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Abstract—The accurate knowledge of vascular network geome-
try is crucial for many clinical applications such as cardiovascular
disease diagnosis and surgery planning. Vessel enhancement
algorithms are often a key step to improve the robustness of
vessel segmentation. A wide variety of enhancement filters exists
in the literature, but they are often difficult to compare as
the applications and datasets differ from a paper to another
and the code is rarely available. In this article, we compare
seven vessel enhancement filters covering the last twenty years
literature in a unique common framework. We focus our study
on the liver vascular network which is under-represented in the
literature. The evaluation is made from three points of view:
in the whole liver, in the vessel neighborhood and near the
bifurcations. The study is performed on two publicly available
datasets: the Ircad dataset (CT images) and the VascuSynth
dataset adapted for MRI simulation. We discuss the strengths and
weaknesses of each method in the hepatic context. In addition,
the benchmark framework including a C++ implementation of
each compared method is provided. An online demonstration
ensures the reproducibility of the results without requiring any
additional software.

I. INTRODUCTION

A. Context

Vascular diseases are among the principal causes of death
worldwide. This has motivated the development of a wide
range of medical imaging technologies, dedicated to the vi-
sualization of vascular structures and the inner flowing blood,
e.g. Magnetic Resonance Imaging (MRI) and X-ray Computed
Tomography (CT). The induced angiographic images provide
information of precious help for clinical applications, such as
diagnosis and surgery planning. However, these images are
complex to analyze, due to the sparseness of blood vessels,
their complex topological and geometric properties, the low
signal-to-noise ratio, and the presence of noise and artifacts
inherent to the flowing blood signal. In this challenging
context, computer-aided tools dedicated to angiographic image
processing and analysis [1] are indeed mandatory to help the
clinicians in their daily practice.

In particular, vessel segmentation—that consists of accu-
rately extracting the whole vascular volume or the vessel
medial axes— is a crucial task and an abundant literature deals
with this issue. An exhaustive state of the art is beyond the
scope of this article, and the interested reader is referred to
[2] for a survey of the methods before 2010 and to [3] for a

more recent survey that includes in particular machine/deep-
learning approaches. From a methodological point of view,
many approaches were investigated. Non-exhaustively, one
can cite model-based, region-growing, level-sets and machine
learning approaches. With the rise of computational power,
deep-learning is also increasingly investigated. However, the
lack of large annotated vascular datasets constitutes a current
limit for such approaches in the 3D case.

Beyond their methodological variability, most (3D) angio-
graphic image segmentation methods share a common prepro-
cessing step, namely a filtering used to reduce noise and non-
vascular signal whereas increasing the vascular signal. The
efficiency of this preliminary step has a strong influence on
the accuracy of the segmentation carried out afterward. As
a consequence, the development of so-called vessel enhance-
ment filters has also been an active research field over the last
twenty years.

B. Vessel Filtering

The most popular approaches in vessel filtering rely on dif-
ferential information, and in particular the second derivatives
of the angiographic images. Indeed, due to the contrast and
geometric properties of the vessels, it is generally assumed
that the observation of the local curvatures via the Hessian
matrix analysis can allow for the determination of the position
and orientation of the putative vascular structures. Pioneering
works based on this paradigm were proposed by Sato et al.
[4], and Frangi et al. [5] who developed so-called vesselness
functions by combining eigenvalue information in a scale-
space framework.

Many contributions then built upon this paradigm. Meijering
et al. [6] proposed a neuriteness function to better detect long
and thin tubular structures for neurite tracing in fluorescence
microscopy images. To overcome the non-uniform response
in different diameter vessels, Jerman et al. [7] proposed a
volume ratio of tubular structures in the vesselness function.
More recently, Zhang et al. [8] proposed to improve Jerman’s
method for CT data with an improved fuzzy affinity function.

Optimally Oriented Flux (OOF) was proposed by Law and
Chung [9] to cope with the problem of fusion of closely
located adjacent vessels of Hessian based framework. They
proposed an optimization framework based on image gradient



flux that can be solved by an eigenvalue analysis. The resulting
eigenvalues can then be involved in any classical vesselness
function.

An alternative family of approaches makes use of mor-
phological filters, based on openings by structuring elements.
Merveille et al. [10] proposed to exploit this strategy by
using orientation-based path-openings responses, combined
with a voting policy. Sazak et al. [11] proposed another
related strategy by using openings with top-hat tensors and
a combination of balls and cylinders structuring elements.

Finally, other approaches based on the phase tensors [12] or
relying on wavelets [13] were proposed together with recent
learning segmentation approaches [14], [15].

C. Purpose and Contributions

Performing comparisons of these enhancement methods is
difficult if we only refer to the literature. Indeed, the filters
are often compared by the authors against few other methods.
The used datasets, parameters and metrics also vary from one
paper to another.

Even if extensive reviews of vessel segmentation techniques
exist [2], [3] they do not provide a common framework
to evaluate performances on a specific image dataset. The
reproduction of such algorithms is also complex and time con-
suming since implementations are not systematically provided
by the authors.

Based on these considerations, our purpose is to propose
a comprehensive comparison of seven classical vessel en-
hancement filters covering the literature of the last twenty
years. More precisely, our contributions are the following:
(i) we evaluate the filters with usual comparison criteria on
whole images but also on focused areas (vessel neighborhood;
bifurcations); (ii) we provide benchmark results on synthetic
and real images with a focus on liver imaging that constitutes
a target of increasing importance; (iii) we make available
a reproducible implementation with the source codes and
online demonstrations of all the selected methods to help the
interested readers to reproduce our results and perform their
own benchmark easily.

The compared vessel enhancement filters are Hessian-based
methods, namely Sato [4], Frangi [5], Meijering [6], Jerman
[7], Zhang [8] plus OOF [9] and RORPO [10]. In particular,
we are interested in evaluating their robustness to CT and MRI
artifacts and noise.

II. FILTERING METHODS

We briefly recall the various vessel enhancement methods
investigated in the proposed evaluation framework. The pur-
pose is not to exhaustively describe the different approaches,
fully discussed in [4]–[10], but to emphasize the main simi-
larities and differences between the considered filters.

As stated in Sec. I-B, most of the considered filtering
methods rely on the second derivatives of the image intensities
characterizing the curvature of the image structures. The
underlying hypothesis is that a vessel is a bright, elongated
structure within a darker background.

Based on these facts, many vessel filtering approaches
compute the Hessian matrix of the image. The Hessian matrix
H of a function f(x1, x2, x3) is defined, at each point, as:

H(f) =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 =


∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2∂x3

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x2

3


It is worth mentioning that f requires to be continuous and
even twice differentiable, whereas the initial image I is digital,
and then non-continuous / non-differentiable. To tackle this
issue, it is generally chosen to define f from I by application
of a Gaussian kernel of standard deviation σ. Convolving the
image I with a Gaussian kernel also sets up a multiscale
framework based on the linear scale-space paradigm [16]
where the scale of the vessels of interest depends on σ.

Let e1, e2 and e3 be the three eigenvectors of H(f),
associated to the eigenvalues λ1, λ2 and λ3, respectively, with
|λ1| 6 |λ2| 6 |λ3|. Locally, a vessel can be seen as a bright
tubular structure on a dark background. In terms of eigen
analysis, this is expressed by the following properties [17]:

|λ1| ≈ 0

λ2 ≈ λ3 � 0

A. Sato et al. [4]

The Sato vesselness is one of the first vessel enhancement
approaches based on second derivative analysis. (N.B.: Sato
et al. sort the eigenvalues λ?i such that λ?1 > λ?2 > λ?3.)
In the Hessian based framework whenever λ?2, λ

?
3 < 0, the

eigenvector e?1 associated to λ?1 corresponds to the direction
of the putative vessel. Then, eigenvectors e?2 and e?3 form a
basis of the vessel cross section where |λ?2| and |λ?3| represent
the sizes of the cross section. The Sato vesselness introduces
a ratio of the eigenvalues to get a high response in tubular
structures and proposes an asymmetric formulation based on
the sign of λ?1 in order to improve the smoothness of the
response and suppress noise. Two parameters α1 and α2

control the strength of this asymmetry:

F =


λ?c exp(−

λ?1
2
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2 ) λ?1 6 0, λ?c 6= 0

λ?c exp(−
λ?1

2
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0 λ?c = 0

with λ?c = min{−λ?2,−λ?3}.

B. Frangi et al. [5]

A second vesselness function—which is considered nowa-
days as the Hessian-based gold standard—relies on the hy-
pothesis that using the three eigenvalues can be more discrim-
inative. Three measures are derived from these eigenvalues,
namely:

Rb = |λ1|/
√
|λ2λ3|

Ra = |λ2|/|λ3|

S =
√
λ21 + λ22 + λ23



which are dedicated to discriminate blobs (Rb); to distinguish
plate and line structures (Ra); and to measure the norm of the
Hessian to avoid enhancing low contrast structures (S). These
three measures are involved in the following function:

F =
(
1− exp
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)(
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if λ2, λ3 6 0 and F = 0 otherwise. This function is controlled
by three parameters α, β, c.

C. Meijering et al. [6]

A third parameter-free vesselness function was developed to
detect very elongated structures (e.g. neurites in fluoroscopy)
This approach, initially proposed in 2D and then extended in
3D [12], relies on a modified Hessian matrix H ′(f) defined
as:h11 + α
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(generally with α = 1/3). The three eigenvalues of H ′(f) are
expressed with respect to those of H(f) as:

λ′i = λi + αλj + αλk

for i 6= j 6= k 6= i. The vesselness is then defined by:

F =

{
λmax/λmin λmax < 0
0 λmax > 0

where λmax = max{λ′1, λ′2, λ′3} is computed at each voxel,
and λmin is the minimum of all the λmax of the image.

D. Jerman et al. [7]

Jerman et al. proposed a vesselness robust to bifurcations
which builds upon the volume aspect ratio, a metric used to
detect nearly spherical tensors. The function is defined by:

F =


0 λ2 6 0 or λρ 6 0
1 λ2 > λρ/2 > 0

λ22(λρ − λ2)
(

3
λ2+λρ

)3
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where λρ is a parametric regularized version of λ3, defined to
reduce the sensitivity to weakly constrasted regions:

λρ =

 λ3 λ3 > τ maxx λ3(x)
τ maxx λ3(x) 0 < λ3 6 τ maxx λ3(x)
0 otherwise

with τ ∈ [0, 1].

E. Zhang et al. [8]

In the specific context of hepathic vascular networks, Zhang
et al. further proposed to improve Jerman vesselness by identi-
fying the liver tissues and vessels mean intensity. A K-means
classification was combined with a sigmoid filter dedicated
to enhance the vessels whereas suppressing other tissues. In
addition, they slightly modified the Jerman vesselness function
F by adding a multiplicative term 1− exp(− 3(λ2

1+λ
2
2+λ

2
ρ)

2λρ
) in

the “otherwise” case.

F. Optimally Oriented Flux (OOF) [9]

Alternatively to the Hessian-based analysis, Law and Chung
proposed an optimization framework based on the projection
of the image gradient on a sphere. The problem can be
formulated as a generalized eigenvalue problem of a 3 × 3
matrix playing similar a role to the Hessian matrix in the five
above vesselness functions. In particular, the sphere radius has
an analogue role to σ with respect to scale-space analysis. In
this benchmark, we consider the vesselness function used by
the authors, originally proposed in [18]:

F =

{ √
λ2λ3 λ2, λ3 < 0

0 otherwise

G. Ranking the Orientation Responses of Path Operators
(RORPO) [10]

This last method is the only that does not rely on differential
information. By contrast to the previous (local, linear) filters,
RORPO is semi-global and non-linear. It builds upon the
notion of path-openings defined in mathematical morphology
[19]. Path opening consists of carrying out a morphological
opening based on a set of structuring elements defining a fam-
ily of paths defined by an adjacency relation. After computing
path openings in the 7 main orientations of the 3D space,
RORPO point-wise rank their responses. Then it extracts an
operator discriminating blobs, planes and line-like structures
according to the number of high and low responses at each
voxel.

III. DATA

The proposed benchmark focuses on the hepatic vascular
network. Image analysis for liver applications mostly involves
CT acquisitions. However, the interest in MRI acquisitions is
growing, in particular for vascular studies.

Liver datasets including liver images, liver masks and
vascular ground-truths are rare as manual segmentation is a
tedious and time consuming task requiring experts. In addition,
regulations regarding patient’s data protection and privacy
have become increasingly strict in Europe. To the best of our
knowledge, only two such CT datasets are publicly available
and none for MRI.

One of the two CT datasets was recently released for
the Medical Segmentation Decathlon1. However this dataset
presents a low axial resolution (5 mm) leading to an insuffi-
cient precision with respect to vascular structures and ground-
truths are defined as a mixture of tumors and vessels, making
vascular-only filtering evaluation difficult.

Based on these considerations, we present hereafter the two
datasets that we chose, namely the Ircad dataset for (real)
CT images and the VascuSynth dataset for (simulated) MR
Images.

1http://medicaldecathlon.com

http://medicaldecathlon.com


(a) (b)

(c) (d) (e)

Fig. 1. CT image of the Ircad dataset. (a) Axial slice of the liver. (b) 3D
maximum intensity projection (MIP) visualization inside the liver mask. (c–e)
Vascular ground-truth (in blue), together with the mask of the liver (c, in red),
the mask of the vessel neighborhood (d, in red) and the mask of the vessel
bifurcations (e, in red).

A. Ircad Dataset

The Ircad dataset2 contains images from 20 patients (50%
men/women; 75% hepatic tumors). The following images are
available for each patient: a CT image including the liver
(Fig. 1(a,b)) (image size between 5122 × 74 and 5122 × 260
voxels; axial slice resolution between 0.56 mm and 0.87 mm,
axial slice thickness between 1.00 mm and 4.00 mm); a mask
for all organs in the abdomen, including the liver (Fig. 1(b,c));
and separate ground-truths of hepatic vessels and tumors.

Since the investigated filtering methods require isotropic
data to provide relevant vesselness responses, the CT images
were preprocessed using B-spline interpolation. This led to a
resolution of 1× 1× 1 mm3 for all the images, allowing for
an homogeneous scale-space handling, and providing a rele-
vant trade-off between axial upsampling and coronal/sagittal
downsampling.

The vascular ground-truths were obtained by merging the
hepatic vessels and portal vein ground-truths natively pro-
vided, and removing parts outside the liver mask (Fig. 1(c–e)).

B. VascuSynth Dataset

In the absence of MRI hepatic vessel dataset, we turned
to a synthetic dataset. We consider the 2013 VascuSynth [20]
dataset3 that simulates vascular trees. The original dataset is
composed of 120 3D isotropic images. The complexity of the
vascular trees vary from 1 to 56 bifurcations. In this work, 30

2https://www.ircad.fr/fr/recherche/3d-ircadb-01-fr
3http://vascusynth.cs.sfu.ca/Data.html

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Simulated images from the VascuSynth dataset. (a–c) Slices with
different levels of noise (σ = 5, 10, 20) and bias effect. (d–f) 3D MIP
visualizations for the same levels of noise and artifacts. (g–e) Vascular ground-
truth (in blue), together with the mask of the vessel neighborhood (h, in red)
and the mask of the vessel bifurcations (i, in red).

images with a bifurcation complexity from 31 to 51 were kept
from the original dataset. In order to obtain realistic images,
compliant with MRI acquisition properties, each of these 30
images was corrupted with three levels of Rician noise (σ = 5,
10 and 20) and bias effect (Fig. 2(a–f)). The final synthetic
dataset thus contains 90 images.

The ground-truths simply correspond to the binary volumes
used for simulating the images (Fig. 2(g–i)).

IV. EXPERIMENTAL SETTINGS

A. Regions of Interest

To compare the results from each method, a quantitative
analysis is conducted by computing usual metrics (Sec. IV-B)
in three different regions of interest: (1) the liver mask (resp.
the whole image) for the Ircad dataset (resp. the VascuSynth
dataset) to obtain global results; (2) the vessel neighborhood
for more detailed results around the objects of interest; and (3)
the bifurcation areas, to focus on these complex regions where
the vessel enhancement filters sometimes fail. Illustrations of
these different regions of interest are provided in Figs. 1(c–e)
and 2(h,i).

https://www.ircad.fr/fr/recherche/3d-ircadb-01-fr
http://vascusynth.cs.sfu.ca/Data.html


B. Evaluation Metrics

The goal of vessel enhancement filters is twofold: reducing
noise and artifacts in the image whereas enhancing the vessels.
It is usual to evaluate these filters by thresholding the result and
comparing the best induced binary result to the vessel ground-
truth. We follow this strategy and compute 100 thresholdings
for each grey-level result. The confusion matrix is computed
on each thresholded result to obtain the true positives (tp),
true negatives (tn), false positives (fp) and false negatives
(fn) with respect to the vessel ground-truth in each region of
interest (Sec. IV-A).

Two similarity metrics are then computed based on these
values, namely the Dice coefficient:

Dice =
2tp

fp+ fn+ 2tp

and the Matthews Correlation Coefficient:

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

The Dice coefficient focuses on the overlapping between the
ground-truth and the binarized results, whereas the MCC takes
into account the whole image (including also the true nega-
tives). We chose the MCC instead of the usual Accuracy since
the MCC is specifically designed for handling imbalanced
classes (here, sparse vessels vs. large background). Both Dice
and MCC scores lie in [0, 1]; the closer to 1 the better the
results.

In addition to these two metrics, we also consider the
ROC (Receiver Operating Characteristic) curve to have a more
global overview on the grey-level results. A ROC curve depicts
the true positive rate (tpr = tp

tp+fn ) vs. the false positive rate
(fpr = fp

fp+tn ). In our experiments, a ROC curve is composed
of 100 points, one for each binarized result.

C. Optimization Scheme

The different filtering methods depend on two kinds of pa-
rameters: the scale-space parameters (e.g. σ) and the intrinsic
parameters of the methods (e.g. α, β and c in the Frangi
vesselness). In the next section, we present filtering results
with optimal parameters. In particular, these parameters are
optimized with respect to the MCC.

The first step of the optimization deals with the scale-space
parameters. It is carried out independently for each dataset,
each method and each mask (except the bifurcation mask). We
fix the intrinsic parameters of each Hessian-based method to
default values (generally provided by the authors, empirically
chosen otherwise). Then, a grid search is performed on the
scale-space bounds σmin and σmax with a number of scales
fixed to 4 within the interval [σmin, σmax], with σmin ∈
[0.6, 1.4] and σmax ∈ [1.6, 3.0], and a step of 0.2, under the
constraint that σmax−σmin > 1. For RORPO (the only “non-
Hessian-based” method), three parameters are optimized: the
size smin of the minimal path, with smin ∈ [10, 60] and a step
of 10; the (multiplicative) growing factor g of path size with
g ∈ [1.2, 1.6] and a step of 0.2; and the number k of different

sizes of path, with k ∈ {3, 4}; under the constraint that the
only considered paths have a size in [40, 100]. In this first step,
the optimization is carried out groupwise. In other words, for
given filter / dataset / mask, the same scale-space parameters
are determined for all the images of the dataset by maximizing
the mean MCC score over all these images.

The second step of the optimization deals with the intrinsic
parameters of the considered filter. At this stage, the scale-
space parameters are known and fixed. For each image of
the considered dataset / mask, the parameters of the filter are
then optimized, once again by considering MCC as objective
function. This step is required only for Sato, Frangi, Jerman,
Zhang and OOF. Indeed, Meijering and RORPO only rely
on scale-space parameters. It is important to notice that such
way of setting the intrinsic parameters corresponds to a “best
case” scenario for parameter-dependent filters, since in real
applications, a “mean case” scenario is generally considered,
i.e. the filter is not parameterized per image, but parameters
are learnt from a sample of images, and then applied on the
whole dataset.

V. EXPERIMENTS AND RESULTS

A. Implementation and Reproducibility

In addition to the benchmark results presented hereafter, we
also provide a common framework with a C++ implementa-
tion of all the tested filters. The source code is freely avail-
able on the following GITHUB repository: https://github.com/
JonasLamy/LiverVesselness. Few dependencies are needed
(mainly ITK and BOOST) and different scripts permit to
reproduce our results. Providing these implementations allows
any interested reader to design his/her own way of comparing
the different filters, and to complete the proposed study.

In order to ensure the reproducibility of the results without
software dependency, we also propose an online demonstra-
tion, available via the following link: http://ipol-geometry.
loria.fr/∼kerautre/ipol demo/LiverVesselnessIPOLDemo. It al-
lows one to test the seven methods on VascuSynth and Ircad
images or any uploaded image. The user may experiment each
method and observe their parameter sensitivity by directly
visualizing the results online or download them for further
analysis.

B. Results

The MCC and Dice values are provided for each of the
seven methods and each of the three masks, for the Ircad
dataset (Tab. I) and the VascuSynth dataset (Tab. II). Regarding
VascuSynth, we provide the results for σ = 10, which
corresponds to a relatively low signal-to-noise ratio. This is
justified by the fact that MR images acquired for the liver are
generally of low quality (in particular compared to CT images
or MRIs of other kinds of structures, e.g. the brain).

The ROC curves of the seven methods and two of the three
masks (whole image/liver mask; vessel neighborhood mask)
are provided for the Ircad and the VascuSynth dataset with
σ = 10 (Fig. 3).

https://github.com/JonasLamy/LiverVesselness
https://github.com/JonasLamy/LiverVesselness
http://ipol-geometry.loria.fr/~kerautre/ipol_demo/LiverVesselnessIPOLDemo
http://ipol-geometry.loria.fr/~kerautre/ipol_demo/LiverVesselnessIPOLDemo


TABLE I
IRCAD DATASET: MCC AND DICE VALUES (MEAN ± STD DEV) FOR THE 7 FILTERS AND THE 3 MASKS (BEST RESULTS HIGHLIGHTED).

Liver mask Vessel neighbourhood Bifurcations
MCC Dice MCC Dice MCC Dice

Sato 0.275± 0.066 0.286± 0.073 0.534± 0.061 0.722± 0.072 0.288± 0.057 0.289± 0.068

Frangi 0.356± 0.079 0.367± 0.083 0.560± 0.061 0.719± 0.083 0.453± 0.041 0.525± 0.043

Meijering 0.138± 0.038 0.150± 0.048 0.466± 0.069 0.651± 0.079 0.264± 0.044 0.302± 0.076

Jerman 0.318± 0.081 0.330± 0.082 0.550± 0.057 0.717± 0.069 0.323± 0.046 0.341± 0.073

Zhang 0.346± 0.106 0.344± 0.108 0.503± 0.134 0.685± 0.170 0.308± 0.079 0.348± 0.110

OOF 0.190± 0.041 0.200± 0.047 0.556± 0.058 0.732± 0.059 0.320± 0.046 0.378± 0.059

RORPO 0.384± 0.077 0.375± 0.092 0.456± 0.060 0.631± 0.103 0.272± 0.043 0.290± 0.075

TABLE II
VASCUSYNTH (σ = 10): MCC AND DICE VALUES (MEAN ± STD DEV) FOR THE 7 FILTERS AND THE 3 MASKS (BEST RESULTS HIGHLIGHTED).

Whole image Vessel neighbourhood Bifurcations
MCC Dice MCC Dice MCC Dice

Sato 0.544± 0.043 0.497± 0.048 0.553± 0.044 0.727± 0.049 0.637± 0.037 0.654± 0.041

Frangi 0.602± 0.042 0.577± 0.049 0.558± 0.049 0.735± 0.056 0.650± 0.036 0.665± 0.042

Meijering 0.356± 0.040 0.318± 0.056 0.426± 0.031 0.610± 0.054 0.477± 0.029 0.500± 0.040

Jerman 0.612± 0.040 0.589± 0.052 0.545± 0.044 0.725± 0.052 0.629± 0.033 0.656± 0.039

Zhang 0.478± 0.041 0.420± 0.051 0.614± 0.037 0.797± 0.038 0.641± 0.039 0.679± 0.038

OOF 0.343± 0.035 0.342± 0.036 0.549± 0.041 0.737± 0.047 0.630± 0.038 0.654± 0.040

RORPO 0.311± 0.032 0.219± 0.032 0.402± 0.043 0.589± 0.035 0.355± 0.035 0.322± 0.040

Some examples of filtering results are illustrated in Fig. 4
in order to exemplify the behaviour of the best filters.

VI. DISCUSSION AND CONCLUSION

A. Dice, MCC and ROC Curve Analysis

From the results in Tabs. I and II, one can first observe that
the behaviour of the filters sometimes differ between the Ircad
dataset and the VascuSynth dataset.

The scores on the Ircad dataset are rather low; this reflect
the difficulty of the task on real images. All the methods
present a high number of false positives (see Fig. 3(a)). We
recall that the number of positives in these images is much
lower than the number of negatives. In particular, a false
positive rate of 0.1 corresponds here to two times more false
detections than the number of positives in the ground-truth. In
this context, the best MCC and Dice are obtained by RORPO.
As an anti-extensive filter, RORPO favors a high precision
over a high sensitivity which yields the best trade-off between
true and false detections. Frangi and Zhang yield comparable
scores whereas presenting an opposite behaviour; both of these
methods tend to favor a high precision over a high sensitivity.

The experiment on the vessel neighbourhood confirms this
observation. While focusing on an area around the vascular
network, most of the false positives detected by the filters
are excluded which yield to overall better results. In this case,
Frangi and OOF present the best MCC and Dice results closely
followed by Sato and Jerman, as they present higher true

positive rates. A significant increase of the OOF performance
may be noted from the whole liver results as OOF suffered
from a large number false detection corresponding to the liver
border.

For VascuSynth (σ = 10), the global results are better as the
task is less complex on these synthetic images, and the best
behaviour is obtained by Jerman, for MCC (0.612) and Dice
(0.589). The second best filter is Frangi, with scores sightly
above Jerman.

It is worth mentionning that for a better signal-to-noise
ratio (σ = 5, scores not provided here), Frangi behaves
slightly better than Jerman with respect to the two scores. One
may also notice that the MCC and Dice scores are strongly
correlated for all the filters in both datasets. This happens
whenever tn� tp ' fp ' fn which is generally the case for
sparse objects.

The metric increase observed for the Ircad dataset on
the vessel neighbourhood is less visible on the VascuSynth
dataset. Indeed, the VascuSynth dataset does not present non-
vascular structures which tends to increase the number of false
detections of vesselness filters.

On the vessel neighbourhood, the best filter is Zhang for
MCC (0.614) and Dice (0.797). Zhang yields a true positive
rate significantly higher than the other methods as observed
in Fig 3(c,d). However its high number of false positives
observed on the whole image resulted in average performance
compared to other methods. Once again, various other filters
present good performances in the vesselness neighbourhood,
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(c) VascuSynth – Whole image
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(d) VascuSynth – Vessel neighborhood

Fig. 3. ROC curves of the seven filters on (a,b) the Ircad dataset and (c,d) the VascuSynth dataset (σ = 10): (a,c) liver mask/whole image, (b,d) vessel
neighborhood mask.
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Fig. 4. Illustration of the best methods on the Ircad dataset (a–c) and the VascuSynth dataset (d–f). (a,d) Initial images (MIP). (b) RORPO result (MIP). (c)
Frangi result (MIP). (e) Jerman result (MIP). (f) Zhang result (MIP).



namely Sato, Frangi, Jerman and OOF. Similar conclusions
are obtained for σ = 5 (scores not provided here). Note that
for this mask, the MCC and Dice are no longer correlated,
since the tn value is significantly decreased compared to the
other tp, fp and fn.

When focusing on the mask of bifurcations, Frangi provides
the best results on the Ircad dataset for MCC (0.453) and Dice
(0.525). In particular, these scores are significantly higher than
those of the other filters. Regarding the VascuSynth dataset,
Frangi and Zhang provide the best results for MCC (0.650) and
Dice (0.679), respectively. However, Sato, Jerman and OOF
also provide good results. Similar conclusions are obtained for
σ = 5 (scores not provided here). Note that RORPO perfoms
poorly on bifurcations as by design it preserves only tube-like
structures.

B. Summary, Limits and Conclusion

Overall, in the most difficult—and realistic—context, i.e. on
real images and without any kind of prior knowledge or post-
processing, carrying out a good filtering is indeed difficult,
and the MCC and Dice scores remain lower than 0.4. In this
difficult context, RORPO and Frangi appear as the more robust
filters. In the other cases, i.e. when one knows the approximate
location of the vessels where the filtering has to be carried
out and/or when the images do not contain complex artifacts,
Frangi, Zhang, Jerman and OOF appear as the most robust
filters (with an emphasis on Zhang in the case of synthetic
images).

These conclusions need, however, to be balanced by the
following facts.

First, concerning the performance of Zhang, it is important
to keep in mind that the filter uses an ad hoc classification step
for better discriminating the different tissues. This induces in
particular the plus-value observed compared to Jerman (which
broadly relies on the same vesselness function). In other
words, context-aware hypotheses can, of course, contribute to
improve the filtering results.

Second, the ground-truth provided in the Ircad dataset are
not perfect, since the borders of the vessels are sometimes in-
accurate, whereas some smaller vessels are sometimes missed.
This may induce a bias in the analysis. In particular, it would
be important to carry out experiments on other CT images
endowed with improved groud-truth, in order to refine the
analysis.

Third, as stated in Sec. IV-C, the optimization scheme was
carried out per image, leading to a fine tuning of the intrinsic
parameters for certain filters. RORPO and Meijering, which
are the only two filters without such parameters, often present
degraded performances compared to the other five filters (this
is obvious for RORPO in the VascuSynth dataset and for
Meijering in the Ircad dataset). Completing the current analysis
with a second optimization scheme involving parameters learnt
per dataset and no longer per image, would be necessary to
study the parameters sensitivity of these five filters, and then
their actual robustness, in a more realistic scenario.

These different perspectives constitute some of the next
steps of our work with respect to the proposed evaluation
framework.
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