆||α −α0|| since (t,α)→ ∇zb(α,z(α, t)) is uniformly continuous on [0,T ]×
Ka. Using now Proposition 3.3.1 yields that (g(θ0, tk−1)+ εRε(θ0, tk−1)) is bounded in Pθ0 -probability and G n

k−1-
measurable.

The next lemma concerns the properties of Bk(α0,X).

Lemma 3.3.8. Assume (S1)–(S5). Then, using (3.3.9), as ε,∆→ 0, under Pθ0 ,
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(i) Bk(α0,X) = εσk−1(β0)(B(tk)−B(tk−1)) +Ek(θ0,ε,∆), where Ek = Ek(θ0,ε,∆) satisfies that, for m ≥ 2,
Eθ0(||Ek||m|G n

k−1)≤Cεm∆m.

(ii) If (Vk) is a sequence of G n
k−1-measurable random variables in Rp uniformly bounded in probability, then

n

∑
k=1

V ∗k Bk(α0,X)→ 0 in probability.

Proof. Let us first prove (i) and study the term Ek. We have Ek = E1
k +E2

k with

E1
k =

∫ tk

tk−1

(b(α0, t,X(t))−b(α0, t,z(α0, t)))dt

+(Ip−Φ(α0, tk, tk−1))(X(tk−1)− z(α0, tk−1)) and

E2
k =ε

∫ tk

tk−1

(σ(β0,s,X(s))−σ(β0,s,X(tk−1)))dB(s).

Set in (3.3.6), Rε
1(θ , t) = g(θ , t)+ εRε(θ , t). Using that (t,x)→ b(α, t,x) is uniformly Lipschitz, we obtain,∥∥E1

k

∥∥≤∆C sup
t∈[tk−1;tk]

‖X(t)− z(α0, t)‖

+∆ε

∥∥∥∥(∫ 1

0
∇zb(α0,z(α0, t)))Φ(α0, t, tk−1)dt)Rε

1(θ0, tk−1)

∥∥∥∥
≤C′ε∆ sup

t∈[tk−1;tk]
‖Rε

1(θ0, t)‖

The proof for E2
k follows the sketch given in [57, Lemma 1]. We first prove this result based on the stronger

condition Σ and b bounded. Then, similarly to [57, Proposition 1], this assumption can be relaxed. We use
sequentially the Burkhölder–Davis–Gundy (see e.g. [83]) and Jensen inequalities to obtain

Eθ0(
∥∥E2

k

∥∥m |G n
k−1)

≤Cε
mEθ0

(
(
∫ tk

tk−1

‖σ(β0,s,X(s))−σ(β0, tk−1,X(tk−1)‖2 ds)m/2|G n
k−1

)
(3.3.11)

≤Cε
m

∆
m/2−1

∫ tk

tk−1

Eθ0

(
‖σ(β0,s,X(s))−σ(β0, tk−1,X(tk−1))‖m |G n

k−1
)
|ds. (3.3.12)

Then, using that (t,x)→ σ(β , t,x) is Lipschitz, we obtain:

Eε
θ0
(
∥∥E2

k

∥∥m |G n
k−1)≤C′εm

∆
m/2−1

∫ tk

tk−1

Eε
θ0
(‖X(s)−X(tk−1)‖m)ds

≤C′εm
∆

m/2−1
∫ tk

tk−1

Eε
θ0

[∥∥∥∥∫ s

tk−1

(b(α0,u,X(u))du+ εσ(β0,u,X(u))dB(u))
∥∥∥∥]m

ds.

Since b is bounded on U ,
∥∥∥∫ s

tk−1
b(α0,u,X(u))du

∥∥∥≤ K|s− tk−1| and Itô’s isometry yields

Eθ0

(∥∥∥∥∫ s

tk−1

σ(β0,u,X(u))dB(u)
∥∥∥∥m)

≤ Eθ0

(∥∥∥∥∫ s

tk−1

Σ(β0,u,X(u))du
∥∥∥∥)m/2

≤ K|s− tk−1|m/2.

Thus, Eθ0(
∥∥E2

k (θ0)
∥∥m |G n

k−1)≤C
′′
εm∆m/2−1 ∫ tk

tk−1
|s− tk−1|m/2ds≤C

′′′
εm∆m.

The proof of (ii) relies on the Lemma A.4.3 for triangular arrays stated in Section A.4. Set ζ n
k =V ∗k Bk(α0,X).

Using (i), we have
Eθ0(ζ

n
k |G n

k−1) =V ∗k Eε
θ0
(Ek(θ0,ε,∆)|G n

k−1)
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with Eε
θ0
(‖Ek(θ0,ε,∆)‖|G n

k−1)≤Cε∆.
Since supk≤n ‖Vk‖ is bounded in probability, ∑

n
k=1Eθ0(ζ

n
k |G n

k−1)≤CεT → 0.
Therefore condition (i) of Lemma A.4.3 is satisfied with U = 0.
Now, Eθ0 [(ζ

n
k )

2|G n
k−1)] =V ∗k Eθ0(Bk(α0,X)B∗k(α0,X)|G n

k−1)Vk.
Using (i) of Lemma 3.3.8 yields that

Eθ0(Bk(α0,X)B∗k(α0,X)|G n
k−1) = ε

2
∆Σk−1(β0)+Eθ0(EkE∗k |G n

k−1)

≤ K1ε
2
∆+C2ε

2
∆

2.

Hence, ∑
n
k=1Eθ0((ζ

n
k )

2|G n
k−1)→ 0. Therefore, applying Lemma A.4.3 achieves the proof.

A last lemma concerns the terms (∇αiBk) for i = 1, . . . ,a.

Lemma 3.3.9. Assume (S1)–(S6). Then, under Pθ0 , for all i, j ≤ a, for all α ∈ Ka, as ε,∆→ 0,

(i) 1
∆

∇αiBk(α,X)=−∇αib(α, tk−1,z(α, tk−1))+Mi
k(α)[(z(α0, tk−1)−z(α, tk−1))+εZε

k−1(θ0)]+∆OP(1), where
Mi

k(α) are uniformly bounded matrices and Zε
k−1(θ0) are G n

k−1-measurable r.v.s uniformly bounded in prob-
ability.

(ii) For all k ≤ n, 1
∆

∥∥∥∇2
αi,α j

Bk(α,X)
∥∥∥ is bounded uniformly in probability.

Proof. We have, using (3.3.6) and (3.3.7),

Bk(α,X) =(X(tk)−X(tk−1))− (z(α, tk)− z(α, tk−1))

+(Ip−Φ(α, tk, tk−1))(X(tk−1)− z(α, tk−1)).

Therefore,
∇αiBk(α,X) = Ek,i + ε∆Mi

k(α)Zk−1(θ0)

with Mi
k(α) =− 1

∆
∇αiΦ(α, tk, tk−1), Zk−1(θ0) = g(θ0, tk−1)+ εRε(θ0, tk−1) and

Ek,i =−∇αi(z(α, tk)− z(α, tk−1))+(Φ(α, tk, tk−1)− Ip)∇αiz(α, tk−1)

−∇αiΦ(α, tk, tk−1)(z(α0, tk−1)− z(α, tk−1)).

Proposition 3.3.1 yields the result for Zk(θ0).
Now, Φ(α, tk, tk−1) = exp{

∫ tk
tk−1

∇zb(α,s,z(α,s))ds} so that

Mi
k(α) =−∇αi∇zb(α, tk−1,z(α, tk−1))+∆O(1).

To study Ek,i, we use that Φ(α, tk, tk−1)− Ip = ∆∇zb(α, tk−1,z(α, tk−1))+∆
2O(1) and ∇αi (b(α, t,z(α, t))) = ∇αib(α, t,z(α, t))+∇zb(α, t,z(α, t))∇αiz(α, t).

Therefore Ek,i =−∇αib(α, tk−1,z(α, tk−1))+Mi
k(α)(z(α0, tk−1)− z(α, tk−1))+∆O(1).

This achieves the proof of (i).
Let us prove (ii). We have ∇2

αiα j
Bk(α,X) = f i j

k (α0,α,∆)+ξ
i j
k (θ0,α,ε,∆) with

ξ
i j
k = (∇2

αiα j
Φ(α, tk, tk−1))[X(tk−1)− z(α0, tk−1)] and

f i j
k (α0,α,∆) =−

(
∇

2
αiα j

z(α, tk)−Φ(α, tk, tk−1)∇
2
αiα j

z(α, tk−1)
)

+∇αiΦ(α, tk, tk−1)∇α j z(α, tk−1)

+∇α j Φ(α, tk, tk−1)∇αiz(α, tk−1)

−∇
2
αiα j

Φ(α, tk, tk−1)(z(α, tk−1)− z(α0, tk−1)).

The result is obtained using Proposition 3.3.1 and the property that 1
∆
‖∇αiΦ(·)‖ and 1

∆

∥∥∥∇2
αi,α j

Φ(·)
∥∥∥ are uniformly

bounded.
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3.4 Inference based on high frequency observations on [0,T ]

We assume that both ε and ∆ = ∆n go to 0. The number of observations n goes to infinity. We study the estimation
of θ = (α,β ) based on (X(tk),k = 1, . . . ,n).

Lemmas 3.3.4 and 3.3.5 yield that the random variables 1
ε
√

∆
Bk(α0,X) are approximately conditionally inde-

pendent centered Gaussian random variables in Rp with covariance approximated by Σk−1(β0). Analogously to
[86] or [57], we introduce a contrast function, using definitions (3.3.7), (3.3.9),

Ǔε,∆(α,β ) =
n

∑
k=1

logdetΣk−1(β )+
1

ε2∆

n

∑
k=1

Bk(α,X)∗ Σ
−1
k−1(β ) Bk(α,X). (3.4.1)

The minimum contrast estimators are defined as any solution of

(α̌ε,∆, β̌ε,∆) = argmin
(α,β )∈Θ

Ǔε,∆(α,β ). (3.4.2)

3.4.1 Properties of the estimators

In what follows, we use to describe the asymptotics with respect to ∆ = ∆n either ∆→ 0 or n→ ∞. Indeed, it
is more explicit to state results according to the number of observations n rather than in terms of the size of the
sampling interval ∆ = ∆n. Results are obtained when ε → 0 and ∆→ 0 (or n→ ∞) simultaneously.

Define, for θ = (α,β ) ∈ Θ with Θ a compact subset of Ra×Rb, the matrices Ib(θ) = (Ib(θ)i j,1 ≤ i, j ≤ a),
Iσ (θ) = (Iσ (θ)i, j,1≤ i, j ≤ b) and I(θ) by

(Ib(θ))i j =
∫ T

0
(∇αib(α, t,z(α, t)))∗Σ−1(β , t,z(α, t))∇α j b(α, t,z(α, t))dt, (3.4.3)

(Iσ (θ))i, j = (3.4.4)
1

2T

∫ T

0
Tr
(

∇βiΣ(β , t,z(α, t))Σ−1(β , t,z(α, t))∇β j Σ(β , t,z(α, t))Σ−1(β , t,z(α, t))
)

dt.

I(θ) =
(

Ib(θ)) 0
0 Iσ (θ)

)
. (3.4.5)

Recall that A∗ denotes the transpose of a matrix A and Tr(A) its trace.

Theorem 3.4.1. Assume that (X(t)) satisfying (3.3.1) is observed at times tk = k∆n with T = n∆n fixed. Assume
(S1)–(S7) and that Ib(θ0) is non-singular. Then, as ε → 0,∆ = ∆n→ 0,

(i) (α̌ε,∆, β̌ε,∆)→ (α0,β0) in Pθ0 -probability.

(ii) If moreover Iσ (θ0) is non-singular,(
ε−1 (α̌ε,∆−α0)√

n
(

β̌ε,∆−β0

))→Na+b

(
0,
(

I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))
in distribution under Pθ0 .

Note that results are obtained without any condition linking ε and ∆ (or n). Indeed, the previous results obtained
in [57] require conditions linking ε and ∆ that do not fit epidemic data, where generally the orders of magnitude for
N and n satisfy N >> n so that ∆ is comparatively large with respect to ε = 1/

√
N. We proposed in [61] another

method based on Theorem 3.2.1 which extends results obtained in [47], where the inference in the case σ(β ,x)≡ 1
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was investigated for one-dimensional diffusions using expansion (3.2.15).

Since estimators of parameters in the drift (here α) and in the diffusion coefficient (here β ) converge at distinct
rates, ε−1 and

√
n = ∆−1/2 respectively, the study of asymptotic properties has to be performed according to the

successive steps:

Step (1): Consistency of α̌ε,∆ (Proposition 3.4.2).

Step (2): Tightness of the sequence ε−1(α̌ε,∆−α0) with respect to β (Proposition 3.4.3).

Step (3): Consistency of β̌ε,∆ (Proposition 3.4.5).

Step (4): Asymptotic normality for both estimators (Theorem 3.4.1,(ii)).

The proof is technical and detailed in a separate section. Before this proof, let us state some comments.

3.4.1.1 Comments

(1) Efficiency of estimators: Note that the matrix Ib(θ) is equal to the Fisher information matrix associated to the
estimation of α when (X(t)) is continuously observed on [0,T ] (see e.g. [92] and Section A.3 in the Appendix).
Therefore α̌ε,∆ is efficient for this statistical model.

(2) Comparison with estimation based on complete observation of the jump process (Z N(t)): Coming back to epi-
demics, we can compare the estimation of the parameters of the pure jump process (Z N(t)) and (ZN(t)= 1

N Z N(t))
describing the epidemic dynamics in a finite population of size N and the estimators built from its diffusion ap-
proximation. Let us stress that there is a main difference between these two approaches. Statistical inference
for (Z N(t)) is based on the observations of all the jumps, which implies here the observation of all the times of
infection and recovery for each individual in the population, while for the diffusion (X(t)), we consider discrete
observations (X(tk),k = 1, . . . ,n).

(3) Comparison of estimators for the SIR epidemic dynamics: Assume that the jump process (Z N(t)) is continu-
ously observed on [0,T ]. Its dynamics is described by the two parameters (λ ,γ). Set ZN(t) = (SN((), IN(t))∗, and
assume that ZN(0)→ x0 = (s0, i0)∗, with s0 > 0, i0 > 0. Let s(t) = s(λ0,γ0, t); i(t) = i(λ0,γ0, t) the solution of the
corresponding ODE.

The Maximum Likelihood Estimator (λ̂ , γ̂) is explicit (see [2] or Chapter 4 of this part). Indeed, let (Ti)
denote the successive jump times and set Ji = 0 if we have an infection and Ji = 1 if we have a recovery. Let
KN(T ) = ∑i≥0 1Ti≤T . Then

λ̂N =
1
N

∑
KN(T )
i=1 (1− Ji)∫ T

0 SN(t)IN(t)dt
=

1
N

# Infections∫ T
0 SN(t)IN(t)dt

,

γ̂N =
1
N

∑
KN(T )
i=1 Ji∫ T

0 IN(t)dt
=

# Recoveries
“Mean infectious period”

.

As the population size N goes to infinity, (λ̂N , γ̂N) is consistent and

√
N
(

λ̂N−λ

γ̂N− γ

)
→N2

(
0, I−1(λ ,γ)

)
, where I(λ ,γ) =

 ∫ T
0 s(t)i(t)dt

λ
0

0
∫ T

0 i(t)dt
γ

 .

The matrix I(λ ,γ) is the Fisher information matrix of this statistical model.

Consider now the SIR diffusion approximation X(t) described in Section 3.2.2.1. We have

b(θ ,(s, i)) =
(
−λ si

λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si −λ si
−λ si λ si+ γi

)
. (3.4.6)
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Therefore,

∇θ b(θ ,(s, i)) =
(
−si 0
si −i

)
;Σ
−1(θ ,(s, i)) =

1
λγsi

(
λ s+ γ λ s

λ s λ s

)
.

The matrix Ib(θ) defined in (3.4.3) is

Ib(λ ,γ) =

(
1
λ

∫ T
0 s(t)i(t)dt 0

0 1
γ

∫ T
0 i(t)dt

)
.

Therefore, we obtain the same information matrix in both cases.

Consider the SIRS model with immunity waning δ . We have θ =(λ ,γ,δ ) The diffusion approximation satisfies

b(θ ,(s, i)) =
(
−λ si+δ (1− s− i)

λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si+δ (1− s− i) −λ si

−λ si λ si+ γi

)
.

Hence,

∇θ b(θ ,s, i) =
(
−si 0 (1− s− i)
si −i 0

)
,

Ib(θ) =
∫ T

0
∇
∗
θ b(θ ,s(t), i(t))Σ−1(θ ,s(t), i(t))∇θ b(θ ,s(t), i(t))dt.

Then Ib(θ) can be computed and compare to the Fisher information matrix derived from the statistical model cor-
responding to complete observation of the SIRS jump process.

3.4.2 Proof of Theorem 3.4.1

Recall the notations: for a matrix A, A∗ the transposition of A, det(A) the determinant of A and Tr(A) the trace of
A.

3.4.2.1 Step (1): Consistency of α̌ε,∆

Let us define, using (3.3.10),

K1(α0,α,β ) =
∫ T

0
Γ(α0,α, t)∗Σ−1(β , t,z(α0, t))Γ(α0,α, t)dt. (3.4.7)

By Assumption (S4), if α 6= α0, b(α, t,z(α, t)) 6≡ b(α0, t,z(α0)), therefore the function Γ(α0,α, ·) 6≡ 0, which
implies that K1(α0,α,β ) is non-negative and equal to 0 if and only if α = α0.

The contrast function Ǔε,∆(α,β ) defined in (3.4.1) satisfies

Proposition 3.4.2. Assume (S1)–(S6). Then, as ε,∆→ 0, the following convergences hold.

(i) supθ∈Θ |ε2
(
Ǔε,∆(α,β )−Ǔε,∆(α0,β )

)
−K1(α0,α,β )| → 0 in Pθ0 -probability.

(ii) α̌ε,∆→ α0 in probability under Pθ0 .

Proof. Let us prove (i). We have, by (3.4.1) and (3.3.9),

ε
2(Ǔε,∆(α,β )−Ǔε,∆(α0,β )) = T1 +T2

with

T1 = 2
n

∑
k=1

(Bk(α,X)−Bk(α0,X))∗

∆
Σ
−1
k−1(β ) Bk(α0,X),
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T2 = ∆

n

∑
k=1

(Bk(α,X)−Bk(α0,X))∗

∆
Σ
−1
k−1(β )

(Bk(α,X)−Bk(α0,X))

∆
.

By Lemma 3.3.7,
(Bk(α,X)−Bk(α0,X))

∆
is bounded, and (ii) of Lemma 3.3.8 yields that T1 goes to 0 in Pθ0 -

probability. Using now (3.3.10), we have by Lemma 3.3.7, setting ζk = ∆rk + ε ‖α−α0‖ηk,

T2 = ∆

n

∑
k=1

(Γ(α0,α, tk−1)+ζk−1)
∗
Σ
−1
k−1(β ) (Γ(α0,α, tk−1)+ζk−1)

= ∆

n

∑
k=1

(
Γ(α0,α, tk−1)

∗
Σ
−1
k−1(β )Γ(α0,α, tk−1)+Rk(θ0,θ ,ε,∆)

)
.

The first term of the above formula as a Riemann sum converges by Lemma 3.3.6 to the function K1(α0,α,β )
defined in (3.4.7) as ∆→ 0. This convergence is uniform with respect to the parameters. The remainder term is

Rk(θ0,θ ,ε,∆) =Γ(α0,α, tk−1)
∗(Σ−1

k−1(β )−Σ
−1(β , tk−1,z(α0, tk−1)))Γ(α0,α, tk−1)

+∆R1
k(θ0,θ ,ε,∆)+ εR2

k(θ0,θ ,ε,∆).

Using Proposition 3.3.1 and Lemma 3.3.7, it is straightforward to get that supk ‖Rk(θ0,θ ,ε,∆)‖ → 0 in Pθ0 -
probability uniformly with respect to θ . Hence, T2 converges to K1(α0,α,β ) in Pθ0 -probability uniformly with
respect to θ .
Let us prove (ii). Noting that, for all β , K1(α0,α0,β ) = 0, we have

0≤K1(α0, α̌ε,∆, β̌ε,∆)−K1(α0,α0, β̌ε,∆)

≤ [ε2(Ǔε,∆(α, β̌ε,∆)−Ǔε,∆(α0, β̌ε,∆))−K1(α0,α, β̌ε,∆)]

+ [K1(α0, α̌ε,∆, β̌ε,∆)− ε
2(Ǔε,∆(α̌ε,∆, β̌ε,∆)−Ǔε,∆(α0, β̌ε,∆))]

+ ε
2[Ǔε,∆(α̌ε,∆, β̌ε,∆)−Ǔε,∆(α, β̌ε,∆)]

≤2 sup
β∈Kb

|ε2[Ǔε,∆(α,β )−Ǔε,∆(α0,β )]−K1(α0,α,β )|,

where the last inequality is obtained using that the minimum of Ǔε,∆(α,β ) is attained at (α̌ε,∆, β̌ε,∆). By Proposition
3.4.2 (i), we finally get that

|K1(α0, α̌ε,∆, β̌ε,∆)−K1(α0,α0, β̌ε,∆)| → 0,

which yields by Assumption (S6) that α̌ε,∆→ α0 in Pθ0 -probability as ε,∆→ 0.

3.4.2.2 Step (2): Tightness of the sequence ε−1(α̌ε,∆−α0)

This step is crucial in the presence of different rates of convergence for α and β and concerns results that hold for
all β ∈ Kb.

Proposition 3.4.3. Assume (S1)–(S4) and that Ib(α0,β0) defined in (3.4.3) is non-singular. Then, as ε,∆→ 0,
supβ∈Kb

∥∥ε−1 (α̌ε,∆−α0)
∥∥ is bounded in Pθ0 -probability.

Proof. Recall the notation: for f a twice differentiable real function, ∇2
α f = ( ∂ 2 f

∂αi∂α j
)1≤i, j≤a.

Under (S5), Ǔε,∆(α,β ) is C2 and a Taylor expansion of ∇αǓε,∆ at point (α0, β̌ε,∆) w.r.t. α yields,

0 = ε∇αǓε,∆(α̌ε,∆, β̌ε,∆) = ε∇αǓε,∆(α0, β̌ε,∆)+ ε
2Nε,∆(α̌ε,∆, β̌ε,∆)

(α̌ε,∆−α0)

ε
, (3.4.8)

with Nε,∆(α,β ) =
∫ 1

0
∇

2
αǓε,∆(α0 + t(α−α0),β )dt. (3.4.9)
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The proof relies on two properties: under Pθ0 , as ε,∆→ 0, for all β ∈ Kb, (ε∇αǓε,∆(α0,β )) converges in distribu-
tion to a Gaussian law and the sequence ε2∇2

αǓε,∆(α0,β ) converges almost surely.
Let us study −ε∇αǓε,∆(α0,β ). Define the a×a matrix

J(θ0,β ) =
∫ T

0
(∇α b(α0, t,z(α0, t)))∗Ξ(θ0,β , t)∇α b(α0, t,z(α0, t))dt, with (3.4.10)

Ξ(θ0,β , t) = Σ
−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))Σ−1(β , t,z(α0, t)). (3.4.11)

The following holds.

Lemma 3.4.4. Assume (S1)–(S5). Then, as ε,∆→ 0,

−ε∇αǓε,∆(α0,β )→N (0,4J(θ0,β )) in distribution under Pθ0 .

Proof. We have, using the notations of Lemma 3.3.9 and setting

H i
k(α0,β ) = Σ

−1(β , tk−1,z(α0, tk−1))∇αib(α0, tk−1,z(α0, tk−1)) (3.4.12)

−ε∇αiǓε,∆(α0,β ) =−
2

ε∆

n

∑
k=1

(∇αiBk(α0,X))∗Σ−1
k−1(β )Bk(α0,X) = Ai

n +A′,in +A′′,in ,

with

Ai
n =

2
ε

n

∑
k=1

H i
k(α0,β )

∗Bk(α0,X),

A′,in = −2
n

∑
k=1

(Mi
k(α0)Zk−1(θ0))

∗
Σ
−1
k−1(β )Bk(α0,X),

A′′,in = 2
n

∑
k=1

∇αiBk(α0,X)

∆

∗
Σ
−1
k−1(β )−Σ−1(β , tk−1,z(α0, tk−1))

ε
Bk(α0,X).

By Lemma 3.3.8 (ii), Lemma 3.3.9 and Theorem 3.3.1, A′,in and A′′,in tend to 0 in Pθ0 -probability as ε,∆→ 0.
To study Ai

n, we write, using the notations of Lemma 3.3.4,

Bk(α0,X) = ε
√

∆Tk(θ0)+ ε
2(R(θ0, tk)−R(θ0, tk−1)) (3.4.13)

+ ε
2(Ip−Φ(α0, tk, tk−1))R(θ0, tk−1).

Hence, Ai
n = Di

n +Ci
n +C′,in where, using (3.4.12),

Di
n = 2

√
∆

n

∑
k=1

(H i
k(α0,β ))

∗Tk(θ0), (3.4.14)

Ci
n = 2ε

n

∑
k=1

(H i
k(α0,β ))

∗(R(θ0, tk)−R(θ0, tk−1)) and

C′,in = 2ε∆

n

∑
k=1

(H i
k(α0,β ))

∗ 1
∆
(Ip−Φ(α0, tk, tk−1))R(θ0, tk−1).

Let us first study C′,in . Noting that

1
∆
(Ip−Φ(α0, tk, tk−1)) = ∇zb(α0,z(α0, tk−1))+∆O(1),

we have |C′,in | ≤ εnC(θ0), with C(θ0) bounded in probability.
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To study Ci
n, we first apply an Abel transform to the sequence and get

Ci
n = 2ε

n

∑
k=1

(H i
k−1(α0,β )−H i

k(α0,β ))
∗R(θ0, tk−1)+ εHn

k (α0,β )
∗R(θ0, tn).

The continuity assumptions ensure that supk≤n
1
∆

∥∥H i
k−1(α0,β )−H i

k(α0,β ))
∥∥ is bounded. Hence Ci

n → 0 since
‖R(θ0, tk)‖ is uniformly bounded.

It remains to study the main term Dn = (Di
n)1≤i≤a defined in (3.4.14). Let

Hk(α0,β ) = Σ
−1
k−1(β )∇α b(α0, tk−1,z(α0, tk−1)).

Then (Dn) is a multidimensional triangular array which reads as Dn = ∑
n
k=1 ζ n

k with ζ n
k =
√

∆Hk(α0,β )
∗Tk(θ0) ∈

Ra.
Note that Dn does not depend on ε and convergence results are obtained for ∆n→ 0. To apply to (Dn) a theorem
of convergence in law for triangular arrays (Theorem A.4.2 in the Appendix or [74] Theorem 2.2.14), we have to
prove that,

(i) ∑
n
k=1Eθ0(ζ

n
k |G n

k−1) = 0,

(ii) ∑
n
k=1Eθ0(ζ

n,i
k ζ

n, j
k |G

n
k−1)→ Ji j(θ0,β ) (see Definition 3.4.10 below),

(iii) ∑
n
k=1Eθ0((ζ

n,i
k )4|G n

k−1)→ 0.

Since Tk(α0) is centered, (i) is clearly satisfied. For (ii), consider for 1≤ i, j ≤ a,

Eθ0(ζ
n,i
k ζ

n, j
k |G

n
k−1) = ∆H i

k(α0,β )
∗Eθ0(Tk(θ0)T ∗k (θ0))H

j
k (α0,β )

= ∆H i
k(α0,β )

∗Sk(α0,β0)H
j

k (α0,β ).

Noting that ‖Sk(θ0)−Σ(β0, tk−1,z(α0, tk−1)‖ ≤C∆ yields, using Definition 3.4.11,

Eθ0(ζ
n,i
k ζ

n, j
k |G

n
k−1)

= ∆(∇αib(α0, tk−1,z(α0, tk−1)))
∗
Ξ(θ0,β , tk−1)∇α j b(α0, tk−1,z(α0, tk−1))

+∆
2O(1).

Therefore, as a Riemann sum,

n

∑
k=1

Eθ0(ζ
n,i
k ζ

n, j
k |G

n
k−1)

→
∫ T

0
(∇αib(α0, t,z(α0, t)))∗Ξ(θ0,β , t)∇α j b(α0, t,z(α0, t))dt.

Checking (iii) is easily obtained since Eθ0((ζ
n,i
k )4|G n

k−1)≤ ∆2 supk,β ‖Hk(α0,β )‖.
Joining these results achieves the proof of Lemma 3.4.4.

Using (3.4.8) and 3.4.9, it remains to study the term

ε
2
∇

2
αǓε,∆(α0 + t(α̌ε,∆−α0), β̌ε,∆)

We have ε2∇2
αiα j

Ǔε,∆(α,β ) = ∑
4
l=1 Ai j

l with

Ai j
1 =

2
∆

n

∑
k=1

(∇αiBk(α0))
∗
Σ
−1
k−1(β )∇α j Bk(α0),



3.4. INFERENCE BASED ON HIGH FREQUENCY OBSERVATIONS ON [0,T ] 51

Ai j
2 =

2
∆

n

∑
k=1

(∇αiBk(α)−∇αiBk(α0))
∗
Σ
−1
k−1(β )(∇α j Bk(α)+∇α j Bk(α0)),

Ai j
3 = 2

n

∑
k=1

1
∆
(∇2

αiα j
Bk(α))∗Σ−1

k−1(β )Bk(α0),

Ai j
4 = 2∆

n

∑
k=1

1
∆
(∇2

αiα j
Bk(α,X))∗Σ−1

k−1(β )
1
∆
(Bk(α,X)−Bk(α0,X)).

By Lemmas 3.3.6, 3.3.9 and 3.3.7, Ai j
2 and Ai j

4 satisfy
∥∥∥Ai j

l

∥∥∥ ≤CT ‖α−α0‖. Lemma 3.3.9 (ii) and Lemma 3.3.8

(ii) yield that Ai j
3 → 0.

The main term Ai j
1 satisfies, by Lemma 3.3.9 (i),

Ai j
1 =2∆

n

∑
k=1

(∇αib(α0, tk−1,z(α0, tk−1)))
∗
Σ
−1
k−1(β )∇α j b(α0, tk−1,z(α0, tk−1))

+ εOP(1).

Theorem 3.3.1 yields that, under Pθ0 , Σ
−1
k−1(β ) = Σ−1(β , t,z(α0, t))+ εOP(1). Therefore, as a Riemann sum, we

get, using (3.4.3), that Ai j
1 → (Ib(α0,β ))i j in Pθ0 -probability as ε,∆→ 0. Joining these results, we get that, under

Pθ0 , as ε,∆→ 0, for all β , ε2∇2
αǓε,∆(α0,β )→ 2Ib(α0,β ). Using now the consistency of α̌ε,∆ yields that

sup
β∈Kb

∥∥ε
2
∇

2
αǓε,∆(α0 + t(α̌ε,∆−α0),β )− ε

2
∇

2
αǓε,∆(α0,β )

∥∥≤ K
∥∥α̌ε,∆−α0)

∥∥ . (3.4.15)

Coming back to (3.4.8), it remains to prove that Nε,∆(α̌ε,∆,β ) is non-singular. Under (S3), Σ(β , t,z) is non-singular.
Hence,

inf
β∈Kb

det

([∫ T

0
∇αib(α0, t,z(α0, t))∗Σ−1(β , t,z(α0, t))∇α j b(α0, t,z(α0, t)dt

]
1≤i, j≤a

)

≥ cdet

([∫ T

0
∇αib(α0, t,z(α0, t))∗∇α j b(α0, t,z(α0, t)dt

]
1≤i, j≤a

)
> 0.

Now, the consistency of α̌ε,∆ implies that, using (3.4.9), Pε
θ0
(det(ε2Nε,∆(α̌,β ))> 0) tends to 1. Therefore (3.4.8)

yields
ε
−1(α̌ε,∆−α0) =−(ε2N−1

ε,∆(α̌ε,∆, β̌ε,∆)(ε∇αǓε,∆(α0, β̌ε,∆))

is tight.

3.4.2.3 Step (3): consistency of β̌ε,∆

Let us now study the estimation for the diffusion parameter. Set

K2(α0,β0,β ) = 1
T
∫ T

0 Tr
(
Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt

− 1
T
∫ T

0 logdet
(
Σ−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt − p

(3.4.16)

Using the following inequality for invertible symmetric p× p matrices A, logdetA+ p≤ Tr(A), K2(α0,β0,β )≥ 0
and K2(α0,β0,β ) = 0 if and only if

{∀t ∈ [0,T ],Σ(β0, t,z(α0, t)) = Σ(β , t,z(α0, t)),

which implies β = β0 by (S7).

Proposition 3.4.5. Assume (S1)–(S7). Then, if Ib(α0,β0) defined in (3.4.3) is non-singular, the following holds in
Pθ0 -probability, using (3.4.1), (3.4.2) and (3.4.16)
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(i) supβ∈Kb
| 1n
(
Ǔ∆,ε(α̌ε,∆,β )−Ǔ∆,ε(α̌ε,∆,β0)

)
−K2(α0,β0,β )| → 0 as ε,∆→ 0.

(ii) β̌ε,∆→ β0 as ε,∆→ 0.

Proof. Let us first prove (i). Using (3.4.1) and (3.3.9),we get
1
n

(
Ǔ∆,ε(α,β )−Ǔ∆,ε(α,β0)

)
= A1(β0,β )+A2(α,β0,β ) with

A1(β0,β ) =
1
n

n

∑
k=1

logdet(Σk−1(β )Σ
−1
k−1(β0)), (3.4.17)

A2(α,β0,β ) =
1

n∆ε2

n

∑
k=1

Bk(α,X)∗(Σ−1
k−1(β )−Σ

−1
k−1(β0))Bk(α,X). (3.4.18)

Using that, under (S5), z→ log
(
det
[
Σ(β , t,z)Σ−1(β0, t,z)

])
is differentiable, an application of Proposition 3.3.1

yields that, under Pθ0 ,

A1(β0,β )

=
∆

T

(
n

∑
k=1

log
(
det
[
Σ(β , tk−1,z(α0, tk−1))Σ

−1(β0, tk−1,z(α0, tk−1))
])

+ εR1,ε
θ0,β

(tk−1)

)
,

with
∥∥∥R1,ε

α0,β ,β0

∥∥∥ uniformly bounded in probability. Hence, A1(β0,β ), as a Riemann sum, converges to 1
T
∫ T

0 log
(
det
[
Σ(β , t,z(α0, t))Σ−1(β0, t,z(α0, t))

])
dt

as ε,∆→ 0.
Applying Lemma 3.3.8 to Bk(α0,X) and the notations therein yields

A2(θ0,θ) =
∆

T

n

∑
k=1

Z∗k MkZk +
4

∑
i=1

Λ
i(θ0,θ), (3.4.19)

with
Zk =

1√
∆
(B(tk)−B(tk−1)) , Tk = Σ

−1
k−1(β )−Σ

−1
k−1(β0), Mk = σ

∗
k−1(β0)Tk σk−1(β0),

and

Λ1(α,θ0) =
2
√

∆

ε

n

∑
k=1

E∗k Tk Zk,

Λ2(α,θ0) =
1

T ε2

n

∑
k=1

E∗k Ek,

Λ3(α,θ0) =
2

T ε2

n

∑
k=1

(B∗k(α,X)−B∗k(α0,X))Tk Bk(α0,X), and

Λ4(α,θ0) =
1

T ε2

n

∑
k=1

(B∗k(α,X)−B∗k(α0,X))Tk (Bk(α,X)−Bk(α0,X)).

The random vectors Zk are N (0, Ip) independent of G n
k−1 and Mk is G n

k−1-measurable. Using that for Z∼N (0, Ip),
E(Z∗MZ) = Tr(M), we get

Eε
θ0
(Z∗k Mk Zk|G n

k−1) = Tr(Mk) = Tr
(
Σ
−1
k−1(β )Σk−1(β0)− Ip

)
.

Hence, the first term of A2(α0,β0,β ) converges to

1
T

∫ T

0
Tr
(
Σ
−1(β , t,z(α0, t))Σ(β0, t,z(α0, t))

)
dt− p.
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It remains to study the other terms of A2(α0,β0,β ). To study Λ1, let ζ n
k =

√
∆

ε
E∗k Tk Zk.

We have, by Lemma 3.3.8 that, in Pθ0 -probability,

E(ζ n
k |G n

k−1)≤
√

∆

ε
sup‖Tk‖(E(‖Ek‖2 |G n

k−1))
1/2 ≤C∆

3/2, and

E((ζ n
k )

2|G n
k−1)≤

∆

ε2 sup‖Tk‖2
∆

2
ε

2 ≤C∆
3.

Therefore, by Lemma A.4.3, Λ1(α,θ0)→ 0 in Pθ0 -probability as ε,∆→ 0. Similar arguments yield that Λ2(α,θ0)→
0 in Pθ0 -probability.

For Λ3(α,θ0), set ζ
n
k =

1
ε2 (B

∗
k(α,X)−B∗k(α0,X))Tk Bk(α0,X) Using Lemma 3.3.7 yields that

E(ζ n
k |G n

k−1)≤
‖α−α0)‖

ε
∆

2OP(1), and

E((ζ n
k )

2|G n
k−1)≤

‖α−α0‖2

ε2 ∆
3OP(1),

so that ∑E(ζ n
k |G n

k−1)≤ ∆

∥∥α̌ε,∆−α0)
∥∥

ε
. By Proposition 3.4.3, the sequence (ε−1

∥∥α̌ε,∆−α0
∥∥) is uniformly

bounded in probability, so that ∑E(ζ n
k |G n

k−1)→ 0 and ∑E((ζ n
k )

2|G n
k−1)→ 0.

Another application of Lemma A.4.3 yields that Λ3(α̌ε,∆,θ0)→ 0. For Λ4, the result is straightforward since

|Λ4| ≤ n∆
2(

∥∥α̌ε,∆−α0
∥∥

ε
)2. This achieves the proof of (i).

Let us study (ii). We have, using (3.4.16),

0 ≤ K2(α0,β0, β̌ε,∆)≤ [K2(α0,β0, β̌ε,∆)−
1
n
(Ǔ∆,ε(α̌ε,∆, β̌ε,∆)−Ǔ∆,ε(α̌ε,∆,β0))]

+
1
n
(Ǔ∆,ε(α̌ε,∆, β̌ε,∆)−Ǔ∆,ε(α̌ε,∆,β0)).

Noting that the last term of the above inequality is non-negative, (i) yields that K2(α0,β0, β̌ε,∆)→ 0, which ensures,
by Assumption (S5), that β̌ε,∆→ β0 in Pθ0 -probability.

3.4.2.4 Step (4): Asymptotic normality

Let us now study the asymptotic properties of these estimators and achieve the proof of Theorem 3.4.1. Let us
define for θ = (α,β ),

Λε,n(θ) =

(
ε∇αǓε,∆(α,β )
1√
n ∇βǓε,∆(α,β )

)
and (3.4.20)

Dε,n(θ) =

 ε2
(

∇2
αi,α j

Ǔε,∆(θ)
)

1≤i, j≤a
ε√
n

(
∇2

αiβ j
Ǔε,∆(θ)

)
1≤i≤a,1≤ j≤b

ε√
n

(
∇2

αiβ j
Ǔε,∆(θ)

)
1≤i≤a,1≤ j≤b

1
n

(
∇2

βiβ j
Ǔε,∆(θ)

)
1≤i, j≤b

 . (3.4.21)

A Taylor expansion at point θ0 yields,(
0
0

)
= Λε,n(α̌ε,∆, β̌ε,∆) (3.4.22)

= Λε,n(θ0)+
∫ 1

0
Dε,n(θ0 + t(θ̌ε,∆−θ0))dt

(
ε−1(α̌ε,∆−α0)√

n(β̌ε,∆−β0)

)
.

Therefore, we have to prove that, under Pθ0 , as ε,∆→ 0 (or n = ∆−1/2→ ∞),
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(i) −Λε,n(θ0)→N (0,4I(θ0)) in distribution,

(ii) supt∈[0,1]
∥∥Dε,n(θ0 + t(θ̌ε,∆−θ0))−2I(θ0)

∥∥→ 0 in probability.

Proof. Let us prove (i). We have that, for 1≤ i≤ a,

− ε∇αiǓε,∆(α0,β0) =
n

∑
k=1

ξ
i
k(θ0) with ξ

i
k(θ0) =−

2
ε∆

B∗k(α)Σ−1
k−1(β0)∇αiBk(α0). (3.4.23)

Using that, for a positive symmetric matrix M(x),

d
dx

(logdetM(x)) = Tr
(

M−1(x)
d
dx

M(x)
)

and (3.3.9), set
M j

k (β ) = Σ
−1
k (β )∇β j Σk(β ). (3.4.24)

Then 1√
n ∇β jǓε,∆(α0,β0) = ∑

n
k=1 η i

k(θ0) with

η
j

k (θ0) =
1√
n
[Tr(M j

k−1(β0))−
1

ε2∆
B∗k(α0)M

j
k−1(β0)Σ

−1
k−1(β0)Bk(α0,X)]. (3.4.25)

The proof that −ε∇αǓε,∆(α0,β0) converges to the Gaussian distribution N (0, Ib(θ0)) is obtained by substi-
tuting β with β0 in the proof of Proposition 3.4.3.

Let us study − 1√
n

∇βǓε,∆(α0,β0). Let us first prove

Lemma 3.4.6. If M is a G n
k−1-measurable random matrix, then

1
ε2∆

E
(
B∗k(α0)MΣ

−1
k−1(β0)Bk(α0,X)|G n

k−1
)
= Tr(M)+∆Rk(ε,∆) (3.4.26)

with supk |Rk(ε,∆)| uniformly bounded in Pθ0 -probability.

Proof. Using Lemma 3.3.8,

E(B∗k(α0)MΣ
−1
k−1(β0)Bk(α0)|G n

k−1) =
p

∑
l,l′=1

(
MΣ
−1
k−1(β0)

)
ll′ E(B

l
k(α0)Bl′

k (α0)|G n
k−1)

= ε
2
∆

p

∑
l,l′=1

(
MΣ
−1
k−1(β0)

)
ll′ (Σk−1(β0))l′l +

p

∑
l,l′=1

(
MΣ
−1
k−1(β0)

)
ll′ E(E

l
kE l′

k |G n
k−1)

= ε
2
∆Tr(M)+Rk(ε,∆)

with |Rk(ε,∆)| ≤Cε2∆2 in probability.

Let us study the convergence of the triangular array ∑
n
k=1E(ξ i

k(θ0)). By Lemma 3.4.6, we have for j ≤ b,

n

∑
k=1

E(η j
k (θ0)|G n

k−1) =
1

ε2∆
√

n

n

∑
k=1

Rk(ε,∆)≤
CT√

n
→ 0.

Consider now, for j1, j2 ≤ b, ∑
n
k=1E(η

j1
k (θ0)η

j2
k (θ0)|G n

k−1).
We have

E(η j1
k (θ0)η

j2
k (θ0)|G n

k−1)

=
1
n
[Tr(M j1

k−1(β0)M
j2
k−1(β0))−2TrM j1

k−1(β0))TrM j2
k−1(β0)+C j1, j2

k (ε,∆)+∆OP(1)],
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with

C j1 j2
k (ε,∆)

=
1

ε4∆2E
(

B∗k(α0)M
j1
k−1(β0)Σ

−1
k−1(β0)Bk(α0)B∗k(α0)M

j2
k−1(β0)Σ

−1
k−1(β0)Bk(α0)|G n

k−1

)
.

Therefore, omitting the parameters when there is no ambiguity,

C j1 j2
k (ε,∆)

= ∑
l1,l2,l3,l4

(M j1
k−1Σ

−1
k−1)l1l2(M

j2
k−1Σ

−1
k−1)l3l4E

(
Bl1

k (α0)B
l2
k (α0)B

l3
k (α0)B

l4
k (α0)|G n

k−1

)
.

Based on the property that, if Z is a p-dimensional Gaussian random variable N (0,Σ), E(Zl1Zl2 Zl3Zl4) = Σl1l2Σl3l4 +Σl1l3Σl2l4 +Σl1l4Σl2l3 ,
we get that

C j1 j2
k (ε,∆) =

(
Tr(M j1

k−1M j2
k−1)+2TrM j1

k−1TrM j2
k−1 +∆OP(1)

)
.

Therefore ∑
n
k=1E(η

j1
k (θ0)η

j2
k (θ0)|G n

k−1) =
2
n ∑

n
k=1 Tr(M j1

k−1M j2
k−1)+∆OP(1).

Now, under Pθ0 , M j
k (β0) = Σ−1(β0, tk,z(α0, tk))∇β j Σ(β0, tk,z(α0, tk))+ εOP(1) so that, using (3.4.4), as ε,∆→ 0,

n

∑
k=1

E(η j1
k (θ0)η

j2
k (θ0)|G n

k−1)→ 4(Iσ (θ0)) j1 j2 .

The proofs that ∑
n
k=1E(

∥∥η i
k(θ0)

∥∥4 |G n
k−1)→ 0, ∑

n
k=1E(ξ i

k(θ0)η
j

k (θ0)|G n
k−1)→ 0 are similar and omitted. Finally,

applying the theorem of convergence in law for triangular arrays recalled in Section A.4 yields that
n

∑
k=1

η
i
k(θ0)→N (0,4Iσ (θ0)).

Joining these results achieves the proof of (i).

It remains to study Dε,n(θ) defined in (3.4.21).

Proof. We have already proved that

sup
t∈[0,1]

∥∥∥ε
2(∇2

αi,α j
Ǔε,∆(θ0 + t(θ̌ε,∆−θ0))−2(Ib(θ0))i j

∥∥∥→ 0

in probability. Consider now the term 1
n ∇2

βi,β j
Ǔε,∆(α,β ). It reads as

∇
2
βiβ j

Ǔε,∆(α,β )

=
n

∑
k=1

(
Tr
(

∇βiM
j
k−1(β )

)
− 1

ε2∆
Bk(α)∗(∇βiM

j
k−1(β ))Σ

−1
k−1(β )Bk(α)

)
+

1
ε2∆

n

∑
k=1

Bk(α)∗M j
k−1(β )M

i
k−1(β )Σ

−1
k−1(β )Bk(α).

Let us define the matrices, for 1≤ i, j ≤ b,

Mi(α,β , t) = Σ
−1(β , t,z(α, t))∇βiΣ(β , t,z(α, t)), and (3.4.27)

T i j
k (β ) = [M j

k (β )M
i
k(β )−∇βiM

j
k (β )]Σ

−1
k−1(β ). (3.4.28)

Using (3.4.26) yields that the first term of ∇2
βiβ j

Ǔε,∆(α0,β0) is uniformly bounded in probability and that the second

term satisfies ∑
n
k=1(Tr

(
M j

k−1(β0)Mi
k−1(β0)

)
+∆OP(1)). Hence,

1
n

∇
2
βiβ j

Ǔε,∆(α0,β0)→−
1
T

∫ T

0
Tr(M j(α0,β0, t)Mi(α0,β0, t))dt.
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It remains to prove that, under Pθ0 ,

sup
t∈[0,1]

1
n

∥∥∥∇
2
βiβ j

Ǔε,∆(θt)−∇
2
βiβ j

Ǔε,∆(θ0)
∥∥∥→ 0

with θt = θ0 + t(θ̌ε,∆−θ0) and that the terms

ε√
n
(∇2

αiβ jǓε,∆(α,β )−∇
2
αiβ j

Ǔε,∆(α0,β0))→ 0.

These two proofs rely on similar tools and are omitted.

3.5 Inference based on low frequency observations

Consider now the case where the sampling interval ∆ is fixed and the time interval for observations is fixed. It
follows that the number of observation points n = T/∆ is finite. We prove that only parameters in the drift function
can be consistently estimated. This agrees with the previous results where the rate of estimation of parameter β

in the diffusion coefficient is
√

n in the high frequency set-up. Sometimes, when modeling epidemic dynamics, a
parameter is added in the SIR model to take account of larger fluctuations, substituting the term

√
SI by (S(t)I(t))a

in the diffusion term. While in the “High frequency” set-up, this parameter a can be consistently estimated, this is
no longer true for a fixed sampling interval.

In order to illustrate that β cannot be consistently estimated in this set-up, we study the inference on a simple
example, the one-dimensional Brownian motion with drift on [0,T ].

3.5.1 Preliminary result on a simple example

Let us consider the estimation of (α,β ) as ε → 0 and n = T/∆ finite, for the process

dX(t) = αdt + εβdB(t); X(0) = 0. (3.5.1)

The observations are (X(tk),k = 1, . . . ,n). The n random variables (X(tk)−X(tk−1)) are independent Gaussian
with distribution N (α∆,ε2β 2∆). The likelihood is explicit and the maximum likelihood estimators are

α̂ε =
X(T )

T
; β̂

2
ε =

1
n∆ε2

n

∑
k=1

(X(tk)−X(tk−1)−∆α̂ε,∆)
2. (3.5.2)

Under Pθ0 , α̂ε = α0 + εβ0
B(T )

T
. Therefore, as ε→ 0, α̂ε → α0 and ε−1(α̂ε −α0) = β0

B(T )
T is a Gaussian random

variable N (0,
β 2

0
T

).

The MLE of β 2
0 is β̂

2
ε = β

2
0 (

1
n

n

∑
k=1

Z2
k −

1
n

B(T )2

T
), where (Zk,k = 1, . . . ,n) are i.i.d. N (0,1).

Hence, since n is fixed, β̂ 2
ε is a fixed random variable which does not depend on ε with expectation β

2
0 (1−

1
n
) 6= β

2
0 ,

implying that it is a biased estimator of β 2
0 .

This simple example shows that parameters in the diffusion coefficient cannot be estimated as ε → 0.

3.5.2 Inference for diffusion approximations of epidemics

Considering equation (3.3.1), three cases might occur: β unknown; β known or Σ(β ,x) = φ(β )Σ(x) (with φ(β ) a
known real function on R+); β present in the drift coefficient (e.g. β = ϕ(α) with ϕ a known function). This last
case systematically occurs for the diffusion approximation of epidemic dynamics: the parameters ruling the jump
process modeling the epidemic dynamics are both present in the drift and in the diffusion coefficients, i.e. β ≡ α .
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For example, the diffusion approximation of the SIR, we have, setting α = (λ ,γ), that the drift term is b(α,z) and
the diffusion term is Σ(α,z)

Having in mind epidemics, we study here this case and assume that, under Pα ,

dX(t) = b(α, t,X(t))dt + εσ(α, t,X(t))dB(t), X(0) = x. (3.5.3)

The time interval is [0,T ], the sampling interval is ∆ with T = n∆, and both T,∆,n are fixed.
The observations consist of the n random variables (X(tk),k = 1, . . . ,n) with tk = k∆. As in the previous section,

the inference is based on the random variables Bk(α,X) defined in (3.3.7), which satisfy using Lemma 3.3.4

Bk(α,X) = ε
√

∆Tk(α)+ ε
2Dε

k(α), with Dε
k = Rε(α, tk)−Φ(α, tk, tk−1)Rε(α, tk−1). (3.5.4)

Tk(α) =
1√
∆

∫ tk

tk−1

Φ(α, tk,u)σ(α,u,z(α,u))dB(u), (3.5.5)

Sk(α) =
1
∆

∫ tk

tk−1

Φ(α, tk,u)Σ(α,u,z(α,u))Φ∗(α, tk,u)du. (3.5.6)

This leads to define the contrast function depending now on (X(t1), . . . ,X(tn)),

Ūε

(
α,(Xtk)

)
= Ūε(α) =

n

∑
k=1

logdetSk(α)+
1

ε2∆

n

∑
k=1

B∗k(α,X)S−1
k (α)Bk(α,X). (3.5.7)

Denote by α0 the true value of the parameter and Θ the parameter set. We assume

(S4b): Θ a compact set of Ra ; α ∈ Int(Θ).

(S5b): Assumption (S5) on b(α, t,z) and σ(α, t,z).

(S6b): α 6= α0⇒{∃k, 1≤ k ≤ n, z(α, tk) 6= z(α0, tk)}.

The estimator is defined as any solution of

ᾱε = argmin
α∈Ka

Ūε

(
α,(Xtk)

)
. (3.5.8)

Let us study the properties of ᾱε . For this, define, using (3.5.6), the p× a matrix Gk(α) = (G1
k , . . . ,G

a
k) and the

a×a matrix M(α),

M(α) = ∆

n

∑
k=1

Gk(α)∗Sk(α)−1Gk(α), with (3.5.9)

Gi
k(α) =

1
∆
(−∇αiz(α, tk)+Φ(α, tk, tk−1)∇αiz(α, tk−1)). (3.5.10)

Then, the following holds

Theorem 3.5.1. Assume (S1)–(S3), (S4b)–(S6b). Then, as ε → 0, under Pα0 ,

(i) ᾱε → α0 in probability.

(ii) If moreover M(α0) defined in (3.5.9) is non-singular, then

ε
−1(ᾱε −α0)→Na(0,M−1(α0))

in distribution.
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Proof. Let us first prove (i). Define, using (3.5.4), (3.5.6),

K̄∆(α0,α) =
1
∆

n

∑
k=1

B∗k(α,z(α0, ·))S−1
k (α)Bk(α,z(α0, ·)). (3.5.11)

Since Bk(α0,z(α0, ·)) = 0, K̄∆(α0,α) ≥ 0 and K̄∆(α0,α0) = 0. Assume now that K̄∆(α0,α) = 0. Then, for all
k ∈ {1, ..n},

z(α, tk)− z(α0, tk) = Φ(α, tk, tk−1)(z(α, tk−1)− z(α0, tk−1)).

The matrix Φ(α, tk, tk−1) being non-singular, the identifiability Assumption (S6b) implies that α = α0.
Since the sum in (3.5.7) is finite, we get, using (3.3.7) and Proposition 3.3.1, that sup

α∈Ka

|ε2Ūε(α)− K̄∆(α0,α)| → 0

in Pθ0 -probability as ε → 0. Therefore, we have

0 ≤ K̄∆(α0, ᾱε)− K̄∆(α0,α0)

≤ 2 sup
α∈Ka

|ε2Uε(α)− K̄∆(α0,α)|+ ε
2|Uε(ᾱ)−Uε(α0)|

≤ 2 sup
α∈Ka

|ε2Uε(α)− K̄∆(α0,α)|.

Then the proof of (i) is achieved by means of the identifiability Assumption (S6b).
Let us now prove (ii). To study the asymptotic properties of ᾱε as ε → 0, we write, for i, j ≤ a,

0 = ε∇αiŪε(ᾱε)

= ε∇αiŪε(α0)+ ε
2

a

∑
j=1

(
∫ 1

0
(∇2

α jαi
Ūε(α0 + t(ᾱε −α0))dt) (

ᾱ
j

ε −α
j

0
ε

).

Consider first ε∇αŪε(α0). Using (3.3.7) and (3.5.6), for i = 1, . . . ,a, it reads as

ε∇αiŪε(α0) = ε

n

∑
k=1

∇αi logdetSk(α0)+
1

ε∆

n

∑
k=1

B∗k(α0) ∇αiS
−1
k (α0)Bk(α0)

+
2

ε∆

n

∑
k=1

(∇αiB
∗
k(α0)) S−1

k (α0)Bk(α0) = Ai
1(α0)+Ai

2(α0)+Ai
3(α0).

Since ∇αi log(detSk(α0)) = Tr(S−1
k (α0)∇αiSk(α0)), Ai

1(α0) is well defined and, under the regularity assumptions,
Ai

1(α0) = nεO(1), which goes to 0 as ε → 0, n being fixed.
Applying Lemma 3.3.4 for the variables Tk(α0), Dε

k(α0) yields that

Ai
2(α0) = ε

n

∑
k=1

T ∗k (α0)∇αiS
−1
k (α0)Tk(α0)

+2
ε√
∆

n

∑
k=1

T ∗k (α0)∇αiS
−1
k (α0)(εDε

k(α0))

+
ε

∆

n

∑
k=1

(εDε
k(α0))

∗
∇αiS

−1
k (α0)(εDε

k(α0)).

It follows from Lemma 3.3.4, that supk
∥∥εDε

k(α0)
∥∥ is bounded. Therefore, Ai

2(α0)→ 0 in Pα0 -probability.
Let us study the main term (Ai

3(α) of ε∇αiŪε(α0).
Using Proposition 3.3.1 and (3.3.7), (3.5.10) yields that, under Pα0 ,

∇αiBk(α0) = ∆Gi
k(α0)− ε(∇αiΦ(α0, tk, tk−1)(g(α0, tk−1)+ εRε(α0, tk−1))), (3.5.12)

where supk ‖εR(α, tk)‖ is uniformly bounded in probability. Therefore,

Ai
3(α0) = 2

√
∆

n

∑
k=1

((Gi
k(α0))

∗S−1
k (α0)Tk(α0)+ εR′k(α0)),
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with R′k(α0) uniformly bounded in probability. By Lemma 3.3.4, (Tk(α0)),k = 1, . . . ,n) are independent centered
Gaussian random variables with covariance matrix Sk(α0). We that A3(α0) = (A1

3(α0), . . . ,A3(α0))
∗ converges to

the Gaussian random variable Na(0,4M(α0)). Joining all these results yields that

−ε∇αŪε(α0)→Na(0,4M(α0)) with

M(α0) = (M(α0))i j = ∆

n

∑
k=1

(Gi
k(α0))

∗S−1
k (α0)G

j
k(α0).

Consider ε2∇2
α jαi

Ūε(α). Similar computations yield that

ε
2
∇

2
α jαi

Ūε(α0) = 2∆

n

∑
k=1

(Gi
k(α0))

∗S−1
k (α0)G

j
k(α0)+nεOP(1).

Therefore, for all 1≤ i, j ≤ a,

ε
2
∇

2
αiα j

Ūε(α0)→ 2Mi j(α0) Pα0a.s. as ε → 0.

It remains to study supt∈[0,1] |ε2∇2
α jαi

Ūε(α0 + t(ᾱε −α0))− ε2∇2
α jα j

Ūε(α0)|.
We have ε2∇2

α jαi
Ūε(α) = 1

∆
(Ai j

1 (α)+Ai j
2 (α)), where

Ai j
1 (α) = 2

n

∑
k=1

∇αiB
∗
k(α)S−1

k (α)∇α j Bk(α), Ai j
2 (α) =

n

∑
k=1

Z∗k (α)Bk(α)

with

Z∗k (α) = 2∇α j B
∗
k(α)∇αiS

−1
k (α)+B∗k(α)∇2

αiα j
S−1

k (α)+2∇αiB
∗
k(α)∇α j S

−1
k (α)

+2∇
2
αiα j

B∗k(α)S−1
k (α).

Similarly to the previous section, we need that, under Pα0 , the properties stated below hold.

‖Bk(α)−Bk(α0)‖ ≤ ‖α−α0‖(C1 +C2OP(1)) uniformly with respect to k,α; (3.5.13)∥∥∥∥1
ε

Bk(α0)

∥∥∥∥ are uniformly bounded random variables; (3.5.14)

sup
k≤n,α∈Θ

‖∇αiBk(α)‖= OP(1); and ‖∇αiBk(α)−∇αiBk(α0‖ ≤C1 ‖α−α0‖ . (3.5.15)

The proofs of these properties are similar to the previous section and omitted.
Therefore,

Ai j
2 (α)−Ai j

2 (α0) =
n

∑
k=1

(Z∗k (α)−Z∗k (α0))Bk(α0)+
n

∑
k=1

Z∗k (α)(Bk(α)−Bk(α0)).

Using (3.5.13), (3.5.14) we get

|Ai j
2 (α)−Ai j

2 (α0)| ≤ sup‖Zk(α)‖(2nε sup
∥∥∥∥Bk(α0)

ε

∥∥∥∥+‖α−α0‖(C1 +C2OP(1)).

Consider now Ai j
1 (α)−Ai j

1 (α0). It reads as

Ai j
1 (α)−Ai j

1 (α0) =2
n

∑
k=1

[∇αiB
∗
k(α)S−1

k (α)(∇α j Bk(α)−∇α j Bk(α0))]

+ [∇α j B
∗
k(α)S−1

k (α)(∇αiBk(α)−∇αiBk(α0))]
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+[∇αiB
∗
k(α)(S−1

k (α)−S−1
k (α0))∇α j Bk(α0)].

Hence,
∥∥∥A1i j(α)−Ai j

1 (α0)
∥∥∥≤ 2nC‖α−α0‖.

Using the consistency ᾱε , we get that

sup
t∈[0,1]

|ε2
∇

2
α jαi)

Ūε(α0 + t(ᾱε −α0))− ε
2
∇

2
α jα j

Ūε(α0)| → 0.

This achieves the proof of (ii) and of Theorem 3.5.1.

3.5.2.1 Comments

(1) The term ∑
n
k=1 logdetSk(α) could have been omitted in the definition of Ūε(α). It has no influence on the

asymptotic properties of ᾱε . However, we have observed in the simulation results that it yields better estimators
(less biased). An explanation lies in the fact that in practice ε is small, but probably not enough to compensate this
first term. the observations of less biased estimators non-asymptotically.

(2) In [61], we considered the case of an unknown parameter β in the diffusion coefficient and therefore used a
Conditional Least Square estimator based on Uε(α) = ∑

n
k=1 B∗k(α)Bk(α). The CLS estimator obtained is consis-

tent. It converges at the same rate, but with a larger covariance matrix J−1
∆

(α)I∆(α)J−1
∆

(α) with Ji j
∆
=∑

n
k=1(G

i
k(α))∗G j

k(α)

and I∆(α) = ∑
n
k=1(G

i
k(α))∗Sk(α)G j

k(α).

(3) We can compare the result of Theorem 3.5.1 to the inference of an unknown parameter in the drift coefficient
for a continuously observed diffusion on [0,T ] in the asymptotics ε → 0. According to [92], assuming a known
diffusion coefficient εσ(x), the Maximum Likelihood Estimator is consistent and the Fisher information matrix is

(Ib(α0,β0))i j =
∫ T

0
(∇αib(α0,z(α0,s)))∗Σ−1(z(α0,s))∇α j b(α0,z(α0,s))ds. (3.5.16)

To compare the estimator ᾱε,∆ with the CLS estimator, we can study the limits of the two Information matrices
when ∆ goes to zero. Using that z(α, ·) satisfies the ODE (3.2.8), we have,

Gk(α0) =−∇α b(α0,z(α0, tk−1))+o∆(1), as ∆ goes to zero. (3.5.17)

This result together with Lemma 3.3.5 implies that I∆(α0,β0)→ Ib(α0,β0) as ∆→ 0. Since Ib(α0,β0) is the optimal
information matrix for continuous time observation, this convergence provides some kind of optimality result for
fixed ∆.

Consider now the covariance matrix of the CLS estimator. We have, ε → 0,

(J∆(α))i j→
∫ T

0
∇αib(α0,z(α0, t))∗∇α j b(α0,z(α0, t))dt, and

(I∆(α))i j→
∫ T

0
∇αib(α0,z(α0, t))∗Σ(β0,z(α0, t))∇α j b(α0,z(α0, t))dt.

This clearly differs from the optimal asymptotic variance and confirms that the CLS estimator is not efficient.
However, it might be easier to minimize the CLS function ∑

n
k=1 Gk(α)∗Gk(α) than the actual contrast function

∑
n
k=1 Gk(α)∗S−1

k−1(α)Gk(α). Therefore this CLS estimator can be useful to serve as an initialization for other
computations or algorithms.

3.6 Assessment of estimators on simulated data sets

We consider two examples of epidemic dynamics, the SIR and the SIRS presented in the first part of these notes
and recalled in Section 3.2.2 for the diffusion approximation. We used the Gillespie algorithm (see Part I of these
notes) to simulate the SIR epidemic dynamics (Z N(t),0≤ t ≤ T ) and, for the SIRS model, the τ-leaping method
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([22]), which is more efficient for large populations.

As pointed in the introduction, diffusion approximations are relevant in case of a major outbreak in a large
community. Therefore, we keep only in the analysis what we called “non-extinct trajectories”, chosen according
to a frequently used empirical criterion: we keep epidemic trajectories such that the final epidemic size is larger
than the observed empirical size minus the standard empirical error of the final epidemic size.

The inference is based only on non-extinct trajectories . Since we possess, for each simulation, the whole
sample path of the epidemic process, we can compute the maximum likelihood estimator (see Chapter 4 of this
part) which depends on the whole path of the jump process. For instance, for the SIR case, the MLE is

λ̂N =
1
N

# Infections∫ T
0 SN(t)IN(t)dt

; γ̂N =
1
N

# Recoveries∫ T
0 IN(t)dt

. (3.6.1)

We call this MLE based on complete epidemic data the reference estimator. This is the best result that can
be achieved from these epidemic data.

In order to investigate the influence of various parameters, we consider various scenarios. Each scenario
corresponds to the choice of the model, the parameters θ , the population size N, the time interval of observation
[0,T ] and the sampling interval ∆. We proceeded to 1000 repetitions for each scenario.
Hence, we varied the total size of the population N, the parameters ruling the SIR, SIRS epidemics, the time interval
for observations [0,T ]. Then, we sampled with sampling ∆ each path of the Markov jump process. This sampling
interval also varies. Therefore the observations coming from the simulations are

Z N(k∆)

N
= ZN(k∆) k = 1, . . . ,n with T = n∆.

Each scenario corresponds to the choice of the model, the parameters θ , the population size N, the time interval
of observation [0,T ] and the sampling interval ∆.

We compare the estimators obtained with the method described in the two previous sections with the MLE
(3.6.1). The properties of our minimum contrast estimators are assessed and compared to reference estimators.
For parameters with dimension greater than two, confidence ellipsoids are projected on planes, by considering all
pairs of parameters. Theoretical confidence ellipsoids are built as follows. Let V (θ0) denote the covariance matrix
of the asymptotic normal distribution of parameters estimation in drift term (i.e. I−1

b (θ0) defined in (3.4.3) and
M−1(θ0) defined in (3.5.9). Since ε−1V (θ0)

−1/2(θ̂ε,∆− θ0)→L N (0, Ik) (where θ̂ε,∆ represents α̌ε,∆ obtained
minimizing (3.4.1) or η̄ε,∆ in (3.5.8) Then, for k = a (dimension of α), we have,

1
ε2 (θ̂ε,∆−θ0)

∗V (θ0)
−1(θ̂ε,∆−θ0)→L χ2(k). (3.6.2)

The matrix V (θ0)
−1 being positive, the quantity (θ̂ε,∆− θ0)

∗V (θ0)
−1(θ̂ε,∆− θ0) is the squared norm of vector

θ̂ε,∆ − θ0 for the scalar product associated to V (θ0)
−1. If we denote by χ2

k (0.95) the 95% quantile of the χ2
k

distribution, the relation (3.6.2) could be rewritten as ||(θ̂ε,∆−θ0)
2M(θ0)

−1|| ≤ ε2χ2
k (0.95) and define an ellipsoid

in Rk.
Empirical confidence ellipsoids are based on the variance-covariance matrix of centered estimators (based on 1000
independent estimations), whose eigenvalues define the axes of ellipsoids.
In the two epidemic models detailed below, we assume both components of ZN(t) = SN(t), IN(t) are observed with
sampling interval ∆, ((SN(k∆), IN(k∆)),k = 1, . . .n) with T = n∆.

3.6.1 The SIR model

The parameters of interest for epidemics are considered following a reparameterization: the basic reproduction
number, R0 =

λ

γ
, which represents the average number of secondary cases generated by one infectious in a com-

pletely susceptible population, and the average infectious duration, d = 1
γ
. Two values were tested for R0 = {1.5,5}
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and d was set to 3 (in days, an average value consistent with influenza infection). Three values for the population
size N = {400,1000,10000} and of the number of observations n = {5,10,40} were considered, along with two
values for the final time of observation, T = {20,40} (in days). For each scenario defined by a combination of
parameters, the analytical maximum likelihood estimator (MLE), calculated from the observation of all the jumps
of the Markov process (see 4), was taken as reference.

Effect of the parameter values {R0,d} and of the number of observations n
The accuracy of the two estimators α̌ε,∆ and ᾱε , for N = 1000 and from trajectories with weak (R0 = 5) and strong
(R0 = 1.5) stochasticity is illustrated in Figure 3.6.1. We observe that R0 and d are moderately correlated (ellip-
soids are deviated with respect to the x-axis and y- axis). The shape of confidence ellipsoids depends on parameter
values: for R0 = 5, the 95% confidence interval is larger for R0 than for d, whereas the opposite occurs for R0 = 1.5.
For R0 = 5, all these confidence intervals are almost superimposed, which suggests that the estimation accuracy
is not altered by the fact that all the jumps are not observed. However, for R0 = 1.5 the shape of ellipsoids varies
with n. Point estimates for MLE derived for complete observation of (Z N(t) of the original jump process and the
estimators α̌ε,∆, ᾱε are very similar for different values of n, which confirms the interest of using these estimators
when small number of observations is available.

Figure 3.6.1: Point estimators (+) are computed by averaging over 1000 independent simulated trajectories of the
SIR stochastic model (completely observed) together with their associated theoretical confidence ellipses centered
on the true value: MLE with complete observations (red), CE for one observation/day, n = 40 (blue) and CE
for n = 10 (black). Two scenarios are illustrated: (R0,d,T ) = {(1.5,3,40);(5,3,20)}, with N = 1000. For both
scenarios (S(0), I(0)) = (0.99,0.01).The value of d is reported on the y-axis. Horizontal and vertical dotted lines
cross at the true value

.

Effect of the parameter values {R0,d} and of the population size N From Figure 3.6.2, we can notice that
√

N has
an impact on estimation accuracy (the width of the confidence intervals decreases with

√
N). The case of very

few observations (n = 5) leads to the largest confidence intervals. The MLE appears biased for N = 400. This
could be due to the fact that the MLE is optimal when data represent a ‘typical’ realization (i.e. a trajectory that
emerges leading to a non-negligible number of infected individuals) of the Markov process, but could yield a bias
when observations are far from the average behaviour. Our CEs seem robust to the departure from the ‘typical’
behaviour (i.e. for noisy trajectories obtained either for small N or small R0).

3.6.2 The SIRS model

For the SIRS model introduced in Section 3.2.2.2, four parameters were estimated: R, d, λ1 and δ . Concerning the
remaining parameters,µ was set to 1/50 years−1 (a value usually considered in epidemic models), Tper was set to
365 days (corresponding to annual epidemics) and η was taken equal to 10−6 (which corresponds to 10 individuals
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Figure 3.6.2: Point estimators (+) computed by averaging over 1000 independent simulated trajectories of the
SIR stochastic model completely observed and their associated theoretical confidence ellipses centered on the true
value: MLE with complete observations (red), CE for one observation/day, n = 40 (blue), CE for n = 10 (black)
and CE for n = 5 (green) for (S(0), I(0)) = (0.99,0.01), (R0,d) = (1.5,3) and N = {400,1000,10000} (from left
to right). Horizontal and vertical dotted lines cross at the true value.

in a population size of N = 107). We should notice that instead of estimating the real R0 (more complicated to
calculate for periodical dynamics), we prefer to estimate a parameter combination similar to the R0 for SIR model,
λ0/γ , which was called here R.The performances of CEs were assessed on parameter combinations: (R,d,λ1,δ ) =
{(1.5,3,0.05,2) and (1.5,3,0.15,2)} and T = 20 years, with λ1 = 0.05 leading to annual cycles and λ1 = 0.15
to biennial dynamics (Figure 3.2.2). Numerically, the scenarios considered are consistent with influenza seasonal
outbreaks. The accuracy of estimation is relatively high, as illustrated in Figure 3.6.3, regardless of the parameter.
For one observation per day (which can be assimilated to a limit of data availability), the accuracy is very similar to
the one based on a complete observation of the epidemic process (blue and red ellipsoids respectively). Estimations
based on one observation per week are less but still reasonably accurate.

3.7 Inference for partially observed epidemic dynamics

In the case of epidemics, numbers of susceptible and infected individuals over time are generally not observed. In
practice, (sometimes noisy) observations are often assumed to correspond to cumulated numbers, over the sam-
pling interval ∆, of newly infected individuals (i.e.

∫ tk
tk−1

λS(s)I(s)ds). In the SIR diffusion model, this corresponds
to the recovered individuals {(R(tk)−R(tk−1)),k = 1, . . .n} for diseases with short duration of the infected period.
Hence, this situation can be assimilated, as a first attempt, to the case where only one coordinate can be observed.

In this section, we consider the case of a two-dimensional diffusion process X(t) = (X1(t),X2(t))∗

dX(t) = b(α,X(t))dt + εσ(β ,X(t)dB(t))dt; X(0) = x, (3.7.1)

where B(t) is a Brownian motion on R2 and x non-random.
We assume that only the first coordinate X1(t) is observed on a fixed time interval [0,T ] with sampling ∆. We

consider the diffusion on R2 satisfying the stochastic differential equation Therefore, the observations are now

X1(tk), k = 1, . . .n, with tk = k∆, T = n∆. (3.7.2)

For continuous observations of (X1(t)) on a finite time interval [0,T ], two studies [80], [93] are concerned with
parametric inference in this statistical framework. Both studied the maximum likelihood estimator of parameters
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Figure 3.6.3: Point estimators (+) computed by averaging over 1000 independent simulated trajectories of the
SIRS stochastic model with demography and seasonal forcing in transmission, completely observed (red), and
their associated planar projections of theoretical confidence ellipsoids centered on the true value: CE for one
observation/day (blue) and for one observation/week (black) for (R,d,λ1,δ ) = (1.5,3,0.15,2), T = 20 years and
N = 107. Asymptotic confidence ellipsoids (n→ ∞) are also represented (red,blue,black). Horizontal and vertical
dotted lines cross at the true value.

in the drift function for a diffusion matrix equal to ε2Ip. This likelihood is difficult to compute since it relies on
integration on the unobserved coordinate. [80], [93] proposed filtering approaches to compute this likelihood, as it
is done for general Hidden Markov Models (see e.g. [23] , [38]). Here, we can take advantage of the presence of ε

and extend to partial observations the method by contrast processes and M- estimators that had been developed for
complete observations ([47], [57], [61]), [119]).

We study the case of small (or high frequency) sampling interval, ∆ = ∆n→ 0, on a fixed time interval [0,T ] with
T = n∆, which yields explicit results. This allows us to disentangle problems coming from discrete observations
and those coming from the missing observation of one coordinate and hence provides a better understanding of the
problems rising in this context. The case of ∆ fixed could be studied similarly, with more cumbersome notations
and no such insights .

First, the notations required are introduced, results are then stated, and finally, to illustrate this approach, the
example of a two-dimensional Ornstein–Uhlenbeck process, where all the computations are explicit is developed.
The consequences on diffusion approximations of Epidemic models where computations are no longer explicit are
detailed later.

3.7.1 Inference for high frequency sampling of partial observations

Some specific notations need to be introduced.
For x ∈ R2, Xε(t), the diffusion process, B(t) the Brownian motion, and M a 2×2 matrix, we write

x =
(

x1
x2

)
; X(t) =

(
X1(t)
X2(t)

)
; B(t) =

(
B1(t)
B2(t)

)
; M =

(
M11 M12
M21 M22

)
. (3.7.3)

For functions f (θ ,x) defined for x ∈ R2, we use (3.3.3) for differentiating with respect to x and (3.3.3), (3.3.4) for
differentiation with respect to θ .
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The observations are (X1(k∆),k = 0, . . .n). Since x2 is not observed and unknown, we add it to the parameters.
Therefore, setting x2 = ξ , define using (S4),

η = (α,ξ ) ∈ Ra+1; θ = (α,ξ ,β ) = (η ,β ) ∈ Ra+b+1. (3.7.4)

The quantities introduced in (3.2.15) depend on α , η or θ and can be written, using (3.7.3), The expansion of X(t)
stated in (3.2.15) yields that X1(t) satisfies, using notations (3.7.3),

X1(t) = z1(η , t)+ εg1(θ , t)+ ε
2Rε

1(θ , t) with (3.7.5)

g1(θ , t) =
∫ t

0
(Φ(η , t,u)σ(β ,z(η ,u)))11 dB1(u)

+(Φ(η , t,u)σ(β ,z(η ,u)))12 dB2(u). (3.7.6)

Using that Φ(t,u) = Φ(t,s)Φ(s,u) yields another expression for g1(θ , tk),

g1(θ , tk) = (Φ(η , tk, tk−1)g(θ , tk−1))1

+
∫ tk

tk−1

(Φ(η , t,u)σ(β ,z(η ,u)))11 dB1(u)

+(Φ(η , t,u)σ(β ,z(η ,u)))12 dB2(u). (3.7.7)

For estimating the unknown parameters, we use, instead of a filtering approach, the stochastic expansion of X(t),
where the unobserved component X2(t) is substituted by its deterministic counterpart z2(η , t). For building a
tractable estimation function, we also simplify the expression of Bk(α,X) (see (3.3.7)) by replacing Φ(η ; tk, tk−1)
by its first-order approximation I2 +∆∇xb(α,z(η , tk−1)), so that Φ11(η , tk, tk−1)' 1+∆∇x1b1(α,z(η , tk−1)).

The path used in (3.3.7) is
(

X1(t)
z2(η , t)

)
leading, instead of Bk(α,X) to

(
Ak(η ,X1)

0

)
, with

Ak(η ,X1) = X1(tk)− z1(η , tk)− (1+∆∇x1b1(α,z(η , tk−1)))(X1(tk−1)− z1(η , tk−1)). (3.7.8)

For a first approach, we consider an estimation method based on the Conditional Least Squares built on the
Ak(η ,X1)’s defined in (3.7.8).

Ūε,∆(η ,X1) =
1

ε2∆

n

∑
k=1

Ak(η ,X1)
2. (3.7.9)

This CLS functional does not depend on β , and therefore β cannot be estimated using Ūε,∆. estimated. The
associated estimators are then defined as

η̄ε,∆ = argmin
η∈Ka×Kz

Ūε,∆(η ,X1). (3.7.10)

Note that this process could also be used for estimating η for fixed ∆ and low frequency data, using Φ11(tk, tk−1)
instead of its approximation.

Assume that η = (α,ξ ) ∈ Θ, with Θ compact set of Ra×R. Denote by η0 = (α0,ξ0) the true parameter
value and consider the estimation of η . The distribution of (X(t)) satisfying (3.7.1) depends on θ = (η ,β ). Set
θ0 = (η0,β0) and Pθ0 the distribution of (X(t)) on (C([0,T ],R2),CT ).

Let us first study Ūε,∆(η ,X1).

Lemma 3.7.1. Assume (S1)–(S5). Then, the process Ūε,∆(η ,X1) defined in (3.7.9) satisfies that, under Pθ0 , as
ε,∆→ 0,

ε
2Ūε,∆(η ,X1)→ JT (η0,η) =

∫ T

0
(Γ1(η0,η ; t))2dt a.s. where (3.7.11)

Γ1(η0,η ; t) = b1(α0,z(η0, t))−b1(α,z(η , t)) (3.7.12)
−∇x1b1(α,z(η , t))(z1(η0, t)− z1(η , t)).
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So, to get that Ūε,∆(η ,Y ) is a contrast function for estimating η = (α,ξ ), we need an assumption that ensures
that {η 6= η0⇒ JT (η0,η)> 0}. This leads to the additional identifiability assumption,

(S8): η 6= η0⇒{t→ Γ1(η0,η ; t) 6≡ 0}.

For deterministic systems, the notion of observability is used in the case of partial observations (see e.g. [108],
[113]), which sums up to {η 6= η0⇒ z(η , ·) 6≡ z(η0, ·)}. If the underlying deterministic system is not observable,
Assumption (S8) which makes reference to the identifiability of the model with respect to the parameters is not
satisfied. But the converse is not true, Assumption (S8) being a bit stronger.

Proof. The proof of Lemma 3.7.1 is a repetition of the proof of Lemma 3.3.7. First, an application of the stochastic
Taylor expansion yields that, as ε→ 0,(X1(t),0≤ t ≤ T )→ (z1(η0, t),0≤ t ≤ T ) almost surely under Pθ0 . Second,
letting ∆→ 0, we get that, there exists a constant C > 0 such that

1
∆

Ak(α,z1(η0, ·)) = Γ1(η0,η , tk−1)+∆‖η−η0‖rk(η0,η), (3.7.13)

with supk supη∈Θ ‖rk(η0,η)‖ ≤C.

To study the asymptotic behaviour of η̄ε,∆, we have to introduce additional quantities. First, we define the
vector D(η , t) ∈ Ra+1, using the notations defined in (3.3.3),

Di(η , t) =− (∇αib1)(α,z(η , t))−∇x2b1(α,z(η , t))∇αiz2(η , t) for i = 1, . . . ,a,
Di(t) =−∇x2b1(α,z(η , t))∇ξ z2(η , t) if i = a+1, (3.7.14)

Then, built on the Di’s, define the matrix Λ(η) = (Λi j(η)) by

Λi j(η) = 2
∫ T

0
Di(η , t)D j(η , t) dt. (3.7.15)

Finally, define the three functions for θ = (α,ξ ,β ),

v1(θ ; t) = σ
2
11(β ,z(η , t))+σ

2
12(β ,z(η , t))

= Σ11(β ,z(η , t)),

v2(θ ; t,s) = σ11(β ,z(η ,s))(Φ(η , t,s)σ(β ,z(η ,s)))21

+σ12(β ,z(η ,s))(Φ(η , t,s)σ(β ,z(η ,s)))22

= (Φ(η ; t,s)Σ(β ,x(η ,s)))21 ,

v3(θ , t,s) =
∫ t∧s

0
(Φ(η , t,u)σ(β ,z(η ,u)))11 (Φ(η ,s,u)σ(β ,z(η ,u)))11 du

+
∫ t∧s

0
(Φ(η , t,u)σ(β ,z(η ,u)))22 (Φ(η ,s,u)σ(β ,z(β ,u)))22 du. (3.7.16)

We can now state the main result of this section.

Theorem 3.7.2. Assume (S1)–(S8). Then under Pθ0 , as ε,∆→ 0,

(i) η̄ε,∆→ η0 in probability .

(ii) If moreover ε2∆−1 = nε2→ 0 and Λ(η0) defined in (3.7.15) is invertible, then

ε
−1(η̄ε,∆−η0)→N (0,Λ(η0)

−1V (θ0)Λ(η0)
−1) in distribution, (3.7.17)
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where V (θ) =V (1)(θ)+V (2)(θ)+V (3)(θ) with, using (3.7.14), (3.7.16),

V (1)
i j (θ) =

∫ T

0
Di(η , t)D j(η , t)v1(θ , t) dt, (3.7.18)

V (2)
i j (θ) =

∫ ∫
0≤s≤t≤T

Di(η ,s)D j(η , t)∇x2b1(α,z(η ,s))v2(θ , t,s))ds dt, (3.7.19)

V (3)
i j (θ) = (3.7.20)∫ T

0

∫ T

0
Di(η ,s)D j(η , t)∇x2b1(α,z(η ,s))∇x2b1(α,z(η , t))v3(θ , t,s)ds dt.

Based on (3.7.11) and Assumption (S8), the proof of the consistency of η̄ε,∆ is obtained by standard tools and
omitted.
For the proof of (ii), the main difficulty lies in a precise study of ε∇iŪε,∆(η0,X1), which is the sum of n terms that
are no longer conditionally independent. The three terms in the matrix V (θ0) come from this expansion. Indeed,

ε(∇iŪ(η0,Y ))i,→Na+1
(
0,V (θ0)

)
in distribution under Pθ0 . (3.7.21)

Then, studying ε2∇i jŪ(η ,Y ) yields, using (3.7.9), (3.7.14), as ε,∆→ 0,

ε
2
∇i jŪ(η0,Y )→ Λi j(η0) = 2

∫ T

0
Di(η0, t)D j(η0, t)dt a.s. under Pθ0 . (3.7.22)

The proof is quite technical and is omitted.

Let us describe our method on a partially observed two-dimensional Ornstein–Uhlenbeck diffusion process
X(t) = (X1(t),X2(t))∗ where all the computations are explicit. Let

dX(t) = AX(t)dt + εςdB(t), X(0) =
(

x1
x2

)
, (3.7.23)

with A =

(
a b
0 a+h

)
,ς = σ

(
1 0
0 1

)
.

We assume that h 6= 0, σ > 0. The parameter in the drift is α = (a,b,h). For partial observations, we also need
introducing η = (a,b,h,ξ ) and θ = (a,b,h,ξ ,σ). The observations are (X1(tk),k = 1, . . . ,n) with tk = k∆, T = n∆

and ∆ = ∆n→ 0.
The solution of the ODE (3.2.8) applied to the drift of diffusion process (3.7.23) is

z1(η , t) = (z1−
ξ b
h
)eat +

ξ b
h

e(a+h)t ; z2(η , t) = ξ e(a+h)t . (3.7.24)

Let us compute the matrix Φ(α, t,u) = e(t−u)A, we have A = PDP−1, with

P =

(
1 b/h
0 1

)
, D =

(
a 0
0 a+h

)
, so that

Φ(α, t,s) =
(

ea(t−s) b
h

(
e(a+h)(t−s)− ea(t−s)

)
0 e(a+h)(t−s)

)
.

The solution of (3.7.23) is therefore X(t) = PetDP−1X(0)+ εσ
∫ t

0 Pe(t−s)DP−1dB(s). Hence,

X1(t) = z1(η , t)+ εσ

(∫ t

0
ea(t−s)dB1(s)+

b
h

∫ t

0
(e(a+h)(t−s)− ea(t−s)) dB2(s)

)
. (3.7.25)

Using that ∇x1b1(α,z(η , t)) = a and (3.7.24) yields that

Ak(η ,X1) = X1(tk)− z1(η , tk)− (1+a∆)(X1(tk−1)− z1(η , tk−1)) . (3.7.26)
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Γ1(η0,η , t) = (a0−a)z1(η0, t)+b0ξ0e(a0+h0)t −bξ e(a+h)t .

Assumptions (S1)–(S7) are satisfied. Looking at the analytical expression of z1(η , t), we have that bξ = b̃ξ̃ leads
to identical solutions z1(η , t). Therefore, Assumption (S8) is not satisfied and b, ξ cannot be estimated separately
when observing one coordinate only. This is also true for the deterministic ODE and the non-identifiability is here
an intrinsic problem to this partial observation example.

Therefore, we define a new parameter b′ = bξ and consider that the parameter to estimate is now η = (a,b′,h).
Then, checking (S8) is straightforward.
The various quantities introduced in the previous section have a closed expression. Indeed, the functions Di(η , t)
defined in (3.7.14) write, using (3.7.22), (3.7.24) with η = (a,b′,h),

D1(η , t) =−(z1−
b′

h
)eat − (

b′

h
+b′t)e(a+h)t ,

D2(η , t) =−e(a+h)t ,

D3(η , t) =−b′te(a+h)t .

The matrix Λ(η) is defined as Λ(η) = (Λi j(η)) with Λi j(η) =
∫ T

0 Di(η , t)D j(η , t)dt (=
∫ T

0 D(η , t)D∗(η , t)dt. The
functions defined in (3.7.16) are, with θ = (a,b,h,σ),

v1(θ , t) = σ
2; v2(θ , t,s) = 0; v3(θ , t,s) = σ

2

(
ea|t−s|

2a
+

e(a+h)|t−s|

2(a+h)

)
.

Therefore,

Vi j(θ) = σ
2
∫ T

0
Di(η , t)D j(η , t)dt

+
σ2b2

2

∫ T

0

∫ T

0
Di(η ,s)D j(η , t)

(
ea|t−s|

a
+

e(a+h)|t−s|

(a+h)

)
dsdt.

The estimator η̄ε,∆ defined by (3.7.10) is a consistent estimator of η0 = (a0,b′0,h0) and satisfies (3.7.17) with the
matrices Λ(η0) and V (θ0) obtained above. The asymptotic covariance matrix is therefore

σ
2
Λ
−1(η)+ (3.7.27)

σ2b2

2
Λ
−1(η)

(∫ T

0

∫ T

0
Di(η , t)D j(η ,s)

(
ea|t−s|

a
+

e(a+h)|t−s|

a+h

)
dsdt

)
i j

Λ
−1(η).

In the case of complete discrete observations, the first term of (3.7.27) is the asymptotic variance obtained with
conditional least squares. Therefore, the loss of information coming from partial observations is measured by the
second term of (3.7.27) (added to the fact that only bz0 is identifiable).

3.7.2 Assessment of estimators on simulated and real data sets

We first present the results on the SIR studied in the previous section but assuming partial observations. Then we
investigate the inference on the real data set of Influenza dynamics modeled with the SIRS studied in the previous
section.

3.7.2.1 Inference for partial observation of the SIR model with sampling interval ∆

In this section, we consider the case where one component of the epidemic process XN(t) = (SN(t), IN(t)) is
observed on [0,T ]. The observations are the successive numbers of infected individuals

(IN(k∆),k = 1, . . .n) with sampling ∆;T = n∆.
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According to the notations of Section 3.7, we have to interchange the coordinates of S, I and set X(t) =
(I(t),S(t))∗; the drift term can be written as

X(t) =
(

I(t)
S(t)

)
; b((λ ,γ),(i,s)) =

(
λ si− γi
−λ si

)
; Σ(i,s) =

(
λ si+ γi −λ si
−λ si λ si

)
.

We assume that I(0) = i0,S(0) = s0. Setting ξ = s0, then the parameter defined in the previous section is η =
(λ ,γ,ξ ). Denote by z(η , t) = (i(η , t),s(η , t)) the solution of the ODE

di/dt = λ si− γi; i(0) = i0, ds/dt = λ si;s(0) = ξ .

Then, the conditional least square method now reads as

Ūε,δ (η , I) =
1

ε2∆

n

∑
k=1

(I(tk)− i(η , tk)− (1+λ s(η , tk−1)− γ)(I(tk−1)− i(η , tk−1))
2.

Using definition 3.7.12, the function Γ1(η0,η , t) reads as

Γ1(η0,η , t) = i(η0, t)(λ0s(η0, t)−λ s(η , t)− γ0 + γ).

To investigate the identifiability assumption, let us check (S8). It reads as η 6= η0⇒{t→ Γ(η0,η , t)} 6≡ 0.

Assume that we have observed that the epidemic spreads, so that we have ∀t ∈ [0,T ], i(η0, t)> 0 . Therefore,
we have to prove that

{t→ (λ0s(η0, t)−λ s(η , t)− γ0 + γ)≡ 0}⇒ {η = η0}. (3.7.28)
Differentiating this relation with respect to t yields

∀t,λ 2
0 s(η0, t)i(η0, t)−λ

2s(η , t)i(η , t) = 0. (3.7.29)

Using (3.7.28), we get the second relation

∀t, s(η , t)
i(η0, t)

(λ i(η , t)−λ0i(η0, t)) =
λ0(γ0− γ)

λ
.

Differentiating this relation with respect to t yields that

λ
s(η , t)i(η , t)

i(η0, t)
(λ0i(η0, t)−λ i(η , t))≡ 0.

Since at time 0, i(η ,0) = i(η0,0) = i0, we get that λ = λ0. Using now (3.7.29) yields that, at time 0, s(η ,0) =
s(η0,0) so that ξ = ξ0. Finally, by relation (3.7.28), we get γ = γ0.

We conclude that the two parameters λ ,γ as well as the initial state s0 are identifiable when observing (I(tk),k =
0, . . .n). The same holds true for R0 = λ/γ , d = 1/γ and s0.

Performances of estimators in the case of partially observed SIR model are assessed on simulations obtained
with the following parameters: N = 10000, R0 = 1.5, d = 3, s0 = 0.97, T = 40. Observations are represented by
vector IN(k∆). Estimations of parameters (R0,d,s0) are performed on 1000 simulated trajectories. Theoretical and
empirical confidence ellipses are built as detailed in the introduction of Section 3.6.
As shown in Figure 3.7.1, confidence ellipsoids are quite large in the case of partial data. However, they do not
include unreasonable values from the epidemiological point of view. Quantile based empirical 95% confidence
intervals are still quite large.

The relatively unexpected large volume of confidence ellipsoids, obtained despite theoretical identifiability of
model parameters when observing only one component of the system (here IN(k∆)) is probably due to the fact
that the numerical variance-covariance matrix is ill-conditioned (the order of magnitude of the third eigenvalue
is 100 times smaller than that of the first two eigenvalues. It probably corresponds to the notion of “Numerical
Identifiability”, which does not necessarily coincide with “Theoretical Identifiability”.

Concerning point estimators, we successively considered the mean and the median of the estimators obtained
for the 1000 simulation experiments. Assuming the complete observation of both coordinates of the SIR jump
process yields, as expected, accurate values for R0,d. Assuming that only I(k∆),k = 1, . . .n with n = 40, we obtain
for a true parameter value (1.5,3,0.97) that the mean point estimator is (1.89,3.43,0.88) and for the median
estimator (1.54,3.24,0.99).
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Figure 3.7.1: Point estimators (green) computed by averaging over 1000 independent simulated trajectories of
the SIR stochastic model, partially observed (I(k∆) only) for (R0,d,s0) = (1.5,3,0.15,0.97), T = 40 days and
N = 10000. Theoretical confidence ellipsoid (black), centered on the true value and empirical confidence ellipsoid
(blue), centered on mean estimated value are provided. Both ellipsoids are truncated at plausible limits on each
direction. Mean and median point estimator are (R0,d,s0) = (1.89,3.43,0.88) (red cross) and (1.54,3.24,0.99)
(purple cross), respectively.

3.7.2.2 Partial observations: SIRS model, real data on influenza epidemics

The performances of the contrast estimators for the case where only one coordinate of a diffusion process is ob-
served are evaluated on data related to influenza outbreaks in France, collected by the French Sentinel Network
(FSN), providing surveillance for several health indicators (www.sentiweb.org). These data are represented by
numbers of individuals seeing a doctor during a given time interval, for symptoms related to influenza infection
and are reported by a group of general practitioners (GP) voluntarily enrolled into the FSN. Several levels of errors
of observation are associated to these data: (i) the state of individuals consulting a GP from the FSN is not exactly
known: it can be assimilated to a new infection or to a new recovery, given that symptoms and infectiousness are
not necessarily simultaneous and that a certain delay occurs between symptoms onset and consultation time (more
correctly, the observed state is probably “infected” but not “newly infected”); (ii) not all infected individuals go and
see a GP; (iii) the GP’s supplying the FSN database represent only a proportion of all French GP’s; (iv) the exact
dates of consultations are not known, data are aggregated over two-week time periods; (v) data are preprocessed
by the FSN to produce observations with a daily time step.
Here, we account partly for (i) on one hand and jointly for (ii) and (iii) on the other hand and assume that ob-
servations Y (tk) represent a proportion of daily (observation times tk = k∆, with ∆ = 1 day) numbers of newly
recovered individuals: Y (tk) = ργI(tk), where ρ can be interpreted as the reporting rate. Since data are available
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over several seasons of influenza outbreaks (data from 1990 to 2011, hence [0,T ] = [0,21.5] years), an appropriate
model allowing to reproduce periodic dynamics is the SIRS model described in Section 3.2.2.2.

(S, I)
λ (t)

N S(I+Nη)
−→ (S−1, I +1) ; (S, I)

µS−→ (S−1, I);

(S, I)
(γ+µ)I−→ (S, I−1) ; (S, I)

µN+δ (N−S−I)−→ (S+1, I).

The seasonality in transmission is modeled via λ (t) = λ0(1+λ1sin(2πt/Tper)).
The parameter is θ =(λ0,λ1,γ,δ ,η ,µ), the associated drift function b(θ , t,(s, i)) and diffusion matrix Σ(θ , t,(s, i))

are

b(θ , t,(s, i)) =

(
−λ (t)s(i+η)+δ (1− s− i)+µ(1− s)

λ (t)s(i+η)− (γ +µ)i

)
, (3.7.30)

Σ(θ , t,(s, i)) =

(
λ (t)s(i+η)+δ (1− s− i)+µ(1+ s) −λ (t)s(i+η)

−λ (t)s(i+η) λ (t)s(i+η)+(γ +µ)i

)
. (3.7.31)

In summary, the data used are assumed to be discrete high frequency observations of one coordinate of the follow-
ing two-dimensional diffusion with small variance:

dS(t) =−λ (t)S(t)(I(t)+η)+δ (1−S(t)− I(t)+µ(1−S(t)))dt
+ 1√

N
(σ11dB1(t)+σ12dB2(t))

dI(t) = (λ (t)S(t)(I(t)+η)− (γ +µ)I(t)dt + 1√
N
(σ21dB1(t)+σ22dB2(t)).

The vector of parameters to be estimated is α = (R = λ0/γ,10λ1,d = 1/γ,δper = 1/δTper,10ρ), where pa-
rameters are defined in equation (3.2.19) and more generally in the entire Section 3.2.2.2. Parameters η , µ

and Tper are fixed at plausible values: η = 10−6, µ = 1
50 (years−1) and Tper = 365 days. The starting point

of the ODE system is unknown, but since we are interested in the stationary behaviour of this process, we fix
(r−20Tper = 0.27, i−20Tper = 0.0001, see [27] for example) and let the system evolve until t = 0 for the tested set of
parameter α to obtain our initial starting point.

Estimation results are summarized in Figure 3.7.2, which represents multi-annual dynamics of influenza cases:
observed dynamics (blue curve) and simulated ones (using the ODE version of the SIRS model based on estimated
parameter values; red curve). Estimators are associated to contrast process defined in (3.7.9). Point estimates of
parameters are: (R,10λ1,d,δper,10ρ) = (1.47,1.94,2.20,5.66,0.87). These values are in agreement with inde-
pendent estimation based on data from the same database but using a different inference method, the maximum
iterating filtering proposed by [18] (personal communication S. Ballesteros). As shown in Figure 3.7.1 for the SIR
model, widths of theoretical confidence intervals for each parameter should be larger than those corresponding to
complete observations of the SIRS model (drawn in Figure 3.6.3). In particular, for λ1, the width of the confidence
interval for partial observations will be larger than 0.35∗

√
(107/6∗107) = 0.14 (after correction for the popula-

tion size, which is N = 107 in Figure 3.6.3 and N = 6∗107 in Figure 3.7.2).
We can notice from Figure 3.7.2 that predicted trajectories correspond to a regime with bi-annual cycles, composed
of two different peaks (red curve). The bifurcation diagram with respect to λ1 (similar to Figure 3.2.2), when the
remaining parameters are either set to fixed values (defined in this section) or to estimated values, exhibits the
bifurcation from one annual cycle to bi-annual cycle at λ1 = 0.035. This value is likely to belong to the confidence
interval of estimated λ1 = 0.19, since the width of this interval should be greater than 0.14. Hence, this can have
some influence on estimation, influence which is not well characterized in the literature for models exhibiting bi-
furcation profiles, especially for trajectories corresponding to parameter values close to the bifurcation point. We
also observe that the smaller peak in the bi-annual cycles is underestimated, leading to almost no epidemic burst
every other year. The presence of a bifurcation in the SIRS ODE model probably requires a better approximation
of the original jump point process.
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Figure 3.7.2: Time series of reported cases (expressed as a fraction of the total population in France) of influenza-
like illness provided by the FSN (www.sentiweb.org) (blue curve) and deterministic trajectories (mean behaviour)
predicted by the SIRS model based on estimated parameters using contrast (3.7.9) (red curve).

3.7.2.3 Discussion and concluding remarks

Several extensions of this study are possible for partial observations. First, we have chosen to detail the case
of high sampling interval. The study in the case of a fixed sampling interval ∆ should be obtained with similar
tools, leading to similar results. Another extension concerns our choice of a Conditional Least squares for Ūε,∆.
An estimation criterium similar to the one used in Section 3.4 could be studied, using Sk(α,β ) (see (3.3.8)) or
substituting Σ(β ,X(tk)) by Σ(β ,x(η , tk)) for small sampling. This yields the new process, using (3.7.8),

Ūε,n(η ,(Y (tk))) =
n

∑
k=1

log Σ(β ,x(η , tk))+
1

ε2∆
Σ(β ,x(η , tk))−1(Ak(η ,Y ))2. (3.7.32)

The study of this process should yield estimators in the diffusion coefficient β with probably additional assump-
tions linking ε and ∆. Finally for fixed ∆, Sk(α,β ) defined in (3.3.8) could be substituted by (Sk(α,β ))11 in the
case of two distinct parameters in the drift and diffusion coefficient, and (Sk(α)11 in the case corresponding to
epidemics where the same parameters are present in the drift and diffusion coefficients. Another extension of the
method described in Section 3.7 is the case of a p-dimensional diffusion process where only the first l-coordinates
are observed (for instance the SEIR model with only Infected observed).



Chapter 4

Inference for Continuous Time SIR models

by Catherine Larédo and Viet Chi Tran

4.1 Introduction

Consider the SIR epidemic model with exponential times in a finite population of size N where S(t), I(t),R(t)
denote the number of Susceptible, infected/infectious and Removed individuals at time t with infection rate λ and
recovery rate γ (S(t)+ I(t)+R(t) = N for all t). There are various ways of describing this process using pure jump
Markov processes. We refer to Chapter ?? of Part I of these notes and to Section A.5 of the Appendix for a recap
on these processes.

This description now belongs to the domain of event time data, which are conveniently studied by the use of
counting processes. We refer to Section A.5 of the Appendix for a short introduction to counting processes in
continuous time.

At this point, we need an asymptotic framework to study the properties of these estimators. Two frameworks
have been proposed.
Case (1): Assume that the number of initially infected I(0) = a remains fixed and that the number of initial Suscep-
tible is S(0) = n := N−a. We also assume for the sake of simplicity that R(0) = 0. This leads to a total population
size N = n+a that goes to infinity.
Case (2): Assume that the population size N → ∞ and that both S(0), I(0) tend to infinity with N such that
S(0)/N→ s0 > 0; I(0)/N→ i0 > 0 as N→ ∞.

Case (1) has been studied by Rida [109], to which we refer for a detailed presentation. We focus here mainly on
Case (2).

4.2 Maximum likelihood in the SIR case

To ease notation, we work here on a simplification of the SEIR process studied in Part I of these notes. We omit the
state E and consider an SIR model (corresponding to the limiting case when ν →+∞). Recall that the population
size is N, that the infection rate is λ and the removal rate γ . We assume that we observe the whole trajectory
on a time window [0,T ] with T > 0: (SN

t , I
N
t ,RN

t )t∈[0,T ]. The successive times of events are (Ti)1≤i≤KN(T ), where
KN(T ) = ∑i≥0 1Ti≤T is the number of events. At each event, Ji = 0 if we have an infection and Ji = 1 if we have
a recovery. Notice that we are here in the case where we have knowledge of all recovery and infection events, i.e.
that we have complete epidemic data. The case where some data are missing is treated in the next subsections.

Writing the likelihood of our data is important to calibrate the parameters of the model, θ = (λ ,γ) ∈R2
+ in the

case of the SIR model, but also because this is also useful for designing EM or MCMC procedures.

73
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Definition 4.2.1. We define the likelihood L N
T (θ) of the observations as the density, in D([0,T ], [0,1]3) of the

process (SN
t , I

N
t ,RN

t )t∈[0,T ] with respect to the SIR process where intervals between events follow independent ex-
ponential distributions of parameter 2N and where each event is an infection with probability 1/2 and a recovery
with probability 1/2. The likelihood is of course a function of θ ∈ R2

+ and of the observations (SN
t , I

N
t ,RN

t )t∈[0,T ]
which are omitted in the notation for the sake of notation.

This definition has been proposed in [31] for example. The dominating measure with respect to which the
distribution of (SN

t , I
N
t ,RN

t )t∈[0,T ] is written is here the distribution of the process corresponding to the sequence
(Ji,Ti)’s where the Ji’s are i.i.d. Bernoulli random variables with parameter 1/2, and where the intervals ∆Ti =
Ti−Ti−1 are i.i.d. exponential random variables with expectation 1/(2N). With the notation above:

L N
T (θ) = L N

T
(
(SN

t , I
N
t ,RN

t )t∈[0,T ];λ ,γ
)

= exp
(
NT −

∫ T

0
(λSN

s IN
s − γIN

s )ds
)KN(T )

∏
i=1

(λSN
Ti−IN

Ti−)
1−Ji(γIN

Ti−)
Ji . (4.2.1)

Taking the log, and using the formulation of the processes (St , It ,Rt) by means of Poisson point processes Q1

and Q2 as in Part I, Chapter 2 of these notes,

logL N
T (θ) = NT −

∫ T

0
(λSN

s IN
s − γIN

s )ds

+
KN(T )

∑
i=1

[
(1− Ji) log

(
λSN

s−IN
s−

)
+ Ji log

(
γIN

s−

)]
= NT −

∫ T

0
(λSN

s IN
s − γIN

s )ds+
∫ T

0
log
(
λSN

s−IN
s−

)
1u≤λNSN

s− IN
s−

Q1(ds,du)

+
∫ T

0
log
(
γIN

s−

)
1u≤γNIN

s−
Q2(ds,du).

The above function is concave in λ and γ , for a given observations (SN
t , I

N
t )t∈[0,T ], and maximizing it, we obtain:

Proposition 4.2.2. The maximum likelihood estimator θ̂N = (λ̂N , γ̂N) of θ (MLE) is then given by:

λ̂N =
1
N

∑
KN(T )
i=1 (1− Ji)∫ T

0 SN
s IN

s ds
, γ̂N =

1
N

∑
KN(T )
i=1 Ji∫ T
0 IN

s ds
. (4.2.2)

These estimators have already been mentioned in (3.6.1) and it had been noticed that the numerators of λ̂N and
γ̂N are respectively the numbers of infections and recoveries on the period [0,T ]. Remark also that the estimators
(4.2.2) are the same for the Cases (1) and (2) presented in Section 4.1. In what follows, we concentrate on the Case
(2).

Using the Law of Large Numbers and the Central Limit Theorem stated in Part I, Section 2 of these notes we
obtain that

Proposition 4.2.3. The estimator θ̂N is convergent and asymptotically Gaussian when N→+∞:

√
N
(
θ̂N−θ

)
=
√

N
(

λ̂N−λ

γ̂N− γ

)
⇒N

(
0R2 , I−1(λ ,γ)

)
,

where the Fisher information matrix is:

I(λ ,γ) =
(

V11(t) 0
0 V22(t)

)
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with (s(t), i(t))t∈[0,T ] the solution of the limiting ODE that approximates (SN
t , I

N
t )t∈[0,T ] when N→+∞ (see Example

2.2.10 in Part I ) and with

V11(t) =
∫ T

0 s(t)i(t)dt
λ

=
1− s(T )

λ 2 ; V22(t) =
∫ T

0 i(t)dt
γ

=
1+µ− s(T )− i(T )

γ2 . (4.2.3)

Proof. Notice that the estimator λ̂ given in Proposition 4.2.2 can be rewritten, with the notations of Example 2.2.1
of Part I of these notes, as

λ̂N =
1
N

P1

(
λN

∫ T
0 SN

s IN
s ds

)
∫ T

0 SN
s IN

s ds
.

Using the Law of Large Numbers given in Part I, Section 2.2, the process (SN
t , I

N
t )t∈[0,T ] converges uniformly when

N→+∞ to the unique solution of the ODE

s′(t) =−λ s(t)i(t),

i′(t) = λ s(t)i(t)− γi(t).

Moreover,

lim
N→+∞

λ̂N = λ

∫ T
0 s(t)i(t)dt∫ T
0 s(t)i(t)dt

= λ .

Now,
√

N
(
λ̂N−λ

)
=

1∫ T
0 SN

s IN
s ds

[
1√
N

P1

(
λN

∫ T

0
SN

s IN
s ds

)
−
√

Nλ

∫ T

0
SN

s IN
s ds

]
.

From Part I, Section 2.3, we have the following convergence in distribution

1√
N

P1

(
λN

∫ T

0
s(t)i(t)dt

)
−
√

Nλ

∫ T

0
s(t)i(t)dt⇒ B1

(
λ

∫ T

0
s(t)i(t)dt

)
where B1 is a standard real Brownian motion. As in the proof of Proposition 2.3.1, the bracket in the right term
is then shown to converge to the same limit B1(λ

∫ T
0 s(t)i(t)dt). Since the denominator of the right-hand side

converges in probability to
∫ T

0 s(t)i(t)dt, we obtain the asymptotic normality of λ̂N with asymptotic variance

λ∫ T
0 s(t)i(t)dt

.

Proceeding similarly for γ̂N and using the asymptotic independence between the two estimators provides the result.
Notice that the Fisher information matrix can also be computed from the log-likelihood, and that all regularity
assumptions of generic asymptotic normality results are satisfied (see e.g. Chapter 4 of [96]).

Corollary 4.2.4. An estimator of R0 = λ/γ is R̂(t)
0 = λ̂t

γ̂t
. Applying the functional delta-theorem (e.g. [124]), it

converges in distribution to

√
n(R̂(t)

0 −R0)→N (0,σ2(t)) with σ
2(t) =

V−1
11 (t)+R2

0V−1
22 (t)

γ2 . (4.2.4)

Remark 4.2.5 (Maximum likelihood estimators in the Case (1)). Let us denote by (Nt)t∈R+ the counting processes
associated to the infection process:

Nt = P1

(∫ t

0
λNSN

s IN
s ds

)
,

and by τN the extinction time, when there is no infective individual left. Because the population is finite, τN <+∞

almost surely and N(τN)≤ N. Let
A = {ω;N(τN ,ω)→ ∞ as N→ ∞}
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be the event on which a major outbreak occurs. Ball [8] proved that P(A) = 1−min{1,(γ/λ )a}. Moreover if
R0 = λ/γ > 1, then P(A)> 0 and as n→ ∞,

N(τN)

N
→ π1A where π is such that

λ

γ
=− log(1−π)

π
.

Asymptotic results for the estimators are obtained on A and Ac. The maximum likelihood estimator satisfies that

λ̂N → λ1A +Z1Ac

in distribution where Z is a positive explicit random variable such that E(Z) < 1/λ if λ/γ > 1. Note that in this
case, λ̂N is not a consistent estimator. We refer to [109] for a detailed presentation of the results.

These methods can be extended to other epidemic models. We will detail later for the SEIR and SIRS epidemic
models. The main drawback of this approach is that the epidemic process is rarely observed in such details,
which prevents this kind of statistical approach. However, this study sums up the best statistical results that can
be obtained when complete observations are available. When incomplete observations are available, the loss of
information will be measured with respect to this general reference.

4.2.1 MCMC estimation

The preceding subsection treated the case of complete observation. In practice, parameter estimation for SIR mod-
els is usually a difficult task because of missing observations, which is a recurrent issue in epidemiology. O’Neill
Roberts [107] developed a Markov chain Monte Carlo method (MCMC) to make inferences about the missing data
and the unknown parameters in a Bayesian framework.

We consider an SIR model as in Section 4.2. Instead of observing the sequence (Ji,Ti)i∈{1...KN
T }

(type – infec-
tion or recovery – and time of occurrence of the successive events, as described in the beginning of Section 4.2),
we observe only the Ti’s such that Ji = 1 (recovery events, that can also be detection events in some applications)
and the total number of events KN

T is unknown. In this section, we adopt the following notation. Let us assume that
there are m infections at times σ = (σ1 < 0, . . .σm) that are unobserved and n removals at times τ = (τ1 = 0, . . .τn)
which constitute our observations. For later purposes, we will denote by σ−1 = (σ2, . . .σm) the vector of infection
times starting from the second infection. We observe the total size of the population N, the number n of removal
times and the vector τ of these removal times. The parameter of interest is (λ ,γ,σ1) and the vector σ−1 is the
vector of nuisance parameters.

The MCMC algorithm proposed by O’Neill and Roberts [107] take place in a Bayesian framework. Given λ , γ

and the first infection time σ1, the likelihood of (σ−1,τ) = (σ2 . . .σm,τ1, . . .τm) is obtained from adapting (4.2.1):

L N
T (σ−1,τ|λ ,γ,σ1) =exp

(
NT −

∫ T

σ1

(λSN
s IN

s − γIN
s )ds

) n

∏
i=1

(λSN
σi−IN

σi−)
m

∏
i=1

(γIN
τi−). (4.2.5)

4.2.1.1 A priori distributions

We suppose that λ and γ have a priori Gamma distribution with parameters (αλ ,βλ ) and (αγ ,βγ) respectively,
where we recall that the density of a Gamma distribution with parameter (α,β ) is:

β α

Γ(α)
xα−1e−βx 1(0,+∞)(x)

where Γ(x) is the gamma function such that for any positive integer k, Γ(k) = (k−1)!. Following [107], we also
chose for the a priori distribution of σ1 the ‘exponential’ distribution with density (on R−) with ρ > 0:

ρeρσ11(−∞,0)(σ1).
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4.2.1.2 A posteriori distributions

The purpose is now to generate a sample from the a posteriori distribution π(σ ,λ ,β |τ). For this, O’Neill and
Roberts propose a Metropolis–Hastings algorithm.

Recall the principle of the Metropolis–Hastings algorithm used to obtain a sample x in a distribution with a
density π(x) that is proportional to some f (x). Consider a transition kernel with a density q(y|x) from which it
is easy to simulate. Starting from a first point x0, construct a sequence of points (xk)k∈N with f and q as follows.
Assume that xk has been constructed, then:

• draw y from q(y|xk).

• With probability

φ(xk,y) = min
( f (y)q(xk|y)

f (xk)q(y|xk)
,1
)

define xk+1 = y.
With probability 1−φ(xk,y), define xk+1 = xk.

This defines a reversible Markov chain whose stationary distribution is π .

We apply the above idea to sample σ ,λ ,β from the a posteriori distribution. To choose the transition kernels,
notice first that with direct computation, we obtain:

π
(
σ1|τ,σ−1,λ ,γ

)
∼(ρ +λN + γ)e−(θ+λN+γ)(σ2−y)1y<σ2

π
(
λ |τ,σ ,γ

)
∼Γ
(
αλ +

∫ T

σ1

SN
s IN

s ds,m−1+βλ

)
π
(
γ|τ,σ ,λ

)
∼Γ
(
αγ +

∫ T

σ1

IN
s ds,n+βγ

)
.

Hence, it is natural to choose the above distributions for the proposals of σ1, λ and β . It remains to propose a
transition kernel for σ−1. O’Neill and Roberts propose a Hasting algorithm with the three following moves:

• Move an infection time chosen at random by sampling the candidate uniformly in [0,T ]. If the infection time
chosen at random was at time s and the proposal time drawn uniformly in [0,T ] is t, the move is accepted
with probability

φ(σ ,σ ∪{t}\{s}) =
L N

T
(
σ ∪{t}\{s},τ|λ ,γ,σ1

) 1
|σ |−1

1
T

L N
T

(
σ ,τ|λ ,γ,σ1

) 1
|σ |−1

1
T

∧1

=
L N

T
(
σ ∪{t}\{s},τ|λ ,γ,σ1

)
L N

T

(
σ ,τ|λ ,γ,σ1

) ∨1.

• Remove an infection time chosen at random. If the chosen infection time was at time s, the acceptation
probability is then:

L N
T
(
σ \{s},τ|λ ,γ,σ1

) 1
T−σ1

L N
T

(
σ ,τ|λ ,γ,σ1

) 1
|σ |−1

∧1 =
L N

T
(
σ \{s},τ|λ ,γ,σ1

)
(|σ |−1)

L N
T

(
σ ,τ|λ ,γ,σ1

)
(T −σ1)

∧1.

• Add a new infection at a time t drawn uniformly on [0,T ]:

L N
T
(
σ ∪{t},τ|λ ,γ,σ1

) 1
|σ |

L N
T

(
σ ,τ|λ ,γ,σ1

) 1
(T−σ1)

∧1 =
L
(
σ +{t}

)
(T −σ1)

L
(
σ
)
|σ |

∧1.

A numerical application is performed in [107] for small epidemics. This algorithm is simulated and compared
with other ones in Section 4.3.2.
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4.2.2 EM algorithm for discretely observed Markov jump processes

We consider now the situation where the Markov jump process is only observed at discrete time points. This has
been considered by Bladt and Sorensen [14]. We study the maximum likelihood estimation of the Q-matrix based
on a discretely sampled Markov jump process. The problem of identifiability and of existence and uniqueness of
the MLE is related to the following problem in probability: can a given discrete time Markov chain be obtained as
a discrete time sampling of a continuous time Markov jump process?

4.2.2.1 Likelihood function

Let X = (X(s),s≥ 0) be a Markov jump process with finite state space E = {1, . . . ,N} and Q-matrix Q = (qkl). If
X is continuously observed on the time interval [0,T ], the likelihood function is given by,

LT (Q) =
N

∏
k=1

∏
l 6=k

qNkl(T )
kl exp(−qklRk(T )), where (4.2.6)

the process Nkl(t) is the number of transitions from state k to state l in the time interval [0, t] and Rk(t) is the time
spent in state k before time t.

Rk(t) =
∫ t

0
δ{X(s)=k} ds. (4.2.7)

For details see e.g. [73] .
Therefore, if the process is continuously observed on [0,T ], the maximum likelihood estimator of its Q- matrix is
easily obtained:

Q̂kl =
Nkl(T )
Rk(T )

. (4.2.8)

Assume now that the process is observed with a sampling interval ∆ with T = n∆. Then, setting Xi = X(ti) is a
discrete time Markov chain with transition matrix

P∆(Q) where Pt(Q) = exp(tQ), t > 0,

with exp(·) denoting the matrix exponential function.
Hence the likelihood for the discrete observations (x0, . . . ,xn) is

Ln,∆(Q) =
n

∏
i=1

P∆(Q)xi−1xi ,

with the notation that the i j entry of a matrix A is denoted Ai j. Since it is a discrete time Markov chain, it satisfies,

Ln,∆(Q) =
N

∏
k=1

N

∏
l=1

(P∆(Q)
Nkl(n)
kl ,

Nkl(n) =
n

∑
i=1

δ{Xi−1=k,Xi=l}.

The random variables (Nkl(n)) are the number of transitions from state k to state l before n. We have proved in
Section 2.1) that the associated MLE of the transition matrix P̂ is explicit. But building an estimator of Q from P̂
is not straightforward.

Indeed, let P0 = {exp Q | Q ∈ Q} denote the set of transition matrices that correspond to discrete time
observation of a continuous time Markov jump process. If P̂ ∈P0, there exists a Q̂ ∈Q such that P∆(Q̂) = P̂.
This raises two distinct problems. First the set P0 is quite complex, and second the matrix exponential function is
not an injection on its domain, so Q̂ may not be unique leading to identifiability questions for the statistical model.
Additional assumptions are thus required in order to ensure the convergence of stochastic algorithms such as EM,
MCMC. We refer to Bladt and Sorensen [14] for details.
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4.2.2.2 The Expectation-Maximization (EM) algorithm

This is a broadly used method for optimizing the likelihood function in cases where only partial information is
available (see e.g. [34, 35, 123, 127]). A discretely observed Markov jump process is such an example where only
data Yi = X(ti); i = 1, . . . ,n are available. Let X = {X(t);0≤ t ≤ T} and Y = {Yi; i = 1 . . . ,n}. The EM-algorithm
aimed at estimating the Q-matrix Q = (qi j, ; i, j ∈ E) iterating the two steps:
E-step: replace the unobserved parts by their conditional expected values given the data Y = y
M-step: perform maximum likelihood on the complete data.

The difficult part in the EM algorithm here is the E-step:
i.e. compute EQ0 [logLT (Q)|Y = y] where Q0 is an arbitrary Q-matrix.
Indeed, consider the M-step. From equation (4.2.6), we have

EQ0(logLT (Q)|Y = y) =
N

∑
k=1

∑
l 6=k

log(qkl)EQ0(Nkl(T )|Y = y)

−
N

∑
k=1

∑
l 6=k

qklEQ0(Nk(T )|Y = y).

This is the likelihood of a continuous time process with observed statistics
EQ0(Nkl(T )|Y = y),EQ0(Nk(T )|Y = y). It is maximized, as a function of Q, according to (4.2.8) by

Q̂kl =
EQ0(Nkl(T )|Y = y)
EQ0(Nk(T )|Y = y)

. (4.2.9)

Therefore, to perform the algorithm, we have to compute the two quantities EQ0(Nkl(T )|Y = y) and EQ0(Nk(T )|Y =
y).
For this, let us consider a fixed intensity matrix Q and omit the index Q. Denote by ei the unit vector with ith

coordinate equal to 1, and for U a vector or a matrix, let U∗ the transpose of U .
Noting that Nk(T ) = ∑

n
p=1(N

k(tp)−Nk(tp−1)), we get by the Markov property and the time homogeneity of
X = X(t),

E(Nk(tp)−Nk(tp−1)/Y = y) = E(Nk(tp)−Nk(tp−1)|X(tp) = yp,X(tp−1) = yp−1)

= E(Nk(tp− tp−1)|X(tp− tp−1) = yp,X(0) = yp−1).

Similarly Nkl(T ) = ∑
n
p=1(N

kl(tp)−Nkl(tp−1)), and

E(Nkl(tp)−Nkl(tp−1)/Y = y) = E(Nkl(tp− tp−1)|X(tp− tp−1) = yp,X(0) = yp−1).

Hence,

E(Nk(T )|Y = y) =
n

∑
p=1

Ek
yp−1yp(tp− tp−1); Ekl(T )|Y = y) =

n

∑
p=1

Fkl
yp−1yp(tp− tp−1); (4.2.10)

where if (i, j) and (k, l) ∈ E, and t > 0,

Ek
i j(t) = EQ0(N

k(t)|X(t) = j,X(0) = i),

Fkl
i j (t) = EQ0(N

kl(t)|X(t) = j,X(0) = i).

Fix k ∈ E and define the matrix Mk(t) by

Mk
i j(t) = E(Nk(t)1X(t)= j|X(0) = i). (4.2.11)

Then, according to [13],
d
dt

Mk
i j(t) =

N

∑
l=1

Mk
il(t)ql j + exp(tQ)i jδ jk; Mk

i j(t0) = 0.



80 CHAPTER 4. INFERENCE FOR CONTINUOUS TIME SIR MODELS

This equation has an explicit solution which reads as Mk(t) = (Mk
i j(t), i, j ∈ E),

Mk(t) =
∫ t

0
exp(sQ)(eke∗k)exp((t− s)Q) ds. (4.2.12)

Fix now k, l ∈ E and define the matrix fkl
i j(t) = E(Nkl(t)1X(t)= j|X(0) = i). Similarly

fkl(t) = qkl

∫ t

0
exp(sQ)(eke∗l )exp((t− s)Q)ds. (4.2.13)

Hence, using that P(X(t) = j|X(0) = i) = e∗i exp(Qt)e j yields that

Ek
i j(t) =

Mk
i j(t)

e∗i exp(tQ)e j
; Fkl

i j (t) =
fkl
i j(t)

e∗i exp(tQ)e j
. (4.2.14)

So the EM-algorithm works along the successive iterations. Start from an initial Q-matrix Q0. Let Qm denote
the Q-matrix of iteration m. Then

• For all k, l ∈ E, compute using (4.2.12), (4.2.13), (4.2.14) the matrices Eyiyi+1(ti+1− ti), and Fkl
yiyi+1

(ti+1− ti)
associated to Q = Qm

• Compute the two quantities E(Nk(T )|Y = y), E(Nkl(T )|Y = y) using (4.2.10)

• Define Qm+1 by (4.2.9).

Let Q0,Q1, . . . ,Qp, . . . a sequence a Q- matrices obtained by the EM algorithm. Then Ln,∆(Qp+1)≥ Ln,∆(Qp)
for p = 0,1,2, . . . (see e.g. [35]). Under additional regularity conditions, one can prove (cf [14], Theorem 4) that,
If Q0 satisfies that, for all k, l ∈ E, (Q0)kl > 0, then the sequence (Qp) converge to a stationary point of the
likelihood function Ln,∆ or det{exp(Qp)}→ 0.

4.3 ABC estimation

Markov Chain Monte Carlo (MCMC) methods that treat the missing data as extra parameters, have become in-
creasingly popular for calibrating stochastic epidemiological models with missing data [26, 105, 107]. However,
MCMC may be computationally prohibitive for high-dimensional missing observations [27, 120] and fine tuning of
the proposal distribution is required for efficient algorithms [53]. The computation of the likelihood can sometimes
be numerically infeasible because it involves integration over the unobserved events. In discrete time, or when the
total population size is known and small as in [107], this is possible. But in (4.2.1) for example, because we are in
continuous time, the likelihood of removal times, when the infection times and KN

t are unknown, involves a sum-
mation over all possibilities which is impossible: the sum is over all the possible numbers of infections between
each successive removal times, plus on the possible times of these infections. An alternative is given by Approx-
imate Bayesian Computation (ABC), which was originally proposed for making inference in population genetics
[10]. This approach is not based on the likelihood function but relies on numerical simulations and comparisons
between simulated and observed summary statistics. We detail here the ABC procedure and its application to epi-
demiology. For more information on ABC methods, the interested reader is referred to [100, 114]. In particular,
there have been many refinements of the ABC method presented here, for instance using simulations to modify the
sampling distributions (e.g. [9, 116, 121]).

In [17], the development of ABC estimation techniques for SIR models is motivated by the study of the Cuban
HIV-AIDS database. In this case, the population is separated into the following compartments: 1) susceptible
individuals who can be infected by HIV, 2) non-detected HIV positive infectious individuals who can propagate
the disease, and 3) detected HIV positive individuals. When an individual is detected as HIV positive, we assume
that the transmission of the disease ceases. So detection corresponds here to ‘recovery’ events in the classical SIR
model presented in Part I of this book. The Cuban database contains the dates of detection of the 8,662 individuals
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that have been found to be HIV positive in Cuba between 1986 and 2007 [4]. The database contains additional
covariates including the manner by which an individual has been found to be HIV positive. The individuals can
be detected either by random screening (individuals ‘spontaneously’ take a detection test) or contact-tracing. The
total number of infectious individuals as well as the infection times are unknown. Blum and Tran [17] proposed
an ABC estimation procedure when all detection times are known, which they then extend to noisy or binned
detection times. They also propose an extension of ABC to path-valued summary statistics consisting of the
cumulated number of detections through time. They introduce a finite-dimensional vector of summary statistics
and compare the statistical properties of point estimates and credibility intervals obtained with full and binned
detection times. We present here these methods for a simple SIR model and compare numerically the posterior
distributions obtained with ABC and MCMC. We refer the reader to [17] for more details and treatment of Cuban
HIV data. Other use of ABC estimation techniques in public health can be found in [39, 103] for example.

4.3.1 Main principles of ABC

For simplicity, we deal here with densities and not general probability measures. Let x be the available data and
π(θ) be the prior where θ is the parameter. Two approximations are at the core of ABC.

Replacing observations with summary statistics Instead of focusing on the posterior density p(θ |x), ABC aims
at a possibly less informative target density p(θ |S(x) = sobs) ∝ Pr(sobs|θ)π(θ) where S is a summary statistic that
takes its values in a normed space, and sobs denotes the observed summary statistic. The summary statistic S can
be a d-dimensional vector or an infinite-dimensional variable such as a L1 function. Of course, if S is sufficient,
then the two conditional densities are the same. The target distribution will also be coined as the partial posterior
distribution.

Simulation-based approximations of the posterior Once the summary statistics have been chosen, the second
approximation arises when estimating the partial posterior density p(θ |S(x) = sobs) and sampling from this distri-
bution. This step involves nonparametric kernel estimation and possibly correction refinements.

4.3.1.1 Sampling from the posterior

The ABC method with smooth rejection generates random draws from the target distribution as follows (see e.g.
[10])

1. Generate N random draws (θi,si), i = 1, . . . ,N. The parameter θi is generated from the prior distribution π

and the vector of summary statistics si is calculated for the ith data set that is simulated from the generative
model with parameter θi.

2. Associate to the ith simulation the weight Wi = Kδ (si− sobs), where δ is a tolerance threshold and Kδ a
(possibly multivariate) smoothing kernel.

3. The distribution (∑N
i=1 Wiδθi)/(∑

N
i=1 Wi), in which δθ denotes the Dirac mass at θ , approximates the target

distribution.

4.3.1.2 Point estimation and credibility intervals

Assume here that θ = (θ1, . . .θd) is a d-dimensional vector. We denote by θi = (θ1,i, . . .θd,i) the simulated vectors
of parameters in the previous paragraph. Once a sample from the target distribution has been obtained, several
estimators may be considered for point estimation of each one-dimensional component θ j, j ∈ {1, . . .d}. Using
the weighted sample (θ j,i,Wi), i = 1, . . . ,N, the mean of the target distribution p(θ j|sobs) is estimated by

θ̂ j =
∑

N
i=1 θ j,iWi

∑
N
i=1 Wi

=
∑

N
i=1 θ j,iKδ (si− sobs)

∑
N
i=1 Kδ (si− sobs)

, j = 1,2,3 (4.3.1)
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which is the well-known Nadaraya–Watson regression estimator of the conditional expectation E(θ j |sobs) (see
e.g. [122, Chapter 1]). We also compute the medians, modes, and 95% credibility intervals (CI) of the marginal
posterior distribution (see Section 3 of the supplementary material).

4.3.1.3 Summary statistics

We are here interested in estimating the parameter θ = (λ ,γ) of a SIR model (see Part I of this book). Two different
sets of summary statistics are considered.

First, we consider the (infinite-dimensional) statistics (Rt , t ∈ [0,T ]) consisting of the cumulated number of
recoveries at time t since the beginning of the epidemic. Because the data consist of the recovery times this curve
(Rt , t ∈ [0,T ]) can simply be viewed as a particular coding of the whole dataset. It is thus a sufficient statistic
implying that the partial posterior distribution p(θ |R1,R2) is equal to the posterior distribution p(θ |x).
The L1-norm between the ith simulated path Ri and the observed one Robs is

‖Robs−Ri‖1 =
∫ T

0
|Robs,s−Ri,s|ds , i = 1, . . . ,N. (4.3.2)

The weights Wi are then computed as Wi = Kδ (‖Robs−Ri‖1) where δ is a tolerance threshold found by accepting
a given percentage Pδ of the simulations and where an Epanechnikov kernel is chosen for K.

Second, when there is noise or when the recovery times have been binned, the full observations (Rt , t ∈ [0,T ])
are unavailable. Then, we replace these summary statistics by a vector of summary statistics such as the numbers
of recoveries per year during the observation period. We consider a d-dimensional vector of summary statistics of
three different types: 1) number RT of individuals detected by the end of the observation period, 2) for each year j,
numbers of removed individuals R j+1−R j, 3) numbers of new infectious in the first years (assuming for instance
that all of them have been detected since) I j+1− I j for j = 0, . . . ,J0, where J0 is a small number of years where
the information is supposed to be known, 4) mean time during which an individual is infected but has not been
detected in the J0 first years. This mean time corresponds to the mean sojourn time in the class I for the J0 first
years. Since these new summary statistics are not sufficient anymore, the new partial posterior distribution may be
different from the posterior p(θ |x).
In order to compute the weights Wi, we consider the following spherical kernel Kδ (x) ∝ K(‖H−1x‖/δ ). Here K
denotes the one-dimensional Epanechnikov kernel, ‖·‖ is the Euclidean norm of Rd and H−1 a matrix. Because the
summary statistics may span different scales, H is taken equal to the diagonal matrix with the standard deviation
of each one-dimensional summary statistic on the diagonal.

4.3.2 Comparisons between ABC and MCMC methods for a standard SIR model

Following [10] a performance indicator for ABC techniques consists in their ability to replicate likelihood-based
results given by MCMC. Here the situation is particularly favourable for comparing the two methods since the
partial and the full posterior are the same. In the following examples, we choose samples of small sizes (n = 3 and
n = 29) so that the dimension of the missing data is reasonable and MCMC achieves fast convergence. For large
sample sizes with high-dimensional missing data, MCMC convergence might indeed be a serious issue and more
thorough updating scheme shall be implemented [27, 120].

We consider the standard SIR model with infection rate λ and recovery rate γ . The data consist of the recovery
times and we assume that the infection times are not observed. We implement the MCMC algorithm of [107]. A
total of 10,000 steps are considered for MCMC with an initial burn-in of 5,000 steps. For ABC, the summary
statistic consists of the cumulative number of recoveries as a function of time. A total of 100,000 simulations are
performed for ABC.

The first example was previously considered by [107]. They simulated recovery times by considering one
initial infectious individual and by setting S0 = 9, λ = 0.12, and γ = 1. We choose gamma distributions for the
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priors of λ and γ with a shape parameters of 0.1 and rate parameters of 1 and 0.1. As displayed by Figure 4.3.1,
the posterior distributions obtained with ABC are extremely close to the ones obtained with MCMC provided that
the tolerance rate is sufficiently small. We see that the tolerance rate changes importantly the posterior distribution
obtained with ABC (see the posterior distributions for λ ).
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Figure 4.3.1: Comparison of the posterior densities obtained with MCMC and ABC. The vertical lines correspond to the
values of the parameters used for generating the synthetic data. Left: the data consist of 3 recovery times that have been
simulated by [107]. Right: The data consist of 29 recovery times that we simulated by setting λ = 0.12, γ = 1, S0 = 30, I0 = 1,
and T = 5 (see the supplementary material of [17] for the 29 recovery times).

In a second example, we simulate a standard SIR trajectory with λ = 0.12, γ = 1, S0 = 30 and I0 = 1. The
data now consist of 29 recovery times (and are given in the supplementary material of [17]). Once again, Figure
4.3.1 shows that the ABC and MCMC posteriors are close provided that the tolerance rate is small enough. ABC
produces posterior distributions with larger tails compared to MCMC, even with the lowest tolerance rate of 0.1%.
This can be explained by considering the extreme scenario in which the tolerance threshold δ goes to infinity:
every simulation has a weight of 1 so that ABC targets the prior instead of the posterior. As the prior has typically
larger tails than the posterior, ABC inflates the posterior tails.
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4.3.3 Comparison between ABC with full and binned recovery times

4.3.3.1 The curse of dimensionality and regression adjustments

In this case, the first set of summary statistics presented in Section 4.3.1 can not be used any more and we have
to use the second set of summary statistics, which constitute a vector of descriptive statistics as is much often
encountered in the literature. In the case of a d-dimensional vector of summary statistics, the estimator of the
conditional mean (4.3.1) is convergent if the tolerance rate satisfies limN→+∞ δN = 0, so that its bias converges to
0, and limN→+∞ Nδ d

N = +∞, so that its variance converges to 0 [41]. As d increases, a larger tolerance threshold
shall be chosen to keep the variance small. As a consequence, the bias may increase with the number of summary
statistics. This phenomenon known as the curse of dimensionality may be an issue for the ABC-rejection approach.
The following paragraph presents regression-based adjustments that cope with the curse of dimensionality.

The adjustment principle is presented in a general setting within which the corrections of [10] and [16] can
be derived. Correction adjustments aim at obtaining from a random couple (θi,si) a random variable distributed
according to p(θ |sobs). The idea is to construct a coupling between the distributions p(θ |si) and p(θ |sobs), through
which we can shrink the θi’s to a sample of i.i.d. draws from p(θ |sobs). In the remaining of this subsection, we
describe how to perform the corrections for each of the one-dimensional components separately. For θ ∈ R,
correction adjustments are obtained by assuming a relationship θ = G(s,ε) =: Gs(ε) between the parameter and
the summary statistics. Here G is a (possibly complicated) function and ε is a random variable with a distribution
that does not depend on s. A possibility is to choose Gs = F−1

s , the (generalized) inverse of the cumulative
distribution function of p(θ |s). In this case, ε = Fs(θ) is a uniform random variable on [0,1]. The formula for
adjustment is given by

θ
∗
i = G−1

sobs
(Gsi(θi)) i = 1, . . . ,N. (4.3.3)

For Gs = F−1
s , the fact that the θ ∗i ’s are i.i.d. with density p(θ |sobs) arises from the standard inversion algorithm.

Of course, the function G shall be approximated in practice. As a consequence, the adjusted simulations θ ∗i ,
i = 1, . . . ,N, constitute an approximate sample of p(θ |sobs). The ABC algorithm with regression adjustment can
be described as follows

1. Simulate, as in the rejection algorithm, a sample (θi,si), i = 1, . . . ,N.

2. By making use of the sample of the (θi,si)’s weighted by the Wi’s, approximate the function G such that
θi = G(si,εi) in the vicinity of sobs.

3. Replace the θi’s by the adjusted θ ∗i ’s. The resulting weighted sample (θ ∗i ,Wi), i = 1, . . . ,N, form a sample
from the target distribution.

Local linear regression (LOCL) The case where G is approximated by a linear model G(s,ε) = α + stβ +ε , was
considered by [10]. The parameters α and β are inferred by minimizing the weighted squared error

N

∑
i=1

Kδ (si− sobs)(θi− (α +(si− sobs)
T

β ))2.

Using (4.3.3), the correction of [10] is derived as

θ
∗
i = θi− (si− sobs)

T
β̂ , i = 1, . . . ,N. (4.3.4)

Asymptotic consistency of the estimators of the partial posterior distribution with the correction (4.3.4) is obtained
by [15].

Nonlinear conditional heteroscedastic regressions (NCH) To relax the assumptions of homoscedasticity and
linearity inherent to local linear regression, Blum and Francois [16] approximated G by G(s,ε) = m(s)+σ(s)× ε

where m(s) denotes the conditional expectation, and σ2(s) the conditional variance. The estimators m̂ and log σ̂2
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are found by adjusting two feed-forward neural networks using a regularized weighted squared error. For the NCH
model, parameter adjustment is performed as follows

θ
∗
i = m̂(sobs)+(θi− m̂(si))×

σ̂(sobs)

σ̂(si)
, i = 1, . . . ,N.

In practical applications of the NCH model, we train L = 10 neural networks for each conditional regression (ex-
pectation and variance) and we average the results of the L neural networks to provide the estimates m̂ and log σ̂2.

Reparameterization In both regression adjustment approaches, the regressions can be performed on transforma-
tions of the responses θi rather that on the responses themselves. Parameters whose prior distributions have finite
supports are transformed via the logit function and non-negative parameters are transformed via the logarithm
function. These transformations guarantee that the θ ∗i ’s lie in the support of the prior distribution and have the
additional advantage of stabilizing the variance.

Comparison between the first and second set of summary statistics A simulation study is carried to compare the
ABC methods based on the two different sets of summary statistics presented in Section 4.3.1 has been carried in
[17] using a slightly more elaborate SIR model with contact-tracing introduced in [31]. Blum and Tran simulated
M = 200 synthetic data sets epidemic. When using the finite-dimensional vector of summary statistics, they
perform the smooth rejection approach as well as the LOCL and NCH corrections with a total of 21 summary
statistics. Each of the M = 200 estimations of the partial posterior distributions are performed using a total of
N = 5000 simulations.

Figure 4.3.2 displays the boxplots of the 200 estimated modes, medians, 2.5% and 97.5% quantiles of the
posterior distribution for λ as a function of the tolerance rate Pδ . First, the medians and modes are found to be
equivalent except for the rejection method with 21 summary statistics for which the mode is less biased. For the
lowest tolerance rates, the point estimates obtained with the four possible methods are close to the value λ used in
the simulations, with smaller CI for the LOCL and NCH variants. When increasing the tolerance rate, the bias of
the point estimates obtained with the rejection method with 21 summary statistics slightly increases. By contrast,
up to tolerance rates smaller than 50%, the biases of the point estimates obtained with the three other methods
remain small. As can be expected, the widths of the CI obtained with the rejection methods increase with the
tolerance rate while they remain considerably less variable for the methods with regression adjustment.

For further comparison of the different methods, we can compute the rescaled mean square errors (ReMSEs):

ReMSE(λ ) =
1
M

M

∑
k=1

(log(λ̂ k)− log(λ ))2

Range(prior(λ ))2 , (4.3.5)

where λ̂ k is a point estimate obtained with the kth synthetic data set.
To compare the whole posterior distributions obtained with the four different methods, we can also compute

the different CIs. The rescaled mean CI (RMCI) is defined as follows

RMCI =
1
M

M

∑
k=1

|ICk|
Range(prior(λ ))

, (4.3.6)

where |ICk| is the length of the kth estimated 95% CI for the parameter λ . As displayed by Figure 4.3.2, the CIs
obtained with smooth rejection increase importantly with the tolerance rate whereas such an important increase is
not observed with regression adjustment.

4.4 Sensitivity analysis

Epidemiological models designed in order to test public health scenarios by simulations or disentangle various
factors for a better understanding of the disease propagation are often over-parameterized. Input parameters are
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Figure 4.3.2: Boxplots of the M = 200 estimated modes and quantiles (2.5%, 50%, and 97.5%) of the partial posterior
distributions of λ in a model presented in Blum and Tran [17]. For each ABC method and each value of the tolerance rate, 200
posterior distributions are computed for each of the 200 synthetic data sets. The horizontal lines correspond to the true value
λ = 1.14×10−7 used when simulating the 200 synthetic data sets. The different tolerance rates are 0.01, 0.05, 0.10, 0.25, 0.50,
0.50, 0.75, and 1 for all the ABC methods except the rejection scheme with the two summary statistics. For the latter method,
the tolerance rates are 0.007, 0.02, 0.06, 0.13, 0.27, 0.37, 0.45, 0.53, 0.66, 0.80, 1.

the rates describing the times that individuals stay in each compartment, for example. The sources that are used
to calibrate the model can also be numerous: some parameters are for example obtained from epidemiological
studies or clinical trials, but there can be uncertainty on their values due to various reasons. The restricted size of
the sample in these studies brings uncertainty on the estimates, which are given with uncertainty intervals (classi-
cally, a 95% confidence interval). Different studies can provide different estimates for the same parameters. The
study populations can be subject to selection biases. In the case of clinical trials where the efficacy of a treatment
is estimated, the estimates can be optimistic compared with what will be the effectiveness in real-life, due to the
protocol of the trials. It is important to quantify how theses uncertainties on the input parameters can impact the
results and the conclusion of an epidemiological modelling study. To check the robustness of some output with
respect to the parameters, sensitivity analyses are often performed.

In a mathematical model where the output y∈R depends on a set of p∈N input parameters x = (x1, ...xp)∈Rp

through the relation y = f (x), there are various ways to measure the influence of the input x`, for ` ∈ {1, . . . , p},
on y. In this article, we are interested in Sobol indices [117], which are based on an ANOVA decomposition (see
[112, 77, 78] for a review). These indices have been proposed to take into account the uncertainty on the input
parameters that are here considered as a realisation of a set of independent random variables X = (X1, ...Xp), with
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a known distribution and with possibly correlated components. Denoting by Y = f (X) the random response, the
first-order Sobol indices can be defined for ` ∈ {1, . . . , p} by

S` =
Var
(
E[Y | X`]

)
Var(Y )

. (4.4.1)

This first-order index S` corresponds to the sensitivity of the model to X` alone. Higher order indices can also be
defined using ANOVA decomposition: considering (`,`′) ∈ {1, . . . , p}, we can define the second order sensitivity,
corresponding to the sensitivity of the model to the interaction between X` and X`′ index by

S``′ =
Var
(
E[Y | X`,X`′ ]

)
Var(Y )

−S`−S`′ (4.4.2)

We can also define the total sensitivity indices by

ST` = ∑
L⊂{1,...,p}|`∈L

SL. (4.4.3)

As the estimation of the Sobol indices can be computer time consuming, a usual practice consists in estimating
the first-order and total indices, to assess 1) the sensitivity of the model to each parameter taken separately and 2)
the possible interactions, which are quantified by the difference between the total order and the first-order index
for each parameter. Several numerical procedures to estimate the Sobol indices have been proposed, in particular
by Jansen [82] (see also [111, 112]). These estimators, that we recall in the sequel, are based on Monte Carlo
simulations of (Y,X1 . . .Xp).

The literature focuses on deterministic relations between the input and output parameters. In a stochastic
framework where the model response Y is not unique for given input parameters, few works have been done,
randomness being usually limited to input variables. Assume that:

Y = f (X ,ε), (4.4.4)

where X = (X1, . . .Xp) still denotes the random variables modelling the uncertainty of the input parameters and
where ε is a noise variable. When noise is added in the model, the classical estimators do not always work: Y can
be very sensitive to the addition of ε . Moreover, this variable is not always controllable by the user.

When the function f is linear, we can refer to [44]. In the literature, meta-models are used: approximating
the mean and the dispersion of the response by deterministic functions allows us to come back to the classical
deterministic framework (e.g. Janon et al. [81], Marrel et al. [101]). We study here another point of view, which is
based on the non-parametric statistical estimation of the term Var

(
E[Y | X`]

)
appearing in the numerator of (4.4.1).

Approaches based on the Nadaraya–Watson kernel estimator have been proposed by Da Veiga and Gamboa [126]
or Solís [118] while an approach based on warped wavelet decompositions is proposed by Castellan et al. [25].
An advantage of these non-parametric estimators is that their computation requires less simulations of the model.
For Jansen estimators, the number of calls of f required to compute the sensitivity indices is n(p+ 1), where n
is the number of independent random vectors (Y i,X i

1, . . .X
i
p) (i ∈ {1, . . .n}) that are sampled for the Monte Carlo

procedure, making the estimation of the sensitivity indices time-consuming for sophisticated models with many
parameters. In addition, for the non-parametric estimators, the convergence of the mean square error to zero may
be faster than for Monte Carlo estimators, depending on the regularity of the model.

4.4.1 A non-parametric estimator of the Sobol indices of order 1

Denoting by V` = E
(
E2(Y | X`)

)
the expectation of the square conditional expectation of Y knowing X`, we have:

S` =
V`−E(Y )2

Var(Y )
, (4.4.5)
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which can be approximated by

Ŝ` =
V̂`− Ȳ 2

σ̂2
Y

(4.4.6)

where

Ȳ =
1
n

n

∑
j=1

Yj and σ̂
2
Y =

1
n

n

∑
j=1

(Yj− Ȳ )2

are the empirical mean and variance of Y . We consider here two approximations V̂` of V`, based on Nadaraya–
Watson and on warped wavelet estimators.

Assume that we have n independent couples (Y i,X i
1, . . .X

i
p) in R×Rp, for i ∈ {1, . . . ,n}, generated by (4.4.4).

Let us start with the kernel-based estimator:

Definition 4.4.1. Let K : R 7→ R be a kernel such that
∫
R K(u)du = 1. Let h > 0 be a window and let us denote

Kh(x) = K(x/h)/h. An estimator of S` for ` ∈ {1, . . . p} is:

Ŝ(NW )
` =

1
n ∑

n
i=1

(
∑

n
j=1 Y jKh(X

j
`−X i

`)

∑
n
j=1 Kh(X

j
`−X i

`)

)2
− Ȳ 2

σ̂2
Y

. (4.4.7)

This estimator is based on the Nadaraya–Watson estimator of E(Y |X` = x) given by (e.g. [122])

∑
n
j=1 YjKh(X

j
` − x)

∑
n
j=1 Kh(X

j
` − x)

.

Replacing this expression in (4.4.6) provides Ŝ(NW )
` . This estimator and the rates of convergence have been studied

by Solís [118]. If we instead use a warped wavelet decomposition of E(Y |X` = x) (see e.g. [29, 85]), this provides
an estimator studied by Castellan et al. [25]. Let us present this second estimator.

Let us denote by G` the cumulative distribution function of X`. Let (ψ jk) j≥−1,k∈Z be a Hilbert wavelet basis
of L2, the space of real functions that are square integrable with respect to the Lebesgue measure on R. In the
sequel, we denote by 〈 f ,g〉=

∫
R f (u)g(u)du, for f ,g ∈ L2, the usual scalar product of L2. The wavelet ψ−10 is the

father wavelet, and for k ∈ Z, ψ−1k(x) = ψ−10(x−k). The wavelet ψ00 is the mother wavelet, and for j≥ 0, k ∈ Z,
ψ jk(x) = 2 j/2ψ00(2 jx− k).

Definition 4.4.2. Let us define for j ≥−1, k ∈ Z,

β̂
`
jk =

1
n

n

∑
i=1

Yiψ jk(G`(X i
`)). (4.4.8)

Then, we define the (block thresholding) estimator of S` as

Ŝ(WW )
` =

V̂`− Ȳ 2

σ̂2
Y

, (4.4.9)

where V̂` is an estimator of the variance V` given by:

V̂` =
Jn

∑
j=−1

[
∑
k∈Z

(
β̂
`
jk
)2−w( j)

]
1

∑k∈Z
(

β̂ `
jk

)2
≥w( j)

(4.4.10)

with w( j) = K
(

2 j+log2
n

)
and Jn :=

[
log2

(√
n
)]

(where [·] denotes the integer part) and K a positive constant.
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Let us present the idea explaining the estimator proposed in Definition 4.4.2. Let us introduce centered random
variables η` such that

Y = f (X ,ε) = E(Y |X`)+η`. (4.4.11)

Let g`(x) = E(Y |X` = x) and h`(u) = g` ◦G−1
` (u). h` is a function from [0,1] 7→ R that belong to L2 since Y ∈ L2.

Then

h`(u) = ∑
j≥−1

∑
k∈Z

β
`
jkψ jk(u), with (4.4.12)

β
`
jk =

∫ 1

0
h`(u)ψ jk(u)du =

∫
R

g`(x)ψ jk(G`(x))G`(dx). (4.4.13)

Notice that the sum in k is finite because the function h` has compact support in [0,1]. It is then natural to estimate
h`(u) by

ĥ` = ∑
j≥−1

∑
k∈Z

β̂
`
jkψ jk(u), (4.4.14)

and we then have:

V` = E
(
E2(Y |X`)

)
=
∫
R

G`(dx)
(

∑
j≥−1

∑
k∈Z

β
`
jkψ jk

(
G`(x)

))2

=
∫ 1

0

(
∑

j≥−1
∑
k∈Z

β
`
jkψ jk(u)

)2
du

= ∑
j≥−1

∑
k∈Z

(
β
`
jk
)2

= ‖h`‖2
2. (4.4.15)

Adaptive estimation of ‖h`‖2
2 has been studied in [95], which provides the block thresholding estimator V̂` in Defi-

nition 4.4.2. The idea is: 1) to sum the terms
(
β `

jk

)2, for j ≥ 0, by blocks {( j,k), k ∈ Z} for j ∈ {−1, . . . ,Jn} with
a penalty w( j) for each block to avoid choosing too large j’s, 2) to cut the blocks that do not sufficiently contribute
to the sum, in order to obtain statistical adaptation.

Notice that V̂` can be seen as an estimator of V` resulting from a model selection on the choice of the blocks
{( j,k), k ∈ Z}, j ∈ {−1, . . . ,Jn} that are kept, with the penalty function pen(J ) = ∑ j∈J w( j), for J ⊂
{−1, . . . ,Jn}. Indeed:

V̂` = sup
J⊂{−1,0,...,Jn}

∑
j∈J

[
∑
k∈N

(
β̂
`
jk
)2−w( j)

]
= sup

J⊂{−1,0,...,Jn}
∑

j∈J
∑
k∈N

(
β̂
`
jk
)2−pen(J ). (4.4.16)

Note that the definition of the estimator and the penalization depend on a constant K through the definition of
w( j). The value of this constant is chosen in order to obtain oracle inequalities. In practice, this constant is hard to
compute, and can be chosen by a slope heuristic approach (see e.g. [5]).

4.4.2 Statistical properties

In this Section, we are interested in the rate of convergence to zero of the mean square error (MSE) E
(
(S`− Ŝ`)2

)
.

Let us consider the generic estimator Ŝ` defined in (4.4.6), where V̂` is an estimator of V` = E(E2(Y | X`)) (not
necessarily (4.4.10)). We first start with a Lemma stating that the MSE can be obtained from the rate of convergence
of V̂` to V`.
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Lemma 4.4.3. Consider the generic estimator Ŝ` defined in (4.4.6) and V̂` an estimator of V` (not necessarily
(4.4.10)). Then there is a constant C such that:

E
(
(S`− Ŝ`)2)≤ C

n
+

4
Var(Y )2E

[(
V̂`−V`

)2
]
. (4.4.17)

Proof. From (4.4.5) and (4.4.6),

E
(
(S`− Ŝ`)2)=E

[(V`−E(Y )2

Var(Y )
− V̂`− Ȳ 2

σ̂2
Y

)2]
≤2E

[( E(Y )2

Var(Y )
− Ȳ 2

σ̂2
Y

)2]
+2E

[( V`

Var(Y )
− V̂`

σ̂2
Y

)2]
. (4.4.18)

The first term in the right-hand side (r.h.s.) is in C/n. For the second term in the right-hand side of (4.4.18):

E
[( V`

Var(Y )
− V̂`

σ̂2
Y

)2]
≤2E

[
V̂ 2
`

( 1
Var(Y )

− 1
σ̂2

Y

)2]
+

2
Var(Y )2E

[(
V̂`−V`

)2
]
. (4.4.19)

The first term in the r.h.s. is also in C/n, which concludes the proof.

The preceding lemma implies that the rate of convergence of V̂` to V` is determinant for the rate of convergence
of Ŝ`. We recall the result of Solís [118], where an elbow effect for the MSE is shown when the regularity of the
density of (X`,Y ) varies. The case of the warped wavelet estimator introduced by Castellan et al [25] is studied at
the end of the section and the rate of convergence is stated in Corollary 4.4.8.

4.4.2.1 MSE for the Nadaraya–Watson estimator

Using the preceding Lemma, Loubes Marteau and Solís prove an elbow effect for the estimator Ŝ(NW )
` . Let us

introduce H (α,L), for α,L > 0, the set of functions φ of class [α], whose derivative φ ([α]) is α − [α] Hölder
continuous with constant L.

Proposition 4.4.4 (Loubes Marteau and Solís [99, 118]). Assume that E(X4
` )<+∞, that the joint density φ(x,y)

of (X`,Y ) belongs to H (α,L), for α,L > 0 and that the marginal density of X`, φ` belongs to H (α ′,L′) for α ′ >α

and L′ > 0. Then:
If α ≥ 2, there exists a constant C > 0 such that

E
(
(S`− Ŝ`)2)≤ C

n
.

If α < 2, there exists a constant C > 0 such that

E
(
(S`− Ŝ`)2)≤C

( log2 n
n

) 2α
α+2 .

For smooth functions (α ≥ 2), Loubes et al. recover a parametric rate, while they still have a nonparametric
one when α < 2. Their result is based on (4.4.17) and a bound for E

[(
V̂`−V`

)2
]

given by [99, Th. 1], whose
proof is technical. Since their result is not adaptive, they require the knowledge of the window h for numerical
implementation. Our purpose is to provide a similar result for the warped wavelet adaptive estimator, with a shorter
proof.

4.4.2.2 MSE for the warped wavelet estimator

Let us introduce first some additional notation. We define, for J ⊂ {−1, . . . ,Jn}, the projection hJ ,` of h on the
subspace spanned by {ψ jk, with j ∈J , k ∈ Z} and its estimator ĥJ ,`:

hJ ,`(u) = ∑
j∈J

∑
k∈Z

β
`
jkψ jk(u) (4.4.20)



4.4. SENSITIVITY ANALYSIS 91

ĥJ ,`(u) = ∑
j∈J

∑
k∈Z

β̂
`
jkψ jk(u). (4.4.21)

We also introduce the estimator of V` for a fixed subset of resolutions J :

V̂J ,` = ‖ĥJ ,`‖2
2 = ∑

j∈J
∑
k∈Z

(
β̂
`
jk
)2
. (4.4.22)

Note that V̂J ,` is one possible estimator V̂` in Lemma 4.4.3.

The estimators β̂ jk and V̂J ,` have natural expressions in term of the empirical process γn(dx) defined as follows:

Definition 4.4.5. The empirical measure associated with our problem is:

γn(dx) =
1
n

n

∑
i=1

YiδG`(X i
`)
(dx) (4.4.23)

where δa(dx) denotes the Dirac mass in a.
For a measurable function f , γn( f ) = 1

n ∑
n
i=1 Yi f

(
G`(X i

`)
)
. We also define the centered integral of f with respect to

γn(dx) as:

γ̄n( f ) =γn( f )−E
(
γn( f )

)
(4.4.24)

=
1
n

n

∑
i=1

(
Yi f
(
G`(X i

`)
)
−E
[
Yi f
(
G`(X i

`)
)])

. (4.4.25)

Using the empirical measure γn(dx), we have:

β̂
`
jk = γn

(
ψ jk
)
= β

`
jk + γ̄n

(
ψ jk
)
.

Let us introduce the correction term

ζn =2γ̄n
(
h`
)

(4.4.26)

=2
[1

n

n

∑
i=1

Yih`
(
G`(X i

`)
)
−E
(

Y1h`
(
G`(X1

` )
))]

=2
[1

n

n

∑
i=1

h2
`

(
G`(X i

`)
)
−‖h`‖2

2

]
+

2
n

n

∑
i=1

η
i
`h`
(
G`(X i

`)
)
. (4.4.27)

The rate of convergence of the estimator (4.4.10) is obtained in [25] based on the estimate presented in the next
theorem. This result is derived using ideas due to Laurent and Massart [95] who considered estimation of quadratic
functionals in a Gaussian setting. Because we are not necessarily in a Gaussian setting here, we rely on empirical
processes and use sophisticated technology developed by Castellan [24].

Theorem 4.4.6 (Castellan, Cousien, Tran [25]). Let us assume that the random variables Y are bounded by a
constant M, and let us choose a father and a mother wavelets ψ−10 and ψ00 that are continuous with compact
support (and thus bounded). The estimator V̂` defined in (4.4.10) is almost surely finite, and:

E
[(

V̂`−V`−ζn
)2
]
≤C inf

J⊂{−1,...,Jn}

(
‖h`−hJ ,`‖4

2 +
Card2(J )

n2

)
+

C′ log2
2(n)

n3/2 , (4.4.28)

for constants C and C′ > 0.

We deduce the following corollary from the estimate obtained above. Let us consider the Besov space B(α,2,∞)
of functions h = ∑ j≥−1 ∑k∈Z β jkψ jk of L2 such that

|h|α,2,∞ := ∑
j≥0

2 jα

√
sup

0<v≤2− j

∫ 1−v

0
|h(u+ v)−h(u)|2du <+∞.
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For a h ∈B(α,2,∞) and hJ its projection on

Vect{ψ jk, j ∈J = {−1, . . .Jmax}, k ∈ Z},

we have the following approximation result from [66, Th. 9.4].

Proposition 4.4.7 (Härdle, Kerkyacharian, Picard and Tsybakov). Assume that the wavelet function ψ−10 has
compact support and is of class C N for an integer N > 0. Then, if h ∈B(α,2,∞) with α < N +1,

sup
J⊂N∪{−1}

2αJmax‖h−hJ ‖2 = sup
J⊂N∪{−1}

2αJmax
(

∑
j≥Jmax

∑
k∈Z

β
2
jk

)1/2
<+∞. (4.4.29)

Notice that Theorem 9.4 of [66] requires assumptions that are fulfilled when ψ−10 has compact support and is
smooth enough (see the comment after the Corol. 8.2 of [66]).

Corollary 4.4.8. If ψ−10 has compact support and is of class C N for an integer N > 0 and if h` belongs to a ball
of radius R > 0 of B(α,2,∞) for 0 < α < N +1, then

sup
h∈B(α,2,∞)

E
[(

V̂`−V`

)2
]
≤C
(

n−
8α

4α+1 +
1
n

)
. (4.4.30)

As a consequence, we obtain the following elbow effect:
If α ≥ 1

4 , there exists a constant C > 0 such that

E
(
(S`− Ŝ`)2)≤ C

n
.

If α < 1
4 , there exists a constant C > 0 such that

E
(
(S`− Ŝ`)2)≤Cn−

8α
4α+1 .

Proof. Using (4.4.28) and the fact that

E
(
ζ

2
n
)
=

4
n

Var
(

Y1h`
(
G`(X1

` )
))
≤ 2M2‖h`‖2

2
n

, (4.4.31)

we obtain:

E
[(

V̂`−V`

)2
]
≤C

[
inf

J⊂{−1,...,Jn}

(
‖h`−hJ ,`‖4

2 +
Card2(J )

n2

)
+

1+‖h`‖2
2

n

]
. (4.4.32)

If h` ∈B(α,2,∞), then from Proposition 4.4.7, we have for J = {−1, . . . ,Jmax} that ‖h`−hJ ,`‖4
2 ≤ 2−4α Jmax .

Thus, for subsets J of the form considered, the infimum is attained when choosing Jmax =
2

4α+1 log2(n), which
yield an upper bound in n8α/(4α+1).

For h` in a ball of radius R, ‖h`‖2
2 ≤ R2, and we can find an upper bound that does not depend on h. Because

the last term in (4.4.32) is in 1/n, the elbow effect is obtained by comparing the order of the first term in the r.h.s.
(n8α/(4α+1)) with 1/n when α varies. �

Let us remark that in comparison with the result of Loubes et al. [99], the regularity assumption here is on the
function h` rather than on the joint density φ(x,y) of (X`,Y ). The adaptivity of the estimator is then welcomed since
the function h` is a priori unknown. Note that in applications, the joint density φ(x,y) also has to be estimated and
hence has an unknown regularity.
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When α < 1/4 and α → 1/4, the exponent 8α/(4α +1)→ 1. In the case when α > 1/4, we can show from
the estimate of Th. 4.4.6 that:

lim
n→+∞

nE
[(

V̂`−V`−ζn
)2
]
= 0, (4.4.33)

which yields that
√

n
(
V̂`−V`−ζn

)
converges to 0 in L2. Since

√
nζn converges in distribution to N

(
0,4Var

(
Y1h`(G`(X1

` ))
))

by the central limit theorem, we obtain that:

lim
n→+∞

√
n
(
V̂`−V`

)
= N

(
0,4Var

(
Y1h`(G`(X1

` ))
))

, (4.4.34)

in distribution.

4.4.2.3 Numerical illustration on an SIR model

Let us consider an SIR model. The input parameters are the rates λ and γ . The output parameter is the final size of
the epidemic, i.e. at a time T > 0 where IN

T = 0, Y = RN
T .

Recall from Chapter 2 that the fractions (SN
t /N, IN

t /N,RN
t /N)t∈[0,T ] can be approximated by the unique solution

(s(t), i(t),r(t))t∈[0,T ] of a system of ODE (see Example ?? of Chapter ?? in Part I of this volume). These limiting
equations provide a natural deterministic approximating meta-model (recall [101]) for which sensitivity indices
can be computed.

For the numerical experiment, we consider a close population of 1200 individuals, starting with S0 = 1190,
I0 = 10 and R0 = 0. The parameters distributions are uniformly distributed with λ/N ∈ [1/15000,3/15000] and
γ ∈ [1/15,3/15]. Here the randomness associated with the Poisson point measures is treated as the nuisance ran-
dom factor in (4.4.4).
We compute the Jansen estimators of Sλ and Sγ for the deterministic meta-model constituted by the Kermack–
McKendrick ODEs of Chapter 2 in Part I of this volume, with n = 30,000 simulations. For the estimators of Sλ

and Sγ in the SDE, we compute the Jansen estimators with n = 10,000 (i.e. n(p+1) = 30,000 calls to the function
f ), and the estimators based on Nadaraya–Watson and on wavelet regressions with n = 30,000 simulations.

Let us comment on the results. First, the comparison of the different estimation methods is presented in Fig.
4.4.1. Since the variances in the meta-model and in the stochastic model differ, we start with comparing the
distributions of E(Y | λ ) and E(Y | γ) that are centered around the same value, independently of whether the
meta-model or the stochastic model is used. These distributions are obtained from 1,000 Monte-carlo simulations.
In Fig. 4.4.1(b), taking the meta-model as a benchmark, we see that the wavelet estimator performs well for both
λ and γ while Nadaraya–Watson regression estimator performs well only for γ and exhibit biases for λ . Jansen
estimator on the stochastic model exhibit biases for both λ and γ .

In a second time, we focus on the estimation of the Sobol indices for the stochastic model. The smoothed
distributions of the estimators of Sλ and Sγ , for 1,000 Monte Carlo replications, are presented in Fig. 4.4.1 (a); the
means and standard deviations of these distributions are given in Table 4.4.1. Although there is no theoretical val-
ues for Sλ and Sγ , we can see (Table 4.4.1) that the estimators of the Sobol indices with non-parametric regressions
all give similar estimates in expectation for γ . For λ , the estimators are relatively different, with the Nadaraya–
Watson showing the lower estimate. This is linked with the bias seen on Fig. 4.4.1 (b) and discussed below. In
term of variance, the Nadaraya–Watson estimator gives the tightest distribution, while the wavelet estimator gives
the highest variance.

The advantage of using the estimators with wavelets lies in their robustness to the inclusion of high frequencies
and in the fact that they can overcome some smoothing biases that the Nadaraya–Watson regressions exhibit (Fig.
4.4.1 (b)). This can be understood when looking at Fig. 4.4.2: the simulations can give very noisy Y ’s. For
example, extinctions of the epidemics can be seen in very short time in simulations, due to the initial randomness
of the trajectories. This produces distributions for Y ’s that are not unimodal or with peaks at 0, which makes the
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(a) (b)

Figure 4.4.1: Estimations of the first-order Sobol indices, using Jansen estimators on the meta-model with n = 10,000 and
the non-parametric estimations based on Nadaraya–Watson and wavelet regressions. (a): the distributions of the estimators of
Sλ and Sγ is approximated by Monte-carlo simulations. (b): the distributions of E(Y | λ ) and E(Y | γ) are approximated by
Monte Carlo simulations.

Jansen Nadaraya–Watson Wavelet
Ŝλ 0.39 0.38 0.40
s.d. (9.2e-3) (4.3e-3) (1.4e-2)
Ŝγ 0.44 0.42 0.42
s.d. (9.0e-3) (4.4e-3) (1.2e-2)

Table 4.4.1: Estimators of the Sobol indices for λ and γ and their standard deviations using n =10,000 Monte Carlo replica-
tions of the stochastic SIR model.

estimation of E(Y | λ ) or E(Y | γ) more difficult. The variance of the estimator with wavelets is however the widest
and in practice, finding the thresholding constants for the wavelet coefficients can be somewhat tricky when the
number of input parameters is large.
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Figure 4.4.2: Prevalence (Y ) simulated from the n(p+1) = 30,000 simulations of λ and γ , for the SIR model.





Appendix

A.1 Some classical results in statistical inference

In this section, we have gathered results on inference useful for this part of these notes.

A.1.1 Heuristics on Maximum Likelihood Methods

As a guide for statistical inference for epidemic dynamics, we first describe the heuristics for getting properties of
Maximum likelihood Estimators, each family of statistical models having to be studied specifically (see [23] for
more details).

Definitions and properties are given for general discrete time stochastic processes. Consider a sequence
(X1, . . . ,Xn) of random variables with values in E, and let Pn

θ
denote the distribution of (X1, . . . ,Xn) on (En,E n).

Assume that the parameter set Θ is included in Rq and that θ0 the true value of the parameter belongs to Int(Θ).
The properties on the MLE relies on three basic results that hold as n→ ∞ under Pn

θ0
:

(i) a law of large numbers for the log-likelihood `n(θ),

(ii) a central limit theorem for the score function ∇θ `n(θ0)

(iii) a law of large numbers for the observed information ∇2
θ
`n(θ0) under Pn

θ0
.

For a regular statistical model with a standard rate of convergence
√

n,

(i) For all θ ∈ Θ, n−1`n(θ)→ J(θ0,θ) in Pn
θ0

-probability. uniformly w.r.t. θ , θ → J(θ0,θ) is a continuous
function with a global unique maximum at θ0.

(ii) n−1/2∇θ `n(θ0)→N (0,I (θ0)) in distribution under Pn
θ0

,

(iii) − 1
n ∇2

θ
`n(θ0)→I (θ0) in Pn

θ0
-probability.

Condition (i) ensures consistency of the MLE θ̂n.
Assuming that I (θ0) is non-singular, a Taylor expansion of the score function ∇θ `n at point θ0 leads, using

that ∇θ `n(θ̂n) = 0,

0 = ∇θ `n(θ̂n) = ∇θ `n(θ0)+
(∫ 1

0
∇

2
θ `n(θ0 + t(θ̂n−θ0))dt

)
(θ̂n−θ0). (A.1.1)

From this expansion, we get, using that I (θ0) is non-singular,

√
n(θ̂n−θ0) =

(
− 1

n

∫ 1

0
∇

2
θ `n(θ0 + t(θ̂n−θ0))dt

)−1( 1√
n

∇θ `n(θ0)
)
. (A.1.2)

Since θ̂n→ θ0 in Pn
θ0

-probability we get, using (iii), that

- the first factor of the r.h.s. of the equation above converges to I (θ0)
−1 Pθ0 a.s.

97
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- the second factor converges in distribution under Pθ0 to N (0,I (θ0)).

Finally, Slutsky’s Lemma yields that
√

n(θ̂n−θ0)→L N (0,I (θ0)
−1) under Pθ0 .

A.1.2 Miscellaneous results

We first state a theorem concerning the properties of the φ(θ).

Theorem A.1.1. Let (Xn) be a sequence of random variables with values in Rp and an > 0 such that an→ ∞ as
n→∞. Assume that an(Xn−m) converges in distribution to a random variable Z. Let φ : Rp→Rq a continuously
differentiable application. Then an(φ(Xn)− φ(m)) converges in distribution to the random variable ∇xφ(m)Z,
where ∇xφ is the Jacobian matrix of φ : ∇xφ = ( ∂φk

∂xl
)1≤k≤q,1≤l≤p.

We refer to [124] for the proof.

For sake of clarity, we also give a recap on Exponential families of distributions (see e.g. [11] or [124]). Indeed,
among parametric families of distributions, exponential families of distributions, widely used in statistics, provide
here a nice framework to study the likelihood.

Let X be a random variable in Rk (or Zk) with distribution Pθ and density p(θ ,x), with θ ∈Θ, subset of Rq.

Definition A.1.2. The family {Pθ ,θ ∈ Θ} is an exponential family if there exist q functions (η1, . . . ,ηq) and φ

defined on Θ, q real functions T1, . . . ,Tq and a function h(·) defined on Rk such that

p(θ ,x) = h(x)exp{
q

∑
j=1

η j(θ)Tj(x)−φ(θ)} ;x ∈ Rk (A.1.3)

Then T (X) = (T1(X), . . . ,Tq(X)) is a sufficient statistic in the i.i.d. case. The random variable X satisfies

m(θ) := Eθ (X) = ∇θ φ(θ); σ
2(θ) := Varθ (X) = ∇

2
θ φ(θ). (A.1.4)

A.2 Inference for Markov chains

In order to present a good overview of the statistical problems, we detail the statistical inference for Markov
chains. We have rather focus here on parametric inference since epidemic models always include in their dynamics
parameters that need to be estimated in order to derive predictions.

A.2.1 Recap on Markov chains

We first begin setting the notations used throughout this chapter and introducing the basic definitions.
Let (Xn,n≥ 0) a Markov chain on a probability space (Ω,F,P) with state space (E,E ), transition kernel Q and

initial distribution µ on (E,E ).

The space of observations: (EN,E ⊗N). Based on a classical theorem of probability, there exists a unique prob-
ability measure on (EN,E ⊗N), denoted Pµ,Q such that the coordinate process (Xn,n ≥ 0) is a Markov chain (with
respect to its natural filtration) with initial distribution µ and transition kernel Q. Then, based on a classical theo-
rem in probability, there exists a unique probability measure on (EN,E ⊗N), denoted Pµ,Q such that the coordinate
process (Xn,n≥ 0) is a Markov chain (with respect to its natural filtration) with initial distribution µ and transition
kernel Q.

The probability Pµ,Q has the property:

- if A0,A1, . . . ,An are measurable sets in E, then

Pµ,Q(Xi ∈ Ai; i = 0, . . . ,n) =
∫

A0

µ(dx0)
∫

A1

Q(x0,dx1) . . .
∫

An

Q(xn−1,dxn).
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Let Θ denote some subset of “probability measures × transition kernels on (E,E )”. The canonical statisti-
cal model is (EN,E N,(Pµ,Q,(µ,Q) ∈ Θ)). Let us denote by Pn

µ,Q the distribution of (X0, . . . ,Xn) on En+1. The
successive observations of (Xi) allow to estimate µ,Q.

Let α be a σ -finite positive measure on (E,E ) dominating all the distributions {µ(dy),(Q(x,dy),x ∈ E)} and
assume that µ(dy) = µ(y)α(dy),Q(x,dy) = Q(x,y)α(dy). Then, the likelihood of the observations (x0, . . . ,xn) is
the probability density function of (X0, . . . ,Xn), Pn

µ,Q, with respect to the measure αn =⊗n
i=0α i(dy) on En+1, with

α i(·) copies of α(·).
dPn

µ,Q

dαn
(xi, i = 0, . . . ,n) = µ(x0)Q(x0,x1) . . .Q(xn−1,xn).

Then, the likelihood function at time n is

Ln(µ,Q) =
dPn

µ,Q

dαn
(X0, . . . ,Xn) = µ(X0)Q(X0,X1) . . .Q(Xn−1,Xn). (A.2.1)

The associated Loglikelihood is
`n(µ,Q) = logLn(µ,Q). (A.2.2)

A.2.1.1 Maximum likelihood method for Markov chains

Let us consider the case of positive recurrent Markov chains. We follow the sketch detailed above to study the
properties of MLE estimators.

Assume that the parameter set Θ is is a compact subset of Rq.

Definition A.2.1. A family (Qθ (x,dy),θ ∈Θ) of transition probability kernels on (E,E )→ [0,1] is dominated by
the transition kernel Q(x,dy) if
∀x ∈ E,Qθ (x,dy) = fθ (x,y)Q(x,dy), with fθ : (E×E,E ×E )→ R+ measurable.

Assume that the initial distribution µ is known and let Pθ (resp. Q denote the distribution of the Markov
chain (Xn) with initial distribution µ and transition kernel Qθ (resp. Q(x,dy). Then the likelihood function and
loglikelihood write

Ln(θ) =
dPθ

dQ
(X0, . . . ,Xn) = Π

n
i=1 fθ (Xi−1,Xi), `n(θ) =

n

∑
i=1

log fθ (Xi−1,Xi). (A.2.3)

The maximum likelihood estimator is defined as: θ̂n = argsupθ∈Θ Ln(θ).

A.2.1.2 Consistency

Denote by θ0 the true value of the parameter. In order to study the properties of tθ̂n as n→ ∞, we introduce some
assumptions.

(H0): The family (Qθ (x,dy),θ ∈Θ) is dominated by the transition kernel Q(x,dy).

(H1): The Markov chain (Xn) with transition kernel Qθ0 is irreducible, positive recurrent and aperiodic, with
stationary measure λθ0(dx) on E.

(H2): λθ0({x,Qθ (x, ·) 6= Qθ0(x, ·)})> 0.

(H3): ∀θ , log fθ (x,y) is integrable with respect to λθ0(dx)Qθ0(x,dy) := λθ0 ⊗Qθ0 .

(H4): ∀(x,y) ∈ E2, θ → fθ (x,y) is continuous w.r.t. θ .

(H5): There exists a function h(x,y) integrable w.r.t. λθ0 ⊗Qθ0 and such that

∀θ ∈Θ, | log fθ (x,y)| ≤ h(x,y).
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Assumption (H0) ensures the existence of the likelihood, (H1) is analogous for Markov chains to repetitions in
a n sample of i.i.d. random variables, (H2) corresponds to an identifiability assumption, which ensures that dif-
ferent parameter values lead to distinct distributions for the observations. Assumptions (H3)–(H5) are regularity
assumptions.

Theorem A.2.2. Assume (H0)–(H5) and that Θ is a compact subset of Rq. Then the MLE θ̂n is consistent: it
converges in Pθ0 -probability to θ0 as n→ ∞.

Proof. Using that, under (H0),(H1), the sequence (Yn = (Xn−1,Xn),n≥ 1) is a positive recurrent Markov chain on
(E×E,E ×E ) with stationary distribution λθ0(dx)Qθ0(x,dy), the ergodic theorem applies to (Yn) and yields that,
under (H3),

1
n

n

∑
i=1

log fθ (Xi−1,Xi)→ J(θ0,θ) :=
∫ ∫

E×E
log fθ (x,y)λθ0(dx)Qθ0(x,dy) Pθ0 -a.s. (A.2.4)

Rewriting this equation yields that J(θ0,θ) defined in (A.2.4),

J(θ0,θ) =
∫ ∫

log
fθ (x,y)
fθ0(x,y)

λθ0(dx)Qθ0(x,dy)+A(θ0),

with A(θ0) =
∫ ∫

log fθ0(x,y)λθ0(dx)Qθ0(x,dy). Under (H0),

Qθ (x,dy) = fθ (x,dy)Q(x,dy),

so that

J(θ0,θ) =
∫

λθ0(dx)
∫

log
Qθ (x,dy)
Qθ0(x,dy)

Qθ0(x,dy)+A(θ0)

= −
∫

K(Qθ0(x, ·),Qθ (x, ·)) λθ0(dx)+A(θ0),

where K(P,Q) denotes the Kullback–Leibler divergence between two probabilities. Recall that it satisfies

- if P << Q, then K(P,Q) = EP(log dP
dQ ) =

∫
log dP

dQ dP = EQ(φ(
dP
dQ )) with φ(x) = x log(x)+1− x.

- K(P,Q) = +∞ otherwise.

A well-known property is that K(P,Q)≥ 0 and K(P,Q) = 0 if and only if P = Q a.s. Assumption (H2) ensures that
θ → J(θ0,θ) possesses a global unique maximum at θ = θ0.

The MLE θ̂n satisfies that θ̂n = Argsupθ (
1
n`n(θ)). The maximum of the right-hand side of (A.2.4) is θ0. Hence

to get consistency, we have to prove that “lim Argsup 1
n`n(θ)” is equal to “Argsup lim 1

n`n(θ)”, which is θ0. Note
that, for all θ ∈Θ, `n(θ̂n)≥ `n(θ) and J(θ0,θ0)≥ J(θ0, θ̂n). Combining these two inequalities we get,

0≤ J(θ0,θ0)− J(θ0, θ̂n)≤J(θ0,θ0)−
1
n
`n(θ0)+

1
n
`n(θ0)−

1
n
`n(θ̂n)

+
1
n
`n(θ̂n)− J(θ0, θ̂n)

≤2 sup
θ∈Θ

|J(θ0,θ)−
1
n
`n(θ)|.

Therefore, by taking Θ a compact subset of Rq, we get that J(θ0, θ̂n)→ J(θ0,θ0) Pθ0 - a.s. as n→∞. Assumptions
(H4),(H5) ensure that J(θ0, ·) is continuous with a unique global maximum at θ0 so that the MLE converges to θ0
in Pθ0 -probability.
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A.2.1.3 Limit distribution

This section is based on general results presented in [64]. For V a vector or a matrix, let V ∗ denote its transposition.
Define the q×q matrix

I (θ0) =
∫ ∫

∇θ fθ0(x,y) ∇∗
θ

fθ0(x,y)
fθ0(x,y)

2 λθ0(dx)Qθ0(x,dy). (A.2.5)

Let us introduce the additional assumptions.

(H6) θ → `n(θ) is C2(Θ) Pθ0 -a.s.

(H7) I (θ0) defined in (A.2.5) is non-singular.

(H8)
∫

φθ0(r,x,y)λθ0(dx)Qθ0(x,dy)→ 0 as r→ 0 where

φθ0(r,x,y) = sup{‖ ∇
2
θ log fθ (x,y)−∇

2
θ log fθ0(x,y) ‖ · ‖ θ −θ0 ‖≤ r}.

We can state the result on the asymptotic normality of the MLE

Theorem A.2.3. Assume (H0)–(H8). Then the MLE θ̂n is asymptotically Gaussian: under Pθ0 ,

√
n(θ̂n−θ0)→L Nq(0,I (θ0)

−1).

Proof. Under (H6), the score function is well defined and reads as

∇θ `n(θ) =
n

∑
i=1

∇θ log fθ (Xi−1,Xi) =
n

∑
i=1

vi(θ). (A.2.6)

The score function satisfies

Proposition A.2.4. Under assumptions (H0)–(H5), ∇θ `n(θ0) is a q-dimensional Pθ0 -martingale w.r.t. (Fn)n≥0,
which is centered and square integrable.

Proof: By (A.2.6), we have, ∇θ `n(θ0) = ∇θ `n−1(θ0) + vn(θ0). We get, using that, under (H5),
∫

∇θ f =
∇θ (

∫
f ) holds true,

Eθ0(vi(θ0)|Fi−1) = EQ( ∇θ log fθ0(Xi−1,Xi) fθ0(Xi−1,Xi)|Fi−1)

= EQ(∇θ fθ0(Xi−1,Xi)|Fi−1)

= ∇θ EQ( fθ0(Xi−1,Xi)|Fi−1) = ∇θ 1 = 0.

Noting that Eθ0(∇θ `1(θ0)) = ∇θ (Eθ01) = 0, ∇θ `n(θ0) is a centered martingale.
Consider now the increasing process associated with this martingale. We have

〈∇θ `n(θ0)〉= ∑
n
i=1 Eθ0(vi(θ0) v∗i (θ0)|Fi−1).

An application of the ergodic theorem yields 1
n ∑vi(θ0) v∗i (θ0)→I (θ0) Pθ0 a.s.

Therefore for j = 1, . . .q, Eθ0〈∇θ `n(θ0)〉 j j→ ∞ as n→ ∞ . Applying a central limit theorem, we get that

1√
n

∇θ `n(θ0)→Nq(0,I (θ0)).

The matrix I (θ0) is the Fisher information matrix .
A Taylor expansion of the score function ∇θ `n at point θ0 leads, using that ∇θ `n(θ̂n) = 0, to

0 =
1√
n

∇θ `n(θ̂n) =
1√
n

∇θ `n(θ0)+
1
n

(∫ 1

0
∇

2
θ `n(θ0 + t(θ̂n−θ0))dt

)
θ̂n−θ0√

n
. (A.2.7)
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Now, (A.2.4) yields, using (A.2.1),

1
n

∇
2
θ `n(θ0)→

∫
λθ0(dx)

∫
∇

2
θ (log fθ0(x,y))Qθ0(x,dy) =−I (θ0),

Indeed, the last equality is obtained using Assumptions (H3)–(H6) and∫
∇2

θ
fθ0(x,y)

fθ0(x,y)
Qθ0(x,dy) = ∇

2
θ (
∫

fθ0(x,y)Q(x,dy)) = 0.

Therefore, from expansion (A.2.7), we get,

√
n(θ̂n−θ0) =

(
− 1

n

∫ 1

0
∇

2
θ `n(θ0 + t(θ̂n−θ0))dt

)−1( 1√
n

∇θ `n(θ0)
)
. (A.2.8)

Since θ̂n → θ0 in Pn
θ0

-probability we get that the first factor of the r.h.s. of (A.2.8) converges to I (θ0)
−1 under

Pθ0 a.s., and that the second factor converges in distribution under Pθ0 to N (0,I (θ0)). Finally, Slutsky’s Lemma
yields that

√
n(θ̂n−θ0) converges to N (0,I (θ0)

−1I (θ0)I (θ0)
−1) = N (0,I (θ0)

−1) in distribution.

A.2.2 Other approaches than the likelihood

It often occurs in practice that the likelihood is difficult to compute. One way to overcome this problem relies on
stochastic algorithms. However, another way round is to build other processes than the likelihood to derive estima-
tors. These methods include for the i.i.d. case the M-estimators ([124]) and, for stochastic processes, Estimating
equations, approximate likelihoods, pseudolikelihoods. ([88]), Generalized Moment Methods ([65]), Contrast
functions ([32]).

A.2.2.1 Minimum contrast approaches

What if, instead of the likelihood, another process (contrast process) Un(θ) is used as for instance the C.L.S.
method (in essence think of Un '−`n))

Let us assume that Un(θ) =Un(θ ,X0, . . . ,Xn) satisfies

(H1b) For all θ ∈Θ, Un(θ) is Fn-measurable and θ →Un(θ) is under Pθ0 a.s. continuous and twice continuously
differentiable on a subset V (θ0).

(H2b) For all θ , n−1Un(θ)→ K(θ0,θ) in Pθ0 -probability uniformly over compacts subsets of Θ, where θ →
K(θ0,θ) is continuous with a unique global minimum at θ0.

(H3b) n−1/2∇θUn(θ0)→Nq(0, IU (θ0)) in distribution under Pθ0 .

(H4b) There exists a symmetric positive matrix JU (θ0) such that

lim
n→∞

sup
|θ−θ0|≤δ

‖ 1
n

∇
2
θUn(θ)− JU (θ0) ‖→ 0 as δ → 0 Pθ0 -a.s.

Define the MCE estimator θ̃n associated with Un(θ) as any solution of

Un(θ̃n) = inf
θ∈Θ

Un(θ). (A.2.9)

Then, using similar proofs than in Section A.2.1.1 yields that
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Theorem A.2.5. Assume that (H1b)–(H4b) hold. Then, the MCE defined in (A.2.9)

(1) θ̃n→ θ0 in Pθ0− probability.

(2)
√

n(θ̃n−θ0)→L Nq(0,JU (θ0)
−1IU (θ0)J−1

U (θ0)) under Pθ0 .

Note that contrary to the MLE where JU (θ0) = IU (θ0), the asymptotic covariance matrix of θ̃n is no longer
IU (θ0)

−1. Analytic properties of matrices yield that JU (θ0)
−1IU (θ0)J−1

U (θ0)) is always greater (as a linear form)
than IU (θ0)

−1.

A.2.2.2 Conditional Least Squares

A classical approach associated to this method is the Conditional Least Squares method.
Let (Xn) be an Markov chain on Rp with transition kernel Qθ (x,dy) on Rp and initial distribution µ . Assume that
it is positive recurrent with stationary distribution λθ (dx).

Define the two functions

g(θ ,x) =
∫

yQθ (x,dy) and

V (θ ,x) =
∫

t(y−g(θ ,x)) (y−g(θ ,x))Qθ (x,dy).

Clearly, Eθ (Xi|Xi−1) = g(θ ,Xi−1) and Varθ (Xi|Xi−1) =V (θ ,Xi−1). We assume
The CLS method is associated with the process

Un(θ) =
1
2

n

∑
i=1

(Xi−Eθ (Xi|Xi−1))
∗ (Xi−Eθ (Xi|Xi−1)). (A.2.10)

Applying the ergodic theorem to ((Xi−1,Xi), i≥ 1) yields that, under Pθ0

1
n

Un(θ)→ K(θ0,θ) =
1
2

∫ ∫
(y−g(θ ,x))∗(y−g(θ ,x))λθ0(dx)Qθ0(x,dy) a.s.

Rewriting this limit yields that

K(θ0,θ) =
1
2

∫ ∫
(g(θ ,x)−g(θ0,x))∗(g(θ ,x)−g(θ0,x))λθ0(dx)Qθ0(x,dy)+A(θ0)

with
A(θ0) =

1
2

∫ ∫
(y−g(θ ,x))∗(y−g(θ ,x))λθ0(dx)Qθ0(x,dy).

To study the MCE θ̃n = Argmin{Un(θ),θ ∈Θ}, we assume

(A1) For all x ∈ Rp, g(θ ,x) and V (θ ,x) are finite and C2 with respect to θ .

(A2) θ → K(θ0,θ) continuous and λθ0({x,g(θ ,x) 6= g(θ0,x)})> 0.

(A3) The matrix JU (θ) =
∫
(∇θ g(θ ,x) ∇∗

θ
g(θ ,x)λθ (dx) is non-singular at θ0.

(A4) The function φ(δ ,x) = sup||θ−θ0||≤δ ||∇2
θ

g(θ ,x)−∇2
θ

g(θ0,x)|| satisfies∫
φ(δ ,x)λθ0(dx)→ 0 as δ → 0.

Assumption (A1) ensures that Un is well defined, (A2) that θ → K(θ0,θ) has a global unique minimum at θ0.
Assumption (A3),(A4) ensure that (H3b), (H4b) hold.
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Let us study ∇θUn(θ). We have that

0 = ∇θUn(θ̃n) = ∇θUn(θ0)+
(∫ 1

0
∇

2
θUn(θ0 + t(θ̂n−θ0))dt

)
(θ̂n−θ0). (A.2.11)

The first term of the r.h.s. of (A.2.11) reads as

∇θUn(θ0) =−
n

∑
i=1

(∇θ g(θ0,Xi−1))
∗ (Xi−g(θ0,Xi−1)).

Hence, under (A1), ∇θUn(θ0) is a centered L2-martingale under Pθ0 with

〈∇θUn(θ0)〉=
n

∑
i=1

Eθ0

(
(∇θ g(θ0,Xi−1))

∗ V (θ0,Xi−1)∇θ g(θ0,Xi−1)
)
.

Applying the ergodic theorem yields

1
n
〈∇θUn(θ0)〉n→

∫
(∇θ gθ0(x)

∗)V (θ0,x) ∇θ gθ0(x)λθ0(dx) := IU (θ0) a.s.

Therefore, we can apply the central limit theorem for martingales (see Theorem A.4.2) and obtain,

1√
n

∇θUn(θ0)→L Nq(0, IU (θ0)) under Pθ0 .

For the second term, we get ∇2
θ
Un(θ0) = ∑

n
i=1 ∇θ g(θ0,Xi−1)

∗∇θ g(θ0,Xi−1) which satisfies

1
n

∇
2
θUn(θ0)→ JU (θ0) :=

∫
∇θ g(θ0,x)∗ ∇θ g(θ0,x) λθ0(dx) Pθ0 a.s.

Therefore under (A3), (A4), JU (θ0) is invertible. Therefore, θ̃n is consistent and
√

n(θ̃n−θ0)→N (0,Σ(θ0))
with Σ(θ0) = J−1

U (θ0)IU (θ0)J−1
U (θ0).

A.2.3 Hidden Markov Models

A Hidden Markov Model is, roughly speaking, a Markov chain observed with noise. This raises new problems for
the statistical inference of parameters ruling the Markov chain model (Xn).
Consider a Markov chain (Xn,n ≥ 0)) with state space E. The term "hidden " corresponds to the situation where
the Markov chain cannot be directly observable, Instead of (Xn) , the observations consists in another stochastic
process (Yn) whose distribution is ruled by (Xn). The simplest case is for instance the case of measurements errors
Yn = Xn + εn, with (εi) i.i.d. random variables. All the statistical inference for (Xn) has to be done in terms of (Yn)
only, since (Xn) cannot be observed.

For epidemic data, this situation occurs when the exact status of individuals cannot be observed or when there
is a systematic error in the reporting rate of Infected individuals.

The precise definition of a Hidden Markov Model (HMM) is:

Definition A.2.6. A Hidden Markov Model (HMM) is a bivariate discrete time process ((Xn,Yn),n≥ 0) with state
space X ×Y such that
(i) (Xn) is a Markov chain with state space X .
(ii) For all i≤ n, the conditional distribution of Yi given (X0, . . . ,Xn) only depends on Xi.

A classical example of Hidden Markov models is obtained as follows:
Let (εn) is a sequence of i.i.d. random variables on E and F(., .) : X ×E→Y a given measurable function. Then,
if Yn = F(Xn,εn), the bivariate sequence (Xn,Yn) is a Hidden Markov Model.
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It follows from this definition that (Xn,Yn) is a Markov chain on X ×Y , while the sequence (Yn) is no longer
Markov:
L (Yn|Y0, . . . ,Yn−1) effectively depends on all the past observations.

This is why the inference for parameters ruling (Xn) is difficult and rely on specific tools (see e.g. [23], [125]).

A.3 Results for statistics of diffusions processes

Inference for diffusion processes observed on a finite time-interval presents some specific properties. For sake
of comprehensiveness, a short recap of classical results for diffusion processes inference is then given.We first
present the general framework required for time-dependent diffusions and then detail these results. (see [88] for a
presentation of available results).

On a probability space (Ω,F ,(Ft , t ≥ 0),P), consider the stochastic differential equation

dξt = b(t,ξt)dt +σ(t,ξt)dBt ,ξ0 = η . (A.3.1)

We assume that (Bt) is a p-dimensional Brownian motion, that b and σ satisfy regularity assumptions which
ensure the existence and uniqueness of solutions of (A.3.1) and that η is F0-measurable and that

We detail results on the inference on parameters in the drift and diffusion coefficient depending on various kinds
of observations of (ξt , t ∈ [0,T ]). For this, let us recall some basic definitions concerning these processes. The
state space of (ξt , t ≤ T ) is CT = {x = (x(t)) : [0,T ]→ Rp continuous,CT}, where CT denote the Borel filtration
associated with the uniform topology. Denote by Xt : CT →Rp, Xt(x) = x(t). the coordinate functions defined for
0≤ t ≤ T . The distribution of ξ T : (ξt , t ∈ [0,T ]) on (CT ,CT ) is denoted by PT

b,σ .

A.3.1 Continuously observed diffusions on [0,T]

The distributions Pb,σ Pb′,σ ′ of two diffusion processes having distinct diffusion coefficients are singular. Therefore,
we assume that σ(·) = σ ′(·). From a statistical point of view, this means that σ(·) can be identified from the
continuous observation of (ξt). Consider the parametric model associated to the diffusion (ξt) in Rp:

dξt = b(θ , t,ξt)dt +σ(t,ξt)dBt ,ξ0 = x0. (A.3.2)

Define the diffusion matrix Σ(t,x) = σ(t,x)σ∗(t,x).

Consider the estimation of a q-dimensional parameter θ ∈ Θ, with Θ a subset of Rq. Then, under conditions
ensuring existence and uniqueness of solutions (see e.g. [83]) and additional assumptions for the Girsanov formula
(cf. [68], [97]) on C([0,T ],Rp),CT ),

LT (θ) =
dPT

θ

dPT
0
(X) (A.3.3)

= exp
[∫ T

0
Σ
−1(t,Xt)b(θ ; t,Xt)dXt −

1
2

∫ T

0
b∗(θ ; t,Xt)Σ

−1(t,Xt)b(θ , t,Xt)dt
]
.

The statistical model is (CT ,CT ,(PT
θ ,σ ,θ ∈ Θ)). The loglikelihood is `T (θ) = logLT (θ). The Maximum Likeli-

hood Estimator is θ̂T s.t.
`T (θ̂T ) = sup{`T (θ),θ ∈Θ}. (A.3.4)

There is no general theory for the properties of the MLE as T → ∞, except in the case of ergodic diffusions.
Consider the case of an autonomous diffusion ξt satisfying the stochastic differential equation on Rp:

dξt = b(θ ,ξt)dt +σ(ξt)dBt ; ξ0 ' η .

Assume that, for θ ∈ Θ ∈ Rq, (ξt) positive recurrent diffusion process with stationary distribution λ (θ ,x)dx on
Rp. Then, under assumptions ensuring that the statistical model is regular (see [69] for general results and [94] for
ergodic diffusions), then, as T → ∞, the MLE θ̂T is consistent and

√
T (θ̂T −θ0)

L→ Nk(0, I−1(θ0)) under Pθ0 , with
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I(θ) = I(θ) =
∫
Rp

∇θ b∗(θ ,x)Σ−1(x)∇θ b(θ ,x)λ (θ ,x)dx.

A.3.2 Discrete observations with sampling ∆ on a time interval [0,T]

Consider the stochastic differential equation (A.3.2), where parameters in the drift are α and in the diffusion
coefficient β .

dξt = b(α, t,ξt)dt +σ(β , t,ξt)dBt ,ξ0 = x0. (A.3.5)

Let T = n∆ and assume that the observations are obtained at times (tn
i = i∆; i = 0, . . .n) .

The space of observations is ((Rp)n,(B(Rp))n. Let Pn
α,β denote the distribution of the n-tuple. Contrary to contin-

uous observations, the probabilities Pn
α,β ,P

n
α ′,β ′ are absolutely continuous, leading to a likelihood Ln(α,β ) for the

n-tuple. However, it depends on the transition probabilities Pθ (X(ti+1) ∈ A|X(ti) = x) of the underlying Markov
chain. The main difficulty here lies in the intractable likelihood. This is a well known problem for discrete obser-
vations of diffusion processes. Alternative approaches based on M-estimators or contrast processes (see [124] for
i.i.d. observations, [88] for SDE) have to be investigated.

Several cases can be considered according to T and ∆ with T = n∆.

(a) T → ∞. Results are obtained for ergodic diffusions.

1- ∆ fixed: Both parameters in the drift coefficient α and in the diffusion coefficient β can be consistently estimated
and ([86]),

√
n
(

α̂n−α0

β̂n−β0

)
→N (0, I−1

∆
(α0,β0). (A.3.6)

2- ∆ = ∆n→ 0 and T = n∆n→ ∞ as n→ ∞. As n→ ∞, there is a double asymptotics ∆n→ 0 and T = n∆n→ ∞.
Both parameters in the drift coefficient α and in the diffusion coefficient β can be consistently estimated and the
following holds (see [86] and [87]

- Parameters in the drift coefficient α are estimated at rate
√

n∆n.

- Parameters in the diffusion coefficient β are estimated at rate
√

n.(√
n∆n(α̂n−α0)√

n(β̂n−β0)

)
→N (0, I−1(α0,β0).) (A.3.7)

(b) T = n∆n fixed and ∆ = ∆n→ 0 as n→ ∞.
It presents the following properties.

- Except for specific models, there is no consistent estimators for parameters in the drift.

- Parameters in the diffusion coefficient can be consistently estimated and satisfy

√
n(β̂n−β0)

L→ Z = η U, with η ,U independent, U ∼N (0, I).

The random variable Z is not normally distributed but Gaussian but has Mixed variance Gaussian law. It
corresponds to a Local Asymptotic Mixed Normal statistical model (see [124], [68] for general references
on LAMN; [37], [49] and [58] for diffusion processes).
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A.3.3 Inference for diffusions with small diffusion matrix on [0,T ]

The asymptotic properties of estimators are now studied with respect to the asymptotic framework “ε → 0”. Con-
sider the SDE

dξt = b(α,ξt)dt + εσ(ξt)dBt ,ξ0 = x0.

Contrary to the previous section, it is possible to estimate parameters in the drift α .
For continuous observations on [0,T ], Kutoyants ([92]) has studied the estimation of α using the likelihood and
proved that the MLE is consistent and satisfies

ε
−1(α̂ε −α0)→N (0, I−1

b (α0)) with (A.3.8)

Ib(α) =
∫ T

0
(∇α b)∗(α,z(α, t))Σ−1(z(α, t))∇α b(α,z(α, t))dt.

The Fisher information of this statistical model is Ib(α).

The statistical inference based on discrete observations of the sample path with sampling interval ∆ = ∆n → 0
has first been studied for one-dimensional diffusions with σ ≡ 1 ([47]), and [119], [57] assuming a parameter
β in the diffusion coefficient σ(β ,x). Under assumptions linking the two asymptotics ε and n, [57] proved the
existence of consistent and asymptotically Gaussian estimators (α̃ε,n, β̃ε,n) of (α0,β0), which converge at different
rates, parameters in the drift function being estimated at rate ε−1 and parameters in the diffusion coefficient at rate√

n = ∆
−1/2
n . (

ε−1(α̂ε,n−α0)√
n(β̂ε,n−β0)

)
−→

n→∞,ε→0
N

(
0,
(

I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))
. (A.3.9)

The matrix Ib is the matrix (A.3.8) and the matrix Iσ is

Iσ (α,β )i j = (A.3.10)(
1

2T

∫ T

0
Tr(∇βiΣ(β ,s,z(α,s))Σ−1(β ,s,z(α,s))∇β j Σ(β ,s,z(α,s))ds

)
,

where Ib(α0,β0) and Iσ (α0,β0) are assumed invertible.

A.4 Some limit theorems for martingales and triangular arrays

A.4.1 Central limit theorems for martingales

This Central Limit Theorem for martingales in R is stated in [64].

Let Mn = ∑
n
i=1 Xi and 〈M〉n = ∑

n
i=1 E(X2

i /Fi−1). Set s2
n = EM2

n = E〈M〉n.

Theorem A.4.1. Assume that the sequence (Mn) of L2 centered martingales satisfy that, as n→ ∞, s2
n→ ∞ and

(H1): ∀ε > 0, 1
s2
n

∑
n
i=1 E(X2

i 1|Xi|≥snε |Fi−1)→ 0 in probability.

(H2): 1
s2
n
〈M〉n→ η2 in probability (η is an r.v. such that, if η2 < ∞, Eη2 = 1).

Then (Mn
sn
, 〈M〉ns2

n
)→L (η N,η2) with η ,N independent r.v.s, N ∼N (0,1).

Note that Z = ηN satisfies E(exp(iuZ)) = E(exp(−u2η2/2)).

The Lindberg condition (H1) is often replaced by the stronger assumption:

(H1b): ∃ δ > 0, 1
s2+δ
n

∑
n
i=1 E(|Xi|2+δ |Fi−1)→ 0 in probability.
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If the dimension of the parameter is q, the score function ∇θ `n(θ0) is a Pθ0 -martingale in Rq. So we need
theorems for multidimensional martingales in Rq.

Let (Mn) be a sequence of random variables in Rq with M∗n = (M1
n , . . . ,M

q
n). Then (Mn) is a Fn-martingale if (Mp

n )
is a Fn-martingale for p = 1, . . .q.

Assume that (Mn) is a centered L2-martingale in Rq and set Xi = Mi−Mi−1 with X∗i = (X1
i , . . . ,X

q
i ).

Then the increasing process 〈M〉n is the q×q random matrix defined by 〈M〉0 = 0 and 〈M〉n−〈M〉n−1 =E(Xn X∗n |Fn−1)=(
E(X p

n X l
n|Fn−1)

)
1≤p,l≤q.

Hence, for 1≤ p, l ≤ q, 〈M〉pl
n = ∑

n
i=1 E(X p

i X l
i |Fi−1).

This theorem is derived from a convergence theorem for triangular arrays stated in [74].
For each p, assume that E(〈Mp

n 〉) = (sp
n)

2→ ∞ and define

ζ
n,p
i =

X p
i

sp
n

and (ζ n
i )
∗ = (ζ n,1

i , . . .ζ n,q
i ).

Theorem A.4.2. Assume that there exists a positive random matrix Γ such that, as n→ ∞,

(H1): ∑
n
i=1E(ζ n

i (ζ
n
i )
∗|Fi−1)→ Γ in probability.

(H2): There exists δ > 0, ∑
n
i=1 E(‖ζ n

i ‖
2+δ |Fi−1)→ 0 in probability.

Then the following holds (
n

∑
i=1

ζ
n
i ,

n

∑
i=1

E(ζ n
i (ζ

n
i )
∗|Fi−1

)
L→
(

Γ
1/2Nq ,Γ

)
with Nq ∼Nq(0, I) and Γ,Nq independent.

Here again, if Z = Γ1/2Nq, then, for u ∈ Rq, E(exp(iuZ)) = E(exp(− u∗Γu
2 )).

A.4.2 Limit theorems for triangular arrays

When dealing with discrete observations with small sampling interval, classical limit theorems for martingales can
no longer be used since the σ -algebras G n

k = σ(Z(s),s≤ k/n) do not satisfy the nesting property. We need general
theorems for triangular arrays as stated in [74].

A.4.2.1 Recap on triangular arrays

Let (Ω,F ,(Ft , t ≥ 0),P) be a filtered probability space satisfying the usual conditions. Assume that for each n,
there is a strictly increasing sequence (T (n,k),k≥ 0) of finite (Ft)-stopping times with limit +∞ and T (n,0) = 0.
The stopping rule is defined as

Nn(t) = sup{k,T (n,k)≤ t}= ∑
k≥1

1T (n,k)≤t .

A q-dimensional triangular array is a double sequence (ζ n
k ),n,k≥ 1) of q-dimensional variables ζ n

k = (ζ n, j
k )1≤ j≤q.

such that each ζ n
k is FT (n,k)-measurable.

We consider the behavior of the sums

Sn
t =

Nn(t)

∑
k=1

ζ
n
k .
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The triangular array is asymptotically negligible (A.N.) if

Nn(t)

∑
k=1

ζ
n
k

u.c.p.→ 0 i.e. sup
s≤t
|

Nn(s)

∑
k=1

ζ
n
k |

P→ 0.

In the sequel, we assume that the T (n,k) are non-random and set G n
k = FT (n,k).

The example we have in mind consists in the deterministic times

T (n,k) = inf{t, [nt]≥ k∆}⇒ Nn(t) = sup{k, k∆

n
≤ t}. (A.4.1)

Triangular arrays often occur as follows: ζ n
k may be a function of the increment YT (n,k) −YT (n,k−1) for some

underlying adapted càdlàg process Y . For discretely observed diffusion processs, we have ζ n
k = X(k∆/n)−X((k−

1)∆/n). We first state a lemma proved in [49].

Lemma A.4.3. Let ζ n
k ,U be random variables with ζ n

k being G n
k -measurable. Assume that

(i) ∑
n
k=1E(ζ n

k |G n
k−1)→U in P-probability,

(ii) ∑
n
k=1E[(ζ n

k )
2|G n

k−1)]→ 0 in P-probability,

Then
n

∑
k=1

ζ
n
k →U in P-probability.

Corollary A.4.4. Let ζ n
k ,U be d-dimensional random variables with ζ n

k being G n
k -measurable. Assume

(i) ∑
n
k=1E(ζ n

k |G n
k−1)→U in P-probability,

(ii) ∑
n
k=1E[

∥∥ζ n
k

∥∥2 |G n
k−1)]→ 0 in P-probability,

Then
n

∑
k=1

ζ
n
k →U in P-probability.

A.4.2.2 Convergence in law of triangular arrays

Let (ζ n
k ) be a triangular array of d-dimensional random variables such that ζ n

k is G n
k -measurable.

Theorem A.4.5. Assume that (ζ n
k ) satisfy for Nn(t) defined in (A.4.1)

(i) ∑
Nn(t)
k=1 E(ζ n

k |G n
k−1)

u.c.p.→ At with A an Rd-valued deterministic function.

(ii) ∑
Nn(t)
k=1 E(ζ n,i

k ζ
n, j
k |G

n
k−1)−E(ζ n,i

k |G
n
k−1)E(ζ

n, j
k |G

n
k−1)

P→Ci j
t for 1≤ i, j≤ d and for all t ≥ 0, where C = (Ci j)

is a deterministic continuous M+
d×d-valued function.

(iii) For some p > 2, ∑
Nn(t)
k=1 E(

∥∥ζ n
k

∥∥p |G n
k−1)

P→ 0.

Then, we have
Nn(t)

∑
k=1

ζ
n
k

L→ A+Y, w.r.t. the Skorokhod topology, (A.4.2)

where Y is a continuous centered Gaussian process on Rd with independent increments s.t. E(Y i
t Y j

t ) =Ci j
t .

Remark: If (ii) holds for a single time t, the convergence ∑
Nn(t)
k=1 ζ n

k
L→ At +Yt for this particular t fails in general.

There is an exception detailed below (Theorem VII-2-36 of [76]).
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Theorem A.4.6. Assume that for each n, the variables (ζ n
k ,k ≥ 1) are independent and let ln be integers, or ∞.

Assume that, for all i, j = 1, . . . ,d and for some p > 2,

∑
ln
k=1E(ζ

n,i
k )

P→ Ai,

∑
ln
k=1

(
E(ζ n,i

k ζ
n, j
k )−E(ζ n,i

k )E(ζ n, j
k )
)

P→Ci j,

∑
ln
k=1E(‖ζ

n
k ‖

p)
P→ 0,

where Ci j and Ai are deterministic numbers. Then the variables ∑
ln
k=1 ζ n

k converge in distribution to a Gaussian
vector with mean A = (Ai) and covariance matrix C = (Ci j).

A.5 Inference for pure jump processes

In statistical applications, we study likelihood ratios formed by taking Radon–Nikodym derivatives of members of
the family of probability measures (Pθ ,θ ∈Θ⊂ Rq) with respect to one fixed reference distribution.

A.5.1 Girsanov type formula for counting processes

Rather than giving the general expression of the Girsanov formula for semi-martingales (see [76]), we state it first
for the case of a counting process on N and then for multivariate counting processes.

Let X be a stochastic process such that the predictable compensator Λ of X satisfies Λ(t) =
∫ t

0 λ (s)ds). assume
that, under Pθ , it is a counting process with intensity λ θ (t) where λ θ (t)> 0 for all t > 0. Denote by T1,T2, . . . the
sequence of jump times of X and let N(t) denotes the number of jumps up to time t. Then

dPθ

dPθ0

|Ft = exp{
N(t)

∑
i=1

[log(λ θ (Ti))− log(λ θ0(Ti))]−
∫ t

0
[λ θ (s)−λ

θ0(s)]ds.} (A.5.1)

Consider now multivariate counting processes N(t) = (N1(t), . . . ,Nk(t)). We refer to Jacod’s formula (see
e.g. Andersen [1, II.7]) for a general expression of two probability measures P, P̃ on a filtered probability space
under which N has compensators ΛΛΛ, Λ̃ΛΛ respectively. Usually, we will have continuous or absolutely continuous
compensators with intensities λl(t), λ̃l(t). Since no jumps can occur simultaneously, the sequence of jump times Ti
is well defined, together with the mark Ji ∈ {1, . . . ,k} (Ji = l if the jump Ti occurs in Nl (∆Nl(Ti) = 1). The process
N.(t) = ∑

k
l=1 Nl(t) is a counting process with compensator Λ.(t) = ∑

k
l=1 Λl(t). Assume P̃ is absolutely continuous

with respect to P (written P̃<< P).

Theorem A.5.1. Assume that P̃<< P. Then

Λ̃l << Λl for all l = 1, . . . ,k, P- a.s.

∆Λ.(t) = 1 for any time t implies ∆Λ̃.(t) = 1, P-a.s.

dP̃
dP
|Ft =

dP̃
dP
|F0

∏
k
l=1 ∏s≤t λ̃l(t)∆Nl(t) exp(−

∫ t
0 λ̃.(s)ds)

∏
k
l=1 ∏s≤t λl(t)∆Nl(t) exp(−

∫ t
0 λ.(s)ds)

=
dP̃
dP
|F0 exp

{
k

∑
l=1

N(t)

∑
i=1

[log λ̃l(Ti)− logλl(Ti)]∆Nl(Ti)−
k

∑
l=1

∫ t

0
[λ̃l(s)−λl(s)]ds

}
.

Note that the products in the above formula are just ∏n λ̃Jn(Tn), ∏n λJn(Tn).
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A.5.2 Likelihood for Markov pure jump processes

Let us consider a pure jump process with state space E = {0, . . . ,N} and Q-matrix Q = (qi j) observed up to time
T . The likelihood is

LT (Q) =
N

∏
i=0

∏
j 6=i

q
Ni j(T )
i j exp(−qi jNi(T )), (A.5.2)

where the process Ni j(t) counts the number of transitions from state i to state j on the time interval [0, t] and Ni(t)
is the time spent in state i before time t:

Ni(t) =
∫ t

0
δ{X(s)=i}ds.

We refer to [73] for a complete study of Marked point processes.
This yields that the maximum likelihood estimator of Q is

q̂i j(T ) =
Ni j(T )
Ni(T )

, for j 6= i and Ni(T )> 0. (A.5.3)

If NT (i) = 0, the process has not been in state i: there is no information about qi j in the observations and the MLE
of qi j does not exist. As for Markov chains with countable state space, q̂i j(T ) is the empirical estimate of qi j.

A.5.3 Martingale properties of likelihood processes

In statistical applications, we want to consider a whole family of probability measures P, not necessarily mutually
absolutely continuous and therefore cannot apply the above theorem to obtain dP̃

dP |Ft for each P̃,P considered.
However, for any two probability measures P̃,P, the measure Q = 1

2 (P̃+P) dominates both P̃ and P. We can
therefore calculate dP/dQ and dP̃/dQ and finally set,

dP̃
dP

=
dP̃
dQ

/
dP
dQ

where
dP
dQ

> 0,

dP̃
dP

= ∞ where
dP
dQ

= 0.

Suppose now that we have a statistical model (Pθ ,θ ∈ Θ) for some subset Θ ∈ Rq. Suppose that all Pθ are
dominated by a fixed probability measure Q. For simplicity, we assume that all the Pθ ’s coincide on F0 and
consider only the absolute continuous case:
under Pθ , N = (N1, . . . ,Nk) has compensator ΛΛΛ

θ = (
∫

λ θ
l ), l = 1, . . . ,k) for certain intensity process λ θ . We

consider the likelihood function as depending on both t ∈ R+ and θ ∈ Θ. Dropping the denominator in Theorem
A.5.1 (which does not depend on θ ), we have that the likelihood at time t as a function of θ is proportional to

L(θ , t) = exp(−
k

∑
l=1

∫ t

0
λ

θ
l (s)ds) ∏

Tn≤t
λ

θ
Jn(Tn),

= exp{
k

∑
l=1

∫ t

0
[logλ

θ
l (s)dNl(s)−λ

θ
l (s)ds]}.

Remark A.5.2. This is another expression of the general Girsanov formula given in the appendix of Part 1 of these
notes.

The likelihood process L(θ , t) is a (Q,(Ft))-martingale. Indeed, let Y a Fs measurable random variable. We
have EQ(Y L(θ , t)) = EQ(Y

dPθ

dQ ) = Eθ (Y ) = EQ(Y L(θ ,s)) since Y ∈Fs.
Hence EQ(L(θ , t)|Fs) = L(θ ,s).

Consider now the log-likelihood

logL(θ , t) =
k

∑
l=1

∫ t

0
(logλ

θ
l (s)dNl(s)−λ

θ
l (s)ds). (A.5.4)
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The score process is defined as ∇θ logL(θ , t). Assuming that differentiation may be taken under the integral sign,
we get

∇θ j logL(θ , t) =
∂

∂θ j
logL(θ , t) (A.5.5)

=
k

∑
l=1

∫ t

0
∇θ j logλ

θ
l (s) (dNl(s)−λ

θ
l (s)ds), j = 1, . . . ,q.

Hence the score process is a (Pθ ,(Ft))- local martingale in Rq. It is a centered L2-martingale with associated
predictable q×q matrix variation process

〈∇θ logL(θ ; ·)〉r, j =
k

∑
l=1

∫ t

0
∇θr logλ

θ
l (s)∇θ j logλ

θ
l (s) λ

θ
l (s)ds. (A.5.6)

The “observed information” at θ is obtained by differentiating again with respect to θ . If differentiation can
be taken under the integral sign, we get

∇
2
θrθ j

logL(θ ; t) =
k

∑
l=1

∫ t

0
∇

2
θrθ j jλ

θ
l (s)(dNl(s)−λl(s)ds)

−
∫ t

0
∇θr logλ

θ
l (s)∇θ j logλ

θ
l (s)λ

θ
l (s)ds. (A.5.7)

Using (A.5.6) yields that the compensator of the process −∇2 logL(θ ; ·) is 〈∇θ logL(θ ; ·)〉. This is a version of a
well-known result: the variance matrix of the score coincides with the expected information matrix.
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