
HAL Id: hal-02544384
https://hal.science/hal-02544384

Submitted on 16 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IntuiGeo: Interactive tutor for online geometry
problems resolution on pen-based tablets

Omar Krichen, Eric Anquetil, Nathalie Girard

To cite this version:
Omar Krichen, Eric Anquetil, Nathalie Girard. IntuiGeo: Interactive tutor for online geometry prob-
lems resolution on pen-based tablets. European Conference on Artificial Intelligence (ECAI) 2020,
Aug 2020, Santiago de compostela, Spain. pp.1842 - 1849. �hal-02544384�

https://hal.science/hal-02544384
https://hal.archives-ouvertes.fr

IntuiGeo: Interactive tutor for online geometry
problems resolution on pen-based tablets

Omar Krichen and Eric Anquetil and Nathalie Girard1

Abstract.
This paper presents "IntuiGeo", a tutoring system for ge-

ometry learning in middle-schools on pen-based tablets. The
objective is to design an intuitive numerical tool which allows
the free drawing of geometric shapes by the simulation of
the pen and paper traditional setting. Our approach is based
on three main principles. The first one is the online recog-
nition of the user’s hand-drawn sketches. The second axis
of our approach is the ability of the tutor to supervise the
resolution strategy of the pupil in the context of a construc-
tion problem resolution. The third principle is the capacity
to give real-time visual, corrective and guidance feedback to
the pupil to achieve a personalized and autonomous experi-
ence. Our system is composed of two main engines. The 2D
recognition engine is responsible for the interpretation of the
hand-drawn strokes (and has already been validated in [9]).
The supervision engine is responsible for the automated gen-
eration of a geometry construction problem from a solution
example drawn by the teacher, as well as the supervision of
the resolution strategies chosen by the pupil. This paper will
focus on the concepts associated with the new supervision
engine. The first user experiments on the tutor have been
conducted in pilot middle-schools in the region of Brittany,
France. The analysis of the collected data demonstrates the
tutor performance in terms of supervision of the pupils pro-
duction and its ability to provide pertinent and personalized
corrective and guidance feedback.

1 Introduction

Our work is in the context of the Actif project, which aims
at fostering active learning by introducing pen-based tablets
in the classrooms. The digital device can be a support to the
child’s learning abilities (e.g the Instuiscript project for hand-
writing learning [5]). In this paper, we present IntuiGeo, an
intelligent tutoring system for learning geometry in middle-
school. IntuiGeo’s interface is illustrated in figure 1. Pen and
touch interaction allows the free elaboration of geometric
shapes, by drawing with the stylus and manipulating virtual
tools with the fingers (e.g. compass, ruler, etc). The objective
is to provide an intuitive experience for the user, who can draw
freely, while our 2D engine, based on bi-dimensional formal-
ism, analyses on the fly the stylus input [9]. We are there-
fore able to simulate the traditional pen and paper setting,

1 Univ Rennes, CNRS, IRISA,F-35000 Rennes, France, email:
{firstname.lastname}@irisa.fr

Figure 1: IntuiGeo’s interface

making the digital support transparent to the pupil. This al-
lows us to overcome the limitations of most dynamic geometry
software used in the classrooms, such as Geogebra [2], Cabri-
Geometry [10], or Geometer’s SketchPad [16], that require a
fastidious training phase for the pupils to get accustomed to
the digital support. The tutoring aspect of our system comes
from the ability to supervise, in real-time, the pupil’s res-
olution strategies in the context of a construction problem,
in order to provide correction and guidance feedback. In [4],
Chickering and Gamson demonstrate the importance of pro-
viding prompt feedback as a principle for good practice in
undergraduate education. In [8], Kluger and DeNisi show the
impact of feedback intervention on learning performance. To
our knowledge, there are no dynamic geometry software that
offer the possibility to guide, in real-time, the pupil in his/her
resolution steps. We designed a supervision engine that is
able to interpret semantically the pupil’s actions relatively to
a given problem. The handwritten strokes recognized by the
2D engine are fed in real-time to the supervision engine that
will be able to assess the learner knowledge state. We also
offer the teacher the possibility to create construction prob-
lems by feeding the system with one solution example. From
this example, the system should be able to synthesize differ-
ent resolution strategies since there are different ways to solve
an exercise. This ability is primordial in order to recognize in
real-time the child’s strategy or plan in the context of the reso-
lution process. The 2D engine, being already validated in [9],
will be presented briefly for clarity purposes. We will focus
in this paper on presenting the new supervision engine and
the tutoring aspect of our system. We define our supervision
engine with three main objectives:

• The automated generation of the construction problem (i.e.
exercise) from the example drawn by the teacher;

• Synthesis of strategies to solve the generated exercises;
• Supervision of the child resolution to provide feedback.

This paper is organized as follows. Sec. 2 presents an
overview of related works on intelligent tutoring systems for
geometry learning support. IntuiGeo’s architecture is pre-
sented in Sec. 3. The 2D recognition engine and the analy-
sis process are explained briefly in Sec. 4. We will focus on
the description of the new supervision engine in Sec. 5. To
validate this engine, experiments and results are presented in
Sec. 6. Conclusion and future works are given in Sec. 7.

2 Related works
Our approach is shaped by two domains, pattern recognition
and intelligent tutoring. As mentioned before, our system uses
a 2D engine that we designed to recognize and interpret struc-
turally, and in real time, the handwritten features. Since this
engine has already been validated [9], we will focus in this
section on the inner workings of intelligent tutoring systems.

The most common architecture of such systems is the tuple
domain module - tutoring module - learner module, alongside
the user interface (cf. figure 2). The domain module encom-

Figure 2: The four component architecture [13]

passes the domain knowledge, in the form of rules, for exam-
ple. The learner module represents the state of knowledge or
skills achieved by the student at any given point during the
problem resolution. The tutoring module is responsible of the
correction and supervision of the chosen strategies.

2.1 Planning and plan recognition for
strategy synthesis

Intelligent tutoring systems vary widely in their architecture
[13] [14]. An interesting one is Mentoniezh [15], a tutor for ge-
ometry proof demonstrations. The system is divided into two
main components: the expert module (by merging domain and
tutoring modules, cf. figure 2) and the learner module. The
expert module is then responsible for the strategy synthesis
while the learner module is responsible for the interpretation
and supervision of the pupil resolution strategies. The au-
thors consider the strategy synthesis problem as a planning
problem [12], such as the goal is to apply a sequence of do-
main actions (theorems, facts..) in order to solve the exercise.
The knowledge base is an ensemble of if-then rules, repre-
senting the geometric axioms and theorems of middle-school
level, and the expert module applies this knowledge on a given
problem variables to reach a goal state. The strategy synthesis
here is offline, such as the expert module generates a set of
possible solutions plans for each given problem. The learner
module interprets the pupil actions (i.e. demonstration steps)
by means of matching the plan/strategy the pupil is choos-
ing in real-time with the expert module generated solutions.
Recognizing the plan allows feedback generation and student

guidance. The architecture of our supervision engine is
inspired by this work although our domain, construction of
geometric shapes, is different from proof demonstration. Go-
ing back to construction problems, in [7], the authors propose
a method for synthesizing geometry constructions to solve
typical exercises, such as "draw a triangle given the length of
its three sides". The authors approach the resolution of such
exercises as a program synthesis problem [6], which can be
cast as a planning problem. The expert module must then
be able to automatically solve the given problem by synthe-
sizing construction plans, where the steps are ruler-compass
based drawing actions, leading to the construction of the de-
sired figure. Our strategy synthesis process is different from
the two later approaches in the sense that it is online. Our
planning environment is dynamic, i.e. it takes into account
exogenous actions. In the context of the resolution of a given
problem, our learner module interprets on the fly the pupil’s
production relatively to the given instruction (what element
of the problem is being drawn?, what are the satisfied con-
straints?). Our expert module is then aware of the pupil’s ac-
tions in real-time, and tries to find a solution plan that is
adapted to his/her resolution strategy. Hence, the tu-
tor is able to guide the pupil forwards by hinting to the next
possible steps, or backwards if the pupil is stuck.

2.2 Automated generation of construction
problems and knowledge representation

We are interested in works that offer an intuitive author mode
for the teacher to create his own construction problems. In [1],
the authors propose a method for the automatic generation
of geometry proof problems from analyzing a figure uploaded
by the user. This enables the teacher to generate a set of sim-
ilar exercises from one example. In [17], the authors propose a
system for the generation of high-school geometry questions.
The user can select a set of concepts from the interface (e.g.
triangle + perpendicularity), then the algorithm generates a
figure related to these concepts. From this figure, a proof prob-
lem is generated. Our approach is more straight-forward: we
want the teacher to be able to generate a construction prob-
lem from drawing one example solution directly with Intu-
iGeo. We choose to represent the information associated to
each problem with a knowledge graph [18], containing the ge-
ometric objects and the related concepts extracted from the
teacher’s drawn solution. This knowledge graph will be used
by the expert module to synthesize resolution strategies, or
plans, and by the learner module for the semantic interpreta-
tion of the pupil resolution process. We therefore add a new
unit to our system, the problem generation module, for the
interactive creation of a new construction problem.

Based on this study, we propose an original tutor for the
interactive resolution of geometry problems. Unlike most In-
telligent Tutoring Systems, IntuiGeo combines two forms of
domain knowledge:

• pattern recognition to analyze hand-drawn sketches;
• tutoring expertise to create, solve, and correct geometry

construction problems.

This combination allows for the real-time interpretation of
the pupil’s hand-drawn strokes as well as his/her resolution
strategy, in the context of a free sketching scenario.

Figure 3: IntuiGeo architecture

3 System architecture
Figure 3 illustrates the architecture of our tutoring system.
The combination of the two forms of domain knowledge tran-
spires clearly in it as well as in the user-system interaction
(cf. figure 4 and figure 5). We present a global vision of the
two main engines of IntuiGeo in this section.

3.1 Pattern Recognition expertise
The pattern recognition knowledge is embedded in the 2D
engine. It is called that way since it relies on a bi-dimensional
formalism CD-CMG [11] (Context Driven Constraints Multi-
Set Grammar) to analyze, on the fly, the stylus input, whereas
the tutoring expertise is embedded in the supervision engine.
The user, a teacher/pupil, can draw freely on the interface,
and the stylus input is interpreted, stroke by stroke, by the
2D engine, then transformed into a geometric element by the
CD-CMG grammar. A beautification of the raw stroke is per-
formed and an "idealized" version of the recognized element
is rendered by the interface. The user can implicitly validate
this interpretation, or redo his drawing. The 2D engine, along
with the user interface, can be thought of as a tool for the
free drawing of geometric shapes. This engine is presented in
more details in Sec. 4.

3.2 Tutoring expertise
The tutoring aspect of IntuiGeo is represented by the super-
vision engine, which is composed of the expert and learner,
as well as the problem generation modules.

3.2.1 The problem generation module

Figure 4 illustrates the process of a new construction prob-
lem creation. The teacher draws a complete example of the

Figure 4: Teacher interaction with the tutor

target figure or production. The problem generation module
takes as input the figure interpreted by the the 2D engine
and creates a model of the problem, in the form of a knowl-
edge graph, storing all the geometric elements and their links,
mathematical constraints such as length, angle, or perpendic-
ularity. The knowledge here is defined by the mathematical
rules that are applied on the recognized geometric elements.
For example, the teacher has drawn a right-angled triangle
ABC, the problem generation module will update the K.G.
with the link Perpendicular([AB], [AC]). The module trans-
lates the knowledge from the graph to plain text to generate
the instruction, which can be modified by the teacher.

3.2.2 The learner module

Figure 5 illustrates the child/tutor interaction. The learner
module will be responsible of the semantic interpretation of
the pupil’s strokes, recognized by the 2D engine. The learner
module matches each newly interpreted element with the cor-
responding node in the knowledge graph. Hence the extrac-
tion of satisfied and unsatisfied constraints is straight for-
ward. This enables the tutor to generate corrective feedback.
To generate guidance feedback, the learner module communi-
cates with the expert module, which will try to synthesize a
resolution strategy based on the state of the knowledge graph,
that is to say the expert module tries to recognize the solution
plan in which the child’s strategy lies.

Figure 5: Pupil interaction with the tutor

3.2.3 The expert module

Since all the necessary information about the problem is rep-
resented in the K.G. (Knowledge Graph), it is possible to
generate alternative strategies to solve an exercise, if we con-
sider the problem as a planning problem, where the initial
state is an empty drawing zone, and where the final state is
a production/figure where all the mathematical constraints
in the links of the K.G. are satisfied. The knowledge here is
defined by the set of domain drawing actions that will be the
basis of the strategy chosen to solve the problem. More details
will be given in Sec. 5.

4 The 2D engine

In this section, we present the 2D engine, defined by the CD-
CMG grammar [11] and its associated parser.

Definition 1. A CD-CMG is a tuple G=(VN , VT , S, P) with:
• VN : the set of non terminal symbols = symbol classes;
• VT : the alphabet, here VT= {stroke};
• S: the first symbol, or axiom;
• P: the set of production rules.

And where a production rule p ∈ P is denoted as follows:

α → β

Preconditions
Constraints
Postconditions

 | α ∈ VN
+, β ∈ (VT ∪ VN)+

Where preconditions and postconditions are based on the con-
cept of Document Structural Context (DSC), which models a
zone in the document and the awaited elements in it.

Definition 2. A DSC is defined by (λ)[position](γ)[part]
where:

• λ is a set of reference elements;
• position is a zone (i.e. a position) related to λ;
• γ is a set of awaited symbols in this zone;
• part is a part of the awaited symbol in the zone.

Figure 6 presents the angle production rule. Figure 7
illustrates the roles of the preconditions, postconditions, and
constraints blocks. The analysis here is driven by the context.
The preconditions, 1 , are a set of DSC that model the
verification step of the analysis. In this example, the analyzer
checks that the two extremities of the stroke t intersect two
existing segments zones (SegmentLength) before checking
the constraints block 2 . Here, a shape recognizer is called to
verify that t is an arc. The postconditions, 3 , are new DSC,
or zones, created after the rule reduction that update the
document global structure and model the prediction phase.
In this example, the production rule of a bisector will be
triggered if a segment intersect the new zone [res] [AngleZone].

Based on these definitions, a bi-dimensional analysis pro-
cess is defined, that is a combination of a bottom-up strategy
(guided by the reduced elements) and a top-down strategy
(guided by the postconditions DSCs). For each new element,
the parser searches the DSC it satisfies and vice versa. A pro-
duction is triggered if at least one of its preconditions DSC
is satisfied and one of its parameters is a new element. The
analysis process of a stroke t is illustrated in figure 8. The
root represents the stroke t. The nodes and the leaves rep-
resent the triggered rules. The analysis result is a sequence
of reduced productions rules (blue dotted path). The adapted
grammar and the associated parser define our 2D engine. This

Figure 6: CD-CMG rule Figure 7: Blocks role

Stroke (t)

Segment (s4)Angle Circle

Polygon(pf)

Point

TriangleQuadrilateral

Parallelogram Trapezes

Rhombus Rectangle

Figure 8: Analysis tree

enables a real-time interaction with user by the interpretation
of the handwritten stroke with visual feedback. This engine
has been validated in [9], where more details can be found.
In the next section, we present the supervision engine, which
constitutes the core of this paper.

5 The supervision engine

As explained in the previous section, the challenges here are
the automated generation of construction problems from the
teacher’s interpreted strokes, and the supervision of the child’s
resolution strategies. In this section, we describe in detail the
three modules of this engine and their relations.

5.1 The problem generation module

This module is responsible for the exercise creation and knowl-
edge graph (K.G.) construction. Once a complete solution ex-
ample is drawn by the teacher, the module generates the ex-
ercise model.

Definition 3. The knowledge graph is defined by a set of nodes
and edges such as:
• a node n is defined by

– T: the recognized element from the 2D engine;

– RefC: reflexive constraints on T, such as length value;

– DefC: Constraints depending on the mathematical definition
of T.

• Each edge is denoted by a triple e = (Nf,Ns,Rel) with

– Nf: the node corresponding to the tail node;

– Ns: the node corresponding to the head node;

– Rel: the set of relative constraints linking Ns and Nf.

DefC are directly extracted from the mathematical rules
inherent to the geometry domain knowledge. The state of a
node, and the state of the K.G. by extrapolation, are defined
by the state of the constraints of each node. A node is in the
state complete if all of its constraints are satisfied. By con-
trast, it is in the state partial if the corresponding geometric
element T has been drawn and at least one of its constraints
is not yet satisfied. It is then clear that for the exercise to
be solved, all the nodes in the K.G. have to be in the state
completed. A node is in the idle state if its corresponding el-
ement is not yet drawn by the pupil. Figure 9 illustrates the
process of knowledge graph construction. In this example, the
teacher draws two triangles ABC and BCD (see 2. in figure
9). First, the problem generation module constructs the nodes
corresponding to the geometric elements present in the docu-
ment. The refC constraints are intrinsic to these nodes (e.g.
length(AB,2.5cm)).

Instruction
Draw ABC
Right-angled
in B such as:
AB=2.5cm and
BC=4cm. Draw
BCD isosceles
in B such as
BD=4cm.

2

1

3

Figure 9: Instruction, Drawn solution, K.G. construction

The logical dependence relations are then added (red arrows
in figure 9). These dependence relations enable the module
to propagate the DefC constraints from a node to its neigh-
bours. For example, BCD isosceles =⇒ Equal(BC,BD).
Finally, the structural constraints are extracted from the 2D
engine, constraints such as adjacency, intersection, that do
not depend on a particular figure definition (see 3. in figure
9). Once all this knowledge of the problem is extracted, the
generation of the instruction is straight-forward. The prob-
lem generation module extracts the necessary and sufficient
information from the K.G. to construct the target figure, and
translates it to plain text (see 1. in figure 9).

5.2 The learner module
The learner module function is to interpret semantically the
pupil’s actions relatively to the resolution of a geometry con-
struction problem. Each stroke, transformed by the 2D en-
gine in real-time into a new geometric element, is fed into the
learner module to assess the resolution state of the pupil.

5.2.1 Verification and corrective feedback

One basic and necessary function of this module is the verifi-
cation of the goodness of the pupil’s actions. For example, as
in the pen/paper setting, the user draws a segment and labels
the extremities as point A and point B. The module will sim-
ply search the node in K.G. labelled AB, and replace its ele-
ment T by the newly drawn segment. The corrective feedback
is then straight-forward, since it is a description of the unsat-
isfied and satisfied constraints in the K.G. node. In our case,
we want to go a step further to fluidify the human-machine
interaction by establishing the semantic interpretation of the
pupil’s actions.

5.2.2 Semantic interpretation and matching

Since we are in a free drawing scenario, pupils are not inclined
to label their elements each time they draw them. They can

draw a whole figure without naming their points, and add
the labels after figure completion, which render the real-time
verification obsolete. Therefore, in order to provide feedback
on the fly, the module needs to interpret in real-time what
the child intended to draw, by trying to match the new
element with one of the nodes of the Knowledge Graph. This
is an interesting and important challenge. To do so, the learner
module evaluates the adequacy of the new element with each
node of the K.G. and chooses the one with the highest score.
Figure 10 presents a step in the resolution of the exercise
created in figure 9. The node BC has been already solved by
the pupil, since the only constraint to satisfy at that point was
the length of BC. The pupil draws a new segment denoted s1.
The module computes the adequacy score (Adeq) depending
on the satisfied constraints of each node as follows.

Definition 4. Adeq(s1, n)=
0, if class(n) 6= class(s1)
0, if |Strutsat(s1, n)| = 0
|Strutsat(s1, n)|+|Semsat(s1, n)|

|Strut(n)|+|Sem(n)| , otherwise

such as Strut is the set of structural constraints for the node
n, Sem is the set of mathematical/semantic constraints for the
node n, and Strutsat(s1, n) is the set of satisfied structural
constraints when matching s1 with the node n.

Figure 10: Supervision and matching

We can see in figure 10 an unknown extremity label (? in
the figure). When evaluating the adequacy of the new segment
s1 with a node, the learner module matches s1 with the node
label (e.g. ? is labelled A if we are evaluating Adeq(s1, AB)).

The node with the highest adequacy score is chosen and
the K.G. is updated by replacing the element corresponding
to the node by the newly created segment s1 and updating
its state with the satisfied and unsatisfied constraints. In this
example, the match is the node AB since s1 satisfies two
of the three constraints of the node (minus AB⊥BC). Af-
ter the matching, the corrective feedback is provided to the
pupil. The guidance feedback is the responsibility of the ex-
pert module. This automated semantic interpretation allows
for an efficient pen-based Human Machine Interaction.

5.3 The expert module
In order to supervise the pupil’s resolution strategies, the tu-
tor must have the necessary geometry domain knowledge to
solve automatically these construction problems.

5.3.1 Planning domain definition

As mentioned before in Sec.2, a construction problem can
be seen as automatic planning problem, where the goal is to

generate a sequence of drawing actions to achieve the target
figure. Our approach consists in decomposing the resolution
of a construction exercise into an ensemble of sub-problems,
such as the resolution of one node is in itself a planning prob-
lem. We define our planning environment relatively to each
node in the Knowledge Graph. The actions of the pupil (in-
terpreted by the learner module) are seen as exogenous events
impacting the planning environment of the expert module,
which makes it dynamic. More formally, the definition of this
state-transition system is as follows:

Definition 5. Our planning domain is a tuple σ=(S, A, E, γ)
with:
• S={idle, partial, complete}: the set of states for each node in

the K.G.;
• A: the set of drawing actions, defining the behaviour of the ex-

pert module;
• E: the set of events observed by the learner module;
• γ=S × (A ∪ E) → 2S a state transition function. If a ∈ A is

applicable then the system is in the state s’=γ(s,a).

The set of actions are mainly ruler-compass based actions,
with the possibility of using the protractor to create angles or
the try-square tool. Editions actions are also available for the
expert module, as well as for the pupil, such as modifying the
length of a segment, or the value of an angle.

Definition 6. The actions in our planning domain are defined
by a tuple a=(parameters, precond, stroke, effects) where:
• parameters are geometric elements or numeric values;
• stroke is the drawing action performed on the document;
• preconditions and effects are a set of constraints.

An example of such actions is as follows.

Action: MakePerpendicular (Segment: S1, Segment: S2)

• precond: Adjacent(S1, S2);
• stroke: OrthoGesture(S1,S2);
• effects: Perpendicular(S1,S2).

Here precond are the set of constraints that have to be sat-
isfied in the state s in order for the actions to be applicable.
Stroke is command gesture realized by the expert on the
drawing zone (cf. figure 11, 12). The effects are the con-
straints that will be satisfied in the state s’ after the action is
realized. The state transition function γ is then defined as:
γ(s,a) = s ∪ effects(a).

5.3.2 Planning algorithm

The planning algorithm is necessary to deliver the correction
and guidance to the pupil. The objective is to achieve a goal
state G where all the nodes of K.G. are in the state Complete.
Algorithm 1 illustrates this process. The basic principle is that
the expert module tries to solve each node on its own. A node
is chosen such as its state is not complete. Then the expert
searches for the set of applicable actions on this particular
node (line 5 in algorithm 1). If the set of applicable actions is

Figure 11: Orthogonal sign Figure 12: Action result

Algorithm 1 Resolution algorithm
Require: State = State of K.G., G=Goal state

1: Plan= { }
2: while State != G do
3: node = n ∈ State | (node.Partial or node.Idle)
4: while ! node.Complete do
5: Actions= Ac|∀ ac ∈ Ac, ac.applicable(node)
6: if applicables = ∅ then
7: node =chooseAnotherNode(State)
8: if node=∅ then
9: Backtrack(State)

10: end if
11: else
12: action= ChooseBestCost(Actions)
13: State= γ(State,action)
14: end if
15: end while
16: Plan=Plan ∪ action
17: end while

empty, the node is not solvable at this point and the expert
delays its resolution by choosing another one to solve (line 7
in Algorithm 1). For example, we can’t draw the hypotenuse
[AC] without knowing its length (exercise in figure 9). We
should solve the other sides of the triangle first. If there is no
more solvable nodes (line 8), we are in an unsolvable state,
the expert has then to backtrack to the last state, by undoing
the last performed action. This feature is necessary, since it
mimes the ability of the pupil to erase an error if it exists. If
there are applicable actions for the node n, the best action is
chosen in terms of cost (line 12). The cost of an action is as
follows.
Cost(a) = |effects(a)| - effort(a), where effort is the number
of drawing operations needed to execute a. For example, we
can consider that the effort of drawing a 60 degree angle with
the protractor tool is less than the effort by drawing it by
intersecting two compass arcs. The process is repeated until
the node is in the state completed. Once it is completed, we
repeat the search for another node to solve until all nodes
are in the state complete, which means the goal state G is
achieved.

With this expert knowledge, the tutor will be able to guide
the pupil forwards, with a hint on how to solve the next
steps, as well as backwards, with a hint to undo the last ac-
tions that led him/her to a deadlock. The experiments demon-
strating the performance of the tutor are given in the next
section.

6 Experiments and results
IntuiGeo was tested in five pilot middle-schools in the re-
gion of Brittany, France. The experiments were conducted
by our partners in ergonomics and cognitive psychology from
the LP3C laboratory2. We analyze in this section the perfor-
mance of the learner module (is the tutor able to analyze
the pupil productions relatively to the instruction?), as well
as the performance of the expert module (is the tutor
able to find solutions plans given any learner state?). 54 pupils

2 https://www.lp3c.fr/

https://www.lp3c.fr/

were given four exercises with increasing difficulty as follows:
1) Draw a rectangle ABCD given AB=4cm and BC=9cm;
2) Draw a parallelogram EFGH given EF=4.5cm,
FG=6.5cm, and EFG=76°;
3) Draw a rhombus ABCD given AB=4cm and AC=7cm;
4) Draw three triangles such as ABC is equilateral, ABD
isosceles, ADE equilateral.
For pedagogical purposes, corrective and guidance feedback
are given at the pupil’s demand to avoid interference with
his/her creative process. Since every action is saved in real-
time by the system, we are able to replay exactly, step by the
step, the pupil resolution process and feed it to the tutor in
a batch fashion. This deployment in the schools had as a re-
sult the total of 206 "digital sheets" containing all the saved
pupils actions (.e.g handwritten strokes, virtual tools usage)
when solving one of the given exercises. This represents the
test set we use to analyze our system performance.

6.1 The learner module performance

Let’s note first that the set is unevenly distributed. This is
due to the fact that two versions of the same problem were
presented to the pupils in the case of the rectangle and the
parallelogram, with a change in the angles values and seg-
ments lengths. Only the pupils who had the time to complete
these two problems were able to try to solve the triangle and
rhombus problems. TABLE 1 presents the supervision perfor-
mance on each exercise and on the whole set.

Table 1: Learner module performance

Problem Success Failure TP FN Pre Rec Acc
Rectangle 55 20 55 0 100% 100% 100%

Parallelogram 23 71 23 1 100% 95.65% 98.94%
Rhombus 5 19 5 1 100% 83.3% 95.8%
Triangle 3 10 3 0 100% 100% 100%
Total 86 120 86 2 100% 97.72% 99.03%

The objective here is to see if the learner module repre-
sented correctly the state of pupil resolution process: success
means the tutor considers that the exercise has been solved
by the pupil, failure otherwise. (FN) refers to false negatives,
productions that were correct but labelled wrongly by the sys-
tem as failure. We can observe that Precision (Pre) is 100%,
which means the learner module doesn’t take risks in assess-
ing the pupil production. However, we can see the presence
of 2 false negatives (FN) in the set of 120 negatives (one in
the parallelogram set, one in the rhombus set). These FN
come from correct strategies that were unknown to the learner
module. This will be fixed by enriching the knowledge base
of the tutor (e.g. expanding the mathematical knowledge in
the DefC constraints and adding new planning domain ac-
tions). In any ways, an accuracy (Acc) of 99.03% and a recall
(Rec) of 97.72% on a statistically significant set can be con-
sidered as an acceptable performance, although there is room
for improvement.

6.2 The expert module performance

In order to give pertinent and personalized real-time guidance,
the expert module should be able to solve the problem at any
given learner state. If the state is not solvable, the expert
should be able to backtrack to the last solvable state

attained by the pupil, and propose a solution plan from
there. TABLE 2 presents the expert performance on each ex-
ercise and on the set of true negatives. Opt plan illustrates the

Table 2: Expert module performance
Problem Quantity Opt plan Avg plan Length Avg backtrack Corrected

Rectangle 20 6 4 5 100%
Parallelogram 70 5 6.49 3.86 100%
Rhombus 18 5 3.94 3.55 100%
Triangle 10 8 6.9 13.9 100%

optimal plan length chosen by the expert module to solve each
of the exercises from the initial state (empty drawing zone).
Avg plan length and Avg backtrack represent respectively the
average length of the correction plan and the average number
of backtracking actions performed by the expert module on
the "resolution sheets". The expert module was able to pro-
vide a correction plan for each data of the set (Corrected).
This demonstrates that it is always able to find a solution
plan, given any learner state, either by direct planning if it
is solvable, or by by backtracking to the last solvable learner
state. The difference between the optimal plan length and
the average correction plan length demonstrates on the other
hand that the tutor resolution is adaptive to the child pro-
duction, and doesn’t simply backtrack to the initial state and
plan from there. This result is quite important, since we need
IntuiGeo to provide pertinent and personalized guidance. The
fact that the system is able to detect the last solvable state is
also interesting, since it could avoid error propagation for the
pupils.

6.3 Pupils perception and feedback
To see the pupils perception of the tool, and to study its
usability, our partners in experimental psychology have con-
ducted a post-test questionnaire. After the experiment, the
pupils answered these following questions, illustrated in TA-
BLE 3, with a Likert scale [3] from one to seven. The enjoy-

Table 3: Post-test questionnaire results

Question Mean Standard deviation
Is the tool easy to use? 5,85 1,43

Is the tool useful? 4,7 1,4
Is the tool enjoyable? 5,87 1,27

ment aspect can be easily explained by the digital support
(using a tablet is fun). The fact that the system is easy to use
and seen as useful by pupils are also interesting aspects: they
show that there is a potential for the tutor to help the pupils
enhancing their performances. The evaluation of this poten-
tial will be studied in future experiments. More details on the
project as a whole, as well as an illustrative video demonstrat-
ing the user-tutor interaction, can be found on the IntuiDoc
team website3.

7 Conclusion
In this paper, we propose IntuiGeo, an interactive geometry
tutor on pen-based tablets. The combination of pattern recog-
nition with tutoring knowledge allows for our system to be

3 https://www-intuidoc.irisa.fr/en/projet-efran-actif/

https://www-intuidoc.irisa.fr/en/projet-efran-actif/

quite intuitive. In fact, the teacher only needs to draw one ex-
ample solution for the tutor to be able to generate the problem
model (K.G.), and synthesize alternative resolution strategies.
Our learner module interprets in real-time the pupil’s actions
and assesses his/her knowledge state, allowing an efficient in-
teraction. Our new dynamic planning environment enables
the expert module to synthesize strategies in an online fash-
ion, which results in a dynamic and personalized corrective
feedback. The experiments showed the ability of our tutor to
supervise and guide pupils in the resolution process by syn-
thesizing resolution plans given any learner state. Our future
works consist in the improvement of the tutor’s knowledge
base to include more strategies, as well as a wider variety of
construction problems. Another axis will be the study of the
pedagogical impact of the tutor on pupils performance, with
further experiments that will be conducted in middle-schools.

Acknowledgment

"ACTIF" is funded by the region of Brittany and the French
state call for projects e-FRAN, operated by the "Caisse des
Dépôts". The project is supported by the LabCom « Scrip-
tAndLabs » (n° ANR-16-LVC2-0008-01). We would like to
tank the partners from the LP3C laboratory who conducted
the experiments, as well as the academic partners who par-
ticipated in them.

REFERENCES

[1] Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik
Mukhopadhyay, ‘Synthesis of geometry proof problems’, in
AAAI’14 Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, pp. 245–252. Association for
the Advancement of Artificial Intelligence (AAAI), (July
2014).

[2] Kaushal Kumar Bhagat and Chun-Yen Chang, ‘Incorporating
geogebra into geometry learning-a lesson from india’, Eurasia
Journal of Mathematics, Science and Technology Education,
11(1), 77–86, (2015).

[3] James Dean Brown, ‘Likert items and scales of measure-
ment?’, Shiken Research Bulletin: JALT Testing Evaluation
SIG Newsletter, 15(1), 10–14, (2011).

[4] Arthur W. Chickering and Zelda F. Gamson, ‘Lifting the cur-
tain: The evolution of the geometer’s sketchpad’, AAHE Bul-
letin, 39(7), 3–7, (1987).

[5] Nathalie Girard, Damien Simonnet, and Eric Anquetil, ‘Intu-
iScript a new digital notebook for learning writing in elemen-
tary schools: 1st observations’, in 18th International Grapho-
nomics Society Conference (IGS2017), Proceedings of IGS
2017, pp. 201–204, Gaeta, Italy, (June 2017).

[6] Sumit Gulwani, ‘Dimensions in program synthesis’, in Pro-
ceedings of the 12th International ACM SIGPLAN Sympo-
sium on Principles and Practice of Declarative Programming,
PPDP ’10, pp. 13–24, New York, NY, USA, (2010). ACM.

[7] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Ti-
wari, ‘Synthesizing geometry constructions’, SIGPLAN Not.,
46(6), 50–61, (June 2011).

[8] Avraham N. Kluger and Angelo Denisi, ‘The effects of feed-
back interventions on performance: A historical review, a
meta-analysis, and a preliminary feedback intervention the-
ory’, Psychological Bulletin, 254–284, (1996).

[9] Omar Krichen, Nathalie Girard, Éric Anquetil, Simon Cor-
bille, and Mickaël Renault, ‘Real-time interpretation of hand-
drawn sketches with extended hierarchical bi-dimensional
grammar’, in 16th International Conference on Frontiers in
Handwriting Recognition, ICFHR 2018, Niagara Falls, NY,
USA, August 5-8, 2018, pp. 273–278, (2018).

[10] Colette Laborde, ‘Integration of technology in the design of
geometry tasks with cabri-geometry’, I. J. Computers for
Math. Learning, 6(3), 283–317, (2002).

[11] Sébastien Macé and Eric Anquetil, ‘Eager interpretation of
on-line hand-drawn structured documents: The dali method-
ology’, Pattern Recognition, 42(12), 3202 – 3214, (2009). New
Frontiers in Handwriting Recognition.

[12] John McCarthy and Patrick J. Hayes, ‘Some philosophical
problems from the standpoint of artificial intelligence’, in Ma-
chine Intelligence 4, eds., B. Meltzer and D. Michie, 463–502,
Edinburgh University Press, (1969). reprinted in McC90.

[13] Roger Nkambou, Jacqueline Bourdeau, and Riichiro Mi-
zoguchi, Introduction: What Are Intelligent Tutoring Sys-
tems, and Why This Book?, 1–12, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[14] Hyacinth S. Nwana, ‘Intelligent tutoring systems: an
overview’, Artificial Intelligence Review, 4(4), 251–277, (Dec
1990).

[15] Dominique Py. Environnements interactifs d’apprentissage et
démonstration en géométrie, 2001. Habilitation à diriger des
recherches de l’université de Rennes I, juillet 2001.

[16] Daniel Scher, ‘Lifting the curtain: The evolution of the ge-
ometer’s sketchpad’, The mathematics Educator, 10(2), 42–
48, (2000).

[17] Rahul Singhal, Martin Henz, and Kevin McGee, ‘Automated
generation of high school geometric questions involving im-
plicit construction’, in Proceedings of the 6th International
Conference on Computer Supported Education - Volume 1,
CSEDU 2014, pp. 467–472, Portugal, (2014).

[18] Jihong Yan, Chengyu Wang, Wenliang Cheng, Ming Gao, and
Aoying Zhou, ‘A retrospective of knowledge graphs’, Frontiers
of Computer Science, 12(1), 55–74, (Feb 2018).

	Introduction
	Related works
	Planning and plan recognition for strategy synthesis
	Automated generation of construction problems and knowledge representation

	System architecture
	 Pattern Recognition expertise
	Tutoring expertise
	The problem generation module
	The learner module
	The expert module

	The 2D engine
	The supervision engine
	The problem generation module
	The learner module
	Verification and corrective feedback
	Semantic interpretation and matching

	The expert module
	Planning domain definition
	Planning algorithm

	Experiments and results
	The learner module performance
	The expert module performance
	Pupils perception and feedback

	Conclusion

