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ABSTRACT. Function approximation arises in many branches of applied mathematics and computer
science, in particular in numerical analysis, in finite element theory and more recently in data sciences
domain. From most common approximation we cite, polynomial, Chebychev and Fourier series ap-
proximations.

In this work we establish some approximations of a continuous function by a series of activation func-
tions. First, we deal with one and two dimensional cases. Then, we generalize the approximation to
the multi dimensional case. Examples of applications of these approximations are: interpolation, nu-
merical integration, finite element and neural network. Finally, we will present some numerical results
of the examples above.

RESUME. La théorie d’approximation des fonctions couvre de nombreuses branches en mathéma-
tiques appliquées, en informatique et en sciences de I'ingénieur, en particulier en analyse numérique,
en théorie des éléments finis et plus récemment en sciences des données.

Parmi les approximations fortement utilisées nous citons les approximations polynomiale de type La-
grange, Hermite ou au sens de Chebychev. Nous trouvons aussi I'approximation d’une fonction par
une séries de Fourier, 'approximation rationnelle...

Dans ce travail, nous établissons quelques résultats d’approximations d’une fonction continue par une
série de fonctions de type activation. Nous traitons d’abord les cas d’une fonction a une seule puis a
deux variables, puis nous généralisons I'approximation au cas multidimensionnel.

Nous appliquons ces approximations pour l'interpolation et I'intégration numérique, en éléments finis
et en réseau neuronal. Nous donnons pour chaque application quelques résultats numériques.

KEYWORDS : Function approximation, interpolation, Runge’s phenomenon, Chebychev points, neu-
ral network, universal approximation theorem, numerical integration, finite element.

MOTS-CLES : Approximation d’une fonction, interpolation, phénoméne de Runge, points de Che-
bychev, réseau neuronal, théoréme universel d’approximation, intégation numérique, éléments finis.




1. Introduction

Motivated by the architecture of the human brain, neural networks are composed of
multiple hidden layers. Each hidden layer has multiple hidden nodes. Each node is an ac-
tivation function of an affine transformation of the outputs of the previous layer. Examples
of activation functions:

1 if >0
0 if <0

e Relu function : Relu :  — max(0, z).

e Heaviside function H : x —> {

e Quadratic Relu function: Relus : z — % max(0, z)?.

e Sigmoid function: o : z — H%

e Softplus function : o), : © — log(1 + e~ %).

The starting point of the study of neural networks theory was based on the universal
approximation theorem. It was proved in [1] the density of neural networks with one
hidden layer in the space of continuous functions.

Later, it was proved in [7] that multilayer feed-forward network with a locally bounded
piecewise continuous activation function can approximate any, continuous function if and
only if the network’s activation function is not polynomial.

The authors in [2] proposed an algorithm to find the optimal approximations of convex
univariate functions with feed-forward rectified linear unit (Relu) neural networks. They
studied the minimal approximation error and the number of approximating linear pieces.

Artificial neural networks with Relu activation function were used in [3] to approxi-
mate discontinuous piecewise functions up to L? error. Optimal rates for approximating
these piecewise functions by Relu neural networks, measuring the complexity of the net-
works in terms of the number of nonzero weights, were established.

An L* and L? error bounds for functions of many variables that are approximated
by linear combinations of Relu and square Relus functions were established in [5]. Ap-
proximation of continuous multi-variate functions with Deep Relu neural networks and
conventional fully-connected architectures was developed in [6].

Authors in [9] looked into the relationship between deep neural networks with Relu
function as the activation function and continuous piecewise linear functions.

Also, they gave a one dimensional example to illustrate that a finite element method
using Relu neural network can lead to better approximation result than adaptive finite
element method.

Recently, there are increased new research interests for the application of neural net-
work for numerical approximation of nonlinear a PDEs as in [9, 10].

Many forms of interpolation can be constructed by picking a different class of inter-
polates like, Lagrange or Hermite polynomial interpolation [4], or rational interpolation
using Padé approximation [8], or also, trigonometric interpolation, which is interpolation
by trigonometric polynomials using Fourier series.

Numerical integration theory is in general based on interpolation functions. It provides
a basic and important tool for the numerical resolution of other problems and can be
applied, for example, in numerical methods for ordinary or partial differential equations
and in finite element method.
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In this work, we prove that a continuous function can be explicitly approximated by
a neural network with two layers and non linear activation function in the hidden layer.
This is a version of the universal approximation theorem in the case of single variate.
The novelty here is that we precise weights of the network. But, we don’t have linearity
of the neural network for multi- dimensional case using Relu as activation function. We
prove the approximation for one and two dimensional cases and extend the result to the
multi-variables continuous functions. We apply these approximations to interpolation,
numerical integration and finite element for one and two-variate functions.

2. Approximation of univariate function

Without loss of generality, we consider a function f defined on the interval [0, 1]. Our

goal here is to prove that f is a uniform limit of a series of the form Z ane(wp + by),

neN
for different types of activation functions ¢. This means that f can be approximated by

one hidden layer neural network with ¢ as activation function.
2.1. Approximation by Relu activation function
Proposition 2.1 Let f : [0,1] — R a continuous function. Then, f is the uniform limit
on [0, 1] of
Snp(x) = Zak Relu((k 4+ 1) — nx),

k=0

where the vector o« = ( QQ, A1,y ...y Qlpy )T is given by o = ASLFH, for the matrix Ag?n
of size (n + 1)

1 -2 1 0 N
0 1 -2 1
1 -2 1
AR, = o | (D
1 -2 1
: R R
o ... ... ... ... 0 1

and for the vector F;, = ( f(0), f(2),..., f(%1), f(1) )T

Proof. Since [ is continuous on the closed bounded interval, then it is bounded and
uniformly continuous. Let M = sup |f(x)| and for a given ¢ > 0, there exists > 0
€[0,1]

such that for all z, 2’ € [0, 1] satisfying |z — 2’| < n, we have

|[f(2) = f@)] <

N ™
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Fixing n > ng = E( %) + 1, (where here E(%) is the integer part of the real %). Let
x € [0, 1]. If z = 1, then we have clearly S,,(1) = a,, = f(1) and hence |S,,(1)—f(1)| =

0 <e.Ifz € [0, 1], then, there exists 0 < k, < n such thatz € [z, k%fl]]
Sp(x) = Z ai Relu((k + 1) — nx)
k>,
k k41 k42
= X G s 1)
n—2>k>k,

+ (") = 2f()(n —nax) + f(1)(n+ 1 - nx)

= fU) (ks + 1 —nx) - f(5) (ky — na).
Then

kr,+1 ke ky
Sule) = F@)] = 1/ (=0) = ) e = ) + F(2) = f ()]
Since z € [k=, k”:;l]], then |k, — nz| < 1. In addition |f=tl — ke) = L < 4 and
Ee g < jBetl ko) = 1 <yt follows that
[Sul@) ~ F@) < ) SEDHIFCE) ~ f) < 5 + 5 ==

(S,,) converges uniformly to f on [0,1]. [ |

Remarks 2.2

1) Coefficients (o) are such that : Sn(%) = f(%) forall j =0, ..., n. Since every
activation function @y, : z — Relu((k + 1 — nx) satisfies

@)_ 0 if 1<k+1<j<n
PRV Ty k+1—5 if 0<j<k+1<n-+1

then the vector (o )o<k<n is solution to the triangular linear system Bg)na = F;, with

12 3 o n+1
o1 2 3 - (n—-1) n
BY =1 o 1 2 3 4
12 3
Do 2
0 -+ -+« - 0 0 1

It is easy to check that the matrix Bl(%l)n is nothing else but the inverse of the triangular
matrix Ag)n. This means that this Relu approximation is also an interpolation of f at

(n + 1) distinct nodes z; = %j =0,..,n.
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2) A continuous function f : [a, b] — R, has similarly a Relu approximation of the
form

. . n
flx) = ngrfoo;ak Relu(k + 1 — A

(SU - a))a

(1)

_ : 1)
where the vector « = A RonEns with A R

», 18 the same matrix (1) and

f(a)

fla+t5e)
f(a+ (nflzl(bfa))
f(b)

3) Similarly, a Heaviside-approximation of a continuous function f is a uniform
sum of Heaviside functions as follows : f(z) = 1ir+n H, (x), with
n—-—+0o0

() = S0~ s D41 ey + )41 ),
k=0

Indeed, for z € [£=, ko101 we easily have |H,(z) — f(z)| = |f(E=) — f(x)|. Using

n
uniform continuity of f, we easily deduce uniform convergence of (H,,) to f.

4) The approximation of f by a-one hidden neural network contains a bias term.
We modify slightly the last Relu approximation and we prove in a similar way that f is
also a uniform limit of

n—1

T (x) = Z B Relu((k 4+ 1) — nx) + Bn,

k=0

where the vector 8 = ( o, 81, .-, Bn )T is given by 8 = A, F,,, where

1 -2 1 0 0
0 1 -2 1
: .1 -2 1 :
A= o o . 2)
1 -2 1
1 -1




2.2 Interpolation by Relu function: general case 5

A, is the inverse of

1 2 3 n 1

01 2 3 (n—1) 1

B,=| 0 1 2 3 1
P | 2 1

S . | 1
[ | 0 1

The bias here is 3,, and we retrieve the universel approximation theorem for the one
dimensional case.

5) On the contrary of polynomial, cubic spline, regression or trigonometric Fourier
approximation, last Relu or Heaviside interpolations are explicit and simple to compute
for every integer n. Moreover, they are very easy to integrate and to differentiate.

2.2. Interpolation by Relu function: general case

As it was mentioned before, approximation by Relu function in proposition (2.1) is
also an interpolation of f at the (n + 1) equidistant points (z;),=o.... » of the interval
[0,1]. In general, given a data set (z;, y;)i=0....n, With g < 1 < ...z, and y; € R,

.....

n—1
we propose here to find a function g of the form g, (x Z ai Relu(wgx + by) + ay,
k=0
satisfying g, (z;) = v;.
Proposition 2.3 Let g,, be the function defined by
Z a; Relu(ZHEL =0y 4 g

xH—l — Ty

. T. . .
with the vector o« = ( ag, ..., Oy ) is given by a = D, F},, where the square matrix
D,, of size n + 1 and the vector F,, are:

__ZT2—Tg Z2—%g __
1 To—I1 To—T1 1 O ttt 0
0 1 _z3—@ zz—w1

Tr3z3—T2 r3—T2

. 1 _ Tn—1"%Tn-3 Tn—1—"%Tn—-3 __ 1
0 0 Tn—1—Tn-2 Tn—1—Tn-2
0 ... e 0 1 -1
0 ... . . 0 1

and F,, = ( Y05 Y1y ooy Yn—1, Yn )T . Then g, (z;) = y;, foralli =0, ...,n
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Proof. To determine g of the form g, (x Z a; Relu( )Jran satisfying
xz-&-l — Iy

gn(x;) = y;, forall i = 0,...,n, it is sufﬁment to look for (@;)i=0,....n solution to the
following system :

T2—T0 n —xQ —
a0+ Pt L+ FE A oy = Y
X3 —T] LT —T1 —
o1+ D3y V2 2t ..+ Tn—@m_1 On—1 +om n
o + k2T o En=Ti g + « — .
¢ Tipo—wi_g Tl Ty —Tgy 1 1 n Yi
Ty —Tp—1 o
Op—2 + %an 1+ an = Yn-2
Qp—1 + = Yn—1
Qp = Yn
The matrix of the last linear system is :
1 Z2=% 3= Tn—To 1
To—T1 r3—x2 77 e Ty —Tn—1
0 1 T3—T1  Ta—T3 Ty —T1 1
xr3—To xT4—xT3 e Ty —Tp—1
D/ — 0 0 Tn—1—"Tn-3 Tn —Tn—2 1
n Tn—1"Tn-2 Tn—Tn—1
Tn—Tn—2
0 0 1 Pr—— 1
0 0 1 1
0 0 0 1

This matrix is clearly invertible and its inverse is the quadri-triangular matrix D,, which
achieves the proof of this result. ]

Remark 2.4 The proof of the last approximation shows the existence and the uniqueness
of the coefficients «; for w; = R — and b; = :iji , but we don’t have uniqueness
of the weights w; and bias b;. If the points are equlspaced, we find the approximation of
type (4) which is similar to the one of proposition (2.1).

2.3. Applications

There are many applications of the two last Relu-approximation functions. Python
programming language is used to code some of these applications presented in the rest of
this work.

2.3.1. Interpolation

We can use this approximation in interpolation theory. It is known that for Runge
function f(x) = mﬁ for z € [—1, 1], if we choose equidistant points on [—1, 1], we
find Runge’s phenomenon which is a problem of oscillation at the edges -1 and 1 of the
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interval that occurs when using polynomial interpolation with high degree. This is due to
the fact that uniform convergence is not guaranteed, unlike Relu approximations.

0.8

0.6

0.4

0.2

0.0}

-1.0 -0.5 0.0 0.5 1.0

The Runge function (red, highest central peak); the 5th- &
order interpalating polynomial with equally spaced
interpolating points (blue, lowest central peak); and the 9th-
order interpalating polynomial with equally spaced
interpolating points (green, medium central peak)

Figure 1 — Runge phenomenen: [Wikipedia].

Our first numerical application for Chebychev and equidistant points will be tested on
the interval [—1, 1], since most existing results for Runge phenomenen are implemented in
this interval. For the remaining applications, we deal with f : [0, 1] — R. Figures (2) and
(3) display numerical results of Runge function interpolation, first over equidistant points,
then over Chebychev points. We present in green color interpolation points (z;);=0,... n-

For the same function f, we also test Heaviside approximation whith equidistant
points for n = 10 and n = 50. Results are displayed in figure (4).

10 —— Exact function 10 —— Exact function
—_— =10 — n=100

0.8
0.6

04

02

0.0 .
-1.00 -0.75 -050 -0.25 000 025 050 075 100 -1.00 -075 -050 -025 Q00 025 050 075 100

Figure 2 — Relu interpolation with equidistant points.
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10 —— Exact function 109 —— Exact function
— n=10 — n=21
vk}
0.6
0.4
0.2
00 +— T T T T T T T T 00— T T T T T T T T
-1.00 -075 -050 -025 000 025 050 075 100 -1.00 -075 -0.50 -025 000 025 050 075 100
10 —— Exact function 10 —— Exact function
— =50 — =101
08
0.6
0.4
0.2
0.0 T T T T T T T T 0.0 T T T T T T T T
—-1l.00 -075 -050 -0.25 000 025 050 075 100 -1.00 -075 -050 -025 000 025 050 075 100

Figure 3 — Relu interpolation with Chebychev points.

We notice that uniform convergence is faster with Relu-approximation than Heaviside

approximation as (2) and (4) show:

10

03

06

04

02

0.0

—— Exact function 104 —— Exact function
— =10 = n=50

T T T T T T T T 0.0 T T T T T T
-1.00 -0.75 -050 —-0.25 000 025 050 075 100 -1.00 -075 -050 -025 Q00 025 050 075 100

Figure 4 — Heaviside interpolation with equidistant points.
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2.3.2. Relu-approximation and quadrature rule

Since Relu functions ¢}, are easy to integrate, we can approximate f(t)dt by
[0,1]
replacing f by its Relu-approximation from proposition (2.1) to get the following integra-
tion quadrature rule :

1 1 n—1
/ fl@)de ~ =" ap(k + 1) + o, (3)
0 " =0
We denote by
1 1 n—1
I, = Sp(z)dr = — ap(k+1)% + ayp.
()= [ Sulwde =1 3 anli-+
Replacing oy by its expression and simplifying, we obtain
! 1 1 2 k n—1
/ f@)de = In(f) = o | F0) +2f () +2f () + ..+ 2f () + .. + 2 )+ f(1)
0 n n n n
“)

We retrieve the composite trapezoidal rule for n equidistant intervals. Since (S,) con-
1
verges uniformly to f on [0, 1], then (I,,(f)) converges to / f(x)dx.
0

2.3.3. Finite element application.

Without loss of generality, we can restrict our study to the domain |0, 1[. To set the
ideas, we will also consider the following boundary-value problem: Given f € L%(]0, 1)
and ¢ € L*(]0, 1[), ¢ > 0, find the function u solving:

—u"(z) + c(x)u(z) = f(z), Va€]0,1]
{ w(0) = u(1) — 0 ©)

It is known that (5) is optimality condition of the quadratic minimization problem:

1 1 1
min %/0 u(x)zdonr%/O c(a:)u(x)zdx—/o f(@)u(z)de, (6)

ueH}(]0,1]

It is easy to prove that the piecewise C'' continuous functions (¢ : x — Relu((k +
1) —nz),k = 0, ...,n) are a linear independent set of the the Sobolev space H*(]0, 1]).

.....

‘We suppose here that the solution u of (5) is continuous, thenu = lim Z oy Relu(k+
n—-+o0o P
n

1—nz). The idea of finite element method is to compute u,, = Z ai Relu(k+1—nx) €
k=0
VY an approximation of u solution to the approximate minimization problem.

min 1 /1 ul, (v)%dx + %/1 (@) (x)*de — /1 f(@)uy(x)de, 7
0 0 0

Un €V) 2
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Since we have the Dirichlet conditions u,, (0) = u, (1) = 0, then, « satisfies g + 2cv; +
3ag + ...+ (n+1)a, =0and o, = 0.
The distributional derivative of u,, is

u, = Zaigoli(x) = —nZaiH(i +1—nzx).
i=0 i=0

Replacing u,, and ., in (7), the approximation problem consists in solving the quadratic
constrained problem:

.1
Lnin | g(Ena,a) — (b, @)

ao+ 201+ ... +nap—1 + (n+ Da, =0 ®)
o, =0

where the matrix F,, and the vector b,, are given by :

E, = (/ i (x)¢(x) + c(x)%(x)%(@dx) and b, = ( f(x)%‘(x)d$>
ol 10,1]

0<ij<n 0<i<n

Equality constraints raise from boundary conditions «(0) = 0 and u(1) = 0.

Example 2.5 Consider the simple homogeneous Laplace problem on one dimensional

space:

{ —u'(z) 1, Vz €]0,1] ©)
u(0)=u(l) = 0

Since we have, for i < j,

i4+1

n

1 1
/ <p;(x)<p;-(x)dx:n2/ H(i+1—nx)H(j+1—nx)dx:n2/ dr =n(i+1),
0 0 0

then, the associated symmetric matrix E,, is given by

111 ... ... ... 1
1 2 2 .. ... .02
Ep=nf: . (10)
1 2 3 ... ... n n
1 2 3 n n+1

and the vector b, = ((i + 1)%/2n)o<i<n.

The symmetric matrix E,, is invertible and its inverse is the classical matrix :

2 -1 0 e oo o 0
-1 2 -1 0 B ()
0 -1 2 -1 0 ... 0
o
n _,n
0 oo =12 -1 0
0 0 -1 2 -1

0 B ¢ -1 1
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Moreover, clearly E, ! is positive definite, then E,, is also positive definite. Therefore,
the quadratic problem (8) has a unique solution a.

In this work we do not study convergence of this approximation method. How-
ever, we compare numerical results for n = 10 and n = 50 with the exact solution
u(z) = i(x — 2?). Since we know explicitly the inverse of the matrix E,, resolu-
tion of quadratic problem (8) using Karush Kuhn Tucker condition gives the exact solu-
tion to this example. Numerical results for n = 10 are good with approximation error

lu = urofloe = max |u(%) - un(%)| = 0.009082951015014192. They are better for

n = 50 with approximation error ||u — us0||cc = 0.0003633180406232603.

012

010

0.08

0.06

004

noz2

— Exact solution — Exact solution
000 — n=10 000 — n=50

0.0 02 04 0.6 08 10 0.0 0z 04 0.6 08 10

Figure 5 — Relu approximation for finite element method.

2.4. Neural network with one hidden layer

Proposition (2.1) and remark (5) are nothing else than a proof of the universal approx-
imation theorem for univariate function. It proves the existence of a neural network of one
hidden layer with Relu or Heaviside activation function that approximates a continuous
function f. But, in practice, we just know values (y;) of f on some data (x;). Interpo-
lation of type detailed in proposition (2.3) can be applied under the condition on training
set satisfying x; # x;, for i # j. Loss error of the neural network is zero, which leads
to overfitting if we test it on a data x;.s; ¢ [minz;, maxx;]. This makes this type of

K2 K2

approximation not beneficial for neural network regression or classification problems.

2.5. Quadratic Relu approximation

We suppose here that f is C1([0,1]). We consider the Relu-approximation of the
continuous f/ of the form

f(x) = lim Zak Relu(k + 1 — nx)
k=0

n—-+4oo
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)

,n

G = (J(0), (L), L1250, 1/ (1)

We obtain the following Reluy approximation of f.

where the vector a = Ag’)nGgll ), where Ag is the matrix (1) and

T

Proposition 2.6 The function f is a uniform limit of (.S,,), where

1 & n 1 & n
Snp(x) = 3 Zak Relu(k—&—l—nx)z—l—f(l)—i—g—n =— Zak Relug(k—l—l—nx)—i—f(l)—i—g—n.
k=0 k=0

Proof. Itis clear that (.S,,) is differentiable on [0, 1] and

S (z) = Zak Relu(k +1—nz), Vo € [0,1].
k=0

Then, according to proposition (2.1), (.S},) converges uniformly to f’ on [0, 1]. Moreover,
Sn(1) = =52 + f(1) + 52 = f(1) converges to f(1). The uniform convergence of the
sequence of derivatives plus the convergence of the sequence of functions at x = 1 imply
uniform convergence of (S,,) to f. |

The Reluy approximation interpolates f at (%)FO” and f just at the point 1.
In figure (6), we have used Reluy approximation for the classical Runge function f(x) =

m, forx € [07 1] for n = 20.

10

08

06
—— Exact function

— Relu hinge interpolation, n=20
04

0z

0o

0.0 02 0.4 0.6 08 10

Figure 6 — Relus approximation for n=20

3. The two dimensional case

We study next approximation results for the case of a two-variables function f :
0,12 - R,z = (x1,72) — f(z). We prove that f can be approximated by a sum
of separable variables Heaviside or Relu functions.

For this end, we denote by A Q) B the Kronecker product of two matrices A and B.



3.1 Relu-approximation

3.1. Relu-approximation

We study now the following Relu-approximation of f.

Proposition 3.1 For z = (z1,22) € [0,1]2 and m = (n + 1), let

Sn(z) = Z ag i Relu(k + 1 — nzy) Relu(k' + 1 — nas),

k,k'=0

13

T . .
where the vector o = (am ar, ...,am) = Ag)an. The matrix Ag)n of size m =

(n + 1)2 is given by

AR, —24R) A o 0
o AR, 24y AY
o 0 AR, 4R AR
AR, = ' ‘ . 0
0 o AR 24 AQ)
0 O AR, 243
0 O AR,
for the (n + 1) square matrices, O null matrix and
1 -2 1 0 ... ... 0
0 1 -2 1
00 1 =21
AR = | 0
o . .0 1 =21
0 .o 01 =2
0O ... ... ... ... 0 1
And the vector F,SQ) € R™ is defined by:
VO<kK <n, FP(n+1Dk +k+1)= f(%, %/)).

Then, the sequence (S,,) converges uniformly to f on [0, 1]2.

1 1
= Ag%,)n ® Ag%,)n

Proof. The function f is continuous on the compact domain [0, 1]2, then it is bounded
and uniformly continuous. We denote by M = sup,¢(o qj2 | f(#)| and for a given € > 0,

there exists 7 > 0 such that for all z, 2’ € [0, 1)? satisfying ||z — 2'||c <7, we have

flah) < =

F@) - £ < 5.
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Fixing n > ng = E(%) +1land z = (z1,22) € [0,1]%. If 21 = 1 or 75 = 1, we prove,
similarly to the one dimensional case, that |S,,(z) — f(z)| < e. If z € [0, 1[?, then, there
exist0 < k, <nand0 <k}, < nsuch that: z € [£=, ke tll) o (e kITH]] and

n n

n n

Sn(z) = Z Z g (k+1—nz) (k' +1—nxs).

k'=k! k=ky

By replacing oy, 5 and simplifying, we get

S (z) :f(%,—)(k; +1—na) (K, +1 - nao) — fF(EtL KoYk, — nap) (K + 1 — nas) .

7: n 771
—f(ke, B (hy 1 = ) (k) = naa) + F(EEL, BBy (k= ) (], — nas)

or

n ’n

Sn(r) = f(%a%)—f(kﬁl k/‘)} ky — nxy) (k. +1—mc2)+f(ﬁ 7; (1+ K., — nxg)
(R By (ke B (k, — nan) (K, — nas) - (S, S (R, - nag)

Then

%’ %) - f(kzyjla kn )] kg —nxq) (kL + 1 — nag)
k K +1)} (ky — nay) (K, — naxy)

)
} ' — nxsy)

Using uniform continuity, (k;, - )HOO < L < and (K2 — nay),

(ky —nxy), (k) +1 — nzy) and (k, + 1 — nay) are bounded by 1, then

Uniform convergence then holds. |

Remark 3.2 We prove later in (4.1) that f is also uniform limit of

Z apwH(k+1—nx)HK +1— nxy),
ko k=
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where the vector @ = (ao, a1, ..., am)T = Ag)nFT(LQ. The matrix Ag)n of size m =
(n + 1)2 is given by

Ay, AP o 0 0
o Ay, Ay o
o 0 Ay, Ay o :
AP =1+ = A, QA
o - o Ay, —AQ o
0 Lo ap Ay,
o .. .0 A,

for the (n + 1) square matrices, O null matrix and

1 -1 0 0 B ¢

0 1 -1 0

00 1 -10 .o
Ao

o . .0 1 -1 0

0 .o 01 -1

o ... ... ... ... 0 1

And the vector F,SQ) € R™ is defined by:

k
VO<k K <n, FP(n+ Dk +k+1)=f(-, ).
n n

3.2. Applications

As for the one dimensional case, we consider some applications presented to interpo-
lation, numerical integration and finite element.
3.2.1. Interpolation

It is easy to check that, for fixed n, the approximated function .S,, of a given continuous

function f on [0, 1]? cited in proposition (3.1) or in remark (3.2) is such that :

!/ /
EE B vo<hr <n

’
n -n n n

S (

In fact, coefficients ;- are defined in a way that interpolation conditions are satisfied.

This is equivalent to solving the linear system : B,(LZ)a = F,(LZ), with o and F,(lz) are
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3 THE TWO DIMENSIONAL CASE

the same vectors in proposition (3.1) and remark (3.2). The square matrix of size m =

(n+1)%is

" Bg)n for Relu approximation

with Bg’)n, Bg)n are the following simple matrices :

(2
BH,)n =

where:

B® — { Bﬁfn for Heaviside approximation

By, BY, BY ... ... ... By,
o By, BY BY .. By,
o o By, BY. By,
: : - o =By, QB
0 O By, By, Bi,
0] o  BY By,
0 o  BY,
11 1 ... 1
01 1 1 1
00 1 1
By =
0 0 1 1 1
0 0o 1 1
0 0 1
BY) 2By 3BYL) ... (n+1)BY),
o By, 2By, 3BY) nBY),
0O 0 BY),  2BY), 3BY)
' : - . : =B Q By,
0) 0] BY), 2B 3BY)
0 0 BYS), 2By,
0 0 BY),
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and:

12 3 ... cee oon (n+1)
01 2 3 n
00 1 2 3

By =
0 0 1 2 3
0 0 1 2
0 0 1

It is easy to check, in both cases, that B,(LQ) is the inverse of Ag) which confirms the
interpolation result.

As example, for the parabolic function f(z1, 72) = (21 —0.5)*+ (22 —0.5)% and n = 20,
we obtain in figure (7) we present the exact function and its Relu interpolation for n = 20.

Exact function Relu interpolation function

A A
\ { (/A

02

Figure 7 — Relu approximation for n=20

Uniform convergence avoids Runge’s phenomenon even in the two-dimensional case.
Numerical results in figure (8) are obtained with Runge function f defined on [0, 1]2 by
1

fl@y,@2) = (1425221 —1)2)(1+25(222—1)2) *
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Exact function Relu interpolation function

A AR

Figure 8 — Relu approximation for n=20

3.3. Finite element application
We denote by 2 =]0, 1[%. Given f € L?*(Q), find the function u solving:

—Au(z) =  f(z), Vo €Q
{u =0 ondf2 (b

u solution (11) is also solution to the quadratic optimization problem

u = arg min /||VU )| d;z:—/f
eHl(Q)

Letm = (n+1)%, and ¢ : 2 — px(z) = Relu((k + 1) — nz). In order to enumerate the
set (¢rPk )k k'=0.....n of the Sobolev space H (), we consider the family (v/);=1, m =
(PrPr )k, k'=0,...n). We denote by V,, = Span(@g k' )k k'=0,....n = Span(y;)i=1,... m, and

V9 ={veV,; v=0on00}.

We consider then the approximate quadratic optimization problem

unfarg mm /||an i dxf/f x)op(z

The last problem is equivalent to the quadratic constrained problem:

L E® @)
argﬂgILQ(E a,a) = (b, ),

= Zaiwi =0 on 09,

i=1

12)

where the matrix B2 —= (/ wg(x)w;(x)dx)w:l,_”,m) =F, ®En, for E,, given in
Q

(10), and the vector bg) = (/ f@)¥i(x)dz)iz1, .. m-
Q
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For the particular example

{ —Au(z) = 1,Vz €Q

U =0 onod) ’ (13)

the exact solution is u(z1, z2) = +x1(1—21)22(1—22) and figure(9) shows numerical so-
lution using Relu approximations for n = 20 for which ||u—uy, || = 0.003246376497983063.
To solve the minimizing quadratic problem (12), we used the function ’solvers.qp’ of the
python software package ’cvxopt’.

Exact solution EFM solution, n=20

Figure 9 — EFM with Relu approximation for n=20

4. Multi-dimensional case

Ford ¢ N*, Q = [0,1]%and f : Q@ — R,z = (x1,...,24) — R is a continuous
function, we denote by the vector F,Sd) of dimension m = (n + l)d, representing values
of the function f on vertices of decomposition of the multidimensional cubic €2 :

kl kg kd
Fl4) = (f(;7 e ;))ngl ..... ka<n-

forn > 1.
4.1. Heaviside -approximation

Proposition 4.1 The function f is a uniform limit of

Sp(x) = Z Okey kg, kg H (14+k1 —nxy ) H(1+ke —nae)...H(1+kg—nxq),
0<k1,k2,....ka<n

with a = A%l,)nFr(Ld) € R™, where A(If,l?n is the m = (n + 1) square matrix given by

recurrence as @ ) (d—1)
AH,n = AH,n ®AH,n .
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The matrix A%)n is the inverse of the interpolation matrix Bl(g)n which is of the form

B = B, @ Bl

The matrices A(Ij«)n and Bg)" are the same of whose of the bi-dimensional case in section

(3).

A Ay o 0 0
o AR -4l oo
9, o A _qleD o :
d . " o 1 d—1
9, 0 ANl o
o) 0 Ay
(@) O’ A(Ij—i)

for O the null matrix and the (n + 1) square matrix

1 -1 0 0 0

0 1 -1 0

0 0 1 -1 0 :
A= 0 o

0o . .0 1 -1 0

0 oo 01 -1

0 ... ... ... ... 0 1

In order to prove the last proposition we establish the following general property.

Lemmad4.2 Letd e N*, m=n+1land F = (Fy, Fs,...,F,,4) € R™ Ifa = A(I;l?nF,
then

md
Z Q; = Fl- (14)
i=1
Proof. The proof is by induction on d. If d = 1, we have easily
m n+1 n+1
Zai = Z(AS)nF)z = Z(Fz —Fiq1)+ Fop1 = F1.
i=1 i=1 i=k

We suppose that (14) is true for d > 1, we wish to prove that is it true ford + 1 ?



4.2 Relu -approximation 21

Leta = (a',0%,...,a™) = AGFLF e R™ with F = (F', F?, ., F™) e R™""
F* ¢ R™. Then
A( ) Fl A( ) F2
A(d) F2 A(d) Fd
1 d
w= A @A, = |
Ag)nFm_l _ Ag))nFm

A
It follows that :
’H’Ld+l m ’VVL m md ’H’Ld d

d m
S =303 b = SO (A P S (A P D (A P
i=1 k=1k'=1 k=1 k’'=1 k=1 k=1

m d

Using induction hypothesis, we have Z ((Ag)n F*); = FF and then
k=1

md+1 m

> = ZFl FFOY L pr = Fl = By

Proof. (of proposition (4.1))
The proof is analogous to the one of the case d = 1. Lete > 0 and > 0, such
that, for z, 2’ € Q satisfying ||z — 2'[| < 7, we have |f(z) — f(2')|s < €. For all

x € Q, without loss of generality, we suppose that = € [0, 1[d. Let k14, kog, ---, kqz sSuch
that v € [Me Frotl] o [hae koo tl] e oy [Kde Kastl] Replacing S, () and applying

n ?

lemma (4.2), we deduce

Su() - F(z) = 3 Qg = (02 B2 | Ky i

n n n
k1>kiz,k2>kox,....ka>kax

kiz kaz
n

n ?

Using uniform continuity, and since, ||z — ( s kjf Moo < % <7, then

[Sn(z) = f(z)| <e.

This finishes the proof of the proposition (4.1). |

4.2. Relu -approximation

We can prove similarly that a continuous function f on the compact domain [0, 1] is
a uniform limit of

Sp(z) = Z Oky ko, kg RelU(14+k1—naq) Relu(1+ko—nas)... Relu(1+kq—nzq),

0<k1,k2,....ka<n
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where a = AgiLF,Ed) e RO+D" AW is the m = (n + 1)¢ square matrix given by

recurrence as

(1 (d—1)
,n - AR)n®AR n

The matrix Ag)n is the inverse of the interpolation matrix Bgi)n which is of the form

_Bl)®Bd 1)

where Ag)n and Bg%l,)n are the same matrices used before in proposition (2.1).

5. Other activation functions

If we replace the Relu function by another activation function, like sigmoid or softplus,
determining the coefficients « is not explicit and we need to solve a linear system for
every choice of n. Numerical results are similar to Relu approximation case. This is an
example for Runge function for d = 1 with softplus function then for d = 2 with sigmoid
activation function:

10

08

0.6
= Exact function

—— Sofplus interpolation, n=10
04

0z

0.0

D.‘ i) D.IZ D.I4 D.IG D.IS 1 b

Figure 10 — Softplus approximation for d=1 and n=10
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Exact function Relu interpolation function

A 08
n 0.6

Figure 11 — Sigmoid approximation for d=2 and n=20

6. Conclusion

In this paper, we have considered the following approximation problem : given a
continuous function f, we proved that f is a uniform limit of a sum of activation functions
with separable variables. Numerical applications of these approximations for one and two
dimensional cases were implemented.

As future work, we plan to extend these approximations using other activation func-
tions and try to apply them to machine learning models like regression or deep learning
models.
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