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Abstract

This paper proposes a coupling strategy between a homogeneous macroscopic
description of a structure and a description at a lower scale of some local de-
tails. In order to facilitate its implementation in industrial software, an interface
coupling technique using a separation between micro and macro quantities of
the unknowns is proposed. The approach leads to local solutions equivalent to
those that would be obtained by second-order homogenization techniques. Its
interest is that it does not require neither the construction of a second-order
homogenized model nor a localization stage. The approach is validated against
direct numerical simulations at microscopic scale on periodic structures under
uniform and linear macroscopic strains loads.

Keywords: interface coupling, non-compatible models, zooming technique,
heterogeneous media, second-order homogenization

Preprint submitted to Elsevier March 9, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0045782520302164
Manuscript_4daa7c88afd2ac33fe753ad0d1479946

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0045782520302164
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0045782520302164


1. Introduction

Unlike metallic structures, composite materials have a tendency to suffer
from manufacturing anomalies such as excessive porosities or premature phase
debonding straight out of the mold. Composite being very damage-tolerant,
these anomalies may or may not affect in-service performance. Therefore a
number of 3D measurement techniques, such as ultrasound scanning and X-ray
tomography, have been developed to characterize them and ultimately capture
their morphology. From there, computational assessment of the mechanical
performance may be achieved by introducing the generated morphology of the
anomaly within an otherwise virgin material.

Given the relative size of manufacturing anomalies — typically between mi-
crons and a few micrometers at most — they are usually best represented at the
mesoscale, i.e. the scale of the plies in laminates or that of the weaving pattern
in woven composites. However since industrial systems are more commonly com-
puted at the macroscale, where all materials are considered homogeneous, some
sort of multi-scale seam must be devised to connect the mesoscale anomalous
region with the rest of the structure. In other words, engineers are interested
in inserting a local mesoscale detail within a predefined finite elements macro-
model of a reference structure and predict its effect on the overall mechanical
performances. Figure 1 illustrates these types of problems: described at a
full micro-scale (Figure 1a), a full macro-scale (Figure 1b) and a micro-scale
detail embedded in a macro-scale model (Figure 1c).

The goal is to recover from a macro-micro coupling of non-compatible mod-
els (Figure 1c) a solution as close as possible to the full reference solution
(Figure 1a) inside the zone of interest. In this work, the localization of the
zone of interest is chosen a priori, but it could be determined, for example,
by a criterion based on a posteriori error estimations, as in the works of [36].
The main issue associated with the introduction of the local detail within the
macro-model is the definition of a proper coupling between the two models in
order to transfer the relevant macroscopic “information” along with the def-
inition of the complementary microscopic assumptions. This leads to several
difficulties regarding the choice of the macroscopic/homogenized model as well
as the way to couple models described at different scales, and with different
finite element mesh sizes. The proposed coupling technique is developed in the
scope of non-intrusive implementations. It makes use only of quantities, data
and functionalities that are available in legacy and commercial codes. That
is why, following [19, 15], the proposed coupling technique makes use only of
interface quantities. The present article focuses on the coupling choice. The
non-intrusive resolution of a coupled problem illustrated in Figure 1c will be
detailed in a forthcoming paper.

In order to clarify the main issue regarding the coupling of two non-compatible
models, the well established framework of the computational homogenization
has been chosen, as it is the basis of numerous multi-scale approaches [41, 34, 43].
One of the most popular computational frameworks associated with it is the FE2

method [17]. Nevertheless, being based on the first-order theory of homogeniza-
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Figure 1: Three various descriptions at different scales of a heterogeneous material structure
under prescribed boundary conditions.

tion, this scheme does not introduce size effects of the so-called Representative
Volume Element (RVE). To overcome this, several methodologies, for instance
based on generalized continua [18, 16, 47, 37, 27] or on numerical filter-based
schemes [48, 49, 44] have been proposed. In [27], the authors proposed a two-
scale computational framework with the major advantage of treating the RVE
as a classical continuum by prescribing boundary conditions. This second-order
computational homogenization approach takes into account the gradient effect
of the macroscopic solution and hence the effect of the size of the RVE. That is
why, in this paper, the considered reference scheme is the second-order computa-
tional homogenization one. Compared to the first-order theory, the second-order
framework leads to more precise solutions. Let us note that, this framework was
extended to deal with thin sheets in [12] and with post-localization aspects in
the case of finite strain or damage in [6].

In this paper, in order to directly obtain a solution similar to the one given
by a two-step homogenization procedure, an non-conforming interface coupling
technique is proposed. It allows reducing the incompatibility error between the
heterogeneous microscopic (local) model and a first-order homogenized (global)
model, representative of the macroscopic behavior of the structure. Its interest
is that it does not require neither the construction of a second-order homoge-
nized model nor any post-localization stage. The method bears some relations
with the concurrent multi-scale scheme, based on mixed interface coupling, pro-
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posed for parallel computing in [33] and further developed in [22] in the case
of cracking, and in [39] in the case of delamination and buckling. The common
point is the treatment of interface quantities as variables with a high mechanical
content. More precisely, the same micro-macro scale separation and description
of interface quantities are used.

The paper is organized as follows. In Section 2, the limitations of a classical
coupling approach for compatible models, in the case depicted in Figure 1c,
are discussed on the basis of a typical example. In Section 3, the main prin-
ciple of second-order homogenization is recalled. In Section 4, the Boundary
Value Problem within the framework of the Second-Order Computational Ho-
mogenization applied on a periodic medium is adapted in a multi-scale interface
displacement way. In Section 5, the coupling conditions between a macro-scale
and a micro-scale model are discussed and two numerical examples are given
to support the proposal. The conclusions are given in Section 6, along with
different further research directions based on the obtained results and the long
term objectives of the paper.

2. Toy examples and limitations of a classical coupling technique

2.1. Definition of the toy examples

In order to clearly capture the problematic addressed in this paper, a set
of 2D finite element structural mechanical problems under linear elasticity as-
sumptions is proposed. The construction of each further discussed example is
based on the repetition of a 2D unit cell whose Hookean tensor is denoted by KL
(linear isotopic elasticity). A reference computational mesh is made of a unit
cell repeated a specified number of times, as for example the 5 by 5 unit cells
mesh described in Figure 2a which corresponds to the full micro-scale problem
from Figure 1a. Then, the coupled problem is defined over a mesh similar to

∂uΩ

X

(a) Reference mesh of the perforated plate
for a full microscopic scale modelling.

∂uΩG

Γ

ΩG

ΩL

X

(b) Coupled domains meshes for a two-scale
modelling.

Figure 2: Domains and meshes of a perforated plate.

the one from Figure 2b, which corresponds to the problem seen on Figure 1c.
The central part ΩL, considered as the local substructure is constituted of a
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single (or several) unit cell(s) identical to the one used for the reference prob-
lem with the same material properties (Hookean tensor KL). The external part
ΩG stands for the global substructure and is modelled by the unit cell effective
proprieties KG = KH

L , where KH
L is the first-order homogenized behavior of one

unit cell under periodicity assumption.
The coupling interface between the global and the local substructures is de-

noted by Γ. Here, the two substructures are geometrically conforming but their
meshes do not necessary match along the coupling surface Γ. In other words,
the elements of the two substructures are not cut by Γ and the coupling interface
is aligned with the edges of the elements in both substructures. The coupling of
non-conforming geometries will be addressed in future works. Interested readers
can refer to [8, 23] for recent global-local coupling techniques of conforming and
non-conforming geometries.

2.2. Limitations of a classical coupling technique in the case of non-compatible
models

Let us consider two examples with different loading cases over the two models
shown in Figure 2. In these examples, the unit cell is representative of a
perforated plate sample. Its size l is 2 mm, it is supposed to be linearly elastic
and isotropic and characterized by the Young’s Modulus E = 210 GPa and the
Poisson’s ratio ν = 0.3. The homogenized behavior corresponding to the unit
cell, as obtained by the classical first-order homogenization is characterized by
the following elastic constants: the Young’s modulus E1 = E2 = 130.2 GPa, the
Poisson’s ratios ν12 = ν21 = 0.27 and the shear modulus G12 = 39.8 GPa.

For the first example, the loading case is intended to impose a uniform
macroscopic strain state over the considered domains whereas, in the second
example, a linearly varying macroscopic strain state is imposed over the do-
mains. The macroscopic states are prescribed by the same Dirichlet boundary
conditions on the outer boundary of the reference problem Figure 2a and the
coupled problem Figure 2b. They are detailed in Section 5.1, but not crucial
for the well understanding of this section.

A wide range of techniques could be used in order to deal with the coupling
of local details inserted in the global domain. For instance, recent developments
aim at coupling substructures described by advanced discretization techniques
using sophisticated Mortar [14, 11] or Nitsche [13, 1, 35, 40, 7] coupling tech-
niques. Here, in order to deal with the classical finite element discretization
and the non-matching grids of the coupled problem, the continuity of interface
displacements and equilibrium of forces are ensured in a weak sense, with a Mor-
tar finite element formulation with Lagrange Multipliers [31, 3, 4]. The space
of Lagrange Multipliers is taken as the trace along the coupling interface of the
global-side basis functions. In the following, the notion of “classical coupling”
refers to this particular Mortar finite element formulation.

To compare the solutions uref and uL given respectively by the reference
problem and by the coupled problem within the local domain ΩL, an error ee is
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defined on each finite element e such as:

ee =
‖uL − uref‖e,KL
‖uref‖ΩL,KL

(1)

with the following energy norm:

‖uL − uref‖2e,KL =
1

2 meas(e)

∫
e

εε(uL − uref) : KL : εε(uL − uref) dΩ

where meas(e) is the surface area of the finite element e.
The error maps for four different meshes of ΩG are shown in Figure 3

according to each loading case. The maps are interpreted as follows: the lower
the error, the closer the local solution of the coupled problem is to the reference.
As the colormap is truncated after 25%, the elements of the maps that are
displayed in red reach an error equal or greater than 25%. In Figure 3, along
with each error map, two significant quantities are provided: the maximum
value of the error emaxe = maxe∈ΩL(ee) and the mean value of the error over all
the ne elements of the local model emeane = 1/ne × Σe∈ΩL(ee).

According to Figure 3, in both examples, the error decreases with the
global mesh size. The lowest error is obtained for the finest global mesh. Thus,
it appears that, in both examples, the coupled problem is not equivalent to the
reference one. Indeed, whatever the meshes refinements, even with matching
grids, an error is made. Moreover, the quality of the solution of the coupled
problem is dependent of the discretization.

Therefore, the classical coupling is not adapted to couple different models of
heterogeneous structures. The reason is not associated with the use of the Mor-
tar approach, which is a generic and effective method for coupling incompatible
meshes, but comes from the fact that the problem here lies with the coupling
of non-compatible models.

Based on this observation, a new coupling technique which aims to avoid
these problems is proposed in the following sections.

3. Main features of the second-order homogenization approach.

In this section, the main features of the second-order homogenization ap-
proach are recalled. The interested reader may especially study the works by
Kouznetsova et al. [30, 27] to have a full description of the method in the finite
strain setting.

The basis of second-order periodic homogenization starts by considering the
Taylor expansion around a point Xc of a finite material vector ∆x in the current
configuration at the second-order complemented by a micro-fluctuation w:

∆x = FM ·∆X +
1

2
GM : ∆X ⊗∆X + w(∆X) (2)
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Meshes

Example 1

uniform

macro-

strain

max. error emax
e = 69% emax

e = 59% emax
e = 55% emax

e = 31%

mean error emean
e = 26% emean

e = 20% emean
e = 20% emean

e = 15%

Example 2

linear

macro-

strain

max. error emax
e = 75% emax

e = 67% emax
e = 60% emax

e = 35%

mean error emean
e = 26% emean

e = 21% emean
e = 21% emean

e = 15%

truncated
colormap 0% 5% 10% 15% 20% 25%

Figure 3: Distribution of local error for four global meshes and two loading cases.

where: XC is the geometrical center of the RVE, ∆x = x− xc, ∆X = X −Xc.

FM =
∂φ(Xc)

∂X and GM = ∂
∂X (

∂φ(Xc)

∂X ) are respectively second and third-order

tensors. Let us note that this definition of GM is also used in [38] where the
first index i of GMijk

denotes the spatial component. In comparison with the
convention taken in [29], the first two indices of GMijk

are inverted. Denoting
uC = xC −XC , this expression leads to the following one in terms of displace-
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ments.

u = x−X = uC + (FM − Id) ·∆X +
1

2
GM : ∆X ⊗∆X︸ ︷︷ ︸

=uM

+w(∆X) (3)

In equation (3), uM corresponds to the macroscopic displacements. Following
[27, 38], the macroscopic first and second-order gradients are defined as follows:

FM =
1

V

∫
ΩRVE

Fm dΩ

GM · J +
1

2
GM : J ⊗ Id =

∫
∂ΩRVE

x⊗∆X ⊗N dΓ
(4)

where N is the outward unit normal of the RVE, J =
∫

ΩRVE
∆X ⊗∆X dΩ is

the second moment of volume of the undeformed RVE at point XC and Fm the
microstructural deformation gradient tensor. These relations hold only if XC is
the geometric center of the undeformed RVE, i.e.

∫
ΩRVE

X dΩ = 0.
In the framework of the second-order homogenization, these relations are

used to set up a generalized macroscopic relation linking the average stress and
higher-order stress tensors to the first and second gradient of the transformation.
Then, using a nested two-scale approach of FE2 type [17] but adapted to a
second-order description, it is possible to simulate the response of the structure
with a refined macroscopic description taking into account gradient effect and to
get the associated local response [16, 28]. The approach taken here is different.
Starting from (4), explicit coupling relationships are defined for the interface
quantities between the macro and micro models.

4. Equivalent kinematic admissibility on interface displacements

In the computational homogenization context, the bond between micro and
macro descriptions is made by the Boundary Value Problem (BVP). The aim of
this section is to determine the explicit relations that link the macroscopic and
the microscopic scales on one RVE with an interface micro-macro description
of the BVP kinematic admissibility. From the experience earned from DDM
approaches [33, 22, 39], we have decided to choose, as independent quantities,
some pertinent averages of the interface displacements. Different aspects of
this choice are further discussed. For the sake of convenience, the approach is
detailed for 2D cases and the differences with 3D cases will be mentioned at the
end of Section 4.3.

4.1. Interface displacements conditions to be satisfied.

The two averaging properties (4) lead to the following kinematic conditions
on the fluctuation w:

∫
∂ΩRVE

w(XC , X)⊗N(X) dΓ = 0∫
∂ΩRVE

w(XC , X)⊗∆X ⊗N(X) dΓ = 0
(5)
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In the first-order homogenization framework, only the first equation of (5) is
to be satisfied. Widespread hypotheses to fulfill equations (5) are kinematic uni-
form boundary condition (KUBC), static uniform boundary condition (SUBC)
or periodic boundary condition (PBC). One can refer for example to [46, 25] for
more details about the implications of these hypotheses.

In the second-order homogenization framework, the two equations of (5)
have to be satisfied. One can refer for example to [27, 24] for more details about
extensions of PBC, KUBC and SUBC to second-order homogenization.

Here, the PBC has been chosen because, this assumption gives the most
reasonable estimate of the overall response of the RVE [45], as compared with
the KUBC which gives an upper-bound estimation and the SUBC which gives
a lower-bound estimation. Moreover, the local field of interest is often of higher
quality. This is still the case even when the periodicity of the RVE geometry is
not strictly satisfied, as shown in [42].

In order to satisfy equation (5), the external boundary ∂ΩRV E of the RVE
can be split into basic faces γ such as, in 2D cases: ∂ΩRV E =

⋃
γ∈{d,r,t,l} γ

where d, r, t, l correspond respectively to the down, right, top and left faces of
the RVE described on Figure 4.

X
c

dX = X - X
G

X
G

X
ΔX = X - X

C

γ = d

γ = r

γ = t

γ = l

Figure 4: Two-dimensional illustration of the interface position dX expressed from the RVE
center XC and XG the centroid of the interface r.

For a parallelepiped RVE, one can check that the conditions (5) are fulfilled
for any w such that: w(XC , X) periodic∫

γ

w(XC , X) dΓ = 0, for any RVE faces γ
(6)

Different ways to fulfill these equations have been proposed in the literature.
For example, in [26, 38], relations (6) are implemented in a FE framework
by means of displacement constraints between degrees of freedom in boundary
nodes. In [24], equations (5) are directly satisfied by means of a general multiple
constraints approach. In this paper devoted to the multi-scale non-compatible
coupling, the RVE boundary displacements are split in a multi-scale way and
relations are given on each scale.
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4.2. A micro-macro description of the transmission conditions for an interface.

In order to identify a macroscopic basis consistent with the problem being
addressed, let us express, for X on any face γ, the boundary displacements W γ

of the RVE (see Figure 4):

W γ = u∗G + (FM − Id) · dX +GM : ∆XG ⊗ dX +
1

2
GM : dX ⊗ dX︸ ︷︷ ︸

WM
γ

+w (7)

with ∆XG = XG −XC , as seen on Figure 4 and:

u∗G (XG, XC) = uC(XC) + (FM − Id) ·∆XG +
1

2
GM : ∆XG ⊗∆XG

According to (7), the displacement on one face is linear and quadratic in dX
and depends on the fluctuation w. Thus, on every face γ, a scale separation
can be made and equations (6) and (7) can be adapted to satisfy the BVP
in a multi-scale interface displacement way. To this end, a macroscopic basis
can be defined in order to extract the mean parts, the linear parts and the
quadratic parts of the interface displacement W γ of γ. In this work, the general
framework proposed in [32] to extract these macroscopic components is followed
and partially developed in Appendix A.

4.3. Quadratic macro-components for a second-order interface kinematics

The projectors onto the macro-basis mentioned above are defined such as
ΠT
γ (W γ) = WT

γ extracts the mean (translation) parts of the interface displace-

ment W γ , the projector ΠL
γ (W γ) = WL

γ extracts its linear (rotation/extension)

parts and ΠQ
γ (W γ) = WQ

γ extracts its quadratic parts. On one interface γ,
each projector is built orthogonal to the others in the sense of the scalar prod-
uct defined in the Appendix A and the macroscopic parts of the interface
displacement ΠM

γ (W γ) are defined by:

ΠM
γ (W γ) = ΠT

γ (W γ)︸ ︷︷ ︸
constant

+ ΠL
γ (W γ)︸ ︷︷ ︸

linear in dX

+ ΠQ
γ (W γ)︸ ︷︷ ︸

quadratic in dX

(8)

The complementary parts Wm
γ are defined by:

Wm
γ = (I −ΠM

γ )(W γ) (9)

Note that WM and Wm are orthogonal in the sense of the chosen scalar product.

4.4. Proposition of micro-macro coupling conditions

In 2D, the external boundary ∂ΩRV E of the RVE is made of 4 basic faces,
thus, one has to determine the 12 homogenization macroscopic quantities of
uC , FM and GM from the 24 interface macro-components WT

γ , WL
γ and WQ

γ

for γ ∈ {d, r, t, l}. Consequently, in order to satisfy the kinematic macroscopic
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state of the BVP, 12 constraints have to be determined on the interface macro-
components according to the values of uC , FM and GM and 12 additional
compatibility constraints between the interface macro-components themselves
have to be imposed.

In order to satisfy the second relation of equation (6), on each interface γ,
the translation macro-components are imposed such as:

WT
γ = u∗Gγ Sγ +

1

2
GM : MGγ (10)

with the surface of γ denoted by Sγ and the matrix of the products of moment
of area of the undeformed interface γ at point XGγ

denoted by MGγ =
∫
γ
dX⊗

dX dΩ. From Appendix B, it can be deduced that the 8 translation macro-
components are related to only 10 out of the 12 homogenization macroscopic
quantities. Consequently, 4 additional equations are required to totally defined
the 12 homogenization macroscopic quantities.

The linear macro-components are related to 6 homogenized macroscopic
quantities: 4 quantities associated to FM and GMxxy and GMyxy. The components

GMxxy and GMyxy are only linked to the linear macro-components. As the fluctu-
ation w contains linear parts on the interfaces (i.e. the linear parts of the local
and global interface displacements are different), the linear macro-components
cannot be explicitly imposed because w is not known a priori. Nevertheless, as
w is periodic, the jump of linear macro-components can be imposed such as :

WL
γ+ −WL

γ− = SγGM : N+
γ ⊗ dX (11)

where each face γ+ ∈ {t, r} is facing the opposite face γ− ∈ {d, l} (see Fig-
ure 5). In this way, equation (11) is compatible with the first relation of (6) and
involves only two macroscopic components out of the four remaining unknowns:
GMxxy and GMyxy. The four relations given by equation (11) are compatible with
the second-order kinematics but only two are necessary to determine the state
of macroscopic deformation of the unit cell (see the expressions of GMxxy and

GMyxy in Appendix B).
Thus, two additional equations are still required to totally define the 12

homogenization macroscopic quantities. Different options can be made in order
to close the system (10)-(11). For instance, as the fluctuation solution w is
supposed to be null on the RVE corners due to the periodic consideration, the
full field displacement can be imposed in one corner A:

u(A) = uM (A) (12)

This condition is interesting as it does not involve the quadratic interface macro-
components which needs a quadratic mesh to be exactly represented. However,
in a general case with a not purely second-order macroscopic solution, this
condition would lead to different solution according to the selected corner.

One can prefer a non-local condition to define the last two missing rela-
tions, but it would add additional conditions on the interface macro-components,

11
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Figure 5: Periodicity notations for a pair of opposite faces on a 2D parallelepiped RVE.

avoided so far. Nevertheless, it would be an improvement for the proposed cou-
pling technique. The search of the “best” non-local conditions for not purely
periodic case is still an open question.

In summary, relations (10)-(12) provide the links between the 24 interface
macro-components and the macroscopic state defined by the 12 parameters of
uC , FM and GM . As said previously, 12 additional kinematically admissible
conditions have to be imposed between the interface macro-components them-
selves.

From the 12 additional conditions sought, as the problem is solved by FEM,
8 are automatically satisfied by the continuity of the displacement at the RVE
corners. Indeed, if the periodic conditions are satisfied by w, the fluctuation
vanishes on the RVE corners so that the macroscopic parts of the interface
displacement (8) are continuous between two contiguous edges of the RVE, even
if the interface macro-components are not.

The last 4 compatibility equations sought to define the interface macro-
components admissibility arise from the periodicity of the quadratic macro-
components between the facing interfaces γ+/γ−:

WQ
γ+ −WQ

γ− = 0 (13)

Finally, in order to completely satisfy the first equation of (6), the micro-
scopic parts of the interface displacement defined by (9) must verify the following
condition:

Wm
γ+ −Wm

γ− = 0 (14)

To conclude, in order to solve the 2D-BVP with a micro-macro description
of boundary relations, the following relations have to be satisfied. On each
interface γ, the mean part have to be imposed such as :

WT
γ = u∗Gγ Sγ +

1

2
GM : MGγ

12



The jump of linear macro-components between pair of interface γ+/γ− must be
chosen according to the expressions of GMxxy and GMyxy given in Appendix B,
such as:

WL
γ+ −WL

γ− = SγGM : N+
γ ⊗ dX

And, on one corner, the full field displacement is imposed such as:

u(A) = uM (A)

Then, periodicity conditions on each pair of interface γ+/γ− have to be
enforced. The quadratic macro-components have to satisfy:

WQ
γ+ −WQ

γ− = 0

and the micro-components have to satisfy:

Wm
γ+ −Wm

γ− = 0

In 3D cases, 30 macroscopic unknowns are involved in the second-order ap-
proach: 3 components of the rigid body displacement uc, 9 components of the
deformation gradient tensor FM and 18 components of the gradient of the gra-
dient deformation GM . The external boundary ∂ΩRV E of the RVE can be split
into 6 basic faces γ such as: ∂ΩRV E =

⋃
γ∈{d,r,t,l,f,b} γ where d, r, t, l, f, b corre-

spond respectively to the down, right, top, left, front and back faces of the RVE.
Working with multi-scale interface quantities, 108 interface macro-components
arise. Among them, 75 are automatically satisfied by the displacement continu-
ity at the edges of the parallelepipedic RVE. Thus, 33 relations have to be fixed:
30 are fixed by the values of uC , FM and GM and 3 constraints between inter-
face macro-components. Therefore, as in the 2D case, half of the conditions on
the linear macro-components have to be imposed, according to the expression of
the terms of GM involved by the linear macro-components. But also, only 3 of
the 27 conditions on quadratic macro-components have to be imposed. As pre-
viously, this choice has no consequence on the purely second-order macroscopic
solution, offering flexibility to the proposed method.

Remark 1. In Appendix B are given the components of uc, FM and GM

according to the macroscopic interface displacement terms in the particular case
of a 2D example. It is interesting to note that they are calculated only with
surface integrals and are only dependent on the mean and linear parts of the
interface displacement and on the displacement fixed at corner A. Thus, these
relations may be seen as an alternative way to compute second-order gradients
with surface integrals rather than volume integrals. Note that the definitions of
these surface integrals are independent from the mesh discretization.

Remark 2. KUBC or SUBC can be satisfied by imposing respectively nullity
(Wm

γ = 0) or freedom conditions on the microscopic components of the interface
displacement field on each γ interface instead of the last periodic relation (14):

Wm
γ+ −Wm

γ− = 0
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4.5. Validation of the proposed conditions to solve the BVP

A numerical analysis has been made in order to compare these BVP condi-
tions to the classical ones. In [29], a perfectly periodic perforated plate composed
of 3×3 RVEs has been investigated. The same problem is considered here, with
the major exception that the small deformation theory is adopted instead of
the large deformation one. The solution obtained by imposing relations (10)-
(14) is compared to the one obtained using the method suggested in [29]. The
solution of [29] was rebuilt by imposing the displacement on the four corners
of the RVE, the constraints on the opposite boundaries and the zero-averaged
fluctuation along two contiguous boundaries.

The test case is such that the size of the RVE is taken equal to 10µm, the
material behavior of the plate is supposed to be linearly elastic and the material
parameters are taken such as the Young’s modulus E equals 210 GPa and the
Poisson’s ratio ν equals 0.3.

The plate has been subjected to the same prescribed bending-tension defor-
mation loading as in [29]. Thus, the prescribed macroscopic kinematic quantities
are: FMxx = 1.1, FMyy = 0.9 and GMyxx = −18mm−1, GMxxy = GMxyx = 12mm−1,

GMyyy = −8mm−1 and the other components are taken equal to zero.
The Figure 6 shows the von Mises stress map in the deformed plate for

the prescribed loading applied by relations (10)-(14). According to the energy
norm defined by (1), the difference between the solution obtained by imposing
the relations (10)-(14) and the solution obtained by imposing relations from [29]
is under 10−6%. Thus, validating the proposed relations.

120

60

0

Figure 6: von Mises stress map (in GPa) of the linear elastic deformed plate for a prescribed
bending-tension deformation loading, under small deformations hypothesis, computed by re-
lations (10)-(12).
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5. Towards a multi-scale global/local strategy for non-compatible
models

Let us return to the initial goal of the paper: the coupling of two models
representatives of an heterogeneous material at different scales. Let us note
that, the same type of question arises in the case of the coupling between a
plate and a 3D model for which a different coupling technique also based on
homogenization was proposed in [20] and developed in [21]. Section 2 shows
that the classical coupling conditions are too strong to deal with non-compatible
models. In this section, a coupling strategy between a first-order homogenized
macroscopic (global) model and a micro-structured heterogeneous (local) model
is proposed. The method is based on the exchange of interface macroscopic
quantities defined in Section 4.3. Then, two examples are given to validate
the method under uniform macro-strain and linear macro-strain loadings.

The same notations as in Section 2 are taken: the subscripts L, G respec-
tively refer to the local substructure (ΩL) and the global substructure (ΩG). As
the global substructure is supposed to be the homogenized model of the local
substructure, relation (7) becomes :

WL,γ(X) = WG,γ(X) + w (15)

with w which satisfy (6).
The coupling relations between the global and the local substructures are

built from relations (10)-(14) defined in Section 4.3. According to (10), the
mean part of interface displacements of the local substructure (WT

L,γ) is taken

equal to the one of the global substructure (WT
G,γ) for all the interfaces (in 2D:

γ ∈ {d, r, t, l} and in 3D: γ ∈ {d, r, t, l, f, b}):

WT
L,γ = WT

G,γ (16)

Then, according to (11), the jumps of linear parts of interface displacements
between the local model and the global model have to satisfy the following
relations between pair of interfaces γ+/γ− :

WL
L,γ+ −WL

L,γ− = WL
G,γ+ −WL

G,γ− (17)

And, the displacement continuity is imposed in one corner according to (12) :

uL(A) = uG(A) (18)

As we are seeking for the local substructure displacement fields kinematically
admissible with a second-order displacement field, the quadratic part of the
global and the local displacements must be periodic according to (13). This
implies that:

WQ
L,γ+ −WQ

L,γ− = WQ
G,γ+ −WQ

G,γ− = 0 (19)
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This choice may be too restrictive in case of higher than second-order complex
loadings because it compels the global and local displacement fields to be kine-
matically admissible with a second-order displacement field on the interfaces.
But, it is a necessary condition for the uniqueness of GM on each interface.

To ensure the periodicity hypothesis on the local substructure, the jumps of
the microscopic part of the interface displacements are taken periodic:

Wm
L,γ+ −Wm

L,γ− = Wm
G,γ+ −Wm

G,γ− = 0 (20)

Thus, equations (16)-(20) are equivalent to (15) with WG,γ and WL,γ
kinematically admissible with a second-order displacement field.

In summary, both coupling and periodicity conditions have to be prescribed
in order to have a compatible formulation with second order kinematics. The
coupling conditions that link the micro-model and the macro-model can be
expressed as follows:

• continuity of the mean part of interface displacements at each interface,

• equality of the jumps of the linear parts of the displacements between
pairs of interfaces,

• continuity of the full field displacements at one corner.

Then, periodicity conditions are additionally enforced to the quadratic and
microscopic parts of interface displacements for the local and global domains.

Kinematic relations (16)-(20) can be imposed, for example, by Lagrange
multipliers. The micro-macro separation of the interface quantities makes it
possible to deduce the relations between the interface force distributions at the
different scales. These relations can be interpreted as dependencies between the
models in terms of resultants and moments on each interface.

With the same scale separation as in (8) and (9) the interface force distri-
butions are written according to the following micro-macro formalism:

FG,γ = FTG,γ + FLG,γ + FQG,γ + FmG,γ

FL,γ = FTL,γ + FLL,γ + FQL,γ + FmL,γ

As developed in Appendix A, the microscopic part Fmγ and the macroscopic

parts FTγ , FLγ and FQγ of force distribution F γ(= FTγ + FLγ + FQγ + Fmγ ) are
defined such that the work is uncoupled between scales:

(W γ , F γ)γ = (WT
γ , F

T
γ )γ + (WL

γ , F
L
γ )γ + (WQ

γ , F
Q
γ )γ + (Wm

γ , F
m
γ )γ (21)

with the scalar product given by:

(W γ , F γ)γ =

∫
γ

W γ · F γ dΓ
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Thus, the static coupling relations are given by the following relations on
each scale: {

FTG,γ + FTL,γ = 0

FLG,γ + FLL,γ = 0

and, the following anti-periodic relations are given on pairs of opposite inter-
faces: 

FLG,γ+ + FLG,γ− = FLL,γ+ + FLL,γ− = 0

FQG,γ+ + FQG,γ− = FQL,γ+ + FQL,γ− = 0

FmG,γ+ + FmG,γ− = FmL,γ+ + FmL,γ− = 0

Due to the micro and macro works uncoupled property (21), it is then pos-
sible to show that Hill-Mandel theorem is satisfied for uniform macroscopic
deformation at the local model scale. This ensures equality of the macroscopic
work in the transition from the global model to the local model.

The details of the associated finite element system are given in Appendix
C. In the following, the proposed formulation is validated on several numerical
examples.

5.1. Numerical validation with first and second-order examples for periodic me-
dia

In this section, a pair of theoretical cases highlights the ability of the pro-
posed method to couple non-compatible models in the case of the substructured
problem shown in Figure 2.

The size of one RVE, l is 2 mm. The material itself is linearly elastic and
isotropic and characterized by the Young’s Modulus E = 210 GPa and the
Poisson’s ratio ν = 0.3.

The homogenized behavior corresponding to the unit cell, as obtained by the
classical first-order homogenization under periodicity assumption, is character-
ized by the following elastic constants: the Young’s modulus E1 = E2 = 130.2
GPa, the Poisson’s ratios ν12 = ν21 = 0.27 and the shear modulus G12 = 39.8
GPa.

Example 1. As a first example, the 2D-domains considered in Section 2 (see
Figure 2) are subjected to Dirichlet boundary conditions such as a macroscopic
uniform strain is prescribed on the considered domains. Then, the displacement
prescribed at the external boundary of the domains ∂uΩ and ∂uΩG is:

ud = uC + εε0 ·X =

[
0.05
0.05

]
+

[
0.002 0.01
0.01 0.02

]
·X (22)

with X the coordinate vector of the structures (see Figure 2a). In the case
of a homogeneous structure the strain would then be uniform and equal to εε0.
The reference solution is presented in Figure 7.

The deformation solution of the coupled problem is shown on Figure 8.
One notes that the displacement is discontinuous at the interface between ΩG
and ΩL. Indeed, the continuity of the displacement is imposed only on the
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Figure 7: Deformed shape of the reference problem solution under the prescribed uniform
macroscopic strain (22).

Figure 8: Illustration of the deformed solution for the proposed coupling technique under the
prescribed uniform macroscopic strain (22).

18



mean (translation) components of each interface. Moreover, the displacement
solution on ΩG corresponds to the one which could have been computed on a
full macroscopic computation (Figure 1b). The displacement solution on ΩL
is periodic and matches the solution of the first-order BVP on the RVE under
periodic hypothesis.

The stress map of the reference problem solution is shown on Figure 9a.
It can be noted that, from a macroscopic point of view, the solution is quite
uniform throughout the reference structure. And, from a microscopic point
of view, the stress is similar from one RVE to another except for some RVEs
closed to the outer boundary of the domain. This is due to edge effects that
can be observed on the reference solution (see Remark 3). The stress map
of the coupled problem solution is shown on Figure 9b. One can note that
the stress on ΩG is uniform and consistent with a full homogenized macroscopic
computation. The solutions in the zone of interest seems to be very similar with
the solution given by the reference problem as discussed hereafter.

(a) Reference problem (b) Coupled problem

Figure 9: Equivalent von-Mises stress map solutions under a uniform macroscopic strain.

The obtained error map drawn on the warped central RVE between the solu-
tions of the coupled problem and the reference problem is shown in Figure 10.
The maximum relative energetic error is of 1.56% regardless of the discretiza-
tion. The improvement is especially significant in comparison with the results
obtained with the classical coupling technique which is not designed to deal with
non-compatible models in a continuum mechanics way (see Figure 3). The er-
ror level is much lower with the proposed coupling technique and the solution
is independent of the discretization of the global model.

The coupled problem gives the expected results on the local and global
substructures as it gives the solution of the full-homogenized model on ΩG and
the exact solution of the first-order periodic BVP at micro-scale on ΩL. Indeed,
the maximum error value between the solution of the coupled problem on ΩL
and the exact solution of the first-order periodic BVP on a single RVE is under
1e−11%.
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Meshes

Example 1

uniform

macro-

strain

max. error emax
e = 1.56% emax

e = 1.56% emax
e = 1.56% emax

e = 1.56%

mean error emean
e = 0.70% emean

e = 0.70% emean
e = 0.70% emean

e = 0.70%

Example 2

linear

macro-

strain

max. error emax
e = 15.37% emax

e = 6.77% emax
e = 6.80% emax

e = 7.54%

mean error emean
e = 8.36% emean

e = 2.73% emean
e = 2.60% emean

e = 2.54%

colormap
0% 5% 10% 15% 20% 25%

Figure 10: Error maps based on the energetic criterion ee defined on (1) between u the
displacement solution of coupled problem central unit cell and uref the displacement solution
of reference problem central unit cell. Error drawn on the deformed shapes of ΩL with scale
factors.

Remark 3. One can note that the reference problem is not equivalent to the
first-order periodic BVP. Hence, the observed errors (< 1.56%) shown on the
map of Figure 10 can be explained by edge effects. Indeed, in the reference
problem, the central RVE is not really periodic because the boundary condition
(22) is not compatible with the periodic hypothesis near the outer boundary of
the domain ∂uΩG. Thus, the more RVEs compose the domain the more periodic
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will be the displacement on the central RVE.
To convince of this, the average strain εεMs with s ∈ {G,L, ref} is defined by:

εεMs = (KH
L )−1 : σσMs with the average stress σσMs over the domain Ωs given by

σσMs = 1
meas(Ωs)

∫
Ωs
σσs dΩ and with KH

L the homogenized material behavior of

the RVE.
On the coupled problem, in both substructures ΩG and ΩL, the average strain

equals the one imposed on the boundary: εεML = εεMG = εε0. On the reference
problem the average strain εεMref over the central RVE gives:

εεMref =

[
0.0020002 0.010152
0.010152 0.020039

]
which is different from the prescribed εε0 given in (22).

Example 2. In the second example, the same structures as those given in Fig-
ure 2 are subjected to a linearly varying macro-strain. The following displace-
ment is then applied on the outer edges of Ω and ΩG :

ud = (F0 − Id) ·X +
1

2
G0 : X ⊗X (23)

with F xx0 = 1.002 and F yy0 = 0.998 the non-null components of F0. The non-
null components of the prescribed G0 are Gxxy0 = 2e−3 mm−1, Gyxy0 = 4e−4

mm−1, Gxyy0 = −7.7e−4 mm−1 and Gyxx0 = −3.9e−3 mm−1. They are chosen
such that div(KH

L : εε(ud)) = 0. Such a boundary condition prescribes a linearly
varying macro-strain on the whole domain of a homogeneous material.

The stress map solution of the reference problem is shown on Figure 11a.
An evolution of the macroscopic stress at the scale of the structure is clearly
visible since the stress increases between the RVE at the bottom left corner and
the RVE at the top right corner. On the coupled problem, the macroscopic
gradient of stress is also visible on the global substructure. As the maximum
value of the reference problem is related to the top right hand corner RVE
solution whereas the maximum value of the coupled problem is related to the
central RVE, the color scale has been arranged to facilitate the comparison of
the von-Mises stress in the zone of interest (the central RVE). In this zone, the
solutions for the two models seem to be very similar as discussed hereafter.

The Figure 10 highlights the local difference between the solutions of the
coupled problem and the reference problem with the local error defined by (1).
The errors maps show that the reference problem is quite well approximated
compared with classical techniques: the maximum relative error is between
5 and 40 times smaller than the one found whith the coupling technique for
compatible models.

In this second example, it can be noticed that the error is a little higher
than in the first example. In addition, their trends follow those of the errors of
Figure 3. These errors can be explained by three different reasons.

The first one is that, in the same way as in the first example, the bound-
ary conditions of the reference and coupled problems are not identical. Indeed,
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(a) Reference problem (b) Coupled problem

Figure 11: Equivalent von-Mises stress map solutions under a linearly varying macroscopic
strain.

as mentioned in Remark 3, the boundary conditions on the reference prob-
lem satisfy full field Dirichlet conditions whereas on the coupled problem, the
Dirichlet conditions are applied on the homogenized substructure. In other
words, on the reference problem, the micro-displacement is imposed to vanish
on the outer edges of the reference structure while on the coupled problem, the
micro-displacement is implicitly supposed to be periodic.

A second source of error comes from the linear interpolation of the finite
element shape functions used to compute the solutions. Indeed, as a macroscopic
linear strain is enforced, it corresponds to a quadratic displacement on the global
subdomain ΩG . This quadratic displacement is then not exactly computed with
a linear mesh. This explains the error variation similar to the one in Figure 3.

A third source of errors comes from the material behavior of the global
substructure. Indeed, the micro-structured RVE is not well represented by a
first-order periodic homogenized material behavior because, in this case, the
strain variation is not negligible according to the size of the RVE. Therefore,
the macroscopic behavior of the RVE is not well represented by the used first-
order periodic homogenized behavior.

A major benefit from this technique is that, due to the mechanical sense
of the macro-basis, the proposed coupling technique is nearly insensible to the
discretization. Indeed, the shared macroscopic quantities are defined before
any discretization. No matter how coarse are the meshes, if they can describe
the macroscopic quantities, the technique is valid. This last point partially
illustrates the reason why, in example 2, for the coarsest global refinement, there
is a higher error. Indeed, the linear global mesh only offers a linear interpolation
of the displacement field on the coupling interface. This discretization does not
provide a proper description of the solution sought in the global domain.

Up to now, the local substructure corresponded to a single RVE. In the
following section, different sizes and patterns of the local substructure ΩL are
analyzed.
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5.2. Different sizes and patterns of the local substructure

∂uΩ

Γ
(a) A quarter of the reference problem mesh

ΩL

ΩG

∂uΩG

Γ

(b) ΩL is composed of 1 × 1 RVE

ΩL

ΩG

∂uΩG

Γ

(c) ΩL is composed of 3 × 3 RVE

ΩL

ΩG

∂uΩG

Γ

(d) ΩL is composed of 5 × 5 RVE

Figure 12: Illustration of a quarter mesh of the reference and the coupled problems for different
sizes of the local substructure.

Let us consider the coupled problems with the meshes of Figures 12b-12d.
The central parts ΩL are respectively composed by a set of 1 RVE, 3× 3 RVEs
and 5× 5 RVEs. The RVE have the same dimensions and material parameters
as in the previous sections. That is to say l, the size of one RVE, is taken to
be of 2 mm. The material parameters are the ones given in Section 5.1 for
the common steel material. The external part ΩG is larger than in the previous
sections: 30 mm. As previously, this one is modeled by a homogenized behavior
with the parameters also given in Section 5.1.

The reference mesh for the full microscopic description is shown in Fig-
ure 12a. It is composed by a set of 15× 15 RVEs and the material parameters
are the same as in ΩL.

As previously, the boundary conditions on ∂uΩG satisfy equation (23) with
the same components of the deformation gradient tensor as in the example 2.

The solutions given by the reference problem and by the coupled problem are
compared through the error defined by (1). The local error maps are shown in
Figure 13 and their maximum and mean values are displayed in the Table 1.
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(a)

(b) (c)

0% 1% 2% 3% 4% 5%

Figure 13: Error maps based on the energetic criterion ee defined on (1) between u the
displacement solution of the coupled problem on ΩL and uref the displacement solution of the
corresponding part of the reference problem. ΩL is respectively composed by a single RVE
(a) a set of 3 × 3 RVEs (b) and a set of 5 × 5 RVEs (c). The colorscale is truncated after 5%.

1× 1 RVE 3× 3 RVEs 5× 5 RVEs
emaxe 3% 7.7% 12%
emeane 1.1% 1.7% 1.9%

Table 1: Maximum energy local error for different scenarios of local substructures.

As shown in Figure 13, the maximum local error increases with the number
of RVEs in ΩL because the local substructure is getting closer to the boundary
∂uΩG . Indeed, the coupled solutions used to compute the error maps in Fig-
ure 13 are obtained for local structures of increasing sizes. But, the reference
domain is fixed thus the corresponding local regions are getting closer to the
outer edges. Similar tendency is observed for a single RVE according to its prox-
imity to the outer edges. Comparing the solutions obtained for the same local
structure but different sizes of global and reference domains, the error decreases
from a mean value of 2.6% (Figure 10 - exemple 2, column 3) to a mean value
of 1.1% (Figure 13a), when the local region is far from the outer edge.

The error is due to edge effects as explained in the Remark 3 because
the reference solution tends to be periodic for the most centrally located cells
but the applied boundary conditions are not compatible with the periodicity
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assumptions being used. Thus, the error increases as the zoom gets closer to
the outer edges. However, it remains low and localized on the boundaries of ΩL
which satisfy the Saint-Venant principle as the macroscopic quantities are well
transmitted between the local and global substructures. The error comes from
the microscopic fields and does not penetrate into the interior of ΩL.

As a result, periodicity conditions (20) are relevant in ideal cases from a ho-
mogenization point of view. In other cases, for example non-periodic situations,
they could be advantageously modified according to the case treated.

6. Conclusions

In this paper, a global-local interface coupling technique has been proposed
in order to couple a heterogeneous microscopic (local) model with a first-order
homogenized (global) model. The coupling technique is based on a second-order
homogenization strategy and deals with non-uniform loadings at the RVE scale.
It is associated with a scale separation of interface quantities on the coupling
interface which makes the formulation independent of the meshes considered.

The proposed coupling technique has been validated on different examples
appropriate for homogenization assumptions and for different loading cases. It
gives excellent results in comparison with the considered Mortar interface cou-
pling technique for compatible models and was shown to be nearly insensible
to mesh discretizations. In more general cases, the coupling and periodicity
conditions could be advantageously modified according to the case.

The proposed coupling conditions are given for a local model fully shrouded
in the global model. The current work is to extend this technique and formulate
coupling conditions for different localizations of the local model, including cases
near the domain boundaries. Moreover, a non-intrusive version of the approach
is currently being developed.
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Appendix A. Two-scale separation of dual interface quantities accord-
ing to a given scalar product

Appendix A.1. Separation of a force distribution into a macroscopic and micro-
scopic parts

Let us consider an interface displacement field W γ ∈ Wγ defined on γ. The

macroscopic part of this displacement field, WM
γ , is defined as the projection

onto a subspace WM
γ of Wγ with a finite dimension nM = dim(WM

γ ). Thus,
the following projector can be introduced:

ΠM,W
γ : Wγ →WM

γ

W γ 7→ ΠM,W
γ (W γ) = WM

γ

The microscopic part, Wm
γ , of W γ belongs to the complementary subspace

Wm
γ of Wγ =WM

γ ⊕Wm
γ as follows:

Wm
γ = W γ −WM

γ = (Id −ΠM,W
γ )(W γ)

Consequently, one has W γ = WM
γ +Wm

γ . Let us introduce the following work
bilinear form on Wγ ×Fγ :

(·, ·)γ : Wγ ×Fγ → R

(W γ , F γ)γ 7→
∫
γ

W γ · F γ dΓ

The microscopic part Fmγ and the macroscopic part FMγ of force distribution

F γ(= FMγ + Fmγ ) are defined such that the work is uncoupled between scales:

(W γ , F γ)γ = (WM
γ , F

M
γ )γ + (Wm

γ , F
m
γ )γ

Consequently, the macroscopic force FMγ ∈ FMγ is defined by:

∀WM∗
γ ∈ WM

γ , (WM∗
γ , F γ) = (WM∗

γ , FMγ ) (A.1)

The spaces WM
γ and FMγ have therefore the same dimension : nM .

Appendix A.2. Macroscopic projector definition

Let us introduce eMγ , a basis of the subspace WM
γ ⊂ Fγ ∩ Wγ : eMγ =(

{eMk }k=1..nM

)
. Then, the bilinear form (·, ·)γ is a scalar product on the sub-

space generated by the basis eMγ and:

ΠM,W
γ (W γ) = WM

γ =

nM∑
k=1

(W γ , e
M
k )γ e

M
k =

nM∑
k=1

[WM
γ ]k e

M
k = eMγ [WM

γ ]eMγ
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where the k-th component of WM
γ in eMk is in this case [WM

γ ]k = (W γ , e
M
k )γ .

The vector of the nM macro-displacement components in the macro-basis eMγ
is denoted by [WM

γ ]eMγ . Moreover, since eMγ is also a basis of FMγ , one also has:

ΠM,F
γ (F γ) = FMγ =

nM∑
k=1

(F γ , e
M
k )γ e

M
k

and :

(WM
γ , F

M
γ )γ =

nM∑
k=1

nM∑
j=1

[WM
γ ]k(eMk , e

M
j )γ [FMγ ]j

If the basis eMγ is orthonormal in the sense of scalar product (·, ·)γ on the

subspace generated by the basis eMγ , the macrowork is then defined by:

(WM
γ , F

M
γ )γ = [WM

γ ]TeMγ [FMγ ]eMγ

and, finally the macroscopic projector for displacement, ΠM,W
γ , is similar to the

macroscopic projector for force distribution: ΠM,W
γ = ΠM,F

γ = ΠM
γ . Then :

ΠM
γ (W γ) = WM

γ =

nM∑
k=1

[WM
γ ]k e

M
k =

nM∑
k=1

(W γ , e
M
k )γ e

M
k (A.2)

and:

ΠM
γ (F γ) = FMγ =

nM∑
k=1

[FMγ ]k e
M
k =

nM∑
k=1

(F γ , e
M
k )γ e

M
k (A.3)

For further details, interested reader can refer to [32].
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Appendix B. Homogeneized Macroscopic Quantities

For the particular case of a two-dimensional rectangular RVE presented in
Figure B.14, the 12 homogenization macroscopic quantities, εMxx, εMyy, εMxy,

GMxxx, GMyyy, GMxyy, GMyxx, GMxxy, GMxyx, GMyxy, GMyyx, as well as the RVE rigid

body motion components uCy , uCx and ωM can be determined by the 12 rela-
tions imposed on W by (10)-(12). The relations between the interface macro-
components and the homogenization macroscopic quantities are given below
according to the following notations:〈

[WM ]eM2

〉
nr/ml

= n[WM
r ]eM2 +m[WM

l ]eM2[
[WM ]eM4

]
nt/md

= n[WM
t ]eM4 −m[WM

d ]eM4

The RVE rotation and strain components are given only by mean parts of
interface displacements ([WM ]eM1 and [WM ]eM2 ):

ωM = − 1

2LxLy

[√
Lx

〈
[WM ]eM1

〉
1t/1d

+
√
Ly

〈
[WM ]eM1

〉
1r/1l

]
εMxx =

1

Lx
√
Ly

〈
[WM ]eM2

〉
1r/1l

εMyy =
1√
LxLy

〈
[WM ]eM2

〉
1t/1d

εMxy =
1

2LxLy

[√
Lx

〈
[WM ]eM1

〉
1t/1d

−
√
Ly

〈
[WM ]eM1

〉
1r/1l

]
The two components of GM that are expressed only in terms of linear com-

ponents (rotation [WM ]eM3 and extension [WM ]eM4 ) are written as:

GMxyx =
1

Ly

√
12

L3
x

[
[WM ]eM4

]
1t/1d

(
= GMxxy = − 1

Lx

√
12

L3
y

[
[WM ]eM3

]
1r/1l

)

GMyyx =
1

Lx

√
12

L3
y

[
[WM ]eM4

]
1r/1l

(
= GMyxy =

1

Ly

√
12

L3
x

[
([WM ]eM3

]
1t/1d

)

The other components of GM are written as a function of the macroscopic
interface displacements and the displacement in a corner A with uAx = u(A) ·ex,
uAy = u(A) · ey:

GMxxx =
6

L2
x

√
Ly

[〈
[WM ]eM2

〉
1r/1l

+
√

3
[
[WM ]eM3

]
1r/1l

+

+2

√
Ly
Lx

[WM
d ]eM1 + 2

√
Lyu

A
x

]
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GMyyy =
6

L2
y

√
Lx

[〈
[WM ]eM2

〉
1t/1d

−
√

3
[
[WM ]eM3

]
1t/1d

−

−2

√
Lx
Ly

[WM
l ]eM1 + 2

√
Lxu

A
y

]

GMxyy =
6√
LxL2

y

[〈
[WM ]eM1

〉
1t/1d

+

√
3Lx
Ly

[
[WM ]eM3

]
1r/1l

+

+2
√
Lx

(
1√
Ly

[WM
l ]eM2 + uAx

)]

GMyxx = − 6√
LyL2

x

[〈
[WM ]eM1

〉
1r/1l

+

√
3Ly
Lx

[
[WM ]eM3

]
1t/1d

−

−2
√
Ly

(
1√
Lx

[WM
d ]eM2 + uAy

)]

The RVE rigid body translation components are given by:

uCx = − 1

4
√
Ly

[
4
√

3
[
[WM ]eM3

]
1r/1l

+
〈

[WM ]eM2

〉
1r/7l

+

+

√
Ly
Lx

〈
[WM ]eM1

〉
1t/7d

+ 8
√
Lyu

A
x

]

uCy =
1

4
√
Lx

[
4
√

3
[
[WM ]eM3

]
1t/1d

−
〈

[WM ]eM2

〉
1t/7d

+

+

√
Lx
Ly

〈
[WM ]eM1

〉
1r/7l

− 8
√
Lxu

A
y

]
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Figure B.14: Rectangular two-dimensional RVE with interface notations
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Appendix C. Discretization and solution strategy

Appendix C.1. Discretization

Let us introduce the finite element approximation spaces Uhs ⊂ Us, Fhs ⊂ Fs
and Wh

s ⊂ Ws such that the displacement on the substructure s ∈ {G,L} is
written as:

uhs (x) =

Ns∑
k=1

[Us]k ϕk(x)

the displacement on the interface Γ is written as:

Wh
s (x) =

NΓ∑
k=1

[Ws]k ψk(x)

and the k-th discretized vector of macroscopic basis function is written as:

eM,h
k (x) =

NΓ∑
j=1

[eMk ]j ψj(x)

Approximation spaces for the interface quantities and the displacement
quantities has to be carefully chosen so that the inf-sup conditions (or LBB-
conditions) are satisfied [2, 5, 9, 10]. In the following, one considers that
Wh
s = Fhs . For the sake of generality, the interface shape functions ψ are not

necessary the restriction of internal shape functions ϕ|γ . Thus, the kinematic
admissibility between us|γ and W s can be classically discretized as follows:

[Nsγ
][Bsγ

][Us] = [Msγ
][Ws]

where [Bsγ
] is a boolean operator (discretized trace operator) that restricts the

nodal vector of unknowns [Us] to the interface γ. The matrices [Nsγ
] and [Msγ

]
are defined by:

[Nsγ
]ij =

(
ψ
i
, ϕ

j|Γ

)
γ

(C.1)

[Msγ
]
ij

=
(
ψ
i
, ψ

j

)
γ

(C.2)

Since the matrix [Msγ
] is similar to a mass matrix, it is invertible and:

[Wsγ ] = [Msγ
]−1[Nsγ

][Bsγ
]︸ ︷︷ ︸

[Bsγ ]

[Us] (C.3)

By introducing [eMΓ ] = [[eM1 ], [eM2 ], . . . , [eMnM ]] the nΓ×nM discretized macro-
basis where column l corresponds to the discretized macro-basis function l, [eMl ],
one can show that the macroscopic projectors ΠM

γ can be discretized as follows:

[ΠM
sγ

] = [eMsγ ]t[eMsγ ][Msγ
]
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Thus, one deduces that the discretized macroscopic and microscopic displace-
ments are such that:

[Wm
sγ ] =

(
[Id]− [ΠM

sγ
]
)

[Bsγ ][Us]

[WM
sγ ] = [eMsγ ][WM

sγ ]
eM

= [ΠM
sγ

][Bsγ ][Us]

(C.4)

where [WM
sγ ]eM is a nM -length vector of components of WM

sγ
in the discretized

macro-basis [eMsγ ]. Similar approximations can be given for an interface force
F sγ . Due to the orthogonality of the macro-basis function, one has the following
property:

t[eMsγ ][Msγ ][eMsγ ] = [Id] (C.5)

Appendix C.2. Discretized saddle-point problem

The substitution of discretized quantities into the weak formulation gives
the following monolithic finite element linear system:[K] [C]T [P ]T

[C] [0] [0]
[P ] [0] [ε]

 [U ]
[ΛC ]
[ΛP ]

 =

[F ]
[0]
[0]

 (C.6)

where:

[K] =

[
[KG ] [0]
[0] [KL]

]
[U ] =

[
[UG ]
[UL]

]
[F ] =

[
[FG ]
[FL]

]
with [KG ] and [KL] the stiffness matrices of the global and the local substruc-
tures respectively, [UG ] and [UL] the nodal vector of unknows of the global and
the local substructures, [FG ], [FL] the generalized forces applied over the global
and the local substructures and [ΛC ], [ΛP ] the discretized Lagrangian multipli-
ers associated to relations (10)-(14).

The discretized coupling operator [C] in (C.6) is defined by:

[C] =

 [CU
G ] −[CU

L ]
[PL
G ] −[PL

L ]
[BG

A
] −[BL

A
]


where the coupling operators on the substructure s ∈ {L,G} concerning the
macro-basis components p ∈ {T, L,Q} are defined by:

[Cp
s ] =


t[epsd ][Msd ][Bsd ]
t[epsr ][Msr ][Bsr ]
t[epst ][Mst ][Bst ]
t[epsl ][Msl ][Bsl ]
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and the periodicity operators of linear macrocomponent on the substructure s
by:

[PL
s ] =

[
t[eLst ][Mst ][Bst ]− t[eLsd ][Msd ][Bsd ]
t[eLsr ][Msr ][Bsr ]− t[eLsl ][Msl ][Bsl ]

]
The discretized trace operator [Bs

A
], on the substructure s, restricts the nodal

vector of unknowns [Us] to the A corner.
The discretized periodicity operator [P ] in (C.6) is defined by:

[P ] =


[PQ
G ] [0]

[Pm
G ] [0]

[0] [PQ
L ]

[0] [Pm
L ]


where the periodicity operators of quadratic macrocomponent on substructure
s ∈ {L,G} is defined by:

[PQ
s ] =

[
t[eQst ][Mst ][Bst ]− t[eQsd ][Msd ][Bsd ]
t[eQsr ][Msr ][Bsr ]− t[eQsl ][Msl ][Bsl ]

]
and the periodicity operator of the micro-components on local substructure,
with a periodic mesh, is given by:

[Pm
L ] =

[
[MLt ] ([Id]− [ΠLt ]) [BLt ]− [MLd ] ([Id]− [ΠLd ]) [BLd ]
[MLr ] ([Id]− [ΠLr ]) [BLr ]− [MLl ] ([Id]− [ΠLl ]) [BLl ]

]
The penalty term [ε], is added to system (C.6) in order to enforce periodicity

of microscopic displacements and is defined by:

[ε] =


[0] [0] [0] [0]
[0] −ε[MP

G ] [0] [0]
[0] [0] [0] [0]
[0] [0] [0] −ε[MP

L ]


where ε > 0 and as the meshes of the global and the local substructures are
assumed to be periodic:

[MP
s ] =

[
[Msd ] [0]

[0] [Msl ]

]
=

[
[Mst ] [0]

[0] [Msr ]

]
One can refer to [5] (sections 3.2.2 and 3.2.3) for further details on the penalty
term [ε].
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