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Abstract—Transferring pretrained deep architectures to
datasets with few labels is still a challenge in many real-world
situations. This paper presents a new framework to understand
convolutional neural networks, by establishing connections be-
tween Kronecker factorization and convolutional layers. We then
introduce Convolution Weighting Layers that learn a vector of
weights for each channel, allowing efficient transfer learning
in small training settings, as well as enabling pruning the
transferred models. Experiments are conducted on two main
settings with few labeled data: transfer learning for classification
and transfer learning for retrieval. Two well known convolutional
architectures are evaluated on five public datasets. We show that
weighting convolutions is efficient to adapt pretrained models to
new tasks and that pruned networks conserve good performance.

I. INTRODUCTION

Deep neural networks provide extraordinary results on many

fields, such as speech processing or computer vision, thanks to

large architectures trained on massive datasets. However, such

performance is obtained at the cost of incredible computation.

Large computation resources are not available in many real-

world situations, thus restricting the development and the use

of such methods. Fortunately, neural networks models are

flexible and able to learn transferable features [44], thanks

to finetuning approaches that enable to transfer knowledge

learned from one dataset or task to another. While this strategy

is widely used, it is limited to contexts where sufficient

supervised data is available. In problems with only few data,

one may require to freeze convolutional layers to help the

optimization process. In other words, one can hypothesize

that convolution filters learned on a large available dataset,

e.g. ImageNet, are all relevant to any targeted task where few

labeled data is available, e.g. medical images [36]. However,

we believe that transferring a full pretrained model to another

task should be able to select relevant neurons, or part of the

architecture, in order to build the minimal set of parameters

needed to achieve good performances.

Reducing the number of parameters in neural networks

can be naturally achieved by low-rank compression [21], [8],

[16] or pruning strategies [23], [19], [13]. More recently

in [48], a variational approach is developed to sparsify

convolutional filters through batch normalization layers. In

[35] authors learn separable weights for each filter and bias

in convolutional layers and further refine them in a meta

learning procedure. This later work is efficient for transfer

learning in few shot setting but cannot be easily compressed

by pruning strategies since feature maps depend on both

filters and bias. Obtaining weight values as criteria to prune

convolutional layers is efficient and intuitive but lacks for

a formal justification. We argue that a better understanding

might lead to the design of better strategies to perform both

transfer and pruning of convolutional networks.

We present a formal relation between low-rank Kronecker

decomposition and learning convolutional layers in CNN ar-

chitectures. This motivates us to introduce weight vectors in

addition to usual convolution filters, allowing efficient transfer

learning in small training set situations, as well as pruning

transferred models. For transfer learning with few training

samples, it is preferable to reduce the amount of parameters

of the model to generalize well. Rather than finetuning every

filter parameters, we learn a weight vector where each dimen-

sion can be viewed as the ”relevancy” of its corresponding

filter for the targeted task, or dataset. With this strategy, we

refine pretrained convolutional architectures that enable filter

selection and pruning channels in convolutional layers.

Our approach is illustrated in the case of transfer learning

for classification with few supervised data. These strategies

are further studied in the case of image retrieval using very

few samples being the query images. Finally, model pruning

is evaluated based on the learned weights.

The rest of the paper is organized as follow. Section II dis-

cuss some related works for transfer learning and compression

methods. In section III, we present how learning convolution

filters is equivalent to perform low-rank approximation of

a particular reshape of tensors structures that parameterizes

CNN models. Section IV introduces our method for transfer

learning with weighted convolutions. Finally in section V, we

detail and discuss experiments conducted with various settings

and datasets.

II. RELATED WORKS

A. Transfer learning

Transfer learning aims at adapting models or representation

to different source-target domains. This topic has been widely

studied in machine learning, in various situations, including

the use of deep neural networks. Interested readers are en-

couraged to read a recent survey on the topic [47]. Several

methods exist to perform such transfer [22], [42], [43], [46]

but the most common transfer method is to adapt pretrained

models to a new task referred to as finetuning [44], [49], [6].

Standard finetuning is simple and is the de facto procedure for

transfer learning. Finetuning is used in two main situations:



transferring knowledge on a possibly new task with different

data that share the same domain, or domain transfer where the

task is identical but data are obtained from a different domain.

Several advanced methods related to domain adaptation focus

on unsupervised setting. Typically, domains distribution are

aligned exploiting various criteria such as maximum mean

discrepancies [18], correlation [34], or adversarial constraints

[38], [7]. Both task and domain transfer are the most frequent

situation and often occur with few training samples. Thus,

standard finetuning is essentially used rather than domain

adaptation methods.

B. Finetuning

In this section, we review some recent works extending fine-

tuning methods. In [10], an input-dependent finetuning scheme

is developed to automatically select the layers to finetune per

target instance. This approach automatically finds the optimal

set of layers, using a reinforcement learning policy. The Data

Finetuning scheme [4] recently showed that one can improve

the classification accuracy of a given model without changing

its parameters. Instead, authors use adversarial perturbations

to modify data rather than the model parameters in a context

where the model is not accessible, i.e. a blackbox scenario.

Another approach uses a pretrained network as backbone

combined with various layer functions to perform a different

task, such as object detection [31], [30], part-based image

recognition [32], or instance segmentation [12], [1].

C. Pruning and compression

Reducing the number of parameters of neural networks

received a lot of attention, especially with the recent develop-

ment of deep models on mobiles and embedded systems [20],

[3]. Several strategies exist, such as low-rank decomposition

of weights matrices [45] or by tensor factorization of higher

order structures by reshaping weight matrices in dense or con-

volutional layers [21], [16]. Other methods focus on hashing

and quantization by regrouping weights together into buckets

[2] or codewords [33] that are learned to cover the parameter

space optimally. These approaches can significantly reduce the

amount of parameters and neurons, while preserving model

performance, nevertheless often need a finetuning step in a

second phase to refine the compressed models [33].

Another popular line of research to reduce the size of neural

networks is pruning. The main idea is to remove parameters

that do not contribute to the final decision. Pruning may offer

several benefits such as accelerating inference phase, better

generalization, and is favorable for small training set. An early

work [17] considers the Hessian of the loss function to make

a trade-off between network complexity and training set error.

In [11] a simple procedure is proposed to remove parameters

that converged to a value below a given threshold and evaluate

various regularizations to enforce small parameters value.

These approaches conserve good generalization capabilities

when removing almost-zero weights, and connected neurons.

However, the model performance decrease when more param-

eters are pruned. Therefore, an iterative procedure is proposed

[11] with several steps of pruning and finetuning, leading to

much better accuracy / compression ratio. In [19], various

pruning strategies are compared to compress convolutional

architectures. Authors show that many redundant filters - and

feature maps - can be dropped, especially in the case of

transfer learning. As already mentioned, [48] rely on a varia-

tional approach to sparsify convolutional filters through batch

normalization layers. Authors redefine the batch normalization

in order to make affine transformation mostly dependant on

one single scalar parameter (γ) per filter. The parameter

probability distribution (called channel saliency) is further

constrained to be closed to a prior zero centered Gaussian

distribution, by minimizing Kullback-Leibler divergence in the

loss function.

When transferring convolutional architectures specifically,

it is likely that some filters and feature maps are not rele-

vant globally, so pruning could be considered at the feature

map level. Such reduction lowers the number of trainable

parameters and directly translate to significant acceleration in

computation during inference. This benefit is not applicable

for other compression methods such as [21], [16] that reduce

the number of learnable parameters but not the number of

activations.

III. CONVOLUTION AS KRONECKER PRODUCT

In this section, we first present a formalization of convolu-

tion operator and its connection with Kronecker product.

A. Kronecker product approximation

Let Bi,j ∈ R
p×q be block matrices for i ∈ [1..r] and j ∈

[1..s] and C = (ci,j)i=1...r,j=1...s ∈ R
r×s a r× s matrix, then

the Kronecker product of B and C is noted A = B⊗C. A is

a (pr)× (qs) block matrix such that its (i, j)th block is equal

to Ai,j = Bi,j × ci,j .

Any matrix can be approximated with a Kronecker product

of two smaller matrices. Such approximation is formalized as

follows. Given A ∈ R
m×n, a matrix with m = m1×m2 and

n = n1×n2, how do one get B ∈ R
m1×n1 and C ∈ R

m2×n2,

such that A ≈ B ⊗C ? We rely on [39] establishing that this

problem can be solved by standard low-rank factorization, as

shown in Theorem 1.

Theorem 1 (Van Loan - 1993). Assume that A ∈ R
m×n with

m = m1 × m2 and n = n1 × n2. If B ∈ R
m1×n1 and

C ∈ R
m2×n2, then

‖A−B ⊗ C‖F = ‖ℜ(A)− vec(B)vec(C)T ‖F (1)

where vec() is matrix vectorization and ℜ is a ℜeshape

operator that corresponds to the well known im2col Matlab

procedure and which consists in vectorizing each block of A

(of size m1× n1 or m2× n2), with no overlap.

Hence one may find a Kronecker product approximation

of any matrix A ≈ B ⊗ C via a rank-1 Singular Value

Decomposition (SVD), yielding vec(B) and vec(C) which

may be reshaped in matrices B and C. Note that the

corresponding eigenvalue σ1 of this first rank solution is here



included into the two vectors (e.g. multiplying each one by√
σ1).

The rank-k Kronecker product generalizes the result of the-

orem 1 by using the truncated-SVD, leading to ℜ(A) ≈∑k

i=1 σiU(:; i)V (:; i)T = UkΣkV
T
k with Uk, Σk and Vk the

truncated U , Σ and V at rank k. Incorporating
√
Σk into

both Uk and Vk results in ℜ(A) ≈ UkV
T
k and allows us to

approximate A by a sum of Kronecker products such that:

A ≈
∑

k

Bk ⊗ Ck (2)

with Bk = reshape(Uk, (m1, n1)) and Ck =
reshape(Vk, (m2, n2)).

B. Standard convolution

Implementing convolution as matrix product is required to

take advantage of fast GPU computation. In practice, every

image patches where convolution will apply are vectorized

(with the im2col transformation), or kernel filters are reshaped

as a sparse matrix according to convolution strides and padding

[5]. Despite both alternatives being equivalent in terms of com-

plexity, the first one allows us to highlight a first connection

between convolution and Kronecker product: given an input

multi-channel image A, a standard convolution layer produces

k feature maps Uk, computed as:

U (conv) = ℜ(A)× V T (3)

where V ∈ R
k×whc is the matrix that contains vectorized

convolution filters, and w, h, c are respectively the width,

height and depth of filters (corresponding to the number of

channels in A).

C. Linking Kronecker approximation and convolution

If one wanted to process an input image A through a

convolutional layer (without considering non linear activation

functions) while keeping all information in A, it would ideally

require performing an SVD of A, or equivalently a rank k

Kroenecker approximation of ℜ(A).
Let us look at what activations are obtained if an input image

A is built with a rank-k Kroenecker approximation given a set

of filters V . Assuming half-padding and stride size equal to

filter size w × h, the feature maps Bk ∈ R
W

w
×

H

h and filters

Ck ∈ R
w×h×c can be computed for an input image A ∈

R
W×H×c under their vectorized shapes U and V using rank-

k Kronecker factorization by solving the following problem:

min
U
‖ℜ(A)− UV T ‖F (4)

with ℜ(A) ∈ R
WH

wh
×whc, U ∈ R

WH

wh
×k and V ∈ R

k×whc. As

stated above, the SVD algorithm can be used to solve this

problem.

Given matrix V , solving equation 4 gives an analytical

expression of U :

U (kron) = ℜ(A)× V T × (V TV )−1 (5)

Compared to conventional convolution, an additional term

is needed to compute the feature maps U . This term should

not have any impact, since (V TV )−1 the covariance of filters

matrix V is supposed to be identity for orthogonal filters.

Indeed, considering the SVD decomposition of ℜ(A), V is

always orthogonal if the number of filters k is less than

maximum rank of ℜ(A) = min(N,whc), with N the number

of lines in ℜ(A) depending on size of A, strides, and padding.

In most situations filters are likely to be naturally orthogonal,

except for the first layer of a convolutional network, where

the number of input channels is much smaller than those of

higher layers, see Figure 1. The first convolutional layer in a

CNN is the most likely to learn a bank of redundant filters.

Considering smaller or larger strides obviously prevents

from reconstructing the input image, see equation 2. However,

equation 4 allows factorization. Smaller strides result in more

lines in ℜ(A), larger feature maps, and may increase the rank

of ℜ(A) for large input channel c.

Fig. 1. Filters covariance matrix of four first convolutional layers of a standard
CNN, from left to right (on MNIST dataset).

IV. WEIGHTING CONVOLUTION

By weighting convolutions, we explicitly consider the

(V TV )−1 term in Eq. 5. We further use a diagonal approxi-

mation of this matrix to gain additional degrees of freedom to

match a new data distribution when transferring a CNN to a

new task.
This process can also help interpreting filters and feature

maps contribution, since Σ encodes filter relevancy for the

targeted task.

A. Convolution Weighting layer

A convolutional weighting layer scales each of the feature

map according to an additional parameter σk so that the kth
feature map Uk is actually computed as follows:

U
(weig)
k = σk ◦ (ℜ(A) × V T

k + bk) (6)

where ◦ denotes element-wise scalar to matrix multiplication

and bk a bias term.

These k additional parameters σ can be learned by back-

propagation. Thus, they are not related to filters variance any-

more but act as weights to modulate each filter contribution,

according to its relevance to the training objective. This is

particularly relevant when adapting pretrained architectures.

In this formulation, a standard convolution layer corresponds

to Σ = Id.

In practice we insert a Convolution Weighting layer (CWL)

after each convolution layer in the CNN that we want to

transfer. This layer learns one parameter σk per feature map

k and multiply the whole feature map k by σk according to

equation 6.



B. Transfer Learning with convolution weighting layers

This section presents a sketch of a finetuning algorithm that

takes advantage of convolutions weights for improved transfer

learning. This method is by design more dedicated to limited

training size settings.

In algorithm 1, we highlight each step when refining a pre-

trained model to datasets with possibly very few labels. Steps

1, 2 and 4 correspond to the classical finetuning approach,

despite step 1 decreasing the learning rate for convolution

layers rather than freezing them. In step 3, we insert a

Convolution Weighting Layer after each convolutional layer,

or batch normalization if any. This layer learns a vector of

dimension k corresponding to the number of feature maps

output from its previous convolutional layer. In the forward

pass, a feature map Uk is multiplied element-wise by σk as in

equation 6. We initialize each σk by 1, and let them free for

updating by back-propagation to minimize the network loss

during training.

Algorithm 1 Finetuning with weighted convolutions

Input: pretrained model Mp, training dataset (X , Y )

Output: finetuned model Mf

1: Mf ← FreezeConvsF ilters(Mp)
2: Mf ← ReplaceClassifLayers(Mf, Y )
3: Mf ← InsertWeightConvs(Mf)
4: Mf ← TrainUnfreezedLayers(Mf , X, Y )
5: return Mf

C. Pruning with convolution weighting layers

When transferring a pretrained architecture to another

dataset, some parameters can become unnecessary. For in-

stance, transferring to a new task where data exhibits less vari-

ability will generally require smaller architectures. Network

pruning consists in removing the less important parameters of

a network. This section shows how we prune a network by

weighting convolutions.

In practice we apply a threshold τ on |σk| values learned

during transfer learning and we remove all filters Vk and

feature maps Uk such that |σk| < τ . Removing feature maps

in intermediate convolution layers reduces the amount of input

channels in the following convolutions layers. This drastically

reduces the computing complexity of pruned networks while

preserving enough information, since fewer filters are needed

to approximate the reconstruction of less complex and lower

dimensional inputs by UΣV factorization.

This pruning method can be then linked to low-rank com-

pression approaches, as learning less filters corresponds to a

lower Kronecker rank (equation 4.

D. Link to channel saliency

Channel Saliency, or Channel Attention, is the mechanism

able to focus the attention within channels of convolutional

layers. Several works already study this direction for various

goals. Some works [40] are interested in enhancing CNN

performance and interpretability by adding attention to both

spatial and channel domains. Alternative works add spatial

pooling and/or a parallel MLP to learn non-linear interaction

between channels [41]. A similar mechanism is used in [14] to

obtain compressed networks at inference time. Such strategies

show positive impact, often at the cost of more parameters in a

fully supervised learning setting. To the best of our knowledge,

channel saliency has not been used for both transfer learning

and pruning networks.

V. EXPERIMENTS

We conducted experiments on two main settings: transfer

learning for classification, and transfer for image retrieval.

We also illustrate few results in network pruning and give an

explanation of channel pruning in CNN through the Kronecker

factorization analysis presented in section III.

A. Transfer for classification

We explore the capabilities of weighting convolutions to

transfer knowledge from the Imagenet dataset to another

dataset with few training samples. Three datasets are consid-

ered: MIT 67 Scenes, Kvasir v2, and Chest X-ray, and we

randomly select few training images per class for each of them.

Two architectures are compared, namely VGG-16 and

ResNet50. We further evaluate four strategies: as baselines,

Finetune and Freeze correspond to standard transfer ap-

proaches, whether convolutional layers are trainable of not.

We compare these two methods with the proposed Weighting

Convolution Layers, see Table I and II.

1) Datasets: We study three image classification datasets

from various fields in order to study the impact of dataset

shift in transfer learning.

a) MIT 67 Scenes [27]: is an indoor scenes dataset

composed of 6,700 images divided in 5,360 training images

(around 80 per class) and 1,340 test images (around 20 per

class).

b) Kvasir v2 [26]: is a medical image classification

dataset aiming at recognizing anatomical landmarks, patho-

logical findings, or endoscopic procedures inside the gastroin-

testinal tract. The dataset contains 8,000 images with 1,000

image per category. For each class, we divided the dataset

into 750 images for training and 250 for testing. Categories

include Z-line, pylorus, cecum, esophagitis, polyps, ulcerative

colitis, dyed and lifted polyps and dyed resection margins.

c) Chest X-ray [15]: is a second medical image classi-

fication dataset aiming at recognizing pneumonia for patients

aged between one and five years old. The data is composed of

5,216 training images and 624 test images and has 2 categories

whether the patient is normal or infected by pneumonia.

These datasets are selected as they increasingly differ from

the original data on which the network is originally trained,

while having comparable resolution. MIT 67 has images taken

with similar digital cameras as ImageNet, but shows scenes as

opposed to objects. Thus, the information to capture is more

global than localized objects from ImageNet. Kvasir has digital

colored images of the intestine, which has specific shape,



Fig. 2. Images of the datasets used in the experiments: MIT 67 indoor scenes, Kvasir intestine images, chest X-ray for pneumonia recognition, Oxford and
Paris landmarks.

color, and organization. Finally, the chest dataset is composed

of uncolored images with similar view of patient chest.

We believe that medical images are a great example where

transfer require the most adaptation. The first line in figure

2 shows two image samples from each of the three datasets

described above.

2) Experimental details: The experiments are performed by

using all convolutional layers from a pretrained network and

adding a final fully connected layer with as many neurons as

categories.

We restrict the training set of the presented datasets by

randomly selecting 1, 3, 5, and 10 examples per class to refine

the pretrained convolutional model and transfer to the new

dataset.

The learning rate is grid searched with values in

[0.00001, 0.00005, 0.0001, 0.0005, 0.001] for finetuning runs

and in [0.001, 0.005, 0.01, 0.05] for the freeze experiments.

Tables below show averages and standard deviations of the

best accuracies (over LR), repeated 10 times.

3) Results: First, we study how transfer with Weighting

Convolution Layers compares with the standard freeze strat-

egy, on the three datasets with the two models, see Table I.

We observe that weighting convolution significantly improves

over frozen convolutions for most cases. Furthermore, VGG-

16 shows more improvements than ResNet, which can be

explained by the fact that VGG-16 does not include batch

normalization, nor residual connections that helps the model

to generalize. We note that the variance is quite high, e.g. more

than 10%, for a few experiments with 1 or 3 samples to learn

from, which is expected since samples are randomly picked.

Secondly, we study Weighting Convolutions Layers added

while finetuning VGG-16 with the same datasets see Table II.

We show again that convolutions weights offer improvements

even in the case of finetuning on small amount of examples.

Also, finetuning outperforms frozen convolutions for Kvasir

and Chest datasets, but does not on MIT-67. This can be

explained by the fact that these medical datasets require more

adaptation than MIT.

B. Transfer for Image Retrieval

To further investigate the transfer capabilities of our method,

we study the image retrieval problem. Image retrieval (or

content-based image retrieval) aims at searching images in a

database that are similar to a given query. In fact, the entire

image database is sorted in terms of similarity to given queries.

Commonly, pretrained networks are finetuned on large un-

supervised or weakly supervised datasets that are related to the

studied datasets [28], [9]. For instance, network are fine-tuned

on a dataset of building images to further perform retrieval on

landmarks datasets. Such finetuning is often based on pair or

triplet losses, as datasets are not fully annotated.

In our case, we are not interested in finetuning networks on

large quantities of weakly annotated data. We rather propose to

explore the potential of our method by transferring to the given

query images, see Table III. Therefore, we apply finetuning on

the 70 query images of the datasets corresponding to the 15

landmarks. These labels are used to finetune the network as

in the classification setting.

1) Datasets: The most common retrieval datasets are Ox-

ford5k [24] and Paris6k [25]. Recently, [29] proposed a

revisited version of the datasets, ROxford5k and RParis6k,

with 15 extra query images corresponding to 5 new landmarks

and three evaluation protocols: Easy, Medium, and Hard.

a) ROxford5k: contains 4,993 images with 70 query

images corresponding to 16 oxford landmarks.

b) RParis6k: contains 6,322 images with similarly 70

queries of 16 parisian buildings.

The second line in figure 2 shows two images from the two

datasets considered in this section.

2) Experimental details: To evaluate the performance of

our method, we compute the common MAC (Maximum Ac-

tivations of Convolutions) representation [37] on the VGG-16

and ResNet50 networks. MAC performs global max-pooling

on the final convolutional layer of a given network. This vector

has a dimension equal to the number of filters on the last con-

volutional layer. To perform the evaluation, descriptors are l2-

normalized and cosine similarity is computed to rank similarity

between queries and images of the dataset. The mean Average

Precision (mAP) is finally computed as evaluation metric. We



training data / class 1 3 5 10

VGG-16

MIT 67 Scenes

Freeze 0.065 (0.013) 0.178 (0.017) 0.243 (0.013) 0.381 (0.022)
Freeze + CWL 0.118 (0.010) 0.236 (0.021) 0.301 (0.024) 0.411 (0.014)

Kvasir v2

Freeze 0.262 (0.047) 0.399 (0.044) 0.531 (0.030) 0.623 (0.026)
Freeze + CWL 0.294 (0.050) 0.500 (0.041) 0.550 (0.017) 0.677 (0.023)

Chest X-ray

Freeze 0.590 (0.072) 0.650 (0.121) 0.731 (0.030) 0.795 (0.071)
Freeze + CWL 0.587 (0.116) 0.688 (0.067) 0.756 (0.020) 0.810 (0.041)

ResNet50

MIT 67 Scenes

Freeze 0.166 (0.010) 0.316 (0.010) 0.400 (0.010) 0.510 (0.016)
Freeze + CWL 0.170 (0.011) 0.314 (0.021) 0.405 (0.014) 0.501 (0.023)

Kvasir v2

Freeze 0.345 (0.032) 0.564 (0.039) 0.653 (0.026) 0.752 (0.033)
Freeze + CWL 0.356 (0.055) 0.568 (0.065) 0.664 (0.036) 0.759 (0.025)

Chest X-ray

Freeze 0.712 (0.054) 0.696 (0.129) 0.757 (0.065) 0.821 (0.028)
Freeze + CWL 0.714 (0.048) 0.689 (0.127) 0.774 (0.049) 0.826 (0.030)

TABLE I
CLASSIFICATION ACCURACY ON MIT 67, KVASIR, AND CHEST FOR VGG-16 AND RESNET50 WITH FROZEN CONVOLUTION AND WEIGHTING

CONVOLUTIONS.

training data / class 1 3 5 10

VGG-16

MIT 67 Scenes

Finetune 0.058 (0.005) 0.108 (0.011) 0.143 (0.008) 0.259 (0.014)
Finetune + CWL 0.058 (0.007) 0.118 (0.022) 0.158 (0.015) 0.251 (0.020)

Freeze 0.065 (0.013) 0.178 (0.017) 0.243 (0.013) 0.381 (0.022)

Kvasir v2

Finetune 0.288 (0.082) 0.464 (0.145) 0.533 (0.001) 0.698 (0.016)
Finetune + CWL 0.309 (0.132) 0.536 (0.022) 0.590 (0.023) 0.666 (0.001)

Freeze 0.262 (0.047) 0.399 (0.044) 0.531 (0.030) 0.623 (0.026)

Chest X-ray

Finetune 0.542 (0.118) 0.684 (0.132) 0.672 (0.163) 0.811 (0.027)
Finetune + CWL 0.610 (0.086) 0.730 (0.138) 0.691 (0.114) 0.824 (0.031)

Freeze 0.590 (0.072) 0.650 (0.121) 0.731 (0.003) 0.795 (0.071)

TABLE II
CLASSIFICATION ACCURACY ON MIT 67, KVASIR, AND CHEST FOR VGG-16 WITH FINETUNING AND WEIGHTING CONVOLUTIONS.

note that in the case of weighted convolution or finetuning, the

last fully connected layer is removed to compute the MAC.

The performance of the four strategies are evaluated, Freez-

ing convolutions being the baseline as the MAC from [37]. We

note that MAC is computed given images with original size

as input to the network. The training is performed by giving

images with a fixed size of 1024 × 768. Furthermore, data

augmentation is performed to cope with the various image

orientations, when learning. Finally, the learning rate is grid

searched as for image classification.

3) Results: As for classification, the performance of the

four strategies is evaluated, see Table III. VGG-16 and ResNet

are evaluated on ROxford and RParis in the Easy, Medium,

and Hard settings. The average performance is also given.

We observe that weighting convolutions brings improve-

ments over both freezing and finetuning strategies in all cases.

Thus, adapting representations by transferring models using

weighting convolutions is also beneficial in the image retrieval

setting. Furthermore, finetuning offers better performance than

freezing, which is explained by the fact that the network is

originally designed to take 224× 224 dimensional images as

input and finetuning allows it to adapt to a larger resolution,

as in the evaluation.

C. Pruning

We further study network pruning based on the convolution

weights. Different compression levels are evaluated and the

classification accuracy of the pruned models are shown before

and after finetuning. Specifically, Table IV shows the perfor-

mance of a pruned VGG-16 model, transferred from ImageNet

to Kvasir with 50 samples per class, as well as the compression

ratio of both the model parameters and the feature maps.

We observe that the number of parameters, respectively feature

maps can be reduced to 45%, respectively 74%, at the cost

of 1.5% accuracy. Furthermore, massive compression of 1%
of the parameters and 16% or the feature maps reduce the

accuracy to 65.8% from 90.4% with the original model.

This pruning method can be related to low-rank compression

approaches as mentioned above. Since filters removal leads to

activations removal, this cascading effect significantly damage



ROxford5k RParis6k

Easy Medium Hard Mean Easy Medium Hard Mean

VGG-16

Original / Freeze 49.37 37.09 15.21 33.89 60.88 47.79 25.16 44.61
Freeze + CWL 50.70 37.80 14.55 34.35 62.42 48.85 24.33 45.20

Finetune 41.07 33.23 12.78 29.03 65.63 51.58 27.08 48.10
Finetune + CWL 49.53 39.08 15.30 34.64 69.21 53.26 27.08 49.85

ResNet50

Original / Freeze 41.98 32.99 13.87 29.61 62.51 46.44 21.88 43.61
Freeze + CWL 55.27 42.35 16.08 37.90 77.43 56.09 27.18 53.57

Finetune 62.95 51.30 25.02 46.42 82.33 64.79 38.93 62.02
Finetune + CWL 63.19 51.21 25.31 46.57 82.95 66.16 42.52 63.88

TABLE III
RETRIEVAL PERFORMANCE ON ROXFORD5K AND RPARIS6K FOR VGG-16 AND RESNET.

the network capability without the finetuning phase. We ob-

serve in table IV that only one epoch of finetuning already

boost accuracy for the highest compression rates.

τ Acc. FT@1 FT@30 #Param #Feat

- 0.904 - - 100% 100%
0.2 0.905 0.890 0.909 95% 98%
0.4 0.892 0.888 0.907 85% 96%
0.8 0.492 0.858 0.889 48% 74%
1.0 0.221 0.635 0.825 23% 44%
1.2 0.121 0.533 0.658 1% 16%

TABLE IV
PRUNING ON KVASIR WITH VGG-16

Figure 3 shows compression rate for every convolution layer

of VGG-16 and ResNet50 architectures, after transferring from

ImageNet to Kvasir dataset, using τ = 0.8 and 50 samples

per class. We observe more pruned filters in lower layers for

VGG architecture transferred to Kvasir dataset. This is due to

the high redundancy of the first layer as discussed in section

III-C. For the ResNet50 architecture, the figure shows every

convolution layers corresponding to 3× 3 filters. We observe

similar high compression rate in the lowest layer, as well as

in the highest layers. Since highest layers in CNNs are known

to learn high-level features related to the dataset categories,

the high pruning ratio in higher layers confirm that only the

most relevant filters are transferred and pruned to handle the

targeted dataset.

VI. CONCLUSION

This paper proposes a simple yet efficient transfer learning

method for convolutional neural network. Our approach is

grounded by a formal analysis of the convolution operation,

providing evidence of a tight connection with Kronecker

factorization. Additional vectors for weighting convolution

feature maps are introduced, allowing more degrees of free-

dom to the network for transfer learning with few samples.

Our approach is validated with two CNN architectures on five

datasets of image classification or retrieval. Based on the con-

volutions weights, we further experiment network pruning to

compress transferred models. Interestingly, high compression

rates can be obtained for both parameters and activations, i.e.

feature maps, while preserving good performance. Finally, our

Fig. 3. Compression rate per layer using VGG-16 (left) and ResNet50 (right)
architectures on Kvasir dataset

formalization allows a better understanding of convolutional

channel pruning when transferring pretrained models.
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[29] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and
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