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ABSTRACT. Function approximation arises in many branches of applied mathematics and computer
science, in particular in numerical analysis, in finite element theory and more recently in data sciences
domain. From most common approximation we cite, polynomial, Chebychev and Fourier series ap-
proximations.
In this work we establish some approximations of a continuous function by a series of activation func-
tions. First, we deal with one and two dimensional cases. Then, we generalize the approximation to
the multi dimensional case. Examples of applications of these approximations are: interpolation, nu-
merical integration, finite element and neural network. Finally, we will present some numerical results
of the examples above.

RÉSUMÉ. La théorie d’approximation des fonctions couvre de nombreuses branches en mathéma-
tiques appliquées, en informatique et en sciences de l’ingénieur, en particulier en analyse numérique,
en théorie des éléments finis et plus récemment en sciences des données.
Parmi les approximations fortement utilisées nous citons les approximations polynomiale de type La-
grange, Hermite ou au sens de Chebychev. Nous trouvons aussi l’approximation d’une fonction par
une séries de Fourier, l’approximation rationnelle...
Dans ce travail, nous établissons quelques résultats d’approximations d’une fonction continue par une
série de fonctions de type activation. Nous traitons d’abord les cas d’une fonction à une seule puis à
deux variables, puis nous généralisons l’approximation au cas multidimensionnel.
Nous appliquons ces approximations pour l’interpolation et l’intégration numérique, en éléments finis
et en réseau neuronal. Nous donnons pour chaque application quelques résultats numériques.

KEYWORDS : Function approximation, interpolation, Runge’s phenomenon, Chebychev points, neu-
ral network, universal approximation theorem, numerical integration, finite element.

MOTS-CLÉS : Approximation d’une fonction, interpolation, phénomène de Runge, points de Che-
bychev, réseau neuronal, théorème universel d’approximation, intégation numérique, éléments finis.
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1. Introduction
Motivated by the architecture of the human brain, neural networks are composed of

multiple hidden layers. Each hidden layer has multiple hidden nodes. Each node is an ac-
tivation function of an affine transformation of the outputs of the previous layer. Examples
of activation functions:

• Heaviside function H : x 7→
{

1 if x ≥ 0
0 if x < 0

• Relu function : Relu : x→ max(0, x).

• Quadratic Relu function: Relu2 : x→ 1
2 max(0, x)2.

• Sigmoid function: σ : x→ 1
1+e−x .

• Softplus function : σp : x→ log(1 + e−x).

The starting point of the study of neural networks theory was based on the universal
approximation theorem. It was proved in [1] the density of neural networks with one
hidden layer in the space of continuous functions.

Later, it was proved in [7] that multilayer feed-forward network with a locally bounded
piecewise continuous activation function can approximate any, continuous function if and
only if the network’s activation function is not polynomial.

The authors in [2] proposed an algorithm to find the optimal approximations of convex
univariate functions with feed-forward rectified linear unit (Relu) neural networks. They
studied the minimal approximation error and the number of approximating linear pieces.

Artificial neural networks with Relu activation function were used in [3] to approxi-
mate discontinuous piecewise functions up to L2 error. Optimal rates for approximating
these piecewise functions by Relu neural networks, measuring the complexity of the net-
works in terms of the number of nonzero weights, were established.

An L∞ and L2 error bounds for functions of many variables that are approximated
by linear combinations of Relu and squared Relu functions were established in [5]. Ap-
proximation of continuous multi-variate functions with Deep Relu neural networks and
conventional fully-connected architectures was developed in [6].

Authors in [9] looked into the relationship between deep neural networks with Relu
function as the activation function and continuous piecewise linear functions.

Also, they gave a one dimensional example to illustrate that a finite element method
using Relu neural network can lead to better approximation result than adaptive finite
element method.

Recently, there are increased new research interests for the application of neural net-
work for numerical approximation of nonlinear a PDEs as in [9, 10].

Many forms of interpolation can be constructed by picking a different class of inter-
polates like, Lagrange or Hermite polynomial interpolation [4], or rational interpolation
using Padé approximation [8], or also, trigonometric interpolation, which is interpolation
by trigonometric polynomials using Fourier series.

Numerical integration theory is in general based on interpolation functions. It provides
a basic and important tool for the numerical resolution of other problems and can be
applied, for example, in numerical methods for ordinary or partial differential equations
and in finite element method.
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In this work, we prove that a continuous function can be explicitly approximated by
a neural network with two layers and non linear activation function in the hidden layer.
This is a version of the universal approximation theorem in the case of single variate. The
novelty here is that we precise weights of the network. But, we don’t have linearity of the
neural network for multi- dimensional case using Relu or heaviside as activation function.
We prove the approximation for one and two dimensional cases and extend the result to
the multi-variables continuous functions. We apply these approximations to interpolation,
numerical integration and finite element for one and two-variate functions.

2. Approximation of univariate function
Without loss of generality, we consider a function f defined on the interval [0, 1]. Our

goal here is to prove that f is a uniform limit of a series of the form
∑
n∈N

αnϕ(wnx+ bn),

for different types of activation functions ϕ. This means that f can be approximated by
one hidden layer neural network with ϕ as activation function.

2.1. Approximation by Relu activation function
Proposition 2.1 Let f : [0, 1] → R a continuous function. Then, f is the uniform limit
on [0, 1] of

Sn(x) =

n∑
k=0

αk Relu((k + 1)− nx),

where the vector α =
(
α0, α1, ..., αn

)T
is given by α = A

(1)
R,nFn, for the matrix A(1)

R,n

of size (n+ 1)

A
(1)
R,n =



1 −2 1 0 . . . . . . 0

0 1 −2 1
. . .

...
...

. . . 1 −2 1
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . . . . . . . . 1 −2 1
...

. . . . . . . . . 1 −2
0 . . . . . . . . . . . . 0 1


, (1)

and for the vector Fn =
(
f(0), f( 1

n ), ..., f(n−1
n ), f(1)

)T
Proof. Since f is continuous on the closed bounded interval, then it is bounded and
uniformly continuous. Let M = sup

∈[0,1]

|f(x)| and for a given ε > 0, there exists η > 0

such that for all x, x′ ∈ [0, 1] satisfying |x− x′| ≤ η, we have

|f(x)− f(x′)| ≤ ε

2
.
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Fixing n ≥ n0 = E( 1
η ) + 1, (where here E( 1

η ) is the integer part of the real 1
η ). Let

x ∈ [0, 1]. If x = 1, then we have clearly Sn(1) = αn = f(1) and hence |Sn(1)−f(1)| =
0 ≤ ε. If x ∈ [0, 1[, then, there exists 0 ≤ kx ≤ n such that x ∈ [kxn ,

kx+1]
n ].

Sn(x) =
∑
k≥kx

αk Relu((k + 1)− nx)

=
∑

n−2≥k≥kx

[
f(
k

n
)− 2f(

k + 1

n
) + f(

k + 2

n
))(k + 1− nx)

]
+ (f(n−1

n )− 2f(1))(n− nx) + f(1)(n+ 1− nx)

= f(kxn )(kx + 1− nx)− f(kx+1
n )(kx − nx).

Then

|Sn(x)− f(x)| = |(f(
kx + 1

n
)− f(

kx
n

))(kx − nx) + f(
kx
n

)− f(x)|.

Since x ∈ [kxn ,
kx+1]
n ], then |kx − nx| ≤ 1. In addition |kx+1

n − kx
n | = 1

n ≤ η, and
|kxn − x| ≤ |

kx+1
n − kx

n | =
1
n ≤ η, it follows that

|Sn(x)− f(x)| ≤ |(f(
kx + 1

n
)− f(

kx
n

)|+ |f(
kx
n

)− f(x)| ≤ ε

2
+
ε

2
= ε.

(Sn) converges uniformly to f on [0,1]. �

Remarks 2.2
1. Coefficients (αk) are such that : Sn( jn ) = f( jn ) for all j = 0, ..., n. Since every

activation function ϕk : x 7→ Relu(k + 1− nx) satisfies

ϕk(
j

n
) =

{
0 if 1 ≤ k + 1 ≤ j ≤ n
k + 1− j if 0 ≤ j ≤ k + 1 ≤ n+ 1

,

then the vector (αk)0≤k≤n is solution to the triangular linear systemB
(1)
R,nα = Fn

with

B
(1)
R,n =



1 2 3 ... n n+ 1
0 1 2 3 · · · (n− 1) n
...

. . . . . . . . . . . .
...

...

0
. . . . . . 1 2 3 4

... · · ·
. . . . . . 1 2 3

... · · · · · ·
. . . . . . 1 2

0 · · · · · · · · · 0 0 1


.

It is easy to check that the matrix B
(1)
R,n is nothing else but the inverse of the

triangular matrix A(1)
R,n. This means that this Relu approximation is also an inter-

polation of f at (n+ 1) distinct nodes xj = j
n , j = 0, ..., n.
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2. A continuous function f : [a, b] → R, has similarly a Relu approximation of the
form

f(x) = lim
n→+∞

n∑
k=0

αk Relu(k + 1− n

b− a
(x− a)),

where the vector α = A
(1)
R,nFn, with A(1)

R,n is the same matrix (1) and

Fn =


f(a)
f(a+ b−a

n )
...

f(a+ (n−1)(b−a)
n )

f(b)

 .

3. Similarly, a Heaviside-approximation of a continuous function f is a uniform sum
of Heaviside functions as follows : f(x) = lim

n→+∞
Hn(x), with

Hn(x) =

n−1∑
k=0

[f(
k

n
)− f(

k + 1

n
)]H(k + 1− nx) + f(1)H(n+ 1− nx).

Indeed, for x ∈ [kxn ,
kx+1]
n ], we easily have |Hn(x) − f(x)| = |f(kxn ) − f(x)|.

Using uniform continuity of f , we easily deduce uniform convergence of (Hn) to
f .

4. The approximation of f by a-one hidden neural network contains a bias term. We
modify slightly the last Relu approximation and we prove in a similar way that f
is also a uniform limit of

Tn(x) =

n−1∑
k=0

βk Relu((k + 1)− nx) + βn,

where the vector β =
(
β0, β1, ..., βn

)T
is given by β = AnFn, where

An =



1 −2 1 0 . . . . . . 0

0 1 −2 1
. . .

...
...

. . . 1 −2 1
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . . . . . . . . 1 −2 1
...

. . . . . . . . . 1 −1
0 . . . . . . . . . . . . 0 1


. (2)
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An is the inverse of

Bn =



1 2 3 ... n 1
0 1 2 3 · · · (n− 1) 1
...

. . . . . . . . . . . .
...

...

0
. . . . . . 1 2 3 1

... · · ·
. . . . . . 1 2 1

... · · · · · ·
. . . . . . 1 1

0 · · · · · · · · · 0 0 1


.

The bias here is βn and we retrieve the universal approximation theorem for the
one dimensional case.

5. On the contrary of polynomial, cubic spline, regression or trigonometric Fourier
approximation, last Relu or Heaviside interpolations are explicit and simple to
compute for every integer n. Moreover, they are very easy to integrate and to
differentiate.

2.2. Interpolation by Relu function: general case
As it was mentioned before, approximation by Relu function in proposition (2.1) is

also an interpolation of f at the (n + 1) equidistant points (xj)j=0,...,n of the interval
[0, 1]. In general, given a data set (xi, yi)i=0,...,n, with x0 < x1 < ... < xn and yi ∈ R,

we propose here to find a function g of the form gn(x) =

n−1∑
k=0

αk Relu(wkx + bk) + αn

satisfying gn(xi) = yi.

Proposition 2.3 Let gn be the function defined by

gn(x) =

n−1∑
i=0

αi Relu(
xi+1 − x
xi+1 − xi

) + αn,

with the vector α =
(
α0, α1, ..., αn

)T
is given by α = DnFn, where the square matrix

Dn of size n+ 1 and the vector Fn are:

Dn =



1 −x2−x0

x2−x1

x2−x0

x2−x1
− 1 0 . . . 0

0 1 −x3−x1

x3−x2

x3−x1

x3−x2
− 1

. . .
...

...
. . . . . . . . . . . . 0

0 . . . 0 1 −xn−1−xn−3

xn−1−xn−2

xn−1−xn−3

xn−1−xn−2
− 1

0 . . . . . . 0 1 −1
0 . . . . . . . . . 0 1


and Fn =

(
y0, y1, ..., yn−1, yn

)T
. Then gn(xi) = yi, for all i = 0, ..., n.
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Proof. To determine g of the form gn(x) =

n−1∑
i=0

αi Relu(
xi+1 − x
xi+1 − xi

)+αn satisfying

gn(xi) = yi, for all i = 0, ..., n, it is sufficient to look for (αi)i=0,...,n solution to the
following system :

α0 + x2−x0

x2−x1
α1 + ...+ xn−x0

xn−xn−1
αn−1 + αn = y0

α1 + x3−x1

x3−x2
α2 + ...+ xn−x1

xn−xn−1
αn−1 + αn = y1

...
...

...
αi + xi+2−xi

xi+2−xi−1
αi+1 + ...+ xn−xi

xn−xn−1
αn−1 + αn = yi

...
...

αn−2 + xn−xn−2

xn−xn−1
αn−1 + αn = yn−2

αn−1 + αn = yn−1

αn = yn

The matrix of the last linear system is :

D′n =



1 x2−x0

x2−x1

x3−x0

x3−x2
. . . . . . xn−x0

xn−xn−1
1

0 1 x3−x1

x3−x2

x4−x1

x4−x3
. . . xn−x1

xn−xn−1
1

...
. . . . . . . . . . . . . . .

...
0 . . . 0 1 xn−1−xn−3

xn−1−xn−2

xn−xn−3

xn−xn−1
1

0 . . . . . . 0 1 xn−xn−2

xn−xn−1
1

0 . . . . . .
... 0 1 1

0 . . . . . . . . . 0 0 1


This matrix is clearly non singular and its inverse is the band-upper triangular matrix Dn.
�

Remark 2.4 The proof of the last approximation shows the existence and the uniqueness
of the coefficients αi forwi = − 1

xi+1−xi
and bi = xi+1

xi+1−xi
, but we don’t have uniqueness

of the weights wi and bias bi. If the points are equispaced, we find the approximation of
type (2.2) which is similar to the one of proposition (2.1).

2.3. Applications
There are many applications of the two last Relu-approximation functions. Python

programming language is used to code some of these applications presented in the rest of
this work.

2.3.1. Interpolation
We can use this approximation in interpolation theory. It is known that for Runge

function f(x) = 1
1+25x2 for x ∈ [−1, 1], if we choose equidistant points on [−1, 1], we

find Runge’s phenomenon which is a problem of oscillation at the edges -1 and 1 of the
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interval that occurs when using polynomial interpolation with high degree. This is due
to the fact that uniform convergence is not guaranteed, unlike approximations by Relu
function.

Figure 1 – Runge phenomenen: [Wikipedia].

Our first numerical application for Chebychev and equidistant points will be tested on
the interval [−1, 1], since most existing results for Runge phenomenen are implemented in
this interval. For the remaining applications, we deal with f : [0, 1]→ R. Figures (2) and
(3) display numerical results of Runge function interpolation, first over equidistant points,
then over Chebychev points. We present in green color interpolation points (xi)i=0,...,n.

For the same function f , we also test Heaviside approximation whith equidistant
points for n = 10 and n = 50. Results are displayed in figure (4).

Figure 2 – Relu interpolation with equidistant points.
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Figure 3 – Relu interpolation with Chebychev points.

We notice that uniform convergence is faster with Relu-approximation than Heaviside
approximation as (2) and (4) show:

Figure 4 – Heaviside interpolation with equidistant points.
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2.3.2. Relu-approximation and quadrature rule

Since Relu functions ϕk are easy to integrate, we can approximate
∫

[0,1]

f(t)dt by

replacing f by its Relu-approximation from proposition (2.1) to get the following integra-
tion quadrature rule : ∫ 1

0

f(x)dx ' 1

n

n−1∑
k=0

αk(k + 1)2 + αn, (3)

We denote by

In(f) =

∫ 1

0

Sn(x)dx =
1

n

n−1∑
k=0

αk(k + 1)2 + αn.

Replacing αk by its expression and simplifying, we obtain∫ 1

0

f(x)dx ' In(f) =
1

2n

[
f(0) + 2f(

1

n
) + 2f(

2

n
) + ...+ 2f(

k

n
) + ...+ 2f(

n− 1

n
) + f(1)

]
.

(4)
We retrieve the composite trapezoidal rule for n equidistant intervals. Since (Sn) con-

verges uniformly to f on [0, 1], then (In(f)) converges to
∫ 1

0

f(x)dx.

2.3.3. Finite element application.
Without loss of generality, we can restrict our study to the domain ]0, 1[ and we

will consider the following boundary-value problem: Given f ∈ L2(]0, 1[) and c ∈
L∞(]0, 1[), c ≥ 0, find the function u solving:{

−u′′(x) + c(x)u(x) = f(x), ∀ x ∈]0, 1[
u(0) = u(1) = 0.

(5)

It is known that (5) is optimality condition of the quadratic minimization problem:

min
u∈H1

0 (]0,1[

1
2

∫ 1

0

u′(x)2dx+ 1
2

∫ 1

0

c(x)u(x)2dx−
∫ 1

0

f(x)u(x)dx, (6)

Clearly, the piecewise C1 continuous functions (ϕk : x 7→ Relu((k + 1)− nx), k =
0, ..., n) are a linear independent family of the Sobolev space H1(]0, 1[). For a fixed n,
let Vn = Span(ϕk)k=0,...,n and V 0

n = {u ∈ Vn/ u(0) = u(1) = 0}.

We suppose here that the solution u of (5) is continuous, then u = lim
n→+∞

n∑
k=0

αk Relu(k+

1−nx). The idea of finite element method is to compute un =

n∑
k=0

αk Relu(k+1−nx) ∈

V 0
n an approximation of u solution to the approximate minimization problem.

min
un∈V 0

n

1
2

∫ 1

0

u′n(x)2dx+ 1
2

∫ 1

0

c(x)un(x)2dx−
∫ 1

0

f(x)un(x)dx, (7)
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Since we have the Dirichlet conditions un(0) = un(1) = 0, then, α satisfies α0 + 2α1 +
3α2 + ...+ (n+ 1)αn = 0 and αn = 0.

The distributional derivative of un is

u′n =

n∑
i=0

αiϕ
′
i(x) = −n

n∑
i=0

αiH(i+ 1− nx).

Replacing un and u′n in (7), the approximation problem consists in solving the quadratic
constrained problem:

min
α∈Rn+1

1

2
(Enα, α)− (bn, α)

α0 + 2α1 + ...+ nαn−1 + (n+ 1)αn = 0
αn = 0

, (8)

where (., .) designates the inner product, the matrix En and the vector bn are given by :

En =

(∫
]0,1[

ϕ′i(x)ϕ′j(x) + c(x)ϕi(x)ϕj(x)dx

)
0≤i,j≤n

and bn =

(∫
]0,1[

f(x)ϕi(x)dx

)
0≤i≤n

.

Equality constraints raise from boundary conditions u(0) = 0 and u(1) = 0.

Example 2.5 Consider the simple homogeneous Laplace problem on one dimensional
space: {

−u′′(x) = 1, ∀ x ∈]0, 1[
u(0) = u(1) = 0

(9)

Since we have, for i ≤ j,

∫ 1

0

ϕ′i(x)ϕ′j(x)dx = n2

∫ 1

0

H(i+1−nx)H(j+1−nx)dx = n2

∫ i+1
n

0

dx = n(i+1),

then, the associated symmetric matrix En is given by

En = n


1 1 1 ... ... ... 1
1 2 2 ... ... ... 2
...

...
...

...
... ...

...
1 2 3 ... ... n n
1 2 3 ... ... n n+ 1

 . (10)

and the vector bn = ((i+ 1)2/2n)0≤i≤n.
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The symmetric matrix En is invertible and its inverse is the classical matrix :

E−1
n =

1

n



2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0
. . . . . . −1 2 −1 0

0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 1


.

Moreover, clearly E−1
n is positive definite, then En is also positive definite. Therefore,

the quadratic problem (8) has a unique solution α.

In this work we do not study convergence of this approximation method. How-
ever, we compare numerical results for n = 10 and n = 50 with the exact solution
u(x) = 1

2 (x − x2). Since we know explicitly the inverse of the matrix En, resolu-
tion of quadratic problem (8) using Karush Kuhn Tucker condition gives the exact solu-
tion to this example. Numerical results for n = 10 are good with approximation error

‖u − u10‖∞ = max
0≤i≤n

|u(
i

n
) − un(

i

n
)| = 0.009082951015014192. They are better for

n = 50 with approximation error ‖u− u50‖∞ = 0.0003633180406232603.

Figure 5 – Relu approximation for finite element method.

2.4. Neural network with one hidden layer
Proposition (2.1) and remark (2.2) are nothing else than a proof of the universal ap-

proximation theorem for univariate function. It proves the existence of a neural network
of one hidden layer with Relu or Heaviside activation function that approximates a con-
tinuous function f . But, in practice, we just know values (yi) of f on some data (xi).
Interpolation of type detailed in proposition (2.3) can be applied under the condition on
training set satisfying xi 6= xj , for i 6= j. Loss error of the neural network is zero, which
leads to overfitting if we test it on a data xtest /∈ [min

i
xi,max

i
xi]. This makes this type

of approximation not beneficial for neural network regression or classification problems.
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2.5. Quadratic Relu approximation
We suppose here that f is C1([0, 1]). We consider the Relu-approximation of the

continuous f ′ of the form

f ′(x) = lim
n→+∞

n∑
k=0

αk Relu(k + 1− nx)

where the vector α = A
(1)
R,nG

(1)
n , where A(1)

R,n is the matrix (1) and

G(1)
n =

(
f ′(0), f ′( 1

n ), ..., f ′(n−1
n ), f ′(1)

)T
.

We obtain the following Relu2 approximation of f .

Proposition 2.6 The function f is a uniform limit of (Sn), where

Sn(x) = − 1

2n

n∑
k=0

αk Relu(k+1−nx)2+f(1)+
αn
2n

= − 1

n

n∑
k=0

αk Relu2(k+1−nx)+f(1)+
αn
2n
.

Proof. It is clear that (Sn) is differentiable on [0, 1] and

S′n(x) =

n∑
k=0

αk Relu(k + 1− nx), ∀ x ∈ [0, 1].

Then, according to proposition (2.1), (S′n) converges uniformly to f ′ on [0, 1]. Moreover,
Sn(1) = −αn

2n + f(1) + αn

2n = f(1) converges to f(1). The uniform convergence of the
sequence of derivatives plus the convergence of the sequence of functions at x = 1 imply
uniform convergence of (Sn) to f . �

The Relu2 approximation interpolates f ′ at ( in )i=0,...,n and f just at the point 1.
In figure (6), we have used Relu2 approximation for the classical Runge function f(x) =

1
25(2x−1)2+1 , for x ∈ [0, 1] and n = 20.

Figure 6 – Relu2 approximation for n=20
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3. The two dimensional case
We study next approximation results for the case of a two-variables function f :

[0, 1]2 → R, x = (x1, x2) → f(x). We prove that f can be approximated by a sum
of separable variables Heaviside or Relu functions.

For this end, we denote by A
⊗
B the Kronecker product of two matrices A and B.

3.1. Relu-approximation
We study now the following Relu-approximation of f .

Proposition 3.1 For x = (x1, x2) ∈ [0, 1]2 and m = (n+ 1)2, let

Sn(x) =

n∑
k,k′=0

αk,k′ Relu(k + 1− nx1) Relu(k′ + 1− nx2),

where the vector α =
(
α0, α1, ..., αm

)T
= A

(2)
R,nF

(2
n . The matrix A(2)

R,n of size m =

(n+ 1)2 is given by

A
(2)
R,n =



A
(1)
R,n −2A

(1)
R,n A

(1)
R,n O . . . . . . O

O A
(1)
R,n −2A

(1)
R,n A

(1)
R,n

. . .
...

O O A
(1)
R,n −2A

(1)
R,n A

(1)
R,n

. . .
...

...
. . . . . . . . . . . . . . . O

O
. . . . . . O A

(1)
R,n −2A

(1)
R,n A

(1)
R,n

O
. . . . . . O A

(1)
R,n −2A

(1)
R,n

O . . . . . . . . . . . . O A
(1)
R,n


= A

(1)
R,n

⊗
A

(1)
R,n,

with O is null matrix, A(1)
R,n is the (n+ 1) square matrix of type (1) and the vector F (2)

n ∈
Rm defined by:

∀ 0 ≤ k, k′ ≤ n, F (2)
n ((n+ 1)k′ + k + 1) = f(

k

n
,
k′

n
).

Then, the sequence (Sn) converges uniformly to f on [0, 1]2.

Proof. The function f is continuous on the compact domain [0, 1]2, then it is bounded
and uniformly continuous. We denote by M = supx∈[0,1]2 |f(x)| and for a given ε > 0,
there exists η > 0 such that for all x, x′ ∈ [0, 1]2 satisfying ‖x− x′‖∞ ≤ η, we have

|f(x)− f(x′)| ≤ ε

4
.
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Fixing n ≥ n0 = E( 1
η ) + 1 and x = (x1, x2) ∈ [0, 1]2. If x1 = 1 or x2 = 1, we prove,

similarly to the one dimensional case, that |Sn(x)− f(x)| ≤ ε. If x ∈ [0, 1[2, then, there
exist 0 ≤ kx ≤ n and 0 ≤ k′x ≤ n such that : x ∈ [kxn ,

kx+1]
n ]× [

k′x
n ,

k′x+1]
n ] and

Sn(x) =

n∑
k′=k′x

n∑
k=kx

αk,k′(k + 1− nx1)(k′ + 1− nx2).

By replacing αk,k′ and simplifying, we get

Sn(x) = f(kxn ,
k′x
n )(kx + 1− nx1)(k′x + 1− nx2)− f(kx+1

n ,
k′x
n )(kx − nx1)(k′x + 1− nx2)

−f(kxn ,
k′x+1
n )(kx + 1− nx1)(k′x − nx2) + f(kx+1

n ,
k′x+1
n )(kx − nx1)(k′x − nx2)

.

or

Sn(x) =
[
f(kxn ,

k′x
n )− f(kx+1

n ,
k′x
n )
]

(kx − nx1)(k′x + 1− nx2) + f(kxn ,
k′x
n )(1 + k′x − nx2)

+
[
f(kx+1

n ,
k′x+1
n )− f(kxn ,

k′x+1
n )

]
(kx − nx1)(k′x − nx2)− f(kxn ,

k′x+1
n )(k′x − nx2)

.

Then

Sn(x)− f(x) =
[
f(kxn ,

k′x
n )− f(kx+1

n ,
k′x
n )
]

(kx − nx1)(k′x + 1− nx2)

+
[
f(kx+1

n ,
k′x+1
n )− f(kxn ,

k′x+1
n )

]
(kx − nx1)(k′x − nx2)[

f(kxn ,
k′x
n )− f(kxn ,

k′x+1
n )

]
(k′x − nx2)

+
[
f(kxn ,

k′x
n )− f(x)

] .

Using uniform continuity, and since, ‖x − (kxn ,
k′x
n )‖∞ ≤ 1

n ≤ η, and (k′x − nx2),
(kx − nx1), (k′x + 1− nx2) and (kx + 1− nx1) are bounded by 1, then

|Sn(x)− f(x)| ≤ ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Uniform convergence then holds. �

Remark 3.2 We prove later in (4.1) that f is also uniform limit of

n∑
k,k′=0

αk,k′H(k + 1− nx1)H(k′ + 1− nx2),
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where the vector α =
(
α0, α1, ..., αm

)T
= A

(2)
H,nF

(2
n . The matrix A(2)

H,n of size m =

(n+ 1)2 is given by

A
(2)
H,n =



A
(1)
H,n −A(1)

H,n O O . . . . . . O

O A
(1)
H,n −A(1)

H,n O
. . .

...

O O A
(1)
H,n −A(1)

H,n O
. . .

...
...

. . . . . . . . . . . . . . . O

O
. . . . . . O A

(1)
H,n −A(1)

R,n O

O
. . . . . . O A

(1)
H,n −A(1)

H,n

O . . . . . . . . . . . . O A
(1)
H,n


= A

(1)
H,n

⊗
A

(1)
H,n

for the (n+ 1) square matrices, O null matrix and

A
(1)
H,n =



1 −1 0 0 . . . . . . 0

0 1 −1 0
. . .

...

0 0 1 −1 0
. . .

...
...

. . . . . . . . . . . . . . . 0

0
. . . . . . 0 1 −1 0

0
. . . . . . 0 1 −1

0 . . . . . . . . . . . . 0 1


. (11)

And the vector F (2)
n ∈ Rm is defined by:

∀ 0 ≤ k, k′ ≤ n, F (2)
n ((n+ 1)k′ + k + 1) = f(

k

n
,
k′

n
).

3.2. Applications
As for the one dimensional case, we consider some applications presented to interpo-

lation, numerical integration and finite element.

3.2.1. Interpolation
It is easy to check that, for fixed n, the approximated function Sn of a given continuous

function f on [0, 1]2 cited in proposition (3.1) or in remark (3.2) is such that :

Sn(
k

n
,
k′

n
) = f(

k

n
,
k′

n
), ∀ 0 ≤ k, k′ ≤ n.

In fact, coefficients αk,k′ are defined in a way that interpolation conditions are satisfied.
This is equivalent to solving the linear system : B(2)

n α = F
(2)
n , with α and F (2)

n are
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the same vectors in proposition (3.1) and remark (3.2). The square matrix of size m =
(n+ 1)2 is

B(2)
n =

{
B

(2)
H,n for Heaviside approximation

B
(2)
R,n for Relu approximation

with B(2)
H,n, B

(2)
R,n are the following upper triangular matrices :

B
(2)
H,n =



B
(1)
H,n B

(1)
H,n B

(1)
H,n . . . . . . . . . B

(1)
H,n

O B
(1)
H,n B

(1)
H,n B

(1)
H,n · · · B

(1)
H,n

O O B
(1)
H,n B

(1)
H,n B

(1)
H,n

. . .
...

...
. . . . . . . . . . . . . . .

...

O
. . . . . . O B

(1)
H,n B

(1)
H,n B

(1)
H,n

O
. . . . . . O B

(1)
H,n B

(1)
H,n

O . . . . . . . . . . . . O B
(1)
H,n


= B

(1)
H,n

⊗
B

(1)
H,n,

where:

B
(1)
H,n =



1 1 1 . . . . . . . . . . . . 1

0 1 1 1
. . . 1

0 0 1 1
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

0
. . . . . . 0 1 1 1

0
. . . . . . 0 1 1

0 . . . . . . . . . . . . 0 1


.

B
(2)
R,n =



B
(1)
R,n 2B

(1)
R,n 3B

(1)
R,n . . . . . . . . . (n+ 1)B

(1)
R,n

O B
(1)
R,n 2B

(1)
R,n 3B

(1)
R,n · · · nB

(1)
R,n

O O B
(1)
R,n 2B

(1)
R,n 3B

(1)
R,n

. . .
...

...
. . . . . . . . . . . . . . .

...

O
. . . . . . O B

(1)
R,n 2B

(1)
R,n 3B

(1)
R,n

O
. . . . . . O B

(1)
R,n 2B

(1)
R,n

O . . . . . . . . . . . . O B
(1)
R,n


= B

(1)
R,n

⊗
B

(1)
R,n,
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and:

B
(1)
R,n =



1 2 3 . . . . . . . . . . . . (n+ 1)

0 1 2 3
. . . n

0 0 1 2 3
. . .

...
...

. . . . . . . . . . . . . . .
...

0
. . . . . . 0 1 2 3

0
. . . . . . 0 1 2

0 . . . . . . . . . . . . 0 1



It is easy to check, in both cases, that B(2)
n is the inverse of A(2)

n which confirms the
interpolation result.
As example, for the parabolic function f(x1, x2) = (x1−0.5)2 +(x2−0.5)2, we present
in figure (7) the exact function and its Relu interpolation for n = 20.

Figure 7 – Relu approximation for n=20

Uniform convergence avoids Runge’s phenomenon even in the two-dimensional case.
Numerical results in figure (8) are obtained with Runge function f defined on [0, 1]2 by
f(x1, x2) = 1

(1+25(2x1−1)2)(1+25(2x2−1)2) .
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Figure 8 – Relu approximation for n=20

3.3. Finite element application
We denote by Ω =]0, 1[2. Given f ∈ L2(Ω), find the function u solving:{

−∆u(x) = f(x), ∀ x ∈ Ω,
u = 0 on ∂Ω,

(12)

u solution (12) is also solution to the quadratic optimization problem

u = arg min
v∈H1

0 (Ω)

1
2

∫
Ω

‖∇v(x)‖2 dx−
∫

Ω

f(x)v(x)dx.

Letm = (n+1)2, and ϕ : x 7→ ϕk(x) = Relu(k+1−nx). In order to enumerate the set
(ϕkϕk′)k,k′=0,...,n of the Sobolev space H1(Ω), we consider the family (ψ)i=1,...,m =
(ϕkϕk′)k,k′=0,...,n. We denote by Vn = Span(ϕk,k′)k,k′=0,...,n = Span(ψi)i=1,...,m and

V 0
n = {v ∈ Vn; v = 0 on ∂Ω}.

We consider then the approximate quadratic optimization problem

un = arg min
vn∈V 0

n

1
2

∫
Ω

‖∇vn(x)‖2 dx−
∫

Ω

f(x)vn(x)dx.

If we write vn =

m∑
i=1

αiψi, the last problem becomes equivalent to the quadratic con-

strained problem:

min
α∈Rm

1

2
(E(2)

n α, α)− (b(2)
n , α),

un =

m∑
i=1

αiψi = 0 on ∂Ω,
(13)
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where the matrix E(2)
n = (

∫
Ω

ψ′i(x)ψ′j(x)dx)i,j=1,...,m) = En
⊗

En, for En given in

(10), and the vector b(2)
n = (

∫
Ω

f(x)ψi(x)dx)i=1,...,m.

For the particular example{
−∆u(x) = 1, ∀ x ∈ Ω,
u = 0 on ∂Ω

, (14)

the exact solution is u(x1, x2) = 1
4x1(1− x1)x2(1− x2) and figure (9) shows numerical

solution using Relu approximations for n = 20 for which ‖u−un‖∞ = 0.003246376497983063.
To solve the minimizing quadratic problem (13), we used the function ’solvers.qp’ of the
python software package ’cvxopt’.

Figure 9 – EFM with Relu approximation for n=20

4. Multi-dimensional case
For d ∈ N∗, Ω = [0, 1]d and f : Ω → R, x = (x1, ..., xd) → R is a continuous func-

tion, we denote by the vector F (d)
n of dimension m = (n + 1)d, for n > 1, representing

values of the function f on vertices of decomposition of the multidimensional cubic Ω :

F (d)
n = (f(

k1

n
,
k2

n
, ...,

kd
n

))0≤k1,...,kd≤n.

4.1. Heaviside -approximation
Proposition 4.1 The function f is a uniform limit of

Sn(x) =
∑

0≤k1,k2,...,kd≤n

αk1,k2,...,kdH(1+k1−nx1)H(1+k2−nx2)...H(1+kd−nxd),
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with α = A
(d)
H,nF

(d)
n ∈ Rm, where A(d)

H,n is the m = (n + 1)d square matrix given by
recurrence as

A
(d)
H,n = A

(1)
H,n

⊗
A

(d−1)
H,n .

The matrix A(d)
H,n is the inverse of the interpolation matrix B(d)

H,n which is of the form

B(d)
n = B

(1)
H,n

⊗
B

(d−1)
H,n .

The matrices A(1)
H,n and B(1)

H,n are the same of those of the bi-dimensional case in section
(3).

A
(d)
H,n =



A
(d−1)
H,n −A(d−1)

H,n O O . . . . . . O

O A
(d−1)
H,n −A(d−1)

H,n O
. . .

...

O O A
(d−1)
H,n −A(d−1)

H,n O
. . .

...
...

. . . . . . . . . . . . . . . O

O
. . . . . . O A

(d−1)
H,n −A(d−1)

H,n O

O
. . . . . . O A

(d−1)
H,n −A(d−1)

H,n

O . . . . . . . . . . . . O A
(d−1)
H,n


= A

(1)
H,n

⊗
A

(d−1)
H,n ,

O the null matrix and the (n+ 1) square matrix A(1)
H,n is of the form (11).

In order to prove the last proposition we establish the following general property.

Lemma 4.2 Let d ∈ N∗, p = n+ 1 and F = (F1, F2, ..., Fpd) ∈ Rpd . If α = A
(d)
H,nF =

(α1, ..., αpd), then for all k ≥ 1, we have

pd∑
i=k

αi = Fk. (15)

Proof.
Without loss of generality and in order to simplify notations, we prove the lemma for

k = 1.
The proof is by induction on d. If d = 1, we have easily

p∑
i=1

αi =

n∑
i=1

(A
(1)
H,nF )i =

n∑
i=k

(Fi − Fi+1) + Fn+1 = F1.

We suppose that (15) is true for d ≥ 1, we wish to prove that is true for d+ 1 ?
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Letα = A
(d+1)
H,n F ∈ Rpd+1

, with the block decomposition ofα andF : α = (α1, α2, ..., αp)

and F = (F 1, F 2, ..., F p) ∈ Rpd+1

, αk, F k ∈ Rpd , for k = 1, ..., p. Then

α = A
(1)
H,n

⊗
A

(d)
H,n =



A
(d)
H,nF

1 −A(d)
H,nF

2

A
(d)
H,nF

2 −A(d)
H,nF

3

...
A

(d)
H,nF

p−1 −A(d)
H,nF

p

A
(d)
H,nF

p


.

It follows that :

pd+1∑
i=1

αi =

p∑
k=1

pd∑
k′=1

αkk′ =

p−1∑
k=1

 pd∑
k′=1

(A
(d)
H,nF

k)k′ −
pd∑
k′=1

(A
(d)
H,nF

k+1)k′

+

pd∑
k′=1

(A
(d)
H,nF

p)k′

Using induction hypothesis, we have
pd∑
k′=1

(A
(d)
H,nF

k)′k = F k1 and then

pd+1∑
i=1

αi =

p−1∑
k=1

(F k1 − F k+1
1 ) + F p1 = F 1

1 = F1.

�

Proof. (of proposition (4.1))
The proof is analogous to the one of the case d = 1. Let ε > 0 and η > 0, such

that, for x, x′ ∈ Ω satisfying ‖x − x′‖∞ ≤ η, we have |f(x) − f(x′)|∞ ≤ ε. Let
x ∈ Ω, without loss of generality, we suppose that x ∈ [0, 1[d. Let k1x, k2x, ..., kdx such
that x ∈ [k1xn , k1x+1

n ]× [k2xn , k2x+1
n ]× ...× [kdxn , kdx+1

n ]. Replacing Sn(x) and applying
lemma (4.2), we deduce

Sn(x)− f(x) =
∑

k1≥k1x,k2≥k2x,...,kd≥kdx

αk1,k2,...,kd = f(
k1x

n
,
k2x

n
, ...,

kdx
n

)− f(x).

Using uniform continuity, and since, ‖x− (k1xn , k2xn , ..., kdxn )‖∞ ≤ 1
n ≤ η, then

|Sn(x)− f(x)| ≤ ε.

This finishes the proof of the proposition (4.1). �

4.2. Relu -approximation
We can prove similarly that a continuous function f on the compact domain [0, 1]d is

a uniform limit of

Sn(x) =
∑

0≤k1,k2,...,kd≤n

αk1,k2,...,kd Relu(1+k1−nx1) Relu(1+k2−nx2)... Relu(1+kd−nxd),
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where α = A
(d)
R,nF

(d)
n ∈ R(n+1)d , A(d)

n is the m = (n + 1)d square matrix given by

recurrence asA(d)
R,n = A

(1)
R,n

⊗
A

(d−1)
R,n . The matrixA(d)

R,n is the inverse of the interpolation

matrix B(d)
R,n which is of the form B

(d)
R,n = B

(1)
R,n

⊗
B

(d−1)
R,n , where A(1)

R,n and B(1)
R,n are

the same matrices used before in section (3).

5. Other activation functions
If we replace the Relu function by another activation function, like sigmoid or softplus,

determining the coefficients α is not explicit and we need to solve a linear system for
every choice of n. Numerical results are similar to Relu approximation case. This is an
example for Runge function for d = 1 with softplus function then for d = 2 with sigmoid
activation function:

Figure 10 – Softplus approximation for d=1 and n=10

Figure 11 – Sigmoid approximation for d=2 and n=20
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6. Conclusion
In this paper, we have considered the following approximation problem : given a con-

tinuous function f , we proved that f is a uniform limit of a sum of Relu or heaviside
activation functions with separable variables. Numerical applications of these approxi-
mations for one and two dimensional cases were implemented.

As future work, we plan to extend these approximations using other activation func-
tions and try to apply them to machine learning models like regression or deep learning
models.
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