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ABSTRACT

Light field imaging is becoming a key technology, which pro-
vides users with a realistic visual experience through the ca-
pability of dynamic viewpoint shifting. This ability comes
at the cost of capturing huge amounts of information, leav-
ing the problem of compression and transmission a challenge.
The encoder complexity is the key to achieve efficient cod-
ing in conventional light field coding schemes, where a com-
plicated prediction process is essentially used at the encoder
side to exploit the redundancy present in the light field image.
We employ Distributed Source Coding (DSC) for light field
images, which can extensively lift the computational require-
ment from the encoding side at the expense of increased com-
putational complexity at the decoder side. The efficiency of
DSC is heavily dependent on the quality of side information
at the decoder. Therefore, we propose to leverage a learning-
based view synthesis method, which takes into account the
light field structure to generate high-quality side information.
We compare our approach to Distributed Video Coding and
Distributed Multi-view Video Coding schemes adapted to the
light field framework and relevant standard-based approach,
and demonstrate that the proposed view synthesis-based ap-
proach can achieve similar performance, while substantially
reducing the number of key views to be transmitted.

Index Terms— Light field, distributed source coding,
view synthesis

1. INTRODUCTION

Light field (LF) is a relatively new paradigm in image ac-
quisition technology. It offers some off-the-shelf capabilities
such as refocusing, aperture adjustment and view-point shift-
ing after capturing the scene. Contrary to traditional camera
technology which captures the light intensity focused at the
sensor plane, LF technology captures the intensity of light
rays passing through it, thereby recording not only the spa-
tial coordinate of the incident light ray but also its angular
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orientation. A major challenge comes while storing or trans-
mitting this information due to the amount of captured data.
A typical LF image captured by LYTRO Illum camera offers
only a 0.25 megapixel resolution albeit occupying about 218
megabyte of hard disk space1. This also limits the rate of its
transmission due to high bandwidth requirement. Therefore,
LF coding is considered as an important research topic.

In the literature, an encoder usually exploits the redun-
dancy present in the input data to compress it. Generally, the
method of exploiting redundancy is highly complex, resulting
in a high computational demand at the encoder. Contrary to
these schemes, in Distributed Source Coding (DSC), the cor-
relation is exploited at the decoder side, which effectively lifts
the complex computations from the encoder. From the LF ac-
quisition perspective, DSC can thus release the burden of the
camera processor while still guaranteeing efficient data trans-
mission. DSC is based on the theoretical results of Slepian-
Wolf and Wyner-Ziv (WZ) theorems [1]. According to them,
two correlated sources can be coded with a total rate lower
bounded by their joint entropy (after quantization), even if
only one of the two sources is available at the decoder.

In practical Distributed Video Coding (DVC) [2] schemes,
video frames are divided into two groups: key frames and WZ
frames. Key frames are encoded using traditional, hybrid cod-
ing schemes. Conversely, WZ frames are initially estimated
based on the decoded key frames; this side information, avail-
able at the decoder, is then corrected through channel codes
requested from the encoder. Since generating parity bits (e.g.,
syndromes [3]) is computationally much lighter than tempo-
ral prediction, the complexity cost at the encoder is reduced
by decreasing the number of key frames. This framework has
been later extended to Distributed Multi-view Video Coding
(DMVC) [4], and has been applied to LF as well in the pre-
liminary works [5][6]. However, distributed coding of LF has
remained little explored till now.

In this work, we build on top of the latest state-of-the-art
method in DMVC [7], and we propose improving the esti-
mation at the decoder side. More precisely, we replace the
typically employed optical flow [8] or overlapped block mo-
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tion compensation [9] to generate side information (SI) with
a learning-based view synthesis approach, which estimates
the scene geometry and inpaints occlusion, to obtain higher-
quality estimates. We compare to distributed LF coding ap-
proaches based on optical flow to generate SI in two scenar-
ios: Pseudo Video Sequence (PVS) and sub-aperture images
representation, motivated by DVC and DMVC, respectively.
Furthermore, we show that a view synthesis approach, that
efficiently leverages the LF structure to synthesize intermedi-
ate views, can provide competitive coding performance even
if only a small number of key views are transmitted. This en-
ables to significantly reduce the computation requirements at
the encoder side.

2. RELATED WORK

We divide the related work in three parts: DSC of LFs, DVC
and DMVC approaches, and view synthesis.

In [5], Zhu et al. used DSC to encode camera views in
the pixel-domain. At the decoder, they synthesize SI using
neighboring views through geometry-based image rendering.
Aaron et al. [6] encoded LF views in the transform domain
and utilized scene geometry calculated at the encoder using
original images to estimate SI. More recently, Cong et al. [10]
proposed to generate PVS from a LF image to encode it in a
distributed manner. We have implemented similar approach
and compared with our proposed method.

Conversely, DVC and DMVC have received more atten-
tion. More precisely, novel approaches proposed improv-
ing SI, as this plays a major role in the overall RD perfor-
mance. The quality of generated SI can be improved by uti-
lizing more adjacent frames [11] or multiple SI generation
techniques [12, 13], which usually results in more than one
SIs. Maugey et al. [14] proposed three schemes to fuse the SI.
Among the schemes, the fusion scheme utilizing the recipro-
cal of the residual and the reciprocal of vector magnitude as
weights have superior performance compared to the former
two fusion schemes. Salmistraro et al. [7] propose a DMVC
approach which exploits temporal and inter-view redundan-
cies at the decoder side by generating multiple SIs. Moreover,
a robust fusion method is employed by fusing likelihoods es-
timated from each SI.

View synthesis generates a view at a novel perspective
from views given at different perspectives. The application
of machine learning methods allowed further improvement
in the view synthesis domain by allowing the generation of
higher-quality views from sparser input sets. In their seminal
work, Kalantari et al. [15] proposed a machine learning ap-
proach for view synthesis which outperformed previous con-
ventional approaches. They processed four corner views of a
LF image through a series of convolutional layers which esti-
mated the disparity at the novel view, warped the input views
and merged them to generate the final novel view. Srinivasan
et al. [16] proposed to generate the whole LF from a single
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Fig. 1. Block diagram of the TDWZ encoder.

image by predicting the scene geometry, estimating Lamber-
tian surfaces using the estimated geometry and finally mod-
eling the occluded areas and non-Lambertian parts. Recently,
Navarro et al. [17] proposed a three-part network which es-
timates the disparity map of each of the four corner views in
order to better treat occluded regions and fuse warped corner
views using learned weight to synthesize a novel view. We
select the method in Navarro et al. [17] which achieves supe-
rior performance compared to other methods and incorporate
it in our SI generation block.

3. PROPOSED METHOD

Here, we describe the whole coding scheme with the encoder
in Sec. 3.1 and the decoder in Sec. 3.2. In the Sec. 3.2.1, we
present our proposed method to generate SI employing the
view synthesis based approach.

3.1. Encoding of light field views

At the encoder, as illustrated in Fig. 1, key views (KVs)
are encoded using the High-Efficiency Video Coding [18] en-
coder in Intra mode while the WZ views are encoded follow-
ing a Transform Domain WZ (TDWZ) architecture, where
each view is initially transformed using a 4 × 4 Discrete Co-
sine Transform (DCT) operator [2]. Subsequently, the DCT
coefficients are uniformly quantized using a quantization ma-
trix from a proposed set [19] to achieve rate adaptivity and
rearranged into bands of the same frequency. Starting from
the lowest frequency, each frequency band is then passed to
the LDPCA encoder [3] for encoding.

The LDPCA encoder first converts a frequency band into
bit planes. These bit planes are successively encoded from
the most significant bit to the least significant bit. Before
transmission, an accumulated syndrome is calculated for each
bit plane using a predefined low-density parity-check (LDPC)
matrix. The syndrome is then fed into a bit accumulator as de-
scribed in [3] to achieve accumulated syndrome. Along with
the cyclic information of the bit plane, the accumulated syn-
drome is transmitted in small parts each time the WZ decoder
requests for more information until the bit plane is success-
fully decoded.
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3.2. Joint decoding of light field views

At the decoder, as illustrated in Fig. 2, decoded key views
are used in the SI generation block to estimate a WZ frame
and the corresponding residual signal. For this purpose, we
propose employing a deep learning method that considers LF
structure and present it in the following sub-section. We con-
clude the section by briefly describing the WZ view decoding
and reconstruction.

3.2.1. Side information generation

SI represents a combination of an estimated WZ view and
noise residual signal. The noise residual signal is the view
estimation error, which is calculated by taking the difference
between the estimated and the original views. Due to the un-
availability of the original view at the decoder, the noise resid-
ual signal is estimated at the decoder.

This process is crucial as its accuracy highly determines
the quality of the reconstructed view. The SI is utilized in the
decoding of the bit planes as well as in the view reconstruction
phase. To generate SI for a view (s, t), we assume that all the
required KVs are already decoded. Recent advances in deep
learning-based view synthesis methods showed improvement
over traditional view synthesis schemes and we propose to
leverage these advances to improve SI generation. We im-
plement the scheme from Navarro et al. [17] which achieves
higher quality of synthesized views by implicitly treating oc-
clusions, by estimating four disparity maps. The approach
consists of three networks: a feature extraction network ff ,
a disparity estimation network fd and a selection network fs,
trained in an end-to-end fashion. Given four decoded corner
KVs {Īi} and angular coordinates of a WZ view (s, t), ff
extracts independently features

Fi = ff (Īi, s, t) (1)

of each corner view i ∈ I, with I =

{(0, 0), (0, N), (M, 0), (M,N)}. The extracted features

F = (F0,0, F0,N , FM,0, FM,N ) (2)

are provided to fd which estimates the disparity dm,n of each
corner view with respect to the view being synthesized.

(d0,0, d0,N , dM,0, dM,N ) =fd(F, s, t) (3)

Each disparity map is used to warp each pixel x of corner
views to the view position (s, t) following

Wi(x) = Īi (x+ di(x)) . (4)

The selection network fs learns contributions of each
warped view

(w0,0, w0,N , wM,0, wM,N ) = fs(F,W, s, t) (5)

to the final predicted view (s, t)

Ȳ s,t(x) =
∑
i∈I

wi(x)Wi(x) (6)

where W = (W0,0,W0,N ,WM,0,WM,N ).
In order to estimate noise residual signal of the corre-

sponding predicted view (s, t), warped corner views (Eq. (4))
are subtracted from the estimated view:

Rs,t
i (x) = Ȳ s,t(x)−Wi(x), (7)

where x denotes a spatial pixel position, and Wi is a warped
view. The estimated individual residual noise signals are
merged following:

Rs,t(x) =
∑
i∈I

wresidual
i (x)Rs,t

i (x), (8)

where

wresidual
i (x) =

log
∏

j∈I\i |Rj(x)|∑
k∈I log

∏
j∈I\k |Rj(x)|

=

∑
j∈I\i log |Rj(x)|∑

k∈I
∑

j∈I\k log |Rj(x)|
.

(9)

The level of uncertainty in the estimation process is well rep-
resented with the degree of agreement of the warped KVs.
Therefore, the SI with higher uncertainty should contribute
less to the final residual. Thus, the reciprocal of noise value is
better suited to model the contribution of the noise value. But,
the sum of reciprocal value introduces a multiplication oper-
ation which becomes highly sensitive to changes in residual
value. Therefore, we apply the natural logarithm function to
achieve a more stable solution as proposed in Eq. (9).



3.2.2. Wyner-Ziv view decoding and reconstruction

After SI is generated, it is transformed using a 4 × 4 DCT.
Then, the resulting SI coefficients, the transformed estimated
view CY and the transformed estimated residual CR, are
passed to the noise modeling block. We employ the Lapla-
cian distribution to model the noise residual. The Laplacian
parameter α indicates the reliability of the estimated view.
An accurate noise model directly impacts the number of syn-
drome bits requested to the encoder in order to correct the
estimation errors. We use noise modeling at coefficient level
following the approach in [20].

The estimated parameter α and the transformed estimated
view CY are used to compute the soft input by using CY as
the mean and α as the parameter of the Laplacian distribution.
Then, by calculating the area under the distribution where the
bit is one, the likelihood of bit being equal to one is computed.

The LDPCA decoder is a probabilistic decoder, which re-
quires soft input and syndrome bits to decode a bit plane. A
soft input for the whole bit plane gives the likelihood of a
particular bit being one or zero. It is calculated for each bit
plane of the quantized DCT coefficients by transforming the
estimated view from the SI using the same set of operations
applied to the original view at the WZ encoder (i.e. the 4× 4
DCT transformation, the coefficient quantization and the divi-
sion into bit planes). After receiving syndrome bits from the
encoder, the bit plane is decoded in an iterative fashion using
the message passing algorithm” as described in [21].

Finally decoded bit planes are combined together and
along with SI they are used to reconstruct the final DCT coef-
ficients following [22].

4. EXPERIMENTAL RESULTS

In this section, we define training and testing conditions, then,
we describe the anchors to evaluate our proposed approach
and finally, we present the results.

4.1. Training conditions

We have implemented the viewsynthesis model, described in
Sec. 3.2.1, in PyTorch. The LF dataset provided by Srini-
vasan et al. [16] which consists of 3343 LF images captured
by LYTRO Illum camera has been used for the training. We
choose 3243 images for the training set while the rest of the
images are used for the validation set. In each iteration, a spa-
tial position of a 192×192 patch from each corner view and a
target view at the angular position (s, t), and the angular po-
sition of the target view are randomly selected. They are then
used to learn the weights of the model in the supervised man-
ner. We minimize the sum of the L1-norm of the difference
between the target view and the network output, and the L1-
norm of the difference between their gradients using ADAM
optimizer with a batch size 10.

Wyner-Ziv View Key View

(a) Pseudo Video 

      Sequence

(b) Four Neighboring 

      Views

(c) Four Corner 

      Views

Fig. 3. View splitting modes.

4.2. Testing conditions

The performance was evaluated on four LF images from
EPFL LF dataset [23] suggested by JPEG Pleno initiative
[24]. Raw input lenslet images were decoded using LFTool-
box version 0.4 [25] by demosaicing, devignetting and resam-
pling to a rectangular grid, followed by color and gamma cor-
rection. The resulting LF image provides a set of 15 × 15
views of 434×625 pixels with 10-bit precision. In our exper-
iments, we crop LF to 7× 7 views due to noticeable artifacts
at peripheral views which would degrade the SI generation
block. To demonstrate results, only luminance channel of LF
image is considered in the coding process. Firstly, the effec-
tive resolution of each view is set to 436× 628 (governed by
4 × 4 DCT operation which demands that the resolution of a
view be a multiple of four). The DCT generates 109×157 co-
efficients for each frequency band, resulting in a binary source
code of 17113 length for each bitplane. We designed LDPCA
codes for this length following the procedure described in [3].

Key views are decoded using HEVC Intra decoder (HM
reference software, v.16.0, with Range Extension and Main10
profile). For each RD point, different quantization parameters
are selected during HEVC coding such that the decoded KVs
and reconstructed WZVs have a similar quality, as specified
in Table 1.

Table 1. Key frames quantization parameters for the four RD
points.

Sequence Q1 Q4 Q7 Q8

Bikes 46 38 32 27
Danger de Mort 45 35 30 27
Fountain Vincent2 45 38 32 25
Stone Pillars Outside 43 34 29 24

4.3. Anchors

In this section, we present variations of DSC approaches for
LF compression which will be compared with the proposed
method.

First, we consider a scenario similar to the GOP2 struc-
ture, i.e. one-half of the views are encoded using a conven-
tional non-DSC approach while the rest of the views are en-
coded using the WZ approach. Two possible approaches to
encode a LF are evaluated: PVS, where the SI is generated
using two adjacent pseudo frames; and sub-aperture image,
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where four neighboring views (FNV) are used to estimate the
SI. In the PVS case, as illustrated in Fig. 3 (a), we examine the
LF coding set in the DVC scenario by rearranging LF views in
a stream following the spiral order. Before decoding a WZV
we assume that the respective neighboring frames are already
decoded. Then, in the SI generation part, optical flow [8] is
used to estimate the disparity vectors between KVs which are
warped to procure an estimate of the WZV. Then their aver-
age is taken as the final view estimate while their difference
is taken as the estimate for the residual signal. In FNV case,
as illustrated in Fig. 3 (b), the views are split in a checker-
board pattern allowing to utilize horizontal and vertical adja-
cent neighbors to estimate SI for WZV in a similar manner as
in DMVC [7]. Contrary to DMVC, an additional angular di-
mension and LF image signal are considered. Effectively, the
setup allows to generate two SIs, one for horizontal neighbors
and one for vertical neighbors, which are independently uti-
lized to calculate two soft inputs. A single soft input is passed
to the LDPCA decoder after fusing the two soft inputs utiliz-
ing the correspondingly computed Laplacian parameter α as
their weights.

In the second experiment, we note that in the formerly
presented approaches the complexity reduction is limited, as
half of the key views still needs to be processed by the HEVC
encoder. We consider a similar scheme as our proposed
method, which requires only 4 KVs, while replacing the SI
generation method with optical flow. We denote this scheme
as FCV (Four Corner Views). An illustration of this scheme is
given in Fig. 3 (c). Each corner view is used as a reference to
estimate disparity vectors to all other reference views result-
ing in a total of 12 disparity maps. For each reference view,
the disparity vectors are normalized and averaged to procure
the final disparity map of the view. In the final step, the dispar-
ity vectors are scaled based on the distance between a WZV
at angular position (s, t) and reference views, and then used
to warp each reference view. Finally, the proximity of index
(s, t) to each reference view is used as a weight to fuse all the
warped images.

In addition, we also provide comparison with HEVC Intra
to encode all the 49 KVs as a relevant standard-based solu-
tion.

4.4. Performance analysis

We compare our proposed method with the approaches de-
scribed in the previous section. The comparison is performed
in terms of PSNR which is computed for a LF images as the
average quality across all the views.

Regarding distributed LF coding methods, it can be ob-
served from Fig. 4 that FNV achieves superior performance
compared to PVS. The results reflect that with additional in-
formation in the former case it is possible to improve the pre-
diction process, e.g., reproducing the occluded regions. It is
noticeable that rate-distortion performance of our proposed
VS-based approach is comparable to FNV, even if we use
only four key views. For the highest bitrate, we can observe
underperformance of our approach which we believe comes
from the inability of the VS network to generate fine details
due to the larger baseline along the corner views, in contrast
to the high-quality SI generated by FNV due to the higher
correlation in the adjacent neighbors. At the lowest bitrate,
we can observe gains in favor of FNV which we believe ap-
pear because the VS network was trained on undistorted LF
dataset. For the remaining two bitrates, our approach out-
performs FNV across the contents Danger de Mort and Stone
Pillars Outside while for the contents Bikes and Fountain Vin-
cent 2 we can observe reduction in performance. The reason
is the poor disparity estimation in the former cases for op-
tical flow due to the repetitive patterns and high-frequency
contents. The comparison with HEVC Intra suggests that our
approach achieves similar performance at the contents Bikes
and Fountain Vincent 2 while it outperforms HEVC for Dan-
ger de Mort and Stone Pillars Outside.

The overall performance across contents demonstrates
that similar performance can be achieved with very low en-
coding complexity with a high-end SI generation scheme. For
example, our measurements show that, on average, we can re-
duce the encoding time by ∼25 times for the highest bitrate,
and up to ∼55 times for the lowest bitrate. If we keep the
encoding complexity and the number of side information the
same, we can notice that our approach significantly outper-
forms the equivalent optical flow-based method FVC, thanks
to the improved SI generation scheme.



5. CONCLUSION

In this work we have presented a novel approach for dis-
tributed LF compression based on view synthesis. View syn-
thesis complements the distributed coding paradigm as it en-
ables generating high-quality novel views from a sparse set
of key views, effectively allowing to reduce the number of
key views to be coded and transmitted. Plugging a deep
learning-based view synthesis method into a distributed cod-
ing scheme leads to better coding performance compared to
the HEVC Intra benchmark. Furthermore, we achieve similar
performance as previously proposed DSC schemes, but using
a much smaller fraction of required key views.

Apart from the view estimation process, we have observed
that residual estimation is critical in achieving better RD per-
formance. Therefore, in future work we will explore means
of improving the estimation of the residual noise signal.

6. REFERENCES

[1] T.M. Cover and J.A. Thomas, “Elements of information
theory,” John Wiley & Sons, Inc., 1991.

[2] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-
Monedero, “Distributed video coding,” Proc. IEEE,
vol. IEEE-93, pp. 71–83, 2005.

[3] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive
codes for distributed source coding,” EURASIP Trans.
SP, vol. SP-86, pp. 3123–3130, 2006.

[4] X. Guo, Y. Lu, F. Wu, W. Gao, and S. Li, “Free view-
point switching in multi-view video streaming using
Wyner-Ziv video coding,” in SPIE Trans. VCIP. SPIE,
2006, vol. 6077, pp. 298 – 305.

[5] X. Zhu, A. Aaron, and B. Girod, “Distributed compres-
sion for large camera arrays,” in IEEE Proc. SSP. IEEE,
2003, pp. 30–33.

[6] A. Aaron, P. Ramanathan, and B. Girod, “Wyner-Ziv
coding of light fields for random access,” in IEEE Proc.
MSP. IEEE, 2004, pp. 323–326.

[7] M. Salmistraro, J. Ascenso, C. Brites, and S. Forchham-
mer, “A robust fusion method for multiview distributed
video coding,” EURASIP Trans. ASP, vol. ASP-2014,
pp. 174, 2014.

[8] C. Liu, “Beyond pixels: exploring new representations
and applications for motion analysis”, Ph.D. thesis,
Massachusetts Institute of Technology, 2009.

[9] X. Huang and S. Forchhammer, “Improved side in-
formation generation for distributed video coding,” in
IEEE Proc. MSP. IEEE, 2008, pp. 223–228.

[10] H. P. Cong, S. Perry, and X. HoangVan, “A low com-
plexity Wyner-Ziv coding solution for light field image
transmission and storage,” in IEEE Proc. BMSB, 2019,
pp. 1–5.

[11] M. Ouaret, F. Dufaux, and T. Ebrahimi, “Fusion-based

multiview distributed video coding,” in ACM Proc.
VSSN, 2006, pp. 139–144.

[12] X. Huang, C. Brites, J. Ascenso, F. Pereira, and
S. Forchhammer, “Distributed video coding with multi-
ple side information,” in IEEE Proc. PCS. IEEE, 2009,
pp. 1–4.

[13] X. Huang, L. L. Rakêt, H. Van Luong, M. Nielsen,
F. Lauze, and S. Forchhammer, “Multi-hypothesis trans-
form domain Wyner-Ziv video coding including optical
flow,” in IEEE Proc. MSP. IEEE, 2011, pp. 1–6.

[14] T. Maugey, W. Miled, M. Cagnazzo, and B. Pesquet-
Popescu, “Fusion schemes for multiview distributed
video coding,” in IEEE Proc. EUSIPCO. IEEE, 2009,
pp. 559–563.

[15] N. K. Kalantari, T. C. Wang, and R. Ramamoorthi,
“Learning-based view synthesis for light field cameras,”
ACM Trans. on Graphics, vol. 35, no. 6, pp. 1–10, 2016.

[16] P. P. Srinivasan, T. Wang, A. Sreelal, R. Ramamoorthi,
and R. Ng, “Learning to synthesize a 4D RGBD light
field from a single image,” in IEEE Proc. ICCV, 2017,
pp. 2243–2251.

[17] J. Navarro and N. Sabater, “Learning occlusion-
aware view synthesis for light fields,” arXiv preprint
arXiv:1905.11271, 2019.

[18] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wie-
gand, “Overview of the High Efficiency Video Cod-
ing (HEVC) standard,” IEEE Trans. CSVT, vol. 22, pp.
1649–1668, 2012.

[19] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov,
and M. Ouaret, “The DISCOVER codec: architecture,
techniques and evaluation,” in IEEE Proc. PCS. IEEE,
2007.

[20] X. Huang and S. Forchhammer, “Cross-band noise
model refinement for transform domain Wyner-Ziv
video coding,” EURASIP Trans. SPIC, vol. SPIC-27,
pp. 16–30, 2012.

[21] W. Ryan, “An introduction to LDPC codes,” CRC Hand-
book for Coding and Signal Processing for Recording
Systems, 2004.

[22] D. Kubasov, J. Nayak, and C. Guillemot, “Optimal re-
construction in Wyner-Ziv video coding with multiple
side information,” in IEEE Proc. MMSP. IEEE, 2007,
pp. 183–186.

[23] M. Rerabek and T. Ebrahimi, “New light field image
dataset,” in IEEE Proc. QoMEX. IEEE, 2016.

[24] JPEG PLENO, “Light field coding common test condi-
tions,” ISO/IEC JTC 1/SC29/WG1, JPEG, Vancouver,
Canada, 2018.

[25] D. G. Dansereau, O. Pizarro, and S. B. Williams, “De-
coding, calibration and rectification for lenselet-based
plenoptic cameras,” in IEEE Proc. CVPR. IEEE, 2013,
pp. 1027–1034.


