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The “pits effect” for entire functions of

exponential type and the Wiener spectrum

Jacques Benatar ∗ Alexander Borichev ∗∗ Mikhail Sodin ∗∗∗

Abstract

Given a sequence ξ : Z+ → C, we find a simple spectral condition which guarantees the

angular equidistribution of the zeroes of the Taylor series

Fξ(z) =
∑

n≥0

ξ(n)
zn

n!
.

This condition yields practically all known instances of random and pseudo-random se-

quences ξ with this property (due to Nassif, Littlewood, Chen–Littlewood, Levin, Eremenko–

Ostrovskii, Kabluchko–Zaporozhets, Borichev–Nishry–Sodin), and provides several new ones.

Among them are Besicovitch almost periodic sequences and multiplicative random sequences.

It also conditionally yields that the Möbius function µ has this property assuming “the binary

Chowla conjecture”.

1 Introduction and the main result

Let Fξ be an entire function of exponential type represented by the Taylor series

Fξ(z) =
∑

n≥0

ξ(n)
zn

n!
, ξ : Z+ → C .

As in [2], we are interested in the influence of the sequence ξ on the asymptotic be-

haviour of the function Fξ, in particular, on the angular distribution of its zeroes.

∗Supported by ERC Advanced Grant 692616
∗∗Partially supported by a joint grant of Russian Foundation for Basic Research and CNRS (projects

17-51-150005-NCNI-a and PRC CNRS/RFBR 2017-2019) and by the project ANR-18-CE40-0035
∗∗∗Supported by ERC Advanced Grant 692616 and by ISF Grant 382/15.

1

http://arxiv.org/abs/1908.09161v1


1 Introduction and the main result 2

Definition 1. The sequence ξ : Z+ → C is called an L-sequence, if

log |Fξ(tz)|
t

−→
t→∞

|z| , in L1
loc(C) . (1)

In the classical terminology of the entire function theory [11], condition (1) means

that the function Fξ has completely regular growth in the Levin-Pfluger sense with the

indicator diagram being the closed unit disk.

Since the L1
loc(C)-convergence of subharmonic fucntions implies convergence in the

sense of distributions, and the Laplacian is continuous in the distributional topology,

(1) yields
1

t
∆ log |Fξ(tz)| −→

t→∞
∆|z| = dr ⊗ dθ , z = reiθ , (2)

in the sense of distributions, with rdr ⊗ dθ being the planar Lebesgue measure. De-

noting by nF (r; θ1, θ2) the number of zeroes (counted with multiplicities) of the en-

tire function F in the sector
{
z : 0 ≤ |z| ≤ r, θ1 ≤ arg(z) < θ2

}
and recalling that

1
2π

∆ log |F | is the sum of point masses at zeroes of F , we can rewrite (2) in a more

traditional form: for every θ1 < θ2,

nFξ
(r; θ1, θ2) =

(θ2 − θ1 + o(1)) r

2π
, r → ∞ ,

which means that the angular distribution of zeroes is uniform, while the radial one is

proportional to r. Littlewood called such behaviour “the pits effect” which he described

as follows: “If we erect an ordinate |f(z)| at the point z of the z-plane, then the

resulting surface is an exponentially rapidly rising bowl, approximately of revolution,

with exponentially small pits going down to the bottom. The zeros of f , more generally

the w-points where f = w, all lie in the pits for |z| > R(w). Finally the pits are

very uniformly distributed in direction, and as uniformly distributed in distance as is

compatible with the order ρ” [14, p. 195].

There are no general results providing conditions for a sequence ξ to be an L-

sequence, but rather a collection of interesting examples. Most of them required an

individual, sometimes, quite involved, treatment. These examples include:

(a) random independent identically distributed ξ(n) (Littlewood–Offord [15], Kabluch-

ko–Zaporozhets [9]);

(b) stationary sequences with a logarithmic decay of the maximal correlation coeffi-

cient [2, Theorem 3] and Gaussian stationary sequences [2, Theorem 4];
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(c) ξ(n) = e(Q(n)), where Q(x) =
∑

k≥2 qkx
k is a polynomial with real coefficients qk,

at least one of which is irrational [2, Theorem 1], a special case ξ(n) = e(qn2) with

irrational q was treated earlier, by Nassif [17] and Littlewood [13], when q is a quadratic

irrationality, and then, by Eremenko–Ostrovskii [7], for arbitrary irrational q;

(d) e(nβ) with non-integer β > 1, for 1 < β < 3
2
by Chen–Littlewood [4], and for β ≥ 3

2

in [2, Theorem 2];

(e) uniformly almost periodic ξ(n) (Levin[11, Chapter VI, §7]).

Here and elsewhere, e(t) = e2πit.

In this work, we find a simple spectral condition for the sequence ξ to be an L-

sequence, which provides an easy and uniform treatment of the aforementioned ex-

amples (the only exception is a result of Kabluchko and Zaporozhets [9] pertaining to

independent random variables which may have no second moment), as well as of several

new ones, which were previously out of reach. Among them are Besicovitch almost pe-

riodic sequences and multiplicative random sequences. It also conditionally yields that

the Möbius function µ has this property assuming “the binary Chowla conjecture”.

Our spectral condition is based on a notion which was at the heart of a generalized

harmonic analysis developed by Wiener [19, Chapter IV]:

Definition 2. Let ξ : Z+ → C. We say that ξ is a Wiener sequence if for every k ≥ 0

there exists a (finite) limit

ρ(k) = lim
n→∞

1

n

∑

0≤s<n

ξ(s)ξ(s+ k).

Each Wiener sequence ξ has a unique spectral measure and its support is called

the Wiener spectrum of ξ. The spectral measure is constructed as follows. Let ξ be a

Wiener sequence. Then immediately, ξ(n) = o(n1/2), n→ ∞. Furthermore, we set

ρ(−k) = ρ(k) = lim
n→∞

1

n

∑

0≤s<n

ξ(s)ξ(s+ k), k ≥ 1.

Now, given j, k ≥ 0, we have

ρ(k − j) = lim
n→∞

1

n

∑

0≤s<n

ξ(s+ j)ξ(s+ k).
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For any complex numbers c0, . . . , cm we obtain

∑

0≤j,k≤m

cjckρ(k − j) = lim
n→∞

1

n

∑

0≤s<n

∑ ∑

0≤j,k≤m

cjck ξ(s+ j)ξ(s+ k)

= lim
n→∞

1

n

∑

0≤s<n

∣∣∣
∑

0≤j≤m

cjξ(s+ j)
∣∣∣
2

≥ 0.

Hence, by the Herglotz theorem, there exists a positive measure µ on the unit circle,

the spectral measure of the Wiener sequence ξ, such that ρ(k) = µ̂(k), k ∈ Z.

Our main result is as follows.

Theorem 1. Let ξ be a Wiener sequence such that the closed support of its spectral

measure is the whole unit circle. Then ξ is an L-sequence.

It is worth mentioning that one does not need to know the spectral measure µ in

order to check that its closed support has no gaps. It is not difficult to show (see [5,

Theorem 1]) that the sequences of measures dµn(θ) =
1
n

∣∣∑
0≤s<n ξ(s)e(−sθ)

∣∣2 dθ and

dνr(θ) = (1 − r)|fξ(re(−θ))|2 dθ with fξ(z) =
∑

n≥0 ξ(n)z
n, converge weakly to the

measure µ as n → ∞ and r → 1 correspondingly. Thus, for instance, it suffices to

verify that, for any arc I, lim inf
n→∞

µn(I) > 0.

The proof of Theorem 1 will be given in Section 2; its main idea is similar to the

one used in [2]. Since the sequence ξ does not grow faster than
√
n, the upper bound

|Fξ(z)| .
√

|z| e|z| is a straightforward consequence of the estimates for the Taylor

coefficients. A matching lower bound cannot hold everywhere (the function Fξ has

zeroes), but a simple argument based on the subharmonicity of log |Fξ|, yields that it
suffices to find a sufficiently dense set of points z at which such a lower bound exists. We

cannot explicitly locate such points z, instead, in several steps, we estimate from below

the averages of |Fξ|2 over sets of the form {w = te(ϕ) : r ≤ t ≤ r(1 + δ), |θ − ϕ| ≤ δ}
with any δ > 1, θ ∈ [−1

2
, 1
2
], and r ≥ rδ. This estimate will be based on the spectral

properties of the sequence ξ.

In Section 3 we discuss various examples of Wiener sequences that have no gaps in

the support of their spectral measures. Likely, all, or almost all of them are well-known

to the experts, however, in combination with Theorem 1 they provide new instances of

L-sequences.
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2 Proof of Theorem 1

2.1 Two lemmas on Wiener sequences

Lemma 1. Let ξ be a Wiener sequence. Then there exists a non-decreasing function

ψ, limx→∞ ψ(x) = ∞, such that
∣∣∣ 1
n

∑

0≤s<n

ξ(s)ξ(s+ k)− ρ(k)
∣∣∣ ≤ 1

ψ(n)
, n ≥ 1, |k| ≤ ψ(n). (3)

Proof. For every k,

max
n≥m

∣∣∣ 1
n

∑

0≤s<n

ξ(s)ξ(s+ k)− ρ(k)
∣∣∣ = ε(m, k) → 0, m→ ∞.

Set M0 = 0. Given m ≥ 1, we can find Mm > Mm−1 such that

max
|k|≤m

ε(Mm, k) ≤
1

m
,

and set ψ(x) = m, Mm ≤ x < Mm+1, m ≥ 0.

For a positive function f on [A,B] ∩ Z, we put

osc[A,B] f
def
=

∑

A<q<B

|f(q)− f(q − 1)| .

Lemma 2. Let ξ satisfy (3) for some non-decreasing function ψ, limx→∞ ψ(x) = ∞.

Given integers 0 < A < B and |h| ≤ ψ(A) and a positive function f we have
∣∣∣
∑

A≤k<B

ξ(k)ξ(k + h)f(k)− ρ(h)
∑

A≤k<B

f(k)
∣∣∣ ≤ 2

(
f(A) + osc[A,B] f

) B

ψ(A)
.

Proof. Applying summation by parts and then using (3), we get
∣∣∣

∑

A≤k<B

ξ(k)ξ(k + h)f(k)− ρ(h)
∑

A≤k<B

f(k)
∣∣∣

≤ f(A)
∣∣∣
∑

A≤k<B

ξ(k)ξ(k + h)− ρ(h)(B − A)
∣∣∣

+
∑

A<q<B

|f(q)− f(q − 1)| ·
∣∣∣
∑

q≤k<B

ξ(k)ξ(k + h)− ρ(h)(B − q)
∣∣∣

≤ f(A)
2B

ψ(A)
+

∑

A<q<B

|f(q)− f(q − 1)| 2B

ψ(A)

≤ 2(f(A) + osc[A,B] f)
B

ψ(A)
,

which proves the lemma.
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2.2 A lemma on entire functions of exponential type

Lemma 3 (Lemma 3.2.1 in [2]). Let F be an entire function of exponential type with

indicator function

hF (θ)
def
= lim sup

r→∞
r−1 log |F (re(θ)| ≤ 1 .

Suppose that for every θ ∈ [−1
2
, 1
2
] there exists a sequence of Rj such that limj→∞Rj =

∞, limj→∞Rj+1/Rj = 1, and a sequence of θj → θ such that

lim inf
j→∞

1

Rj
log |F (Rje(θj))| ≥ 1.

Then, condition (1) holds for the function F , that is, it is of completely regular growth

with hF ≡ 1.

2.3 Approximating the Taylor series by an exponential sum

Given r > 0 and an integer N such that N ≃ r1/2 log r, set

γ(k, r) =
k − r

2k
+

(k − r)2

2k
+

(k − r)3

3k2

and

W̃r,N(θ) =
∑

|k−r|≤N

ξ(k)e(kθ)e−γ(k,r),

Furthermore, set U(r) = er/
√
2πr.

Lemma 4. Let ξ be a Wiener sequence. Then

|Fξ(re(θ))|
U(r)

− |W̃r,N(θ)| = o(1), r → ∞, θ ∈ [0, 2π].

Note that if the Wiener sequence ξ is bounded, then, as in [2], instead of W̃r,N we

can use the sum

Wr,N(θ) =
∑

|k−r|≤N

ξ(k) e(kθ) e−|k−r|2/(2r) ,

which makes the proof of Theorem 1 somewhat simpler (cf. Lemma 4.1.1 in [2]).

Proof. First, we deal with the sum over k < r − N . Denote by p the largest integer

smaller than r −N . Since the sequence (rn/n!)n increases for n < r, we have

∑

k<r−N

|ξ(k)|r
k

k!
.

∑

k<r−N

k1/2
rk

k!
. r3/2

rp

p!
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By Stirling’s formula, we have

r3/2

U(r)

rp

p!
.
r3/2 rp+1/2ep

erpp+1/2

. r3/2 exp
(
−(r −N) log

(
1− N

r

)
−N

)

= r3/2 exp
(
−N

2

2r
+O

(N3

r2

))

= o(1), r → ∞.

Second, we deal with the sum over k > r + N . Denote by p the smallest integer

larger than r +N . Since the sequence (n2rn/n!)n decreases for n ≥ r + 1, we have

∑

k>r+N

|ξ(k)|r
k

k!
.

∑

k>r+N

k1/2
rk

k!
. r3/2

rp

p!

By Stirling’s formula, we have

r3/2

U(r)

rp

p!
= o(1), r → ∞.

Finally, we turn to the central group of indices. We have

∣∣∣
∑

|k−r|≤N

ξ(k)e(kθ)
( rk

k!U(r)
− e−γ(k,r)

)∣∣∣
2

≤
∑

|k−r|≤N

|ξk|2 ·
∑

|k−r|≤N

( rk

k!U(r)
− e−γ(k,r)

)2

= o(r) ·
∑

|k−r|≤N

(√2πr rk

k!er
− e−γ(k,r)

)2

.

Again by Stirling’s formula, for |k − r| ≤ N , we have

√
2πr

er
· r

k

k!
=

(
1 +O

(1
r

))
ek−r

( r
k

)k+1/2

=
(
1 +O

(1
r

))
exp

(
k − r +

(
k + 1/2

)
log

(
1− k − r

k

))

=
(
1 +O

(1
r

))
exp

(
−γ(k, r) +O

( log2 r
r

))

=
(
1 +O

( log2 r
r

))
e−γ(k,r),
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and hence,
∑

|k−r|≤N

(√2πrrk

k!er
− e−γ(k,r)

)2

.
log5 r

r3/2
.

Finally,
|Fξ(re(θ))|
U(r)

− |W̃r,N(θ)| = o(1), r → ∞ ,

proving the lemma.

2.4 A lower bound for the exponential sum W̃ (beginning)

Lemma 5. Let ξ be a Wiener sequence. Given δ > 0, r > r(δ), and θ ∈ [0, 2π], there

exist r0 ∈ (r, r + δr) and θ0 ∈ (θ − δ, θ + δ) such that for some (every) N ≃ r1/2 log r

we have

|W̃r0,N(θ0)| & r1/4.

Beginning of the proof of Lemma 5. Choose a non-negative even function g ∈ C2
0(R)

with support on [−1/2, 1/2] and such that
∫
g(ϕ) dϕ = 1. Fix N ≃ r1/2 log r. It suffices

to verify that

X =

∫ r+δr

r

∫ 1/2

−1/2

|W̃s,N(ϕ)|2 g(δ−1(ϕ− θ)) ds dϕ & r3/2.

Expanding the square we get

X = δ

∫ r+δr

r

∑

|k1−s|≤N

∑

|k2−s|≤N

ξ(k1)ξ(k2) e((k1 − k2)θ) ĝ(δ(k2 − k1)) e
−γ(k1,s)−γ(k2,s) ds.

Set

Vh(t) =

∫ r(1+δ)

r

1l[t−N,t+N ](s) 1l[t+h−N,t+h+N ](s) e
−γ(t,s)−γ(t+h,s) ds

Then

X = δ
∑

|h|≤2N

∑

r−N≤k≤r(1+δ)+N

ξ(k)ξ(k + h) e(−hθ)ĝ(δh)Vh(k). (4)

To apply Lemma 2, we need to estimate the quantities max[A,B] Vh, osc[A,B] Vh, and∑
A≤k<B Vh(k) with A = r − N and B = r(1 + δ) + N . This will be done next in a

series of lemmas. In what follows, we always assume that the value of r (and hence of

t) is large enough.
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2.5 Estimating the integral Vh(t)

The first estimate is a crude upper bound:

Lemma 6. Let |h| ≤ 2N . Then

sup
[r−N,r(1+δ)+N ]

Vh . r1/2.

Proof. Fix r −N ≤ t ≤ r(1 + δ) +N . Then, for |s− t| ≤ N , we have

∣∣∣γ(t, s)− (t− s)2

2t

∣∣∣ . N

r
+
N3

r2

N≃√
r log r

.
log3 r√

r
,

and similarly, for |s− (t+ h)| ≤ N , we have

∣∣∣γ(t+ h, s)− (t+ h− s)2

2(t+ h)

∣∣∣ . log3 r√
r
.

Hence,

Vh(t) .

∫

R
exp

(
−(t− s)2

2t

)
ds

t≃r

.
√
r ,

completing the proof.

This lemma (combined with the decay of the Fourier transform ĝ(δh)) will allow

us to make the sum in h in (4) much shorter, cutting it from |h| ≤ 2N to |h| ≤ log r.

Hence, it will suffice to estimate
∑

k Vh(k) and the oscillation of Vh only for |h| ≤ log r.

In what follows, we assume that |h| ≤ log r. Our next goal is to simplify the

integrand in the definition of Vh. First, we note that, for |s− t| ≤ N , we have

e−γ(t,s) =
(
1 +Q(t−1, t− s) +O

( logq r
r3/2

))
e−(t−s)2/(2t) ,

where Q ∈ R[x, y] is a polynomial which consists of the terms xℓym with m < 2ℓ, and q

is a positive number. The exact form of Q (Q(x, y) = −1
2
xy+ 1

8
x2y2− 1

3
x2y3+ 1

6
x3y4+

1
18
x4y6) and the value of q (q = 9) are of no importance in our analysis. Replacing t

by t+ h, we see that, for |s− (t + h)| ≤ N , we have

e−γ(t+h,s) =
(
1 +Q((t+ h)−1, t+ h− s) +O

( logq r
r3/2

))
e−(t+h−s)2/(2t)

=
(
1 + P (h, t−1, t− s) +O

( logp r
r3/2

))
e−(t−s)2/(2t) ,
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where P ∈ R[h, x, y] is a polynomial which consists of the terms hkxℓym with m < 2ℓ,

and p is a positive number. Thus,

Vh(t) =

∫ r(1+δ)

r

1l[t−N,t+N ](s) 1l[t+h−N,t+h+N ](s)×

×
(
1 + P1(h, t

−1, t− s) +O
( logp r
r3/2

))
e−(t−s)2/t ds

=

∫ r(1+δ)

r

(
1 + P1(h, t

−1, t− s) +O
( logp r
r3/2

))
e−(t−s)2/t ds+O

(
e−c log2 r

)

=
√
t

∫ (r(1+δ)−t)/
√
t

(r−t)/
√
t

(
1 + P1(h, t

−1,−u
√
t)
)
e−u2

du+O
( logp r

r

)
(s = t + u

√
t) .

Here, P1 ∈ R[h, x, y] is a polynomial of the same structure as P , and the positive

integer value p may vary from line to line.

In what follows, we will separate three ranges of values of t: the central part r+N ≤
t ≤ r(1+δ)−N , and the edges: r−N ≤ t ≤ r+N and r(1+δ)−N ≤ t ≤ r(1+δ)+N .

r +N ≤ t ≤ r(1 + δ)−N : Then,

[−c log r, c log r] ⊂ [(r − t)/
√
t, (r(1 + δ)− t)/

√
t] ,

so we can replace the integration over the interval [(r− t)/
√
t, (r(1+ δ)− t)/

√
t] by the

integration over the whole real axis, the error we make is O
(
e−c log2 r

)
. We immediately

conclude that

Vh(t) = (
√
π + o(1))

√
t, r +N ≤ t ≤ r(1 + δ)−N, |h| ≤ log r, r → ∞ . (5)

This yields

Lemma 7. Let |h| ≤ log r. Then

∑

r−N≤k<r(1+δ)+N

Vh(k) = (Aδ + ε(r))r3/2 , r → ∞ ,

with Aδ =
2
3

√
π
(
(1 + δ)3/2 − 1

)
, and ε(r) monotonically decreasing to 0.

Proof. We split the sum into three parts:

∑

r−N≤k<r(1+δ)+N

Vh(k)

=
( ∑

r−N≤k<r+N

+
∑

r+N≤k<r(1+δ)−N

+
∑

r(1+δ)−N<k<r(1+δ)+N

)
Vh(k) .
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By Lemma 6, the first and the third sum are . r1/2N . r log r. In the central sum we

use the asymptotics (5).

Next, we will show that

∑

r+N≤k≤r(1+δ)−N

|Vh(k + 1)− Vh(k)| .
√
r. (6)

To this end, we will re-write the asymptotics (5) with a more accurate error term. We

have

Vh(t) =
√
t

∫ ∞

−∞

(
1 +

∑ ∑ ∑

k,ℓ,m : m<2ℓ

Ck,ℓ,mh
ktm/2−ℓum

)
e−u2

du+O
( logp r

r

)

=
√
πt +

∑ ∑ ∑

k,ℓ,m : m<2ℓ

C ′
k,ℓ,mh

kt(m+1)/2−ℓ +O
( logp r

r

)
.

Each term f(t) in the triple sum on the RHS satisfies

max
[r+N,r(1+δ)−N ]

|f ′| = Oε(r
−3/2+ε) , r → ∞ ,

which yields (6).

It remains to prove counterparts of the estimate (6) at the edges of the range of t.

r −N ≤ t ≤ r +N : In this case, extending the upper limit of the integrals to +∞, we

get

Vh(t) =
√
t

∫ ∞

(r−t)/
√
t

e−u2

du

+
∑ ∑ ∑

k,ℓ,m : m<2ℓ

Ck,ℓ,mh
kt(m+1)/2−ℓ

∫ ∞

(r−t)/
√
t

ume−u2

du + O
( logp r

r

)
.

Observe that the function t 7→ (r − t)/
√
t decreases. Therefore, the first term on the

RHS increases with t and satisfies

∑

r−N≤k≤r+N

|f(k)− f(k − 1)| ≤ f(r +N) .
√
r .

A similarly straightforward inspection shows that for other terms we have the even

better estimate ∑

r−N≤k≤r+N

|f(k)− f(k − 1)| . logp r .
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We conclude that ∑

r−N≤k≤r+N

|Vh(k)− Vh(k − 1)| .
√
r . (7)

r(1 + δ)−N ≤ t ≤ r(1 + δ) +N : In this case, extending the lower limit of the integrals

to −∞, we have

Vh(t) =
√
t
( ∫ ∞

−∞
−
∫ ∞

(r(1+δ)−t)/
√
t

)
e−u2

du

+
∑ ∑ ∑

k,ℓ,m : m<2ℓ

Ck,ℓ,mh
kt(m+1)/2−ℓ

(∫ ∞

−∞
−
∫ ∞

(r(1+δ)−t)/
√
t

)
ume−u2

du + O
( logp r

r

)

which, similarly to the previous case, yields

∑

r(1+δ)−N≤k≤r(1+δ)+N

|Vh(k)− Vh(k − 1)| .
√
r . (8)

Combining estimates (6), (7), and (8), we obtain

Lemma 8. Let |h| ≤ log r. Then

∑

r−N≤k<r(1+δ)+N

|Vh(k)− Vh(k − 1)| .
√
r .

2.6 Completing the proof of the lower bound for W̃

Let us return to the proof of Lemma 5. We use that for |h| ≤ 2N ,

∑

r−N≤k≤r(1+δ)+N

|ξ(k)ξ(k + h)|

≤
( ∑

r−N≤k≤r(1+δ)+N

|ξ(k)|2
)1/2

·
( ∑

r−N≤k≤r(1+δ)+N

|ξ(k + h)|
)1/2

. r . (9)

Choose a large H ≤ min(log r, ψ(r/2), 1/ε(r)) with the functions ψ and ε as in

Lemma 3 and Lemma 7. By (4) we have that

∣∣∣X − δ
∑

|h|≤H

∑

r−N≤k≤r(1+δ)+N

ξ(k)ξ(k + h)e(−hθ)ĝ(δh)Vh(k)
∣∣∣

≤ δ
∑

H<|h|≤2N

∑

r−N≤k≤r(1+δ)+N

|ξ(k)ξ(k + h)| · |ĝ(δh)| · Vh(k).
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Since |ĝ(δh)| . (δh)−2, using Lemma 6 and estimate (9), we obtain the bound

∣∣∣X − δ
∑

|h|≤H

∑

r−N≤k≤r(1+δ)+N

ξ(k)ξ(k + h)e(−hθ)ĝ(δh)Vh(k)
∣∣∣

. δ
∑

H<|h|≤2N

r3/2

(δh)2
≃ r3/2

δH
.

Next, by Lemma 2, we have that

∣∣∣
∑

r−N≤k≤r(1+δ)+N

ξ(k)ξ(k + h) Vh(k)− ρ(h)
∑

r−N≤k≤r(1+δ)+N

Vh(k)
∣∣∣

.
r

ψ(r/2)
· osc[r−N,r(1+δ)+N ] Vh

By Lemma 8, the RHS is

.
r3/2

ψ(r/2)
.

Thus, recalling Lemma 7, we get that

∣∣∣
∑

r−N≤k≤r(1+δ)+N

ξ(k)ξ(k + h) Vh(k)− Aδρ(h)r
3/2

∣∣∣ .
(
ε(r) +

1

ψ(r/2)

)
r3/2 ,

whence, using once again that |ĝ(δh)| . (δh)−2, we obtain the estimate

∣∣∣X − δAδr
3/2

∑

|h|≤H

ρ(h)e(−hθ)ĝ(δh)
∣∣∣ = O

( r3/2
δH

)
, r → ∞.

Arguing as in the proof of Lemma 7.3.1 of [2], we use that

∑

h∈Z
ρ(h)e(−hθ)ĝ(δh)

is the density of the convolution µ ∗ gδ at the point −θ, where gδ(ϕ) = δ−1g(δ−1ϕ),

|ϕ| ≤ 1. Since the support of µ is the whole circle and the function g is non-negative,

this value is positive. Hence, for some c = c(δ) > 0, we have X = (c + o(1))r3/2,

r → ∞, and the lemma is proved.

Theorem 1 follows now from Lemmas 3, 4, and 5. �
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3 Examples to Theorem 1

3.1 Ergodic stationary processes on Z

Let ξ : Z+ → C be a stationary process on Z whose elements have finite second mo-

ment. Then the sequence m 7→ E
[
ξ(0)ξ(m)

]
is positive-definite and may therefore

be expressed as the Fourier transform of a non-negative measure µ on the unit circle,

called the spectral measure of the process ξ. By the Birkhoff ergodic theorem, almost

surely, the limits

lim
n→∞

1

n

∑

0≤s<n

ξ(s)ξ(s+ k) (10)

exist for every k, that is, almost every realization of ξ is a Wiener sequence. Generally

speaking, the spectral measure of a realization, as well as its closed support, are random,

but if the process ξ is ergodic, then the limits (10) are not random and coincide with the

Fourier coefficients µ̂(k). That is, for ergodic stationary processes on Z, for almost every

realization, its spectral measure coincides with the spectral measure of the processes,

cf. [3, Section 2]. Combining this discussion with our Theorem 1, we obtain

Corollary 1. Let ξ be an ergodic stationary process on Z with no gaps in its spectrum.

Then, almost surely, ξ is an L-sequence.

This corollary removes unnecessary assumptions in Theorem 3 from [2] where it

was assumed that the sequence ξ is bounded and has strong mixing properties.

It is worth mentioning that, as follows from [2, Theorem 4], for Gaussian stationary

processes on Z, Corollary 1 holds without the ergodicity assumption.

3.2 Besicovitch almost-periodic sequences

For functions (sequences) s : Z+ → C, define a semi-norm

‖ξ‖2 = lim sup
n→∞

1

n

∑

0≤s<n

|ξ(s)|2 .

Two sequences ξ and ξ̃ are said to be equivalent if ‖ξ − ξ̃‖ = 0. For instance, any

sequence ξ with ξ(n) = o(1) as n → ∞, is equivalent to the zero function. By ℓ2 we

denote the linear space of the equivalence classes equipped with the norm ‖ · ‖. One

can show that this space is complete.
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By P we denote the linear hull of the exponentials, i.e., the elements of P are the

finite linear combinations of exponentials

P (n) =
∑

λ∈Λ
cλeλ(n) ,

where eλ(n) = e(λn), and Λ ⊂ T is a finite set, the spectrum of P .

Definition 3. The Besicovitch space B2 is the closure of P in ℓ2.

We say that a sequence ξ : Z+ → C has a mean if the following limit exists (and is

finite):

M(ξ) = lim
n→∞

1

n

∑

0≤s<n

ξ(s) .

The following two facts are relatively straightforward:

1. For any ξ ∈ B2 and any λ ∈ T, the Fourier coefficient of ξ at λ, i.e. ξ̂(λ) =

M(ξe−λ) is well defined.

2. For any ξ, η ∈ B2, the mean M(ξ η) exists. It defines the scalar product 〈ξ, η〉 =
M(ξ η) in B2. Hence, the Cauchy–Schwartz inequality |〈ξ, η〉| ≤ ‖ξ‖ · ‖η‖ holds

for every ξ, η ∈ B2.

Noting that the translations ξm(n) = ξ(n+m), m ∈ N, preserve B2, we conclude that

any B2-sequence is a Wiener sequence. Furthermore,

3. The set Λξ = {λ : ξ̂(λ) 6= 0} (called the spectrum of ξ) is countable, and the

Parseval identity ‖ξ‖2 =
∑

λ∈Λξ
|ξ̂(λ)|2 holds.

Then, the spectral measure µ of ξ is nothing but
∑

λ∈Λξ
|ξ̂(λ)|2 δλ, where δλ is the unit

point mass at λ.

Combining these preliminaries1 with Theorem 1, we arrive at

Corollary 2. Any B2-sequence whose spectrum is dense in the unit circle is an L-

sequence.

1 The reader will find more details, for instance, in [6, Sections 2.6, 3.4, 4.2 ] (where the Besicovitch

almost-periodic functions on R are treated) as well as in [1, Section 3].
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If the sequence ξ is uniformly almost-periodic, then the function Fξ has a completely

regular growth in the sense of Levin-Pfluger with the conjugated indicator diagram

being the convex hull of the spectrum Λξ. This is a theorem of Levin [11, Section VI.5]

(for a relatively self-contained proof see [2, Theorem 5]). If the spectrum Λξ is dense in

T, then the conjugated indicator diagram is the closed unit disk. In this special case,

Corollary 2 provides a much stronger result2. On the other hand, it is not difficult to

construct a bounded B2-sequence ξ such that the closure Λξ $ T, but still the indicator

diagram of Fξ is the closed unit disk (i.e., the Phragmén-Lindelöf indicator hFξ
≡ 1).

This leaves no hope to extend the general case of Levin’s theorem to B2-sequences.

3.3 Unimodular pseudo-random sequences

3.3.1

Corollary 3. Let (an)n≥1 be a sequence of positive integers such that for every k ≥ 1,

the sequence (an+k − an)n≥1 consists of distinct numbers. Then for almost every real

number x, the sequence (e(anx))n≥1 is a Wiener sequence, its spectral measure being

Lebesgue measure on the unit circle, and, hence, this sequence is an L-sequence.

In particular, for almost every real number t and for every natural number a ≥ 2,

the sequence (e(ant))n≥1 is an L-sequence.

Indeed, we fix k ≥ 1, consider the sum
∑

0≤s≤n

e(asx) · e(as+kx) =
∑

0≤s≤n

e((as − as+k)x) ,

and apply the classical theorem of Weyl (see, for instance, [10, Theorem 4.1 in Chap-

ter 1]), which says that, given a sequence (bn) of distinct integers (in our case, bn =

an − an+k), for almost every real number x,
∑

0≤s≤n

e(bsx) = o(n) , n→ ∞ .

3.3.2

Corollary 4. Let α > 0, β > 1, β 6∈ N. Then the sequence (e(αnβ))n≥1 is a Wiener

sequence, its spectral measure being Lebesgue measure on the unit circle, and, hence,

2 For instance, uniform almost-periodic sequences cannot attain finitely many values, while there

are plenty of B2-sequences that attain only finitely many values and have a spectrum that is dense in

T. One of the simplest examples is, probably, ξ(n) = (−1)[αn] with irrational α.
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this sequence is an L-sequence.

For 1 < β ≤ 3
2
, this follows from a result of Chen and Littlewood [4]; for β ≥ 3

2
,

β /∈ N, this was proven in [2, Theorem 2]. The techniques used in these cases were quite

different and the case 1 < β ≤ 3
2
required a rather elaborate argument3. Theorem 1

combined with classical van der Corput estimates of exponential sums allows us to

treat both cases in a simple and uniform manner.

Let us also mention that for 0 < β < 1, the sequence (e(αnβ))n≥1 is a Wiener

sequence, its spectral measure being the unit point mass at 1. It is not difficult to

show that the corresponding entire function Fξ has the Phragmén–Lindelöf indicator

hFξ
(θ) = cos+ θ (cf. [7, Theorem 2]), which is obviously incompatible with ξ being an

L-sequence.

Proof. We need to show that for every m ≥ 1,

lim
n→∞

1

n

∑

0≤s<n

e(α(s+m)β − αsβ) = 0.

Set φ(t) = α(t+m)β − αtβ.

For 1 < β < 2 we apply a van der Corput estimate [10, Theorem 2.7 in Chapter 1].

We have ∣∣∣ 1
n

∑

0≤s<n

e(φ(s))
∣∣∣ . 1

n|φ′′(n)|1/2 ≃ n(1−β)/2, n→ ∞.

For β > 2 we use another, more elaborate, van der Corput bound [18, Theo-

rem 5.13]. Choose an integer k ≥ 2 such that k < β < k + 1 and fix M = 2k.

Since

nβ−k−1 . φ(k)(t) . n(k+1−β)/4nβ−k−1, n3/4 ≤ t ≤ n,

we have

∣∣∣
∑

0≤s<n

e(φ(s))
∣∣∣ ≤ n3/4 +

∣∣∣
∑

n3/4≤s<n

e(φ(s))
∣∣∣

. n3/4 + n(k+1−β)/M · n · n(β−k−1)/(M−2) + n1−(4/M) · n(k+1−β)/(M−2) = o(n)

as n→ ∞.

3 Note that Chen and Littlewood proved a much finer result: they found an asymptotic location

of zeroes of the entire function Fξ.



3 Examples to Theorem 1 18

We note that, likewise, one can show that if Q(x) =
∑d

k=2 qkx
k is a polynomial with

real coefficients qk and at least one of the coefficients is irrational, then the sequence

(e(Q(n))n≥1 is a Wiener sequence whose spectral measure is the Lebesgue measure on

the unit circle. Therefore, this sequence is an L-sequence. The latter conclusion is

Theorem 1 from [2].

3.4 Arithmetic multiplicative functions

Recall that an arithmetic function f : N → C is called completely multiplicative if

f(n)f(m) = f(nm) for all natural n,m, and multiplicative if f(n)f(m) = f(nm) for

all mutually prime natural n,m.

3.4.1 The Möbius function

The classical Möbius function µ is defined by

µ(n) =





1, n square − free with an even number of prime factors;

−1, n square − free with an odd number of prime factors;

0, otherwise.

One instance of the well-known Chowla conjecture (the so called “binary Chowla con-

jecture”) asserts that, for every k ≥ 1,

∑

1≤s≤n

µ(s)µ(s+ k) = o(n), n→ ∞, (11)

that is, µ is a Wiener sequence whose spectral measure is the Lebesgue measure. Thus,

applying Theorem 1, we get

Corollary 5. Assuming Chowla’s conjecture (11), the sequence (µ(n))n≥1 is an L-

sequence.

The question on the asymptotic behaviour of the Taylor series of the form

∑

n≥1

µ(n) anz
n

was raised by Paul Lévy in [12, Section 18]. He hinted that the positive answer to the

Riemann hypothesis would provide information on this asymptotic behaviour.
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3.4.2 Random multiplicative functions

Denote by P the set of prime numbers. Let (Xp)p∈P be a sequence of independent

Steinhaus random variables (i.e., uniformly distributed on the unit circle), and let

(Yp)p∈P be a sequence of independent Rademacher random variables (i.e., taking the

values ±1 with equal probability). We consider two random functions: a Steinhaus

random completely multiplicative function ξS determined by ξS(p) = Xp, p ∈ P, that is,

ξS(n) =
∏

pa ‖n
(Xp)

a,

and a Rademacher random multiplicative function ξR determined by ξR(p) = Yp, p ∈ P,

on the square-free indices p and 0 elsewhere, that is,

ξR(n) =





∏
p |nXp n is square − free;

0 otherwise.

The function ξS randomizes the prime factorization of integers, while the function ξR is

a randomized version of the Möbius function. The study of these random multiplicative

functions has a long history and goes back, at least, to Wintner [20].

Theorem 2. The sequences ξS and ξR are almost surely Wiener sequences, their spectral

measures being Lebesgue measure on the unit circle, and, hence, these sequence are

almost surely L-sequences.

The proof is based on the following lemma:

Lemma 9. Given k ≥ 1, we have

E
∣∣ ∑

m≤s≤λm

ξS(s)ξS(s+ k)
∣∣2 = O(m7/4) ,

E
[ ∑

m≤s≤λm

ξR(s)ξR(s+ k)
]2

= O(m7/4) ,

uniformly in λ ∈ [1, 2].

Proof. Since

E
∣∣∣

∑

m≤s≤λm

ξS(s)ξS(s+ k)
∣∣∣
2

=
∑ ∑

m≤s1,s2≤λm

E
(
ξS(s1)ξS(s1 + k) ξS(s2) ξS(s2 + k)

)
,
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and the Steinhaus random variables Xp, p ∈ P, are independent, after a minute reflec-

tion we convince ourselves that

E
∣∣∣

∑

m≤s≤λm

ξS(s)ξS(s+ k)
∣∣∣
2

≤ card(B),

where

B =
{
(s1, s2) ∈ [m, λm]× [m, λm] : s1(s1 + k)s2(s2 + k) is a square

}
.

Similarly,

E
[ ∑

m≤s≤λm

ξR(s)ξR(s+ k)
]2

= card(B) .

It remains to estimate the cardinality of the set B.

Given (s1, s2) ∈ [m, λm] × [m, λm], set d1 = gcd(s1, s1 + k), d2 = gcd(s2, s2 + k).

Then d1 and d2 are divisors of k. Next, let e21, f
2
1 , e

2
2, f

2
2 be the largest square divisors

of s1/d1, (s1 + k)/d1, s2/d2, and (s2 + k)/d2. Then (s1, s2) ∈ B if and only if

(s1/d1) · ((s1 + k)/d1)

e21f
2
1

=
(s2/d2) · ((s2 + k)/d2)

e22f
2
2

.

Let B1 = {(s1, s2) ∈ B : e1, f1 ≤ m1/3}, B2 = B\B1. First, we will bound the cardinality

of B1 and then of B2.

For every choice of s2, d1, e1, f1, the integer s1 divides M = s2(s2 + k)e21f
2
1d

2
1 (recall

that s1(s1+k)e
2
2f

2
2d

2
2 = s2(s2+k)e

2
1f

2
1d

2
1), and the number of divisors ofM is O(Mε) =

O(mε), ε > 0 (see, for example, [8, Theorem 315]). Furthermore, the number of

different choices of s2 is ≃ m; there is only a bounded number of different choices of

d1 (since the integer k is fixed and d1 divides k); and the number of different choices

of e1, as well as of f1 does not exceed m1/3. Thus,

card(B1) .ε m
(5/3)+ε .

To bound the cardinality of B2, we observe that if (s1, s2) ∈ B2, then either e1 >

m1/3 or f1 > m1/3. Now,

card
{
(s1, s2) ∈ B : e1 > m1/3

}
≤

∑

m1/3<e1≤(λm)1/2

∑ ∑

m≤s1,s2≤λm
s1=ue2

1

1

.
∑

e1>m1/3

m2

e21
. m5/3.

In the same way, card
{
(s1, s2) ∈ B : f1 > m1/3

}
. m5/3.
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Proof of Theorem 2. Let ξ be either ξS or ξR. We will show that ξ is a Wiener sequence

with the spectral measure being the Lebesgue measure on the unit circle4. The rest

follows from Theorem 1.

Fix k ≥ 1 and split the sum

∑

s≥1

ξ(s)ξ(s+ k)

into the blocks m20 ≤ s < (m+ 1)20, m = 1, 2, . . .. By Lemma 9, for every m ≥ 1, we

have

P
(∣∣∣

∑

m20≤s<(m+1)20

ξ(s)ξ(s+ k)
∣∣∣ > m(15/16)·20

)
. m−20/8,

and hence, by the Borel-Cantelli lemma, almost surely, for sufficiently large m,

∣∣∣
∑

m20≤s<(m+1)20

ξ(s)ξ(s+ k)
∣∣∣ ≤ m75/4.

Therefore, almost surely,

∣∣∣
∑

1≤s≤n

ξ(s)ξ(s+ k)
∣∣∣ ≤

∑

1≤ℓ≤[n1/20]

∣∣∣
∑

ℓ20≤s<(ℓ+1)20

ξ(s)ξ(s+ k)
∣∣∣ +

∑

[n1/20]20≤s≤n

1

.
∑

1≤ℓ≤[n1/20]

ℓ75/4 + n19/20 . n79/80 + n19/20 = o(n), n→ ∞,

proving the theorem.
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