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ABSTRACT. Function approximations arises in many branches of applied mathematics and com-
puter science, in particular in numerical analysis, in finite element theory and more recently in data
sciences domain. From most common approximation we cite, polynomial, Chebychev and Fourier
series approximations.
In this work we establish some approximations of a continuous function by a series of activation func-
tions. We deal with first one and two dimensional cases, then we generalize the approximation to the
multi dimensional case. Application of these approximations to: interpolation, numerical integration,
finite element and neural network. Some examples will be presented.

RÉSUMÉ. La théorie d’approximations des fonctions couvre de nombreuses branches en mathéma-
tiques appliquées, en informatique et en sciences de l’ingénieur, en particulier en analyse numérique,
en théorie des éléments finis et plus récemment en sciences des données.
Parmi les approximations fortement utilisées nous citons les approximations polynomiale de type La-
grange, Hermite ou au sens de Chebychev. Nous trouvons aussi l’approximation d’une fonction par
une séries de Fourier, l’approximation rationnelle...
Dans ce travail, nous établissons quelques résultats d’approximations d’une fonction continue par une
série de fonctions de type activation. Nous traitons d’abord les cas d’une fonction à une seule puis à
deux variables, puis nous généralisons l’approximation au cas multidimensionnel.
Nous appliquons ces approximations pour l’interpolation et l’intégration numérique, en éléments finis
et en réseau neuronal. Nous donnons pour chaque applications quelques résultats numériques.

KEYWORDS : Function approximation, interpolation, Runge’s phenomenon, Chebychev points, neu-
ral network, universal approximation theorem, numerical integration, finite element.

MOTS-CLÉS : Approximation d’une fonction, interpolation, phénomène de Runge, points de Cheby-
chev, réseau neuronal, théorème universel d’appoximation, intégation numérique, éléments finis.
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1. Introduction
Motivated by the architecture of the human brain, neural networks are composed of

multiple hidden layers. Each hidden layer has multiple hidden nodes. Each node is an
activation function of an affine transformation of the outputs from the previous layer.
Examples of activation functions:

• Heaviside function H : x 7→
{

1 if > 0
0 if > 0

• Relu function : Relu : x→ max(0, x).

• Relu-Hinge function : x→ 1
2 max(0, x)2.

• Sigmoid function: σ : x→ 1
1+e−x .

• Softplus function : σp : x→ log(1 + e−x).

The starting point of the study of neural networks theory was based on universal approx-
imation theorem. It was proved in [1] the density of of neural networks with one hidden
layer in the space of continuous functions.

Later, it was proved in [7] that multilayer feed-forward network with a locally bounded
piecewise continuous activation function can approximate any, continuous function if and
only if the network’s activation function is not polynomial.

The authors in [2] proposed an algorithm to find the optimal approximations of convex
univariate functions with feed-forward rectified linear unit (ReLU) neural networks. They
studied the minimal approximation error given the number of approximating linear pieces.

Artificial neural networks with ReLU activation function were used in [3] to approxi-
mate discontinuous piecewise functions up to L2 error. Optimal rates for approximating
these piecewise functions by ReLU neural networks, measuring the complexity of the
networks in terms of the number of nonzero weights, was established.

An L∞ and L2 error bounds for functions of many variables that are approximated by
linear combinations of ReLU and squared ReLU ridge functions were established in [5].
Approximation of continuous multi-variate functions with Deep ReLU neural networks
and conventional fully-connected architectures was developed in [6].

Many forms of interpolation can be constructed by picking a different class of inter-
polates like, Lagrange or Hermite polynomial interpolation [4], or rational interpolation
using Padé approximation [8], or also trigonometric interpolation, which is interpolation
by trigonometric polynomials using Fourier series.

Numerical integration theory is in general based on interpolation function which pro-
vides a basic and important tool for the numerical solution of other problems and it can
be for example applied in numerical methods for ordinary or partial differential equations
and in finite element.

In this work, we prove that a continuous function can be explicitly approximated by
a neural network with two layers and non linear activation function in the hidden layer.
This is a version of universal approximation theorem in the case of single variate. The
novelty here is that we precise weights of the network. But, we don’t have linearity of
the neural network for multi- dimensional case using ReLU as activation function. We
prove the approximation for one and two dimensional cases and extend the result to the
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multi-variables continuous functions. We apply these approximations to interpolation,
numerical integration and finite element for one and two-variate functions.

2. Approximation of univariate function
Without loss of generality, we consider a function f defined on the interval [0, 1]. Our

goal here is to prove that f is a uniform limit of a series of the form
∑
n∈N

αnϕ(wnx+ bn),

for different types of activation functions ϕ. This means that f can be approximated by a
one hidden layer neural network with ϕ activation function.

2.1. Approximation by ReLU activation function
Proposition 2.1 Let f : [0, 1] → R a continuous function. Then, f is the uniform limit
on [0, 1] of

Sn(x) =

n−1∑
k=0

αkRelu((k + 1)− nx) + αn,

where the vector α =
(
α0, α1, ..., αn

)T
is given by α = AnFn, for the matrix of size

(n+ 1) and the vector Fn are

An =



1 −2 1 0 . . . . . . 0

0 1 −2 1
. . .

...
...

. . . 1 −2 1
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . . . . . . . . 1 −2 1
...

. . . . . . . . . 1 −1
0 . . . . . . . . . . . . 0 1


,

and for the vector Fn =
(
f(0), f( 1

n ), ..., f(n−1
n ), f(1)

)T
Proof. Since f is continuous on the closed bounded interval, then it is bounded and
uniformly continuous. Let M = sup

∈[0,1]

|f(x)| and for a given ε > 0, there exists η > 0

such that for all x, x′ ∈ [0, 1] satisfying |x− x′| ≤ η, we have

|f(x)− f(x′)| ≤ ε

2
.
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Fixing n ≥ n0 = E( 1
η ) + 1, (where here E( 1

η ) is the integer part of the real 1
η ), for all

x ∈ [0, 1], then there exists 0 ≤ kx ≤ n such that x ∈ [kxn ,
kx+1]
n ].

Sn(x) =
∑
k≥kx

αkRelu((k + 1)− nx) + αn

=
∑

n−2≥k≥kx

[
f(
k

n
)− 2f(

k + 1

n
) + f(

k + 2

n
))(k + 1− nx)

]
+ f(

n− 1

n
)(n− nx)− f(1) + f(1)

= f(kxn )(kx + 1− nx)− f(kx+1
n )(kx − nx).

Then

|Sn(x)− f(x)| = |(f(
kx + 1

n
)− f(

kx
n

))(kx + 1− nx) + f(
kx
n

)− f(x)|.

Since x ∈ [kxn ,
kx+1]
n ], then |kx + 1 − nx| ≤ 1. In addition |kx+1

n − kx
n | = 1

n ≤ η, and
|kxn − x| ≤ |

kx+1
n − kx

n | =
1
n ≤ η, it follows that

|Sn(x)− f(x)| ≤ |(f(
kx + 1

n
)− f(

kx
n

)|+ |f(
kx
n

)− f(x)| ≤ ε

2
+
ε

2
= ε.

(Sn) converges uniformly to f on [0,1]. �

Remarks 2.2
1) Coefficients (αk) are such that : Sn( jn ) = f( jn ) for all j = 0, ..., n. Since every

activation function Reluk : x 7→ Relu((k + 1− nx) satisfies

Reluk(
j

n
) =

{
0 if 1 ≤ k + 1 ≥ j ≤ n
k + 1− j if 0 ≤ j ≤ k + 1 ≤ n+ 1

,

then the vector (αk)0≤k≤n is solution to the triangular linear system A′nα = Fn with

A′n =



1 2 3 ... n 1
0 1 2 3 · · · (n− 1) 1
...

. . . . . . . . . . . .
...

...

0
. . . . . . 1 2 3 1

... · · ·
. . . . . . 1 2 1

... · · · · · ·
. . . . . . 1 1

0 · · · · · · · · · 0 0 1


.

It is easy to check that the matrix A′n is nothing else but the inverse of the triangular
matrix An.

2) We can prove similarly that f is the uniform limit of (Tn(x)), with

Tn(x) =

n∑
k=0

αkRelu((k + 1)− nx),
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with α = A
(1)
n F

(1)
n , F (1)

n is the same vector of proposition (2.1) and the matrix

A(1)
n =



1 −2 1 0 . . . . . . 0

0 1 −2 1
. . .

...
...

. . . 1 −2 1
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . . . . . . . . 1 −2 1
...

. . . . . . . . . 1 −2
0 . . . . . . . . . . . . 0 1


∈ R(n+1)×(n+1) (1)

is the inverse of the following matrix

B(1)
n =



1 2 3 ... n n+ 1
0 1 2 3 · · · (n− 1) n
...

. . . . . . . . . . . .
...

...

0
. . . . . . . . . . . . 3 1

... · · ·
. . . . . . 1 2 3

... · · · · · ·
. . . . . . 1 2

0 · · · · · · · · · 0 0 1


3) On the contrary of polynomial, cubic spline, regression or trigonometric Fourier

approximation, ReLU interpolation in the form of (2.3) is explicit and simple to compute
for every integer n. Moreover, it is very easy to integrate and to derive.

4) Similarly, a heaviside-approximation of a continuous function f is a uniform
sum of heaviside functions as follows : f(x) = lim

n→+∞
Hn(x), with

Hn(x) =

[
f(0)H(1− nx) +

n−1∑
k=1

(f(
k

n
)− f(

k + 1

n
)H(k + 1− nx) + f(1)H(n+ 1− nx)

]
.

Indeed, for x ∈ [kxn ,
kx+1]
n ], we have easily |Hn(x) − f(x)| = |f(kxn ) − f(x)|. Using

uniform continuity of f , we deduce easily uniform convergence of (Hn) to f .

2.2. Interpolation by ReLU function
Given a data set (xi, yi)i=0,...,n, with xi ∈ R and yi ∈ R, we propose here to find a

function g of the form gn(x) =

n∑
k=0

αkRelu(wkx+ bk) satisfying gn(xi) = yi.

Proposition 2.3 Let gn be the function defined by

gn(x) =

n−1∑
i=0

αiRelu(
xi+1 − x
xi+1 − xi

),
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where the vector α =
(
α0, α1, ..., αn

)T
is given by α = DnFn, for the matrix of size

n and the vector Fn are

Dn =



1 −x2−x0

x2−x1

x2−x0

x2−x1
− 1 0 . . . 0

0 1 −x3−x1

x3−x2

x3−x1

x3−x2
− 1

. . .
...

...
. . . . . . . . . . . .

...
...

. . . 1 −xn−1−xn−3

xn−1−xn−2

xn−1−xn−3

xn−1−xn−2
− 1

...
. . . 1 −xn−xn−2

xn−xn−1

0 . . . . . . . . . . . . 0 1


and Fn =

(
y0, y1, ..., yn−1, yn

)T
. Then gn(xi) = yi, for all i = 0, ..., n.

Proof. To determine g of the form gn(x) =

n−1∑
i=0

αiRelu(
xi+1 − x
xi+1 − xi

) satisfying gn(xi) =

yi, for all i = 0, ..., n, it is sufficient to look for (αi)i=0,...,n solution to the following sys-
tem : 

α0 + x2−x0

x2−x1
α1 + ...+ xn−x0

xn−xn−1
αn = y0

α1 + x3−x1

x3−x2
α2 + ...+ xn−x1

xn−xn−1
αn = y1

...
...

...
αi + xi+2−xi

xi+2−xi−1
αi+1 + ...+ xn−xi

xn−xn−1
αn = yi

...
...

αn−1 + xn−xn−1

xn−xn−1
αn = yn−1

αn = yn

The matrix of the last linear system is :

D′n =



1 x2−x0

x2−x1

x3−x0

x3−x2
. . . . . . xn−x0

xn−xn−1

0 1 x3−x1

x3−x2

x4−x1

x4−x3
. . . xn−x1

xn−xn−1

...
. . . . . . . . . . . .

...
...

. . . 0 1 xn−1−xn−3

xn−1−xn−2

xn−xn−2

xn−xn−1

...
. . . . . . 0 1 xn−xn−2

xn−xn−1

0 . . . . . . . . . 0 1


This matrix is clearly invertible and its inverse is the quadri-triangular matrix Dn which
achieves the proof of this result. �

Remark 2.4 The proof of the last approximation shows the existence and the uniqueness
of the coefficients αi forwi = − 1

xi+1−xi
and bi = xi+1

xi+1−xi
, but we don’t have the unique-

ness of the weights wi and bias bi. If the points are equispaced, we find the proposition
(2.1).
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2.3. Applications
There are many applications of the two last ReLU-approximation functions. Python

programming language is used to code some of these applications presented in the rest of
this work.

2.3.1. Interpolation
We can use this approximation in interpolation theory. It is known that for Runge

function f(x) = 1
1+25x2 for x ∈ [−1, 1], if we choose equispaced points on [−1, 1], we

meet Runge’s phenomenon which is a problem of oscillation at the edges -1 and 1 of
the interval that occurs when using polynomial interpolation with high degree. This is
due to the fact that uniform convergence is not guaranteed, unlike ReLU approximations.
Figures (1) and (2) display numerical results of Runge function interpolation, first over
equispaced points, then over Chebychev points. For the same function f , we also test
Heaviside approximation whith equispaced points for n = 10 and n = 20. Results are
displayed in figure (3).

Figure 1. ReLU interpolation with equispaced points.
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Figure 2. ReLU interpolation with Chebychev points.

We notice that over small Chebychev points number, interpolation is not good at the
middle of the interval, this is because points of interpolation are located near 1 and -1. We
also notice that uniform convergence is faster with ReLU-approximation than Heaviside
approximation as (1) and (3) show:

Figure 3. Heaviside intepolation with equispaced points.
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2.3.2. ReLU-approximation and quadrature rule

Since ReLU functions ϕk are easy to integrate, we can approximate
∫

[0,1]

f(t)dt by

replacing f by its ReLU-approximation of proposition (2.1) to get the following quadra-
ture rule integration :

∫ 1

0

f(x)dx ' 1

n

n−1∑
k=0

αk(k + 1)2 + αn, (2)

We denote by

In(f) =

∫ 1

0

Sn(x)dx =
1

n

n−1∑
k=0

αk(k + 1)2 + αn.

Replacing αk by its expression and simplifying, we obtain

∫ 1

0

f(x)dx ' In(f) =
1

n

[
f(0) + 2f(

1

n
) + 2f(

2

n
) + ...+ 2f(

k

n
) + ...+ 2f(

n− 1

n
) + (1− n)f(1)

]
.

(3)

Clearly, since (Sn) converges uniformly to f on [0, 1], then (In(f)) converges to
∫ 1

0

f(x)dx.

This quadrature rule is exact only on polynomial functions of degree one. Numerical re-
sults are very close to those obtained with composite trapezoidal rule for the same n.
Table (2.3.2) gives our experimental results for functions defined on [0, 1], x 7→ e−x

2

and
x 7→ 1

25x2+1 with n = 10, 20 and 50.

f x 7→ e−x2

x 7→ 1
25x2+1

I =
∫ 1

0
f(x)dx 0.7468241328124271 0.2746801533890032

Composite trapezoidal rule (n=50) 0.7467996071893512 0.2746776880807905
I10(f) 0.7462107961317493 0.27462081624602197
I20(f) 0.7466708369398734 0.27466475095467746
I50(f) 0.7467996071893512 0.2746776880807905

Table 1. Application of formula (3)

2.3.3. Finite element application.
Without loss of generality, we can restrict our study to the domain ]0, 1[. To set the

ideas, we will also consider the following boundary-value problem: Given f ∈ L2(]0, 1[)
and c ∈ L∞(]0, 1[), find the function u solving:{

−u′′(x) + c(x)u(x) = f(x), ∀ x ∈]0, 1[
u(0) = u(1) = 0

(4)

It is easy to prove that the piecewise C1 continuous functions (ϕk : x 7→ Relu((k +
1)− nx), k = 0, ..., n) is a basis of the Sobolev space H1(]0, 1[).
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The variational formulation of problem (8) consists in finding u ∈ H1(]0, 1[) such
that:∫

]0,1[

u′(x)v′(x)dx+

∫
]0,1[

c(x)v(x)dx =

∫
]0,1[

f(x)v(x)dx, ∀ v ∈ H1
0 (]0, 1[).

The last variational formulation is equivalent to find un ∈ Vn = Span(ϕk)k=0,...,n, such
that:∫

]0,1[

u′n(x)v′n(x)dx+

∫
]0,1[

c(x)un(x)vn(x)dx =

∫
]0,1[

f(x)vn(x)dx, ∀ vn ∈ Vn.

This is equivalent to finding un ∈ Vn satisfying:∫
]0,1[

u′n(x)ϕ′k(x)dx+

∫
]0,1[

c(x)ϕk(x)dx =

∫
]0,1[

f(x)ϕk(x)dx, ∀ k = 0, ..., n.

The variational formulation consists in solving the quadratic constrained problem:

min
α∈Rn

1

2
(Anα, α)− (bn, α)

α0 + 2α1 + ...+ (n+ 1)αn = 0
αn = 0.

, (5)

where the matrix En and the vector bn are given by :

En =

(∫
]0,1[

ϕ′i(x)ϕ′j(x) + c(x)ϕi(x)ϕj(x)dx

)
0≤i,j≤n

, and bn =

(∫
]0,1[

f(x)ϕi(x)dx

)
0≤i≤n

.

Equality constraints raise from boundary conditions u(0) = u(1) = 0.
Consider the simple homogeneous Laplace problem on dimension 1 of space:

{
−u′′(x) = 1, ∀ x ∈]0, 1[
u(0) = u(1) = 0

(6)

The exact solution u to this problem is: u(x) = 1
2 (x − x2). The associated symmetric

matrix En is given by En = n


1 1 1 ... ... ... 1
1 2 2 ... ... ... 2
...

...
...

...
... ...

...
1 2 3 ... ... n− 1 n− 1
1 2 3 ... ... n− 1 n

 and the vector

bn = ((i+ 1)2/n)0≤i≤n−1.
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The symmetric matrix En is invertible and its inverse is:

E−1
n =

1

n



2 −1 0 ... .... 0

−1 2 −1 0
. . .

...

0 −1 2 −1 0
. . .

...

...
. . . . . . . . . . . .

...
... 0 −1 2 −1
0 ... 0 −1 1



Moreover, clearly E−1
n is positive definite, then En is also positive definite. Therefore,

the quadratic problem (5) has a unique solution α.

Resolution of quadratic problem (5) is explicit in this case, numerical results for n =
10 are good with approximation error ‖u− u10‖∞ = 0.009082951015014192. They are
better for n = 50 with approximation error ‖u− u50‖∞ = 0.0003633180406232603.

Figure 4. ReLU approximation for finite element method.

2.4. Neural network with one hidden layer
Proposition (2.1) and remark (3) are nothing else than a proof of universal approxima-

tion theorem for univariate function. It proves the existence of a neural network of one
hidden layer with ReLU or Heaviside activation function that approximates a continuous
function f . But in practice, we just know values (yi) of f on some data (xi). Interpola-
tion of type proposition (3.1) can be applied under the condition on training set satisfying
xi 6= xj , for i 6= j. Loss error of the neural network is zero, which leads to over fitting
if we test it on a data xtest /∈ [min

i
xi,max

i
xi]. This make this type of approximation not

beneficial for neural network regression or classification problems.
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2.5. ReLU-Hinge approximation
We suppose here that f is C1([0, 1]). We consider ReLU-approximation of f ′ which

is continuous on [0, 1] of the form

f ′(x) = lim
n→+∞

n∑
k=0

αkRelu(k + 1− nx)

where here the vector α = A
(1)
n G

(1)
n , for A(1)

n is the matrix (1) and

G(1)
n =

(
f ′(0), f ′( 1

n ), ..., f ′(n−1
n ), f ′(1)

)T
.

We have the following ReLU-Hinge approximation of f .

Proposition 2.5 The function f is a uniform limit of (Sn), where

Sn(x) = − 1

2n

n∑
k=0

αkRelu(k + 1− nx)2 + f(1) +
αn
2n
.

Proof. It is clear that (Sn) is differentiable on [0, 1] and

S′n(x) =

n∑
k=0

αkRelu(k + 1− nx), ∀ x ∈ [0, 1].

Then, according to proposition (2.1), (S′n) converges uniformly to f ′ on [0, 1]. Moreover,
Sn(1) = −αn

2n + f(1) + αn

2n = f(1) converges to f(1). The uniform convergence of the
sequence of derivatives plus the convergence of the sequence of functions at x = 1 imply
uniform convergence of (Sn) to f .

�

We have used ReLU Hinge approximation for Runge function f(x) = 1
25(2x−1)2+1 to

obtain (5)

Figure 5. ReLU-Hinge approximation for n=20

We notice that, from last numerical results, and for the same integer n, ReLU Hinge
approximation is better then ReLU approximation, which is better than Heaviside approx-
imation.
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3. The two dimensional case
We have also approximation results for the case of a two-variables function f : [0, 1]2 →

R, x = (x1, x2) → f(x). We prove that f can be approximated by a sum of separable
variables ReLU functions.

For this end, we denote by A
⊗
B the tensor product of two matrix A and B.

3.1. ReLU-approximation
We suppose that f : [0, 1]2 → R is a continuous function . As in the one dimensional

case, we consider the following ReLU-approximation of f .

Proposition 3.1 For x = (x1, x2) ∈ [0, 1]2 and m = (n+ 1)2, let

Sn(x) =

n∑
k′=0

n∑
k=0

αk,k′Relu(k + 1− nx1)Relu(k′ + 1− nx2),

where the vector α =
(
α0, α1, ..., αm

)T
= A

(2)
n F

(2
n . The matrix A

(2)
n of size m =

(n+ 1)2 is given by

A(2)
n =



A
(1)
n −2A

(1)
n A

(1)
n On . . . . . . On

On A
(1)
n −2A

(1)
n A

(1)
n

. . .
...

On On A
(1)
n −2A

(1)
n A

(1)
n

. . .
...

...
. . . . . . . . . . . . . . . On

On
. . . . . . On A

(1)
n −2A

(1)
n A

(1)
n

On
. . . . . . On A

(1)
n −2A

(1)
n

On . . . . . . . . . . . . On A
(1)
n


= A(1)

n

⊗
A(1)
n

for the (n+ 1) squared matrices, On null matrix and

A(1)
n =



1 −2 1 0 . . . . . . 0

0 1 −2 1
. . .

...

0 0 1 −2 1
. . .

...
...

. . . . . . . . . . . . . . . 0

0
. . . . . . 0 1 −2 1

0
. . . . . . 0 1 −2

0 . . . . . . . . . . . . 0 1


.

And the vector F (2)
n ∈ Rm is defined by:

∀ 0 ≤ k, k′ ≤ n, F (2)
n ((n+ 1)k′ + k + 1) = f(

k

n
,
k′

n
)).
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Then, the sequence (Sn) converges uniformly to f on [0, 1]2.

Proof. The function f is continuous on the compact domain [0, 1]2, then it is bounded
and uniformly continuous. We denote by M = supx∈[0,1]2 |f(x)| and for a given ε > 0,
there exists η > 0 such that for all x, x′ ∈ [0, 1]2 satisfying ‖x− x′‖∞ ≤ η, we have

|f(x)− f(x′)| ≤ ε

4
.

Fixing n ≥ n0 = E( 1
η ) + 1 and x = (x1, x2) ∈ [0, 1]2.

Then there exist 0 ≤ kx ≤ n and 0 ≤ k′x ≤ n such that : x ∈ [kxn ,
kx+1]
n ]×[

k′x
n ,

k′x+1]
n ]

and

Sn(x) =

n∑
k′=k′x

n∑
k=kx

αk,k′(k + 1− nx1)(k′ + 1− nx2).

replacing αk,k′ and simplifying, we get

Sn(x) = f(kxn ,
k′x
n )(kx + 1− nx1)(k′x + 1− nx2)− f(kx+1

n ,
k′x
n )(kx − nx1)(k′x + 1− nx2)

−f(kxn ,
k′x+1
n )(kx + 1− nx1)(k′x − nx2) + f(kx+1

n ,
k′x+1
n )(kx − nx1)(k′x − nx2)

.

or

Sn(x) =
[
f(kxn ,

k′x
n )− f(kx+1

n ,
k′x
n )
]

(kx − nx1)(k′x + 1− nx2) + f(kxn ,
k′x
n )(1 + k′x− nx2)

+
[
f(kx+1

n ,
k′x+1
n )− f(kxn ,

k′x+1
n )

]
(kx − nx1)(k′x − nx2)− f(kxn ,

k′x+1
n )(k′x− nx2)

.

Then

Sn(x)− f(x) =
[
f(kxn ,

k′x
n )− f(kx+1

n ,
k′x
n )
]

(kx − nx1)(k′x + 1− nx2)

+
[
f(kx+1

n ,
k′x+1
n )− f(kxn ,

k′x+1
n )

]
(kx − nx1)(k′x − nx2)[

f(kxn ,
k′x
n )− f(kxn ,

k′x+1
n )

]
(k′x− nx2)

+
[
f(kxn ,

k′x
n )− f(x)

] .

Using uniform continuity, and since, ‖x − (kxn ,
k′x
n )‖∞ ≤ 1

n ≤ η, and (k′x − nx2),
(kx − nx1), (k′x+ 1− nx2) and (kx + 1− nx1) are bounded by 1, then

|Sn(x)− f(x)| ≤ ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Uniform convergence then holds.

3.2. Applications
As for the one dimensional case, we consider some applications presented to interpo-

lation, numerical integration and finite element.
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3.2.1. Interpolation
It is easy to check that, for fixed n, the approximated function Sn of a given continuous

function f on [0, 1]2 cited in proposition (3.1), is such that :

Sn(
k

n
,
k′

n
) = f(

k

n
,
k′

n
), ∀ 0 ≤ k, k′ ≤ n.

In fact, coefficients αk,k′ are such that last interpolation conditions are satisfied. This is
equivalent to solving the linear system : B(2)

n α = F
(2)
n , with α and F (2)

n are the same
vectors in proposition (3.1) and the m = (n+ 1)2 squared matrix B(2)

n is given by :

B(2)
n =



B
(1)
n 2B

(1)
n 3B

(1)
n . . . . . . . . . (n+ 1)B

(1)
n

On B
(1)
n 2B

(1)
n 3B

(1)
n · · · nB

(1)
n

On On B
(1)
n 2B

(1)
n 3B

(1)
n

. . .
...

...
. . . . . . . . . . . . . . .

...

On
. . . . . . On B

(1)
n 2B

(1)
n 3B

(1)
n

On
. . . . . . On B

(1)
n 2B

(1)
n

On . . . . . . . . . . . . On B
(1)
n


= B(1)

n

⊗
B(1)
n .

with

B(1)
n =



1 2 3 . . . . . . . . . . . . (n+ 1)

0 1 2 3
. . . n

0 0 1 2 3
. . .

...
...

. . . . . . . . . . . . . . .
...

0
. . . . . . 0 1 2 3

0
. . . . . . 0 1 2

0 . . . . . . . . . . . . 0 1



It is easy to check that B(2)
n is the inverse of A(2)

n which confirms interpolation result.
As example, for f(x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2 and n = 20, we obtain in figure

(6) the following results.
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Figure 6. ReLU approximation for n=20

Uniform convergence avoids Runge’s phenomenon even in the two-dimensional case.
Numerical results in figure (7) are obtained with Runge function f defined on [0, 1]2 by
f(x1, x2) = 1

(1+25(2x1−1)2)(1+25(2x2−1)2) .

Figure 7. ReLU approximation for n=20
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3.3. Numerical integration

We can approximate
∫

[0,1]2
f(x)dx by

∫
[0,1]2

Sn(x)dx and obtaining the explicit sim-

ple quadrature rule :∫
[0,1]2

f(x)dx =

n∑
k′=0

n∑
k=0

αk,k′

∫
[0,1]2

Relu(k + 1− nx1)Relu(k′ + 1− nx2)dx

= 1
4n2

n∑
k′=0

n∑
k=0

αk,k′(k + 1)2(k′ + 1)2

.

(7)
As example, for f(x1, x2) = x1x2, the numerical integration formula (7) gives I =

0.25 =

∫
[0,1]2

f(x)dx ' 0.26009999999560096 for n = 50. This result for n = 50 is

not efficient comparing it with simple trapezoidal integration formula which is exact in
this case.

3.4. Finite element application
We denote by Ω =]0, 1[2. Given f ∈ L2(Ω), find the function u solving:{

−∆u(x) = f(x), ∀ x ∈ Ω
u = 0 on ∂Ω

(8)

Consider (ϕk,k′ : x 7→ Relu((k + 1)− nx)Relu((k′ + 1)− nx), k, k′ = 0, ..., n) the
basis of the Sobolev space H1(Ω).

The variational formulation of problem (8) consists in finding u ∈ H1(Ω) such that:∫
Ω

u′(x)v′(x)dx =

∫
Ω

f(x)v(x)dx, ∀ v ∈ H1
0 (Ω).

and the corresponding approximation variational formulation consists in finding un ∈
Vn = Span(ϕk,k′)k,k′=0,...,n, such that:∫

Ω

u′n(x)v′n(x)dx =

∫
Ω

f(x)vn(x)dx, ∀ vn ∈ Vn.

This is equivalent to find un ∈ Vn satisfying:∫
Ω

u′n(x)ϕ′k(x)dx =

∫
Ω

f(x)ϕk,k′(x)dx, ∀k, k′ = 0, ..., n− 1.

The variational formulation consists in solving the quadratic constrained problem:

min
α∈Rm

1

2
(E(2)

n α, α)− (bn, α),

un = 0 on ∂Ω
(9)

where the matrix An and the vector bn are given by :

E(2)
n = (

∫
Ω

(ϕ′k(x)ϕ′k′(x))k,k′ , and bn = (

∫
Ω

f(x)ϕk(x)dx)k.
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For the particular example{
−∆u(x) = 1, ∀ x ∈ Ω
u = 0 on ∂Ω

, (10)

exact solution is u(x1, x2) = 1
4x1(1−x1)x2(1−x2) and figure(8) shows numerical solu-

tion using ReLU approximations for n = 20 for which ‖u−un‖∞ = 0.003246376497983063.
To slove the minimizing quadratic problem (9) we used the function ’solvers.qp’ of the
python software package ’cvxopt’.

Figure 8. EFM with ReLU approximation for n=20

4. Multi-dimensional case
For d ≥ 1 and Ω = [0, 1]d and for f : Ω → R, x = (x1, ..., xd) → R a continuous

function, we can prove that f is a uniform limit of

Sn(x) =
∑

0≤k1,k2,...,kd≤n

αk1,k2,...,kd≤Relu(1+k1−nx1)Relu(1+k2−nx2)...Relu(1+kd−nxd),

with α ∈ R(n+1)d solution to the systemA
(d)
n α = F

(d)
n , withA(d)

n is the (n+1)d squared
matrix given by recurrence as

A(d)
n = A(1)

n

⊗
A(d−1)
n .

The matrix A(d)
n is the inverse of the interpolation matrix B(d)

n which is of the form

B(d)
n = B(1)

n

⊗
B(d−1)
n .

The vector F (d)
n is of dimension (n + 1)d and represents values of the function f on

vertices of decomposition of the multidimensional cubic Ω :

F (nd−1kd + nd−2kd−1 + ...+ nk2 + k1) = f(
k1

n
,
k2

n
, ...,

kd
n

),∀ 0 ≤ k1, ..., kd ≤ n.
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5. Other activation functions
If we replace the ReLU function by another activation function, like sigmoid or soft-

plus, determining the coefficients α is not explicit and we need to solve a linear system
for every choice of n. Numerical results are similar to ReLU approximation case. This
is an example for Runge function for d = 1 with softtplus function then for d = 2 with
sigmoid activation function:

Figure 9. Softplus approximation for d=1 and n=10

Figure 10. Sigmoid approximation for d=2 and n=20

6. Conclusion
In this paper, we have considered the following approximation problem : given a

continuous function f and the number of approximating n, we proved that f is a uniform
limit of a sum of separable variables activation functions. Numerical applications of this
approximations for one and two dimensional cases were implemented.
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As future work, we plan to extend these approximations using other activation func-
tions and try to apply them to machine learning models like regression or neural network.
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