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Abstract

We consider the problem of unsupervised domain adaptation from mul-
tiple sources in a regression setting. We propose in this work an original
method to take benefit of different sources using a weighted combination
of the sources. For this purpose, we define a new measure of similarity
between probabilities for domain adaptation which we call hypothesis-
discrepancy. We then prove a new bound for unsupervised domain adap-
tation combining multiple sources. We derive from this bound a novel
adversarial domain adaptation algorithm adjusting weights given to each
source, ensuring that sources related to the target receive higher weights.
We finally evaluate our method on different public datasets and compare
it to other domain adaptation baselines to demonstrate the improvement
for regression tasks.

1 Introduction

In classical machine learning, one assumes that the source data used to train
an algorithm comes from the same distribution as the target data it is applied
to. This assumption is not true for many applications: for instance, a human
activity recognition model trained on young people may not perform well when
applied to older ones. Moreover, for many applications, different sources have
different relations to the target domain. Including sources that are not related
to the target may lead to negative transfer ie reduce the performance of adap-
tation on the target domain. Hence we consider in this paper the problem
of unsupervised domain adaptation from multiple sources tackling the issue of
adapting from a labelled source domain to a target domain with no labeled data.
An abundant literature exists for unsupervised domain adaptation with a single
source for classification: [3] introduced a single source adaptation bound for
classification. It was later used in several works, notably adversarial methods
of [10] and [19]. While those methods can be applied to regression, it is not
theoretically founded and often fails in practice. [14] proposed a novel theoretical
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bound for regression using the notion of discrepancy between predictors. It is
not easy to estimate in the general case but has led to several works using linear
regression [1] to train GANs or kernels [8] for domain adaptation.
The main risk of adapting from multiple sources comes from one or several
sources being detrimental to adaptation. It is particularly true with adversarial
methods trying to match source and target domains. Then one wants to find
a way to give high weights to sources the most related to the target. In [15] a
weighting scheme is proposed assuming that the target distribution is a convex
combination of the sources. A boosting method is used in [21] to derive weights.
Recently, [22] extended previous bounds with a maximum over multiple sources
leading to an algorithm giving high weights to sources far from the target. In
[13] inter-relationships between sources are used to compute the weights.
There are two main contributions in this work: firstly, we prove new a bound
for multi-source domain adaptation that is tighter than existing bounds in a
regression task. It is based on a new measure of similarity between distribu-
tions which we call hypothesis-discrepancy. For a given predictor, it measures
how another predictor can give different results on one of the domains while
staying close on the other and can be computed with adversarial learning. The
second main contribution is a new algorithm optimizing both representations
and weights of each source for multi-source domain adaptation. To the best
of the authors’ knowledge, this is the first adversarial unsupervised domain
adaptation tailored for regression. We conduct experiments on both synthetic
and real-world datasets and improve on state of the art results for multi-source
adversarial domain adaptation for regression.

2 Unsupervised Multiple Source Domain Adap-
tation with Hypothesis-Discrepancy

Setting. We first define the problem of Multi-Source Domain Adaptation
(MSDA). We define K independent source domains Dk such that Dk = {Xk, fk}
where Xk is the input data with associated marginal distribution Xk ∼ pk and
fk the true labelling function of the domain. Similarly, we define a target domain
Dt = {Xt, ft} with Xt ∼ pt. We assume that every input is in the same space X
ie Xk ∈ X and Xt ∈ X which is the case of homogeneous transfer. The predic-
tion task is the same for both domains ie fk : X → Y and ft : X → Y (fk and
ft are supposed to be close to each other). For instance, Y ⊂ R for regression
or Y = {0, 1} for binary classification. We also consider a loss L : Y × Y → R+

and a hypothesis class H of hypotheses h : X → Y. We also assume that the
loss L is bounded over Sk by M = supk supx∈Sk,h∈HL(h(x), fk(x)).
For two hypotheses h and h′, we define εk(h, h′) = Ex∼pk [L(h(x), h′(x))] the
average loss of two hypotheses over a the source domain Dk and εt(h, h

′) =
Ex∼pt [L(h(x), h′(x))] over the target domain. We also consider a labelled source
sample Sk of size m with an associated empirical probability p̂k. Similarly, we
consider a unlabelled target sample St of size n with an associated empirical
probability of p̂t.

Objective. The goal of Domain Adaptation is to minimize the target risk
εt(h, ft) = Ex∼pt [L(h(x), ft(x))]. In unsupervised domain adaptation, no label
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is available in the target task and we cannot directly estimate ft. Consequently
we want to leverage the information about the labels in the source domains fk
to adapt to the target domain. After defining the hypothesis-discrepancy we
propose a new bound relating the target risk with a weighted combination of
the source risks εk(h, fk).

2.1 Hypothesis-discrepancy

We introduce the concept of hypothesis-discrepancy:

Definition 1. For two distributions P , Q over a set X and for a hypothesis
classH over X , for any h ∈ H, the hypothesis-discrepancy (or HDisc) associated
with h is defined as:

HDiscH,L(P,Q;h) = max
h′∈H

|Ex∼P [L(h(x), h′(x)]− Ex∼Q[L(h(x), h′(x)]| (1)

For any given h ∈ H hypothesis-discrepancy measures a similarity between two
distributions. It is directly dependent on the hypothesis class H and the loss L
and can be estimated with finite samples. In the definition, h′ can be seen as
a predictor that would be very close to h on the source domain but far on the
target domain (or vice-versa). Using HDisc, we are able to show the following
proposition for unsupervised single source domain adaptation:

Proposition 1. If L is symmetric and follows the triangle inequality, then the
following bound holds for any k ∈ {1, ...,K},

εt(h, ft) ≤ εk(h, fk) + ηH(fk, ft) + HDiscH,L(pt, pk;h) (2)

where
ηH(fk, ft) = min

h0∈H
[εt(h0, ft) + εk(h0, fk)]

Proof. See Appendix A

This bound gives a good intuition about the conditions under which domain
adaptation can work. Indeed, the first term εk(h, fk) corresponds to the error
made by h on the source data. The third term is our hypothesis-discrepancy
and characterizes the similarity between marginal probabilities over the input
data. The second term ηH is the sum of the error made by the ideal hypothesis
on both domains: it is small when the two labelling functions are close which is
the general assumption of unsupervised domain adaptation [4]. As it involves
ft it cannot be controlled in unsupervised domain adaptation without access
to labels in the target domain. It follows that, under the assumption that the
two labelling functions are close, if the two other terms of the bound can be
minimized, the target risk will also be minimized. Another strength of HDisc is
that it is directly dependent on H and L: it can be used for any task including
regression.

2.2 Multi-Source Domain Adaptation bound

When multiple sources are available, a straightforward idea would be to merge
all the source domains into one and transform the problem to single-source
domain adaptation where Proposition 1 applies. This solution is clearly not
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optimal as different source domains may have different relationships to the target
one.
We propose to attribute weights to each source: we introduce the α-weighted
source domain Dα = {pα, fα} such that for α ∈ ∆ = {α ∈ RK ;αk ≥ 0,∑K
k=1 αk = 1}, fα : x → (

∑K
k=1 αkpk(x)fk(x))/(

∑K
j=1 αjpj(x)) and pα =∑K

k=1 αkpk.

The α-weighted sample is Sα =
K⋃
k=1

Sk with probabilities p̂α(x
(k)
i ) = αk/m.

Similarly, we consider an unlabeled target sample St = {(x(t)1 , ..., x
(t)
n )} where

x
(t)
i

i.i.d∼ pt. We define the setsHk = {g : x→ L(h(x), fk(x));h ∈ H}. Moreover,
the Rademacher complexity of a set Hk is defined as

Rm(Hk) = ESk [Eσ[supg∈Hk

m∑
i=1

σig(x
(k)
i )]]

where the expectations is taken over any sample Sk = {x(1)k , ..., x
(m)
k } ∼ p̂k

(m)

and σi are iid variables uniformly distributed over {−1, 1} independent from
X1, ..., XK .

Theorem 1. Assuming that the loss L is symmetric and follows the triangle
inequality, then for any hypothesis h ∈ H, with probability 1− δ the following
bound holds:

εt(h, ft) ≤
K∑
k=1

αk ε̂k(h, fk) + HDiscH,L(pt, pα) + ηH,α

+ 2

K∑
k=1

αkRm(Hk) + ‖α‖2M
√
ln(1/δ)

2m

(3)

where

• ηH,α = min
h0∈H

[εα(h0, fα) + εt(h0, ft)]

• Rm(Hk) is the Rademacher complexity ofHk = {h : x→ L(h(x), fk(x));h ∈
H}

Proof. We give a sketch of the proof. The full details can be found in Ap-
pendix B. Using Proposition 1 with pα, we get:

εt(h, ft) ≤ εα(h, fα) + ηH(ft, fα) + HDiscH,L(pα, pk;h) (4)

We then define φ = εα(h, fα)− ε̂α(h, fα). Using McDiarmid’s inequality [17] for
φ, we obtain that with probability 1− δ,

εα(h, fα) ≤ ε̂α(h, fα) + Ep̂α [φ] + ‖α‖2M
√

log 1/δ

2m

Then one can show using the usual ghost sample argument of Rademacher
complexity that:
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Ep̂α [φ] ≤ 2

K∑
k=1

αkRm(Hk)

Noting that ε̂α(h, fα) =
∑K
k=1 αk ε̂k(h, fk) concludes the proof.

Theorem 1 gives a theoretical analysis in the multi-source domain adaptation
framework. The first term corresponds to the α-weighted source risks and can
be controlled by learning h close to fk. The second term connects the target
distribution with the α-weighted source distribution. The third term is related
to how different the labelling functions on the target and the source are and is
expected to be small in unsupervised domain adaptation. The last two terms
show the convergence rate of this bound and it was proven in [6] that Rm(Hk) =
O(1/

√
m) for some functions such as neural networks.

Then in order to adapt from sources S1, ...,Sk to the target, we need to mini-
mize the hypothesis-discrepancy between the α-weighted domain and the target
domain. We propose in Section 3 an algorithm to find ideal representations of
the sources and weights to select the best sources for adaptation.

3 Adversarial algorithm for Multi-Source Do-
main Adaptation

3.1 Optimization objectiv: a min-max problem

We now present the practical solution derived from Theorem 1. We introduce
a feature extractor parametrized by θ φθ : X → Z and a class of predictor HZ :

Z → Y. Given unlabeled target sample Xt = {(x(t)1 , ..., x
(t)
n } ∈ Rn×d and K

labeled sources Xk = {(x(k)1 , ..., x
(k)
m } ∈ Rm×d with labels Yk = {y(k)1 , ..., y

(k)
m } ∈

Rm, we want to minimize the combination of the source risk and the hypothesis-
discrepancy between the marginal weighted source distribution and target dis-
tribution as in Theorem 1.
Using the definition of HDisc, we formulate the following objective for our
Adversarial Hypothesis-Discrepancy Multi-Source Domain Adaptation (AHD-
MSDA):

min
φθ,h∈H
‖α‖1=1

max
h′∈H

[
K∑
k=1

αkεk(h ◦ φθ, yk) + λ‖α‖2

+|εt(h ◦ φθ, h′ ◦ φθ)−
K∑
k=1

αkεk(h ◦ φθ, h′ ◦ φθ)|

] (5)

where λ is a hyperparameter. It was shown in [1] that if HZ is a subsect of µh-
Lipschitz functions and φθ is continuous in θ then the discrepancy is continuous
in θ and it also stands for hypothesis-discrepancy.
The first term of the objective forces h to be a good predictor on the source task.
For any given h and h′ the discrepancy term constrains both representations φθ
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Figure 1: MSDA: The adversarial scheme is similar to single-source with weights
α. At each iteration, the weights α are udpated.

and weights α to align domains. The term ηH is ignored in our objective and
assumed to be small.
This objective involves a min-max formulation that is similar to the ones used
in adversarial domain adaptation [10]. While computing the true solution of
this min-max problem is still impossible in practice, we derive an alternate
optimization algorithm in the next section.

3.2 Adversarial Domain Adaptation

We display the general structure of our algorithm in Figure 1. Similarly to most
other adversarial methods, we sequentially optimize differents parameters of our
networks according to different objectives. At a given iteration, four losses are
minimized sequentially:

1. Lh = αkεk updates h to minimize the source loss

2. Lh′ = −HDisc updates h′ to maximize discrepancy

3. Lθ = HDisc +
∑K
k=1 αkεk updates φθ to minimize discrepancy and source

loss

4. Lα = HDisc + λ||α||2 updates α to minimize the discrepancy between
α-weighted domain and target domain

The predictor h′ can be seen as a discriminator in traditional adversarial domain
adaptation methods. It is trained to give predictions close to h on one domain
and far on another. The representations φθ are gradually updated against the
discriminator. We include a source loss in its update as otherwise extracted
features would be meaningless for the final task. The loss Lh ensures that h is
performing well on the source domains.
In the loss Lα, we only included the discrepancy term. Indeed, our goal is to
select the domains closer to the source in terms of discrepancy. Including the
source loss in Lα may give too high weights to sources that are ”easy” to predict.
It is possible to keep the term with a µ parameter to control its influence but in
our experiments, it did not bring any improvement. It would also be possible
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Algorithm 1 Pseudo-algorithm for AHD-MSDA

Initialize αk = 1
K , h, h′ and θ randomly, choose learning rates ηh, ηθ and ηα

for e = 1...epochs do
Forward propagation

εk = 1
m

∑m
i=1 L(h(e)(φθ(e)(x

(k)
i ), y

(k)
i ))

HDisc =

∣∣∣∣εt(h(e) ◦ φθ(e) , h′(e) ◦ φθ(e))− K∑
k=1

αkεk(h(e) ◦ φθ(e) , h′(e) ◦ φθ(e))
∣∣∣∣

Backward propagation

h(e+1) ← h(e) − ηh
(∑K

k=1 α
(e)
k ∆hεk(h(e))

)
. (∗)

h′(e+1) ← h′(e) + ηh

(∑K
k=1 α

(e)
k ∆h′HDisc(h′(e))

)
θ(e+1) ← θ(e) − ηθ

(∑K
k=1 α

(e)
k ∆θεk(θ(e)) + ∆θHDisc(θ(e))

)
α
(e+1)
k ← α

(e)
k − ηα

(
∆αkHDisc(α

(e)
k ) + 2λα

(e)
k

)
Clip weights of φ

(e+1)
θ , h(e+1) and h′(e+1)

α(e+1) = α(e+1)/‖α(e+1)‖1
end for
(∗) For a parameter p and a loss L, we note ∆pL(p0) the gradient of L with
respect to p computed at p0

to completely update α at each epoch but we found it sub-performing. Our
method allows the weights to smoothly adapt to the representations learnt by
φθ.
We present a pseudo-algorithm in Algorithm 1. The order of the steps did
not matter in our experiments. It is possible to include a short pre-training
phase where hypothesis-discrepancy is not minimized as in the beginning of the
training, representations and h may be meaningless and weights may be updated
for unrelated sources. Our algorithm can also be applied in the single-source
scenario by setting K = 1 and α = 1.

4 Related works

Relation with other measures. The hypothesis-discrepancy has several ad-
vantages. Firstly, it can be estimated with finite samples (see Appendix C).
Moreover, it is dependent on the hypothesis class H and loss L so it is pos-
sible to use in both classification and regression settings. The hypothesis-
discrepancy is based on the discrepancy introduced in [14]: the original dis-
crepancy is more conservative than our hypothesis-discrepancy as it is defined
by Disc(P,Q) = suph∈HHDisc(P,Q;h). Our bound is tighter than the one of
[14] or [8] as it involves only one supremum over H. The idea of discrepancy
with only one supremum is also used in [12] with the source-discrepancy which
is a specific case of our hypothesis-discrepancy with h = h∗s. While the bound
is tighter than the original [14] it does not lead to efficient practical solutions.
The popular dH introduced in [3] for classification also involves only one supre-
mum but often fails in practice for regression problems. Indeed, minimizing it
aligns domains in a sense of classification and one can see on Figure 2 how in a
simple linear regression problem dH would fail. Our algorithm presented in the
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next section is general to classification and regression.

Discrepancy minimization. While our method minimizes the new hypothesis-
discrepancy, several methods worked on discrepancy minimization: in the orig-
inal work [14], authors derive a quadratic formulation for `2-loss in regression
where the goal is to re-weight each sample in the source domain and was later
extended with kernels in [7]. Recently, discrepancy with linear regressors was
used as a measure of distance between probabilities to train GANs [1]. Most
works focusing on discrepancy have used specific values of the loss L and hy-
pothesis class H to compute it: for instance, the `2-norm with linear regression
was presented in the original work of [14], later extended to kernels [8] or even
used to train GANs [1]. For classification, previous works used dH as it is a
special case of discrepancy for binary classification.

Adversarial Domain Adaptation. The first work using adversarial learning
for Domain Adaptation was introduced in [10] with the gradient reversal layer.
Using the bound of Ben-David [2], authors find a new representation that is
discriminative for the task but where domains are confounded. [19] follows a
similar idea. The main benefit of our method is that the adversarial structure is
directly dependent on the task at hand. Maximum Classifier Discrepancy [18] is
the closest idea to our practical solution even though they use a specific instance
of discrepancy. Our HDisc-based algorithm is more general as it works for both
regression and classification. To the best of authors’ knowledge, this is the first
work proposing an adversarial domain adaptation tailored for regression.

Multi-Source Domain Adaptation. Other authors also proposed methods
to compute weights for different sources. For instance, in [15], authors assume
that the target distribution is a convex combination of the source distributions
and derive optimal weights. [16] and [11], authors use the Rényi divergence to
derive ideal weights for each of the sources.
Other authors tried to attribute weights to different sources with an adversarial
objective. Recently, [22] and [13] extended the adversarial framework of [10] to
multi-source domain adaptation. Namely, they both prove extended previous
bounds from single source DA based on dH and Wasserstein distance. [22] gives a
bound for regression based on dH, but is based on the generalized VC-dimension
for regression which is hard to use in practice. Moreover the adopted weighted
scheme in their algorithm sequentially adapts the worst source to the target

Figure 2: Basic linear regression problem: source domain is in red and target in
blue. Here using linear regressors and `2-loss, for any h, HDisc(Xs, Xt;h) = 0
but using linear classifiers dH(Xs, Xt) = 1 as domains are perfectly separable
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which we assume to be suboptimal. [13] uses relationships between sources
to get weights to adapt to the target using Wasserstein distance, which is not
tailored for regression applications. A very recent pre-print [20] proposes a
weighting scheme for multi-source DA using the original discrepancy of [14] in
the linear regression case, similar to [1].

5 Experiments

In this section, we evaluate our method both in the multi-source (AHD-MSDA)
and single-source scenario (AHDA) on several datasets. It should be noted that
unsupervised Domain Adaptation is hard to evaluate as having no labeled sam-
ples limits usage of classical comparison tools (cross-validation, hyperparameter
tuning, ...). Hence we firstly use a synthetic dataset to test how our algorithm
behaves. Secondly, we improve on previous state of the art results on an ex-
tended version of the Multi-Domain Amazon Review dataset orginally used in
[5]. We also applied our algorithm to a digit classification task for which we get
comparable results with methods tailored for classification.

5.1 Synthetic Dataset (Friedman)

To generate synthetic data, we use a modified version of the Friedman regres-
sion problem [9]. The Friedman dataset uses inputs x of dimension 5 and the
prediction function is

y(x) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

where ε ∼ N (0, σy).
To highlight the two contributions of this work, our goal is two-fold: we firstly
want to demonstrate the effectiveness of HDisc in the single-source DA scenario
(K=1 and α = 1). Then we run different experiments to show when multi-
source DA is expected to bring an improvement.
We generate source data as follows: we define three clusters of sources {S1,S2,S3},
{S4,S5,S6} and {S7,S8,S9}. For each cluster, and for each feature (1...5), a
mean of −1 or 1 is selected at random. Then each mean of each source of a
given cluster is shifted by a random shift ie for a source k associated to a clus-

ter c µ
(f)
k ∼ N (µc, σc). Finally, each source sample is randomly chosen with a

normal distribution pk = N (µ
(f)
k , σk). In Figure 3, we display each feature of

the generated data.
In order to separate the effects of our two contributions, we split the experi-
ments in two parts: in the first experiment, demonstrate the effectiveness of
our hypothesis-discrepancy minimization in the single source scenario (ie when
αk = 1

K ) and why the classical dH fails in this regression scenario. In a second
scenario, we show how our weighting scheme helps adaptation in multi-source,
especially to select sources that are related to the target.

Hypothesis-Discrepancy. For single-source, we merge all 9 source domains
together to create one. The target sample is generated choosing uniformly one
of the source domains for each element and adding a noise of the form N (µshift,
σshift). This experiment helps to understand the purpose of unsupervised do-
main adaptation. Indeed, as the underlying condition for unsupervised DA to
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Figure 3: Data for the single-source Friedman experiment over the 5 features
with σk = 0.2, σc = 0.2, µshift = 0.5, σshift = 0.5. From right to left: (x0, x1)
; (x2, x3); (x4;x0). Each color corresponds to a source, the target is in black.

(a) Validation loss on source data (b) Target loss

Figure 4: Training curves for Single Source DA: without adaptation, the target
loss increases as the validation loss keeps decreasing. DANN exposes the same
behaviour as the target loss of AHDA decreases.

work is that the labelling function is similar in every domain (ηH small in our
experiments), unsupervised DA is closely related to the issue of generalization.
As a consequence, if the algorithm learnt on the source data is able to general-
ize, domain adaptation will not bring any improvement. As such, one can see
unsupervised DA as a data-driven regularization to improve the target risk.
For this experiment, we use a shallow network with 2 layers with 5 neurons and
LeakyRelu activation for the feature extractor and 1 layer for the final predic-
tor as detailed in Appendix D. We keep this architecture for three methods:
Multi-Layer Perceptron (MLP) without adaptation, Domain-Adversarial Neu-
ral Network (DANN) minimizing the dH between domains and our Adversarial
Hypothesis-Discrepancy Adaptation (AHDA) our method in the case of single
source (no weights α). To get the results for DANN, we tuned then hyper-
parameter µ balancing the regression and domain losses: without this tuning,
DANN always fails to converge because its adversarial scheme is related to
classification.
We conducted the experiments with various amount of shift. In Figure 4, we
report the validation loss (computed validation set different from the training
set) and target loss for each method for σx = 0.2, µshift = 0.5 and σshift = 0.5,
which is the case of target data related but not too close to the source domain
plottend on Figure 6. While MLP and DANN overfit on the source data, our
method is able to decrease the target loss. Hence, our adversarial scheme helps
the algorithm to better learn for the target data. We report in Table 1 the
average MSE scores over ten runs for the three methods and various shifts. One
can notice that the further µshift is, the more useful the adaptation is. We also
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(a) One cluster with uniform weights (b) Two clusters with uniform weights

Figure 5: Friedman Multiple Source experiment: α found by AHD-MSDA
(blue) vs True α (orange)

report in Appendix D a visualization of the extracted features from AHDA
and DANN which shows that DANN tries to align domains only to be able
not to separate them while AHDA is constrained by the final regression task.

µshift 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MLP 0.221 0.214 0.260 0.360 0.510 0.695 0.909 1.132 1.322 1.484 1.632

DANN 0.223 0.235 0.296 0.412 0.581 0.784 1.017 1.258 1.462 1.629 1.772

AHDA 0.222 0.214 0.255 0.350 0.490 0.670 0.881 1.044 1.197 1.392 1.446

Table 1: Single source domain adaptation: MSE for different amounts of shift.

Multi-Source DA. We also tried our multi-source algorithm on the previous
target domain. As we expected, multi-source domain adaptation did not bring
any improvement in the previous scenario as the target was sharing the same
relations with every source. But MSDA is particularly interesting in the case
where some of the sources are not useful for adaptation. We demonstrate it
in an experiment where we control the weights α given to each source in the
creation of the target domain.
In a first experiment, we give equal weights α1,2,3 = 1/3 to every source in one
cluster and α4:9 = 0 for every other cluster. In a second experiment, we gave
equal weights to two clusters α1:6 = 1/6 and α7:9 = 0 In both experiments,
and on different runs, the algorithm was able to retrieve weights close to the
real ones. It was translated by a decrease of the target loss. When putting
weights to only one source in a cluster, our algorithm struggled to identify a
specific source but still gave high weight to sources in the same cluster. In some
experiments where sources were very different from each other (no cluster), we
noticed a tendency for α to give 1 for one source and 0 for all the others. It can
be meaningful as the target may be close to only one source in that case or be
balanced using the λ parameter of the `2 regularization.

Discussion. Based on this toy experiment, we can conclude that our AHD-
MSDA and AHDA perform well for regression under the condition that the
labelling functions are the same. The proposed weighting scheme is performing
well when sources have really different relations to the output. The main lim-
itation we found to HDisc is that since it is dependent on h, its estimation is
hard, especially in regression where values are not constrained. As we have seen
the weighting scheme mainly helps when the target data is close to only few of
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Dataset apparel auto baby beauty books camera cellphones computer dvd

MLP 0.897 0.902 0.841 0.880 1.024 0.923 0.871 0.842 0.912
DANN 0.929 1.017 0.893 0.878 1.141 0.944 1.051 1.135 1.052
AHDA 0.837 0.887 0.840 0.860 0.945 0.893 0.859 0.849 0.882
MDAN 0.980 0.797 0.908 0.973 1.234 0.921 0.954 1.749 1.322

AHD-MSDA 0.859 0.767 0.794 0.790 0.969 0.876 0.825 0.770 0.868

Dataset electronics food grocery health jewelry kitchen magazines music musical

MLP 0.833 0.882 0.774 0.869 0.759 0.851 0.960 0.976 0.778
DANN 1.064 1.036 0.793 0.955 0.783 0.856 0.985 1.293 0.727
AHDA 0.844 0.866 0.796 0.851 0.815 0.849 0.909 0.955 0.895
MDAN 1.041 0.820 0.789 0.987 0.755 0.850 1.295 1.330 1.117

AHD-MSDA 0.815 0.849 0.716 0.840 0.715 0.848 0.911 0.991 0.723

Dataset office outdoor software sports tools toys video Average Avg rank

MLP 0.969 0.831 0.924 0.844 0.823 0.873 0.866 0.892 3.12
DANN 0.854 0.803 1.090 0.850 0.888 0.861 1.00 0.955 3.92
AHDA 0.956 0.851 0.880 0.839 0.813 0.864 0.878 0.868 2.52
MDAN 1.041 0.789 0.964 0.910 1.656 0.843 1.467 1.060 3.96

AHD-MSDA 0.882 0.755 0.858 0.814 0.741 0.873 0.883 0.838 1.48

Table 2: Average MAE over 5 runs for each method and domain of the Amazon
Multi-Domain Dataset

the sources. In the next experiment, we show how our algorithm performs on a
real world dataset.

5.2 Multi-Domain Amazon Dataset

We use the extended version of the Multi-Domain Sentiment Dataset1 with
25 categories (books, dvd, ...). The dataset is made of textual reviews from
Amazon and associated ratings. We treat it as a regression problem where the
goal is to predict the rating based on the review. As in previous papers [22]
[10], we transform the data using tf-idf transform and filtering only the 1, 000
words with highest coefficients.
Similarly to the reduced dataset for classification [5], we kept 2, 000 samples for
each category (or less when there was not 2, 000 available). We alternate on
each category as a target and use every other category as a source.
In order to study the performance of our method AHD-MSDA, we compare
it to several other baselines on different datasets:

• MLP corresponds to merging all sources and applying to the target dataset
without adaptation.

• DANN corresponds to merging all sources into one and applying the
DANN from [10].

• AHDA corresponds to merging all sources into one and applying our
adversarial scheme using discrepancy specific to the task.

• MDAN is a multi-source domain adaptation based on the dH distance
proposed in [22]. It gives high weights to sources far from the target (we
used the soft version).

• AHD-MSDA is our method described in Algorithm 1.

We also experimented the Multi-Domain Matching Network (MDMN) that
uses Wasserstein distance between sources and the target to give weights but
it did not perform well at all for regression as the adversarial structure is not
well conditioned for regression. For DANN and MDAN the predictors have
been specified to regression by changing the last layer by a regression layer and
loss with mean squared error. The implementation of MDAN is inspired from
the original implementation from the authors. 2. We tried some methods to

1https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
2https://github.com/KeiraZhao/MDAN
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pre-compute weights for our multi-source algorithm based on different distances
between domains but at best it led to similar results to AHDA so we do not
report it here.
For fair comparison, the basic architecture is kept the same for every method
(see Appendix E). We tried different architectures and came to the same con-
clusion. For every method, we use Adam optimizer. Hyperparameter selection
in unsupervised domain adaptation is a hard task as no labeled target data
is available. For DANN and MDAN, we tried different sets of values and
only report the ones giving the best results on test data which is very advan-
tageous and normally not possible for unsupervised DA (λ = 0.01 for DANN,
γ = 10, µ = 0.1 for MDAN which are the hyperparameters they used in the
classification setting). For our algorithm, the only hyperparameter is λ for `2-
regularization of α for which we tried several values and we report results for
λ = 1 here as we did not notice significant differences for values betwenn 10−3

and 10.
We ran the experiment 5 times and report the average MAE for each method
in Table 2. The standard deviations are around 0.01 for AHD-MSDA and
AHDA (see Appendix E) and for most domains, improvements are statistically
significants using a Wilcoxon rank test. While the gains over the MLP with
no adaptation may seem small, we emphasize that obtaining an improvement
is already challenging as the MLP can already learn general features with the
variety of data it is feeded. For most domains, AHD-MSDA obtains the
best result with multi-source bringing an improvement over AHDA for many
domains. One can notice the instability of DANN and MDAN for a few
number of domains where the error becomes very large.
Overall, the AHDA achieves the best score and shows its efficiency for ad-
versarial regression domain adaptation. The weights obtained by our method
were meaningful for some domains (giving high weight for software to transfer
to computer for instance) but not for all. We assume that the efficiency of the
method is very dependent on the nature of the dataset as even in this case, for
some domains, every adaptation method we tried fails.

5.3 Digit classification

Finally, we experiment our method on a digit classification task using 5 different
domains: MNIST, MNIST-M, Synth, SVHN and USPS. SVHN and USPS are
known to be the hardest datasets to classify as they are much more diverse. In
each experiment, we use one domain as the target and the 4 others as the sources.
We resize all domains to images made of 28 × 28 pixels. For fair comparison
we use the same architecture for every network, using a simple convolutional
neural network (CNN see Appendix F for details). For this experiment, we use
a reduced version of the datasets with 10, 000 samples in each domain.
Since we are in a classification setting, the loss used to train AHDA and AHD-
MSDA cannot be the Mean Squared Error. We found that the cross-entropy
loss was performing better than the `1-loss, so we use it to compute HDisc
(even though it does not follow triangle inequality). Our adversarial structure
becomes very close to the MCD introduced in [18] and our weighting scheme
extends this structure to a multi-source setting.
We report the accuracy for each dataset and each method in Table 3. One can
see that for a classification task, our HDisc still gives state of the art results
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Dataset MNIST MNIST-M SVHN Synth USPS
CNN 0.916 0.450 0.489 0.562 0.624
DANN 0.918 0.530 0.546 0.710 0.659
AHDA 0.912 0.512 0.510 0.769 0.667
MDAN 0.923 0.460 0.488 0.671 0.574

AHD-MSDA 0.923 0.518 0.501 0.793 0.657

Table 3: Accuracy for the visual adaptations on digit datasets

compared to other methods tailored for classification. For MNIST, even without
adaptation, the CNN can learn general features from other datasets. MDAN
fails as it gives high weights to datasets that are not similar (such as USPS for
SVHN) while our AHD-MSDA does not suffer from this drawback.

6 Conclusion

In this work we proposed a new general domain adaptation bound based on a
new hypothesis-discrepancy compatible with classification and regression. We
proposed an adversarial domain adaptation algorithm tailored for the task at
hand, which is novel for regression. We extended these results to multiple
sources to find ideal convex combinations of the sources. We demonstrated
the efficiency of our method for a regression task for which we improved on
previous state of the art results. For a classification task, AHD-MSDA obtains
comparable results to other state of the art results. We emphasize that in the
multi-source setting, our weighting scheme limits the risk of negative transfer.
As we saw in our experiments, we mainly expect improvements of the multi-
source method when some domains are really closer to other forming clusters.
The main limitation of our work comes from the assumption of unsupervised
domain adaptation that the labelling functions are the same in every domain.
In our future work, we intend to investigate the semi-supervised and few-shot
learning settings, where a few labeled target data is available.
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A Proof of Proposition 1

Proof. For any h ∈ H, and any k ∈ {1, ...,K}

εt(h, ft) ≤ εk(h, fk) + |εt(h, ft)− εk(h, fk)|
≤ εk(h, fk) + |εt(h, h0)− εt(h, ft)|+ |εk(h, h0)− εk(h, fk)|+ |εt(h, h0)− εk(h, h0)|
≤ εk(h, fk) + HDiscH,L(pk, pt;h) + Ex∼pt [|L(h(x), h0(x))− L(h(x), ft(x))|]
+ Ex∼pk [|L(h(x), h0(x))− L(h(x), ft(x))|]]
≤ εk(h, fk) + HDiscH,L(pk, pt;h) + Ex∼pt [|L(h0(x), ft(x))|] + Ex∼pk [|L(h0(x), fk(x))|]
≤ εk(h, fk) + εk(h0, fk) + εt(h0, ft) + HDiscH,L(pk, pt;h)

where the first inequality comes from the triangle inequality, the second holds
for any h0 ∈ H. The third comes from the definition of HDisc(pk, pt) and the
fourth follows from triangle inequality on L. Finally, the result follows taking
the minimum over all h0.

B Proof of Theorem 1

Proof. Using Proposition 1 with pα, we get:

εt(h, ft) ≤ εα(h, fα) + ηH(ft, fα) + HDiscH,L(pα, pt;h) (6)

Let us consider K empirical distributions p̂k corresponding to a sample Sk =

{x(k)1 , ..., x
(k)
m of size m and a hypothesis h ∈ H. Then the α-weighted sample Sα

is of size Km and empirical distribution p̂α defined as p̂α(x
(k))
i = αk

m . We define

φ = εα(h, fα)− ε̂α(h, fα). Changing an element x
(k)
i modifies φ by a maximum

of αk
m . We can deduce from the McDiarmid’s inequality that:

P(φ− E(φ) ≤ t) ≤ exp
−2mt2∑K
k=1

α2
k

Hence with probability 1− δ,

εα(h, fα) ≤ ε̂α(h, fα) + Ep̂α [φ] + ‖α‖2M
√

log 1/δ

2m
(7)

We are able to compute Ep̂α using the classical tool of ghost sample in Rademacher
complexity analysis as in the proof of Theorem 2 in [14]. In the following we
will use a random variable σ taking its values uniformly over {−1, 1}. We will

write {x(k)i ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} the sample associated to p̂α ∼ pα and

{z(k)i ; 1 ≤ k ≤ K, 1 ≤ i ≤ m} q̂α ∼ pα.
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Ep̂α∼pα [φ] = Ep̂α [εα(h, fα)− ε̂α(h, fα)]

≤ Ep̂α∼pα [sup
h∈H

εα(h, fα)− ε̂α(h, fα)]

≤ Ep̂α∼pα [sup
h∈H

Eq̂α∼pα [Ex∼q̂α [L(h(x), fα(x))]]− Ex∼p̂α [L(h(x), fα(x))]

≤ Ep̂α,q̂α∼pα [sup
h∈H

Ex∼q̂α [L(h(x), fα(x)]− Ex∼p̂α [L(h(x), fα(x)]

≤ Ep̂α,q̂α∼pα [sup
h∈H

K∑
k=1

αk(Ex∼q̂k [L(h(x), fk(x))− Ex∼p̂k [L(h(x), fk(x)))]

≤ Ep̂α,q̂α∼pα [sup
h∈H

K∑
k=1

αk
m

m∑
i=1

(L(h(x
(k)
i ), fk(x

(k)
i ))− L(h(z

(k)
i ), fk(z

(k)
i )))]

≤ Ep̂α,q̂α∼pα
σi∼σ

[sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σi(L(h(x
(k)
i ), fk(x

(k)
i ))− L(h(z

(k)
i ), fk(z

(k)
i )))]

≤ Ep̂α∼pα
σi∼σ

[sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σiL(h(x
(k)
i ), fk(x

(k)
i ))]

+ Eq̂α∼pα
σi∼σ

[sup
h∈H
−

K∑
k=1

αk
m

m∑
i=1

σiL(h(z
(k)
i ), fk(z

(k)
i ))]

≤ 2Ep̂α∼pα
σi∼σ

[sup
h∈H

K∑
k=1

αk
m

m∑
i=1

σiL(h(x
(k)
i ), fk(x

(k)
i ))]

≤ 2

K∑
k=1

αkRm(Hk)

(8)

Finally, noting that with empirical distributions ε̂α(h, fα) =
∑K
k=1 αk ε̂k(h, fk),

we have the final result with probability 1− δ over the sample of S1, ..., SK :

εt(h, ft) ≤
K∑
k=1

αk ε̂k(h, fk) + HDiscH,L(pt, pα) + ηH,α

+ 2

K∑
k=1

αkRm(Hk) + ‖α‖2M
√
ln(1/δ)

2m

(9)

C Empirical bound for the hypothesis-discrepancy

Like the original discrepancy, for any h ∈ H, HDisc(., .;h) is symmetric and
can be estimated with finite samples. In Theorem 2, we give a bound for em-
pirical distributions. With Hs = {h : x → L(h(x), fs(x)} and Ht = {h : x →
L(h(x), ft(x)}, and the empirical source risk ε̂s(h, fs) =

∑m
i=1

1
mL(h(x

(s)
i ), fs(x

(s)
i )).
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Theorem 2. We assume that the loss L is symmetric, follows the triangle
inequality and verifies L(h(x), y) ≤ M for all h ∈ H and (x, y) ∈ X × Y. Then
for any hypothesis h ∈ H, with probability 1− δ over the samples of Ss of size
m according to ps and St of size n according to pt the following bound holds:

εt(h, ft) ≤ε̂s(h, fs) + ηH(fs, ft) + HDiscH,L(p̂t, p̂s;h)

+ 4Rm(Hs) + 2Rn(Ht) + 2M

√
log 2/δ

2m
+M

√
log 2/δ

2n

(10)

where Rm(Hs) and Rn(Ht) are the Rademacher complexities of Hs and Ht
defined in Appendix ??.

Proof. The proof is similar to the ones of [14]. Let us consider the empirical
distribution p̂s corresponding to a sample Ss of size m and a hypothesis h ∈ H.
We first define φ(h) = εs(h, fs) + HDisc(ps, pt;h)− ε̂s(h, fs) + HDisc(p̂s, pt;h).
Then as the loss L is bounded by M, changing one element of Ss will changes
φ(h) by a maximum of 2M

m . McDiarmid’s inequality states that with probability

1− δ
2 ,

εs(h, fs)+HDisc(ps, pt;h) ≤ ε̂s(h, fs)+HDisc(p̂s, pt;h)+Ep̂s [φ(h)]+2M

√
log(2/δ)

2m

Moreover, from Theorem 2 and Proposition 2 from [14], we know that

• Ep̂s [εs(h, fs)− ε̂s(h, fs)] ≤ 2Rm(Hs)

• Ep̂s [HDisc(p̂s, pt;h)−HDisc(p̂s, pt;h)] ≤ 2Rm(Hs)

where Hs = {x→ L(h(x), fs(x));∀h ∈ H}
As a consequence, with probability 1− δ

2 over the sampling of Ss:

εs(h, fs)+HDisc(ps, pt;h) ≤ ε̂s(h, fs)+HDisc(p̂s, pt;h)+4Rm(Hs)+2M

√
log(2/δ)

2m

Using Proposition 2 from [14] we obtain that with probability 1 − δ
2 over the

sampling of St :

HDisc(p̂s, pt;h) ≤ HDisc(p̂s, p̂t;h) + 2Rm(Hs) +M

√
log(2/δ)

2n

Hence using an union bound, we have the final result with probability 1− δ:

εt(h, ft) ≤ε̂s(h, fs) + ηH(fs, ft) + HDiscH,L(p̂t, p̂s;h)

+ 4Rm(Hs) + 2Rn(Ht) + 2M

√
log 2/δ

2m
+M

√
log 2/δ

2n

(11)
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Figure 6: Data for the multiple source domain adaptation with α =
{1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, 0, 0} (2 clusters with uniform weights)

D Details for the Friedman experiment

We display the obtained data in Figure 6 where only two clusters are selected
to generate the target data. Every implementation has been made in Python
and the method has been implemented using the Pytorch library.
The network architecture is kept the same for every method as follows:

• Feature extractor:

– Linear(5, 10,ELU ),

– Dropout(0.2)

– Linear(10, 5),

– Dropout(0.2)

• Predictor/Discriminator:

– Linear(5, 1)

We use SGD optimizer with lr = 0.001 and momentum 0.9. The batch size is
set to 32 in every experiment.
In Figure 7, we report one of the features extracted by AHDA and DANN
against y. As the final layer is linear, we expect a linear relationship, which is
done by AHDA while DANN tries to align domains in the sense of classifica-
tion.

E Details about Sentiment analysis Experiments

The architecture is kept the same for each method:

• Feature extractor:

– Linear(1000, 500,LeakyRELU ),

– Dropout(0.1)

– Linear(500, 20,LeakyRELU ),

– Dropout(0.1)

• Predictor/Discriminator:

– Linear(20, 1)
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Figure 7: X-axis: Extracted features (before the final predictor) using AHDA
(left) and DANN (right) ; Y-axis: labels to predict (y)

We tried different architectures and the conclusions were the same: adversarial
hypothesis discrepancy performs the best out of other compared methods. For
every method, we use Adam optimizer with learning rate lr = 0.001 and a batch
size equal to 128. We give equal amount of data from each domain in each batch.
Every time, we take one product as the target and every other as the source.
Each network is trained for 100 epochs. In

Dataset apparel automotive baby beauty books camera cellphones computer dvd

MLP 0.011 0.007 0.004 0.011 0.016 0.01 0.004 0.008 0.009

DANN 0.037 0.15 0.039 0.04 0.112 0.06 0.08 0.167 0.137

AHDA 0.007 0.016 0.012 0.009 0.008 0.008 0.015 0.012 0.018

MDAN 0.025 0.048 0.051 0.051 0.32 0.051 0.042 0.274 0.162

AHD-MSDA 0.007 0.04 0.002 0.015 0.017 0.009 0.015 0.016 0.014

Dataset electronics food grocery health jewelry kitchen magazines music

MLP 0.009 0.011 0.004 0.005 0.008 0.005 0.008 0.009

DANN 0.079 0.166 0.017 0.059 0.019 0.027 0.106 0.236

AHDA 0.011 0.012 0.011 0.011 0.018 0.006 0.009 0.023

MDAN 0.049 0.055 0.02 0.057 0.029 0.01 0.438 0.285

AHD-MSDA 0.01 0.01 0.008 0.006 0.036 0.014 0.014 0.018

Dataset musical office outdoor software sports tools toys video

MLP 0.012 0.035 0.007 0.007 0.006 0.028 0.006 0.01

DANN 0.052 0.118 0.013 0.147 0.034 0.264 0.044 0.101

AHDA 0.018 0.014 0.009 0.012 0.009 0.031 0.012 0.014

MDAN 0.082 0.09 0.005 0.049 0.045 0.315 0.024 0.09

AHD-MSDA 0.035 0.053 0.01 0.013 0.017 0.072 0.009 0.017

Table 4: Standard deviation of the MAE for each method and each dataset over
5 runs

F Details about Visual adaptation Experiments

Each dataset is formed with 20, 000 samples and resized to 28× 28 pixels. The
architecture is kept the same for every method:

• Feature extractor:

– Conv2d(1, 64, 3, padding = 1) with LeakyReLU

– MaxPool2d(2)

– Conv2d(64, 128, 3, padding = 1) with LeakyReLU

– MaxPool2d(2)
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– Conv2d(128, 256, 3, padding = 1) with LeakyReLU

– MaxPool2d(2)

– Flatten()

• Predictor / Discriminator:

– Linear(2304, 100) with LeakyReLU

– Dropout(0.2)

– Linear(100, 10) (predictor) / Linear(100, 2) (discriminator)

– Softmax()

Figure 8: Visualization of digit datasets
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